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In this article, we focus on keyword detection in children’s speech as it is needed in voice command

systems. We use the FAU Aibo Emotion Corpus which contains emotionally colored spontaneous
children’s speech recorded in a child-robot interaction scenario and investigate various recent key-

word spotting techniques. As the principle of bidirectional Long Short-Term Memory (BLSTM)

is known to be well-suited for context-sensitive phoneme prediction, we incorporate a BLSTM
network into a Tandem model for flexible coarticulation modeling in children’s speech. Our ex-

periments reveal that the Tandem model prevails over a triphone-based Hidden Markov Model

approach.

Categories and Subject Descriptors: I.5.1 [Computing Methodologies]: Pattern Recognition—

Neural Nets; I.2.7 [Computing Methodologies]: Natural Language Processing—Speech recog-
nition and synthesis

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Children’s Speech, Dynamic Bayesian Networks, Keyword
Spotting, Long Short-Term Memory

1. INTRODUCTION

Offering a natural and intuitive input modality, speech interfaces for children are al-
ready used in many applications such as reading tutors or voice command systems
[Hagen et al. 2007; Steidl et al. 2010]. Thus, optimizing and evaluating auto-
matic speech recognition (ASR) techniques for children’s speech is an active area
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of research [Das et al. 1998; Narayanan and Potamianos 2002; Steidl et al. 2010].
Recognition of children’s speech is known to be a challenge for state-of-the-art ASR
systems since acoustic and linguistic properties strongly differ from adult speech
[Giuliani and Gerosa 2003]. Typical differences in pitch, formant positions, and
coarticulation led to the development of techniques like voice transformations and
frequency warping [Potamianos et al. 1997; Gustafson and Sjölander 2002]. In this
way, adult speech recognizers can be used to transcribe children’s speech as well.
Other systems are directly trained on children’s speech, aiming to obtain models
that fit the respective application scenario [Schuller et al. 2008].

Since full spoken language understanding without any restriction of the expected
vocabulary is hardly feasible and not necessarily needed in today’s child-machine
interaction scenarios, keyword spotting can be applied as an alternative to contin-
uous speech recognition [Foote 1999; Schröder et al. 2008]. The aim of keyword
spotting is to detect a set of predefined keywords from continuous speech signals
[Rose 1995]. At present the predominant methodology for keyword spotting is using
Hidden Markov Models (HMM) [Rose and Paul 1990; Benayed et al. 2003; Ketabdar
et al. 2006]. Such systems have to model both, keyword and non-keyword (garbage)
parts of the speech signal, which is difficult, since a garbage model trained to cap-
ture arbitrary speech can in principle also model the keywords. Both, the garbage
and the keyword HMMs can either be whole-word models or connected phoneme
models. Whole-word models can be used whenever the keywords occur frequently
in the training corpus, while vocabulary independent systems that use phoneme
modeling can be trained on any database, regardless of whether the keywords are
contained in the corpus or not [Mamou et al. 2007]. This makes vocabulary in-
dependent systems very flexible, since new keywords can be added to the system
without having to train new models - only the pronunciation of the new keyword
has to be defined.

Wöllmer et al. [2009d] proposed a technique that uses a hierarchical graphical
model (GM) architecture to detect keywords in continuous speech. It is based on
phoneme modeling and therefore allows changes in the keyword vocabulary after
model training. A second advantage of this system is that it does not require the
training of an explicit garbage model but rather uses a binary garbage variable
together with the concept of switching parents [Bilmes 2003] in order to distinguish
keywords from arbitrary speech.

In this contribution, we will use the Dynamic Bayesian Network (DBN, [Mur-
phy 2002]) introduced by Wöllmer et al. [2009d] as basis for Tandem modeling
of children’s speech, applying a context-sensitive recurrent neural network (RNN)
architecture for phoneme prediction and a graphical model for keyword detection.
Tandem or hybrid architectures that combine discriminatively trained neural net-
works with graphical models such as HMMs were shown to be applicable for speech
recognition, and their popularity has grown in recent years [Boulard and Morgan
1994; Bengio 1999; Hermansky et al. 2000; Ellis et al. 2001; Ketabdar and Bourlard
2008]. However, the limitations of recurrent neural networks still prevent such hy-
brid or Tandem techniques from becoming a widely used standard in ASR systems.
One such limitation is the so-called vanishing gradient problem that causes the
backpropagated error in RNNs to either blow up or exponentially decay over time
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[Hochreiter et al. 2001]. This strongly limits the amount of context that RNNs can
access and model. Yet, due to coarticulation effects in human speech, modeling
a sufficient amount of context during speech feature generation and processing is
essential. On a higher level, context in speech is usually modeled via triphones and
language models, while on the feature level, most ASR systems incorporate only
a very limited amount of context by using first and second order regression coeffi-
cients of low-level descriptors such as Mel-Frequency Cepstral Coefficients (MFCC)
as additional features.

Only few studies try to address the topic of considering a higher amount of
context on the feature level [Hermansky and Fousek 2008] on the one hand, and
solving the vanishing gradient problem in RNNs on the other hand [Hochreiter and
Schmidhuber 1997; Jaeger 2001; Schaefer et al. 2008]. An elegant and efficient
way to enable long-range context modeling with recurrent neural networks has
been proposed by Hochreiter and Schmidhuber [1997] and refined by Graves and
Schmidhuber [2005]: Bidirectional Long Short-Term Memory (BLSTM) networks
are able to model a self-learned amount of contextual information by using memory
blocks in the hidden layer of RNNs. Even though this technique was shown to
prevail over the triphone principle [Graves et al. 2005], it has been applied rarely
for keyword spotting so far: Wöllmer et al. [2009c] showed that the framewise
phoneme predictions of BLSTM can enhance the performance of a discriminative
keyword spotter [Keshet et al. 2007]; and Fernandez et al. [2007a] introduced a
keyword spotter using BLSTM for whole-word modeling.

In this article we apply BLSTM modeling in order to generate phoneme predic-
tions that are decoded together with conventional speech features in a Dynamic
Bayesian Network and use this principle for keyword detection in a child-robot in-
teraction scenario. Our technique aims at addressing the acoustic and linguistic
characteristics of children’s speech that typically lead to poor recognition perfor-
mance when applying adult speech recognizers to children. Since the linguistic
variability and the different language strategies that children use when interacting
with machines cannot be adequately modeled by language models trained on large
databases of adult speech, and since the number of existing spontaneous children’s
speech corpora tends to be too small to train a versatilely applicable children’s
language model, we decided for a flexible vocabulary independent word spotting
strategy that exclusively relies on acoustic evidence and does not require a lan-
guage model. Our system accounts for the mismatch between children’s and adult
speech characteristics – such as higher pitch – by using acoustic models trained on
children’s speech. Hence, the recognizer does not rely on preprocessing steps such as
voice or feature transformation but uses acoustic models that inherently capture the
properties of children’s speech. As the characteristics of coarticulation in children’s
speech strongly differ from coarticulation effects in adult speech [Gerosa et al. 2006],
we apply BLSTM networks as an efficient and comparably novel method of context
modeling. Children develop coarticulation skills with increasing age which leads to
strong variations in the amount of temporal context that needs to be considered to
capture coarticulation for context-sensitive speech feature generation and acoustic
modeling [Repp 1986; Mayo et al. 2003]. Thus, it seems inappropriate to manually
define an inflexible, fixed amount of context, as it is commonly done when stacking
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multiple low-level feature frames for neural network based feature generation [Grezl
and Fousek 2008]. By contrast, our approach of modeling contextual information
in children’s speech via BLSTM networks allows us to learn the proper amount of
relevant context.

Our technique significantly differs from past approaches towards keyword spot-
ting via BLSTM networks: The discriminative approach of Wöllmer et al. [2009c]
does not apply Markov chains to model the temporal evolution of speech, but maps
the acoustic representation of an utterance along with the target keyword into an
abstract vector space, using a set of feature functions that provide confidence scores
based on the output of framewise phoneme classifiers. This strategy, however, is
rather suited for off-line keyword search than for an on-line application of child-
robot interaction since it does not operate in real-time. The disadvantage of the
method proposed by Fernandez et al. [2007a] is that it is not vocabulary indepen-
dent, as it has a separate output unit for each keyword.

Motivated by our preliminary experiments on keyword spotting using a Tan-
dem BLSTM-DBN architecture for decoding read adult speech as contained in the
TIMIT corpus [Wöllmer et al. 2009b], this article shows how keyword detection
in children’s speech can be improved by coarticulation modeling via bidirectional
Long Short-Term Memory. We compare the proposed system architecture to the
DBN approach introduced by Wöllmer et al. [2009d], the Connectionist Temporal
Classification (CTC) method of Fernandez et al. [2007a], as well as to a conven-
tional HMM keyword spotter and a multi-stream BLSTM-HMM system. We focus
on the task of detecting keywords in emotionally colored and spontaneous Ger-
man children’s speech that was recorded during child-robot interaction (the FAU
Aibo Emotion Corpus [Steidl 2009]). Thereby we consider a set of 25 different key-
words which either correspond to command words or are relevant for recognizing
the child’s emotional state.

The structure of this article is as follows: Section 2 describes the FAU Aibo
Emotion Corpus, Section 3 reviews the principle of Long Short-Term Memory,
Section 4 introduces Connectionist Temporal Classification as applied for keyword
spotting by Fernandez et al. [2007a], Section 5 explains our Tandem BLSTM-DBN
keyword spotter, and Section 6 contains experiments and results.

2. THE FAU AIBO EMOTION CORPUS

The experiments described in this paper are based on the FAU Aibo Emotion
Corpus, a corpus of German spontaneous speech with recordings of children at the
age of 10 to 13 years communicating with a pet robot; it is described in detail
in [Steidl 2009]. The general framework for this database with children’s speech
is child-robot communication and the elicitation of emotion-related speaker states.
The robot is Sony’s (dog-like) robot Aibo. The basic idea has been to combine
children’s speech and naturally occurring emotional speech within a Wizard-of-Oz
task. The speech is spontaneous, because the children were not told to use specific
instructions but to talk to Aibo like they would talk to a friend. In this experimental
design, the child is led to believe that Aibo is responding to his or her commands,
but the robot is actually being remote-controlled by a human operator, using the
‘Aibo Navigator’ software over a wireless LAN. The wizard causes Aibo to perform
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a fixed, predetermined sequence of actions, which takes no account of what the
child is actually saying. For the sequence of Aibo’s actions, we tried to find a good
compromise between obedient and disobedient behavior: We wanted to provoke the
children in order to elicit emotional behavior but of course we did not want to run
the risk that they discontinue the experiment. The children believed that Aibo was
reacting to their orders – albeit often not immediately. In fact, it was the other way
round: Aibo was always strictly following the same screen-plot, and the children
had to align their orders to its actions.

The data was collected from 51 children (21 male, 30 female) aged 10 to 13
years from two different schools (Mont and Ohm); the recordings took place in the
respective class-rooms. Speech was transmitted via a wireless head set (Shure UT
14/20 TP UHF series with microphone WH20TQG) and recorded with a DAT-
recorder (sampling rate 48 kHz, quantization 16 bit, down-sampled to 16 kHz). The
total vocabulary size is 1.1 k. Each recording session took around 30 minutes; in
total there are 27.5 hours of data. The recordings contain large amounts of silence,
which are due to the reaction time of Aibo. After removing longer pauses, the total
amount of speech is equal to 8.9 hours. All recordings were split into turns using a
pause threshold of ≥ 1 s.

In our speaker-independent experiments, we use all speech recorded at the Ohm
school for training (6 370 turns), apart from two randomly selected Ohm-sessions
which are used for validation (619 turns). The sessions recorded at the Mont school
are used for testing (6 653 turns, see also Table I).

set school turns words duration

training Ohm 6 370 22 244 4.5 h
validation Ohm 619 2 516 0.5 h

testing Mont 6 653 23 641 3.9 h

Table I. Size of the training, validation, and test set: school in which the children were recorded,

number of turns, number of words, and duration.

3. LONG SHORT-TERM MEMORY

Since context modeling via Long Short-Term Memory [Hochreiter and Schmidhuber
1997] networks was found to enhance keyword spotting performance in natural
conversation scenarios [Wöllmer et al. 2009c], our Tandem BLSTM-DBN keyword
spotter uses framewise phoneme predictions computed by a bidirectional LSTM
net (see Section 5). Thus, this section outlines the basic principle of the Long
Short-Term Memory RNNs.

Framewise phoneme prediction presumes a classifier that can access and model
long-range context, since due to coarticulation effects in human speech, neighboring
phonemes influence the cepstral characteristics of a given phoneme [Bilmes 1998;
Yang et al. 2000]. Consequently, when attempting to predict phonemes frame by
frame, a number of preceding (and successive) speech frames have to be taken
into account in order to capture relevant speech characteristics. The number of
speech frames which should be used to obtain enough context for reliably estimat-
ing phonemes is hard to determine – especially when processing children’s speech
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for which coarticulation properties are not as well researched as for adult speech.
Thus, a classifier that is able to learn the amount of context is a promising alter-
native to manually defining fixed time windows. Static techniques such as Support
Vector Machines [Cortes and Vapnik 1995] do not explicitly model context but rely
on either capturing contextual information via statistical functionals of features
[Schuller et al. 2009b] or aggregating frames using Multi-Instance Learning tech-
niques [Schuller and Rigoll 2009]. Dynamic classifiers like Hidden Markov Models
are often applied for time warping and flexible context modeling using, e. g., tri-
phones or quinphones. Yet, HMMs have drawbacks such as the inherent assumption
of conditional independence of successive observations, meaning that an observa-
tion is statistically independent of past ones, provided that the values of the hidden
variables are known. Hidden Conditional Random Fields (HCRF) [Quattoni et al.
2007] are one attempt to overcome this limitation. However, also HCRF offer no
possibility to model a self-learned amount of contextual information. Other clas-
sifiers such as neural networks are able to model a certain amount of context by
using cyclic connections. These so-called recurrent neural networks can in principle
map from the entire history of previous inputs to each output. Yet, the analy-
sis of the error flow in conventional recurrent neural nets led to the finding that
long-range context is inaccessible to standard RNNs since the backpropagated error
either blows up or decays over time (vanishing gradient problem [Hochreiter et al.
2001]). This led to various attempts to address the problem of vanishing gradients
for RNN, including non-gradient based training [Bengio et al. 1994], time-delay net-
works [Lang et al. 1990; Lin et al. 1996; Schaefer et al. 2008], hierarchical sequence
compression [Schmidhuber 1992], and echo state networks [Jaeger 2001]. One of the
most effective techniques is the Long Short-Term Memory architecture [Hochreiter
and Schmidhuber 1997], which is able to store information in linear memory cells
over a longer period of time. LSTM networks are able to overcome the vanish-
ing gradient problem and can learn the optimal amount of contextual information
relevant for the classification task.

An LSTM layer is composed of recurrently connected memory blocks, each of
which contains one or more memory cells, along with three multiplicative ‘gate’
units: the input, output, and forget gates. The gates perform functions analogous
to read, write, and reset operations. More specifically, the cell input is multiplied
by the activation of the input gate, the cell output by that of the output gate, and
the previous cell values by the forget gate (see Figure 1). The overall effect is to
allow the network to store and retrieve information over long periods of time. For
example, as long as the input gate remains closed, the activation of the cell will not
be overwritten by new inputs and can therefore be made available to the net much
later by opening the output gate.

Another problem with standard RNNs is that they have access to past but not
to future context. This can be overcome by using bidirectional RNNs [Schuster and
Paliwal 1997], where two separate recurrent hidden layers scan the input sequences
in opposite directions. The two hidden layers are connected to the same output
layer, which therefore has access to context information in both directions. The
amount of context information that the network actually uses is learned during
training, and does not have to be specified beforehand. Forward and backward
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Fig. 1. LSTM memory block consisting of one memory cell: The input, output, and forget gates
collect activations from inside and outside the block which control the cell through multiplicative

units (depicted as small circles); input, output, and forget gate scale input, output, and internal

state respectively; ai and ao denote activation functions; the recurrent connection of fixed weight
1.0 maintains the internal state.

context are learned independently from each other. Bidirectional networks can
be applied whenever the sequence processing task is not truly on-line. For speech
recognition tasks this means that unidirectional context can be used for incremental
real-time decoding, while bidirectional context can be applied, e. g., at the end of
an utterance to refine the recognition output once the whole utterance is available
[Graves et al. 2005]. However, often a small buffer is enough in order to profit from
bidirectional context, so that bidirectional networks can also be applied for causal
systems whenever a short output latency is tolerable. Figure 2 shows the structure
of a simple bidirectional network.

Combining bidirectional networks with LSTM gives bidirectional Long Short-
Term Memory [Graves et al. 2005], which has demonstrated excellent performance
in phoneme recognition [Graves and Schmidhuber 2005], keyword spotting [Fernan-
dez et al. 2007a], handwriting recognition [Liwicki et al. 2007; Graves et al. 2008a],
noise modeling [Wöllmer et al. 2009e], and emotion recognition from speech [Wöllmer
et al. 2010c].

4. CONNECTIONIST TEMPORAL CLASSIFICATION

One possibility to use BLSTM networks for keyword detection is to train the net-
work directly on the keywords, so that the network learns a mapping from speech
features to keywords. Such an approach was investigated by Fernandez et al. [2007a]
and will be evaluated in Section 6, where we compare the keyword spotting accuracy
of this discriminative technique to our (vocabulary independent) phoneme-based
Tandem BLSTM-DBN method.

The BLSTM networks applied by Fernandez et al. [2007a] are trained with the
Connectionist Temporal Classification (CTC) objective function. CTC allows re-
current neural networks to map unsegmented sequential data onto a sequence of
labels [Graves et al. 2006]. The output of a network trained with CTC typically
consists of a series of spikes corresponding to keyword events that are detected in
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Fig. 2. Structure of a bidirectional network with input i, output o, and two hidden layers (hf and

hb) for forward and backward processing.

the speech signal. These spikes are separated by long periods during which the
non-keyword output unit is activated. In the following, we will briefly introduce
the concept of Connectionist Temporal Classification.

A major problem with standard objective functions for RNNs is that they require
individual targets for each point in the data sequence, which in turn requires the
boundaries between segments with different labels (e. g., the keyword boundaries in
speech) to be pre-determined. The Connectionist Temporal Classification output
layer [Graves et al. 2006] solves this problem by allowing the network to choose
the location as well as the class of each label. By summing up over all sets of
label locations that yield the same label sequence, CTC determines a probability
distribution over possible labelings, conditioned on the input sequence.

The CTC layer as used by Fernandez et al. [2007a] has as many output units
as there are distinct keywords, plus an extra blank unit for garbage speech. The
activations of the outputs at each timestep are normalized and interpreted as the
probability of observing the corresponding keyword (or no keyword) at that point
in the sequence. Because these probabilities are conditionally independent given
the input sequence, the total probability of a given (framewise) sequence wf

1:T of
blanks and keywords is

p(wf
1:T |x1:T ) =

T∏
t=1

o
wf

t
t , (1)

where x1:T is a length T input sequence and okt is the activation of output unit k at
time t. In order to sum over all the output sequences corresponding to a particular
labeling (regardless of the location of the labels) we define an operator B(·) that
removes first the repeated labels and then the blanks from the output sequence so
that, e. g., B(AA − −BBB − B) = ABB. The total probability of the length V
labeling w1:V , where V ≤ T , is then

p(w1:V |x1:T ) =
∑

wf
1:T :B(wf

1:T )=w1:V

p(wf
1:T |x1:T ). (2)

A naive calculation of Equation 2 is unfeasible, because the number of wf
1:T terms

corresponding to each labeling increases exponentially with the sequence length.
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However, p(w1:V |x1:T ) can be efficiently calculated with a dynamic programming
algorithm similar to the forward-backward algorithm for HMMs (see Graves et al.
[2006]).

The CTC objective function OCTC is defined as the negative log likelihood of
the training set S

OCTC = −
∑

(x1:T ,w1:V )∈S

ln p(w1:V |x1:T ). (3)

An RNN with a CTC output layer can be trained with gradient descent via back-
propagation through time, using the following partial derivatives of OCTC with
respect to the output activations:

∂OCTC

∂okt
=

−1

p(w1:V |x1:T )okt

∑
v∈lab(w1:V ,k)

αt(v)βt(v), (4)

where lab(w1:V , k) is the set of positions in w1:V where the label k occurs. αt(v)
and βt(v) denote the forward and backward variables as defined by Graves et al.
[2006].

When a new input sequence is presented to a network trained with CTC, the
output activations (corresponding to the keyword probabilities) tend to form spikes
separated by long intervals where the blank label is emitted. The location of the
spikes corresponds to the portion of the input sequence where the keyword is de-
tected.

CTC has successfully been applied e.g. to handwriting recognition [Graves et al.
2008b], hierarchical sequence labeling [Fernandez et al. 2007b], and phoneme recog-
nition [Graves 2008].

5. TANDEM BLSTM-DBN MODELING

As an alternative to keyword spotting via CTC, this section introduces our Tan-
dem BLSTM-DBN architecture which models keywords and garbage speech at the
phoneme level and thus can be used for vocabulary independent keyword detection.
The BLSTM network as applied in our Tandem model has one output unit for every
phoneme which allows the network to output phoneme predictions for every time
frame. In addition to conventional MFCC speech features, those phoneme predic-
tions are processed by a Dynamic Bayesian Network designed to detect keywords in
continuous speech. In Section 5.1 we summarize the basic principle of DBNs before
we introduce the Tandem decoder in Section 5.2. Section 5.3 will explain the DBN
we used to train the Tandem model.

5.1 Dynamic Bayesian Networks

Dynamic Bayesian Networks are graphical models which consist of a set of nodes and
edges. Nodes represent random variables which can be either hidden or observed.
Edges – or rather missing edges – encode conditional independence assumptions
that are used to determine valid factorizations of the joint probability distribution.
Dynamic Bayesian Networks are well-suited for speech recognition tasks, since they
consist of repeated template structures over time, modeling the temporal evolution
of a speech sequence. Conventional Hidden Markov Model approaches can be inter-
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preted as implicit graph representations using a single Markov chain together with
an integer state to represent all contextual and control information determining the
allowable sequencing. In this contribution however, we decided for the explicit ap-
proach [Bilmes and Bartels 2005], where information such as the current phoneme,
the indication of a phoneme transition, or the position within a word is expressed
by random variables. As shown by Bilmes and Bartels [2005], explicit graph repre-
sentations are advantageous whenever the set of hidden variables has factorization
constraints or consists of multiple hierarchies.

5.2 Decoding

The Tandem BLSTM-DBN architecture for keyword spotting is depicted in Figure
3. The network is composed of five different layers and hierarchy levels respectively:
a word layer, a phoneme layer, a state layer, the observed features, and the BLSTM
layer (nodes inside the grey shaded box). As can be seen in Figure 3, the DBN
jointly processes speech features and BLSTM phoneme predictions. The BLSTM
layer consists of an input layer it, two hidden layers hft and hbt (one for forward and
one for backward processing), and an output layer ot.

The following random variables are defined for every time step t: qt denotes the
phoneme identity, qpst represents the position within the phoneme, qtrt indicates a
phoneme transition, st is the current state with strt indicating a state transition,
and xt denotes the observed acoustic features. The variables wt, w

ps
t , and wtr

t are
identity, position, and transition variables for the word layer of the DBN whereas a
hidden garbage variable gt indicates whether the current word is a keyword or not.
A second observed variable bt contains the phoneme prediction of the BLSTM. A
short description of the used random variables can bee found in Table II. Figure
3 displays hidden variables as circles and observed variables as squares. Determin-
istic relations are represented by straight lines, and zig-zagged lines correspond to
random conditional probability functions (CPFs). Dotted lines refer to so-called
switching parents [Bilmes 2003], which allow a variable’s parents to change condi-
tioned on the current value of the switching parent. They can change not only the
set of parents but also the implementation (i. e., the CPF) of a parent. The bold
dashed lines in the BLSTM layer do not represent statistical relations but simple
data streams.

Assuming a speech sequence of length T , the DBN structure specifies the factor-
ization

p(g1:T , w1:T , w
tr
1:T , w

ps
1:T , q1:T , q

tr
1:T , q

ps
1:T , s

tr
1:T , s1:T , x1:T , b1:T ) =

f(qps1 )p(q1|wps
1 , w1, g1)f(wps

1 )p(w1)

T∏
t=1

p(xt|st)p(bt|st)f(st|qpst , qt)p(strt |st)

f(qtrt |q
ps
t , qt, s

tr
t )f(wtr

t |qtrt , w
ps
t , wt)f(gt|wt)

T∏
t=2

f(qpst |strt−1, q
ps
t−1, q

tr
t−1)

p(wt|wtr
t−1, wt−1)p(qt|qtrt−1, qt−1, w

ps
t , wt, gt)f(wps

t |qtrt−1, w
ps
t−1, w

tr
t−1)

(5)

with p(·) denoting random conditional probability functions and f(·) describing
deterministic relations (see Table III for an overview over the individual CPFs).
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Fig. 3. Structure of the Tandem BLSTM-DBN keyword spotter: The BLSTM network (grey

shaded box) provides a discrete phoneme prediction feature bt which is observed by the DBN,
in addition to the MFCC features xt. The DBN is composed of a state, phoneme, and word

layer, consisting of hidden transition (strt ,qtrt ,wtr
t ), position (qpst ,wps

t ), and identity (st,qt,wt)

variables. Hidden variables (circles) and observed variables (squares) are connected via random
CPFs (zig-zagged lines) or deterministic relations (straight lines). Switching parent dependencies

are indicated with dotted lines.

The factorization of Equation 5 can be easily derived when inspecting the DBN
layers of Figure 3: In principle we have to build the product of all time steps and
all variables while considering that variables might be conditioned on other (parent)
variables. This corresponds to arrows in Figure 3 that point to the corresponding
(child) node. In case all parent nodes of a child node are located in the same time
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frame as the child node, we can build the product from t = 1 to t = T . Otherwise,
if a variable is conditioned on variables from the previous time step, we build the
product from t = 2 to t = T and define initial CPFs for time step t = 1 that are not
conditioned on variables from the previous time step (as for example p(w1)). The
factorization property in Equation 5 can be exploited to optimally distribute the
sums over the hidden variables into the products, using the junction tree algorithm
[Jensen 1996]. If S denotes the state space, time and space complexity of the DBN
is O(ST log T ) and O(S log T ), respectively [Zweig and Padmanabhan 2000].

var. meaning

gt garbage variable: equal to 1 if arbitrary speech is decoded; equal to 0 for keywords
wt word identity: equal to 0 for garbage speech; equal to 1, . . . ,K for keywords

wtr
t word transition: equal to 1 if a word transition occurs; zero otherwise

wps
t word position: position (i. e., phoneme) within a word

qt phoneme identity: takes values between 0 and 64 depending on the current phoneme

qtrt phoneme transition: equal to 1 if a phoneme transition occurs; zero otherwise

qpst phoneme position: position (i. e., state) within a phoneme
strt state transition: equal to 1 if a state transition occurs; zero otherwise

st state identity: takes values between 0 and 191 depending on the current state
xt vector of continuous MFCC observations

bt discrete BLSTM phoneme prediction feature: takes values between 0 and P − 1

Table II. Variables used in the DBN.

CPF meaning

p(wt|wtr
t−1, wt−1) word ID only changes if a word transition occurs (using a priori

likelihoods as defined in Equations 7 and 8)

f(wtr
t |qtrt , wps

t , wt) word transition occurs in case of a phoneme transition in the last
phoneme of a word

f(wps
t |qtrt−1, w

ps
t−1, w

tr
t−1) word position is incremented if a phoneme transition occurs or

set to one if a word transition occurs
p(qt|qtrt−1, qt−1, w

ps
t , wt, gt) depends on wt and wps

t if a keyword is decoded; uses a phoneme

bigram otherwise

f(qtrt |q
ps
t , qt, strt ) phoneme transition occurs in case of a state transition in the last

state of a phoneme
f(qpst |strt−1, q

ps
t−1, q

tr
t−1) phoneme position is incremented if a state transition occurs or

set to one if a phoneme transition occurs
p(strt |st) trained state transition probabilities
f(st|qpst , qt) mapping from phoneme and phoneme position to state identity

p(xt|st) continuous emission probability distribution for MFCC features
p(bt|st) discrete probability distribution for BLSTM phoneme prediction

Table III. Deterministic relations and random conditional probability functions (CPF) used in the

DBN.

The size of the BLSTM input layer it corresponds to the dimensionality of the
acoustic feature vector xt whereas the vector ot contains one probability score for
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each of the P different phonemes at each time step. bt is the index of the most
likely phoneme:

bt = arg max
j

(ot,1, ..., ot,j , ..., ot,P ) (6)

The CPFs p(xt|st) are described by Gaussian mixtures as common in an HMM
system. Together with p(bt|st) and p(strt |st), they are learned via EM training.
Thereby strt is a binary variable, indicating whether a state transition takes place
or not. Since the current state is known with certainty, given the phoneme and
the phoneme position, f(st|qpst , qt) is purely deterministic. A phoneme transition
occurs whenever strt = 1 and qpst = Sq provided that Sq denotes the number of states
of a phoneme. This is expressed by the function f(qtrt |q

ps
t , qt, s

tr
t ). The phoneme

position qpst is known with certainty if strt−1, qpst−1, and qtrt−1 are given. The hidden
variable wt can take values in the range wt = 0...K with K being the number of
different keywords in the vocabulary. In case wt = 0 the model is in the garbage
state which means that no keyword is uttered at that time. Being in the garbage
state corresponds to gt = 1.

In our experiments we simplified the word bigram p(wt|wtr
t−1 = 1, wt−1) to a un-

igram which makes each keyword equally likely (in order to not favor certain key-
words). Yet, we introduced different a priori likelihoods for keywords and garbage
phonemes:

p(wt = 1 : K|wtr
t−1 = 1) =

K · 10a

K · 10a + 1
(7)

and

p(wt = 0|wtr
t−1 = 1) =

1

K · 10a + 1
. (8)

The parameter a can be used to adjust the trade-off between true positives and
false positives. Setting a = 0 means that the a priori probability of a keyword and
the probability that the current phoneme does not belong to a keyword are equal.
Adjusting a > 0 implies a more aggressive search for keywords, leading to higher
true positive and false positive rates.

As in [Wöllmer et al. 2009d], we assume that ‘garbage words’ always consist of
only one phoneme. The variable qt has two switching parents: qtrt−1 and gt. Similar
to the word layer, qt is equal to qt−1 if qtrt−1 = 0. Otherwise, the switching parent
gt determines the parents of qt. In case gt = 0 – meaning that the current word is a
keyword – qt is a deterministic function of the current keyword wt and the position
within the keyword wps

t . If the model is in the garbage state, qt only depends on
qt−1 in a way that phoneme transitions between identical phonemes are forbidden.

Note that the design of the CPF p(qt|qtrt−1, qt−1, w
ps
t , wt, gt) entails that the DBN

will strongly tend to choose gt = 0 (i. e., it will detect a keyword) once a phoneme
sequence that corresponds to a keyword is observed. Decoding such an observation
while being in the garbage state gt = 1 would lead to ‘phoneme transition penal-
ties’ since the CPF p(qt|qtrt−1 = 1, qt−1, w

ps
t , wt, gt = 1) contains phoneme transition

probabilities lower than one. By contrast, p(qt|qtrt−1 = 1, wps
t , wt, gt = 0) is deter-

ministic, introducing no likelihood penalties at phoneme borders.
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Fig. 4. DBN structure of the graphical model used to train the Tandem keyword spotter: A count

variable qct determines the current position in the phoneme sequence.

5.3 Training

The graphical model applied for learning the random CPFs p(xt|st), p(strt |st), and
p(bt|st) is depicted in Figure 4. Compared to the GM used for keyword decoding
(see Section 5.2), the GM for the training of the keyword spotter is less complex,
since during (vocabulary independent) training, only phonemes are modeled. The
training procedure is split up into two stages: In the first stage phonemes are
trained framewise, whereas during the second stage, the segmentation constraints
are relaxed using a forced alignment (embedded training).

The variable qct shown in Figure 4 is a count variable determining the current
position in the phoneme sequence. Note that the grey-shaded arrow in Figure 4,
pointing from qtrt−1 to qct is only valid during the second training cycle when there
are no segmentation constraints, and will be ignored in Equation 9.

For a training sequence of length T , the DBN structure of Figure 4 specifies the
factorization
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p(qc1:T , q1:T , q
tr
1:T , q

ps
1:T , s

tr
1:T , s1:T , x1:T , b1:T ) =

f(qps1 )f(qc1)

T∏
t=1

p(xt|st)p(bt|st)f(st|qpst , qt)p(strt |st)f(qtrt |q
ps
t , qt, s

tr
t )f(qt|qct )

T∏
t=2

f(qpst |strt−1, q
ps
t−1, q

tr
t−1)f(qct |qct−1).

(9)

During training, the current phoneme qt is known, given the position qct in the
training utterance, which implies a deterministic mapping f(qt|qct ). In the first
training cycle qct is incremented in every time frame, whereas in the second cycle
qct is only incremented if qtrt−1 = 1.

6. EXPERIMENTS

We implemented and evaluated five different keyword spotting techniques: the
Tandem BLSTM-DBN approach introduced in Section 5, the CTC method as pro-
posed in [Fernandez et al. 2007a], the DBN outlined in [Wöllmer et al. 2009d],
a conventional phoneme-based HMM system, and a multi-stream HMM approach
that incorporates BLSTM phoneme predictions as an additional discrete stream of
observations. Using a set of 25 keywords (see Section 6.1) we will investigate the
performance of the respective techniques focussing on the task of keyword detection
in a child-robot interaction scenario as outlined in Section 2.

6.1 Keywords

The keyword vocabulary consists of three different categories: words expressing
positive valence, words expressing negative valence, and command words (see Ta-
ble IV). Keywords indicating positive or negative valence were included to allow
the Aibo robot to be sensitive to positive or negative feedback from the child. Such
keywords can also be used as linguistic features for automatic emotion recognition
[Batliner et al. 2006; Steidl 2009; Schuller et al. 2009a; Batliner et al. 2010]. Exam-
ples are (German) words like fein, gut, böse, etc. (Engl.: fine, good, bad). Command
words like links, rechts, hinsetzen, etc. (Engl.: left, right, sit down) were included
so that the children are able to control the Aibo robot via speech. The dictionary
contains multiple pronunciation variants as well as multiple forms of the (lemma-
tized) keywords listed in Table IV. For example the word umdrehen (Engl.: turn
around) can also be pronounced as umdrehn and verbs do not necessarily have to
be uttered in the infinitive form (e. g., gehen (Engl.: go) can also be geh, gehst,
or geht). In order to allow a fair comparison between techniques that depend on
frequent keyword occurrences in the training set (such as the CTC method) and
our vocabulary independent approach, only those command words or emotionally
relevant words that occurred at least 50 times (incl. variants) in the FAU Aibo
Emotion Corpus were included in the vocabulary. In total, there are 82 different
entries in the dictionary which are mapped onto exactly 25 keywords as listed in
Table IV.

In the test set, 85.6 % of the turns contain at least one keyword; 40.6 % of the
turns contain two or more keywords. The average number of keywords contained
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category German keywords translation

positive valence brav, fein, gut, schön well-behaved/good, fine, good, nice

negative valence böse, nein, nicht bad, no, not

commands aufstehen, bleiben, drehen, gehen, stand up, keep, turn, go,
geradeaus, hinsetzen, kommen, straight, sit down, come,

laufen, links, rechts, setzen, stehen, run, left, right, sit, stand,

stehenbleiben, stellen, stopp, stand still, put, stop,
tanzen, umdrehen, weiterlaufen dance, turn around, keep running

Table IV. Keywords

in a turn is 1.4 and the average number of words per turn is 3.6.

6.2 Tandem BLSTM-DBN Training

As for all our experiments, the acoustic feature vectors used for the Tandem
BLSTM-DBN keyword spotter consisted of cepstral mean normalized MFCC coef-
ficients 1 to 12, log. energy, as well as first and second order delta coefficients. The
BLSTM network was trained on the framewise phoneme segmentations of the train-
ing set. Since the corpus is only transcribed at the word level, we applied an HMM
system as described in Section 6.4 in order to obtain the phoneme-level forced align-
ments. The BLSTM input layer had a size of 39 (one for each feature) and the size
of the output layer was 65 since we modeled a set of 54 German phonemes with ad-
ditional targets for silence, short pause, breathing, coughing, laughing, unidentifiable
phonemes, noise, human noise, nasal hesitation, vocal hesitation, and nasal+vocal
hesitation. Both hidden layers (for forward and backward processing) consisted
of one backpropagation layer with 65 hidden cells and two LSTM layers with 130
and 65 memory blocks, respectively. Thereby each memory block consisted of one
memory cell. Input and output gates used hyperbolic tangent (tanh) activation
functions, while the forget gates had logistic activation functions.

The BLSTM network was trained with standard backpropagation through time
(BPTT) [Williams and Zipser 1995] using the exact error gradient as in [Graves
et al. 2005]. We used a learning rate of 10−5. As a common means to improve
generalization for recurrent neural networks, zero mean Gaussian noise with stan-
dard deviation 0.6 was added to the inputs during training. Before training, all
weights of the BLSTM network were randomly initialized in the range from -0.1
to 0.1. We aborted training as soon as no improvement on the validation set (two
Ohm-sessions, see Section 2) could be observed for at least 50 epochs, and chose
the network that achieved the best framewise phoneme error rate on the validation
set. The resulting frame error rate on the test set is 15.1 %. Note that for the
BLSTM-DBN system, we used the validation set exclusively to determine a stop
criterion for BLSTM training and not to tune parameters such as the number of
memory blocks. Instead, BLSTM parameters were chosen according to our past
experience with BLSTM-based phoneme prediction [Wöllmer et al. 2009c; Wöllmer
et al. 2010a].

The DBN was trained as explained in Section 5.3. During the first training cy-
cle of the DBN, models for phonemes and non-linguistic vocalizations were trained
framewisely using the Ohm-sessions of the FAU Aibo Emotion Corpus. All Gaus-
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sian mixtures were split once the change of the overall log likelihood of the training
set became less than 0.02 %. The number of mixtures per state was increased to
eight. In the second training cycle segmentation constraints were relaxed, whereas
no further mixture splitting was conducted. All models were composed of three
hidden states.

For the training of the DBN we use GMTK [Bilmes and Zweig 2002] which in
turn uses Expectation Maximization (EM) [Dempster et al. 1977] and Generalized
EM (GEM) [Bilmes 2008] training, depending on the parameter sharing currently
in use [Bilmes and Zweig 2002]. A detailed description of both strategies can be
found in [Bilmes 1997].

6.3 CTC Network Training

In order to compare the performance of our Tandem model to the CTC keyword
spotter proposed by Fernandez et al. [2007a], we trained a BLSTM network with
CTC output layer consisting of one output node per keyword and an additional
output unit for the non-keyword event (see Section 4). As for the Tandem model,
the BLSTM network consisted of one backpropagation layer and two LSTM layers
for each input direction (size 65, 130, and 65, respectively). Network training was
conducted exactly in the same way as for the Tandem approach (Section 6.2). The
only difference is that the CTC network uses keywords rather than phonemes as
targets. Note that this leads to empty target sequences for training turns which
contain no keywords.

6.4 Baseline HMM System

As a baseline experiment, the performance of a phoneme-based keyword spotter
using conventional HMM modeling was evaluated. Analogous to the DBN, each of
the 54 phonemes was represented by three states (left-to-right HMMs) with eight
Gaussian mixtures. Increasing the number of mixture components to more than
eight did not result in better recognition accuracies. HMMs for non-linguistic events
(see Section 6.2) consisted of nine states. We used cross-word triphone models in
order to account for contextual information. The HMMs were trained and optimized
using HTK [Young et al. 2006].

For HMM-based keyword detection we defined a set of keyword models and a
garbage model. The keyword models estimate the likelihood of a feature vector se-
quence, given that it corresponds to the keyword phoneme sequence. The garbage
model is composed of phoneme HMMs that are fully connected to each other, mean-
ing that it can model any phoneme sequence. Via Viterbi decoding the best path
through all models is found, and a keyword is detected as soon as the path passes
through the corresponding keyword HMM. In order to be able to adjust the oper-
ating point on the Receiver Operating Characteristic (ROC) curve we introduced
different a priori likelihoods for keyword and garbage HMMs, identical to the word
unigram used for the DBN. Apart from the transition probabilities implied by the
unigram, the HMM system uses no additional likelihood penalties at the phoneme
borders.
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6.5 Multi-Stream BLSTM-HMM System

To investigate the performance gain when including the discrete BLSTM phoneme
prediction bt as an additional feature in the HMM framework described in Sec-
tion 6.4, we extended the HMM-based system to a multi-stream recognizer mod-
eling MFCC and BLSTM observations in independent feature streams. As for the
Tandem BLSTM-DBN approach, MFCC observations are modeled via Gaussian
mixtures while the BLSTM feature is modeled using the discrete emission proba-
bility distribution p(bt|st). Thus, the BLSTM-HMM system can be interpreted as
a combined continuous-discrete multi-stream HMM.

6.6 Results

All five keyword spotting approaches were evaluated on children’s speech as con-
tained in the Mont-sessions of the FAU Aibo Emotion Corpus. Since only the
Ohm-sessions are used during training, the experiments are completely speaker-
independent. Figure 5 shows a part of the ROC curves displaying the true positive
rate (tpr) as a function of the false positive rate (fpr) for the baseline HMM, the
multi-stream BLSTM-HMM, the DBN as introduced by Wöllmer et al. [2009d],
the CTC method proposed by Fernandez et al. [2007a], as well as for the Tandem
BLSTM-DBN. Note that due to the design of the DBN, the full ROC curve – ending
at an operating point tpr=1 and fpr=1 – cannot be determined, since the model does
not include a confidence threshold that can be set to an arbitrarily low value. The
trade-off parameter a for the DBN and the BLSTM-DBN was varied between 0
and 15 (step size 1). Since the CTC framework offers no possibility to adjust the
trade-off between a high true positive rate and a low false positive rate, we only
get one operating point in the ROC space, corresponding to a true positive rate
of 85.2 % at a false positive rate of 0.23 %. This operating point lies almost ex-
actly on the ROC curve of the Tandem BLSTM-DBN so that both techniques can
be characterized as equally suited for detecting keywords in the given child-robot
interaction scenario. Note, however, that unlike the CTC method, the Tandem ap-
proach is more flexible as far as changes in the keyword vocabulary are concerned:
As both BLSTM and DBN are phoneme-based, the Tandem model is vocabulary
independent. By contrast, the CTC network is trained on whole words, which im-
plies that the whole network would have to be re-trained if a vocabulary entry is
to be changed. As discussed in Section 5, the Tandem model also offers a trade-off
parameter a which can be increased for a more aggressive keyword search. Thus,
if a higher false positive rate can be tolerated, the Tandem approach achieves a
keyword detection rate of up to 95.9 %. As can be seen in Figure 5, the Tandem
model prevails over the baseline HMM system. Thereby the performance difference
is most significant at lower false positive rates: When evaluating the ROC curve at
a false positive rate of 0.4 %, the absolute difference in true positive rates is larger
than 12 %. This indicates that for our children’s speech scenario, modeling context
via Long Short-Term Memory leads to better results than conventional triphone
modeling. In general, considering contextual information during decoding seems
to be essential, since the DBN approach which models only monophones leads to
a lower ROC performance when compared to the triphone HMM system and to
systems applying LSTM. At lower false positive rates, modeling the coarticulation
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properties of children’s speech by applying the principle of Long Short-Term Mem-
ory also boosts the performance of the HMM approach which can be seen in the
ROC curve for the multi-stream BLSTM-HMM. Yet, the overall performance is
slightly better for the Tandem system outlined in Section 5.
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Fig. 5. Evaluation on the FAU Aibo Emotion Corpus (25 keywords): part of the ROC curve for

the baseline HMM system, the multi-stream BLSTM-HMM, the DBN keyword spotter (without

BLSTM phoneme predictions), the CTC approach, and the Tandem BLSTM-DBN technique.
The operating points correspond to a = 0, 1, 2, 3, etc. (linear interpolation).

Figures 6(a) to 6(d) show the performance of the five different keyword detection
approaches when tested on different fractions of the FAU Aibo Emotion Corpus.
Figure 6(a) considers exclusively the 17 female speakers of the Mont school while
Figure 6(b) shows the word spotting performance for the eight male speakers. For
female speakers we can observe a significantly larger performance gap between the
multi-stream BLSTM-HMM technique and the Tandem BLSTM-DBN than when
considering male speakers, for which both BLSTM-based methods perform almost
equally well. Generally, the Tandem approach as proposed in Section 5 prevails
over the baseline HMM system for both, female and male speakers – especially at
lower false positive rates. Figures 6(c) and 6(d) contain the results for younger (age
between 10 and 11 years) and older children (age between 12 and 13 years), respec-
tively. The baseline HMM leads to almost equal performance for both, younger and
older children, however, the multi-stream HMM performs significantly better for the
younger age group. Again, the Tandem BLSTM-DBN consistently leads to better
results when compared to the HMM system, indicating that the Tandem system is
suitable for both genders and different age groups. Generally we can observe that
the performance of techniques such as the DBN system, the (multi-stream) HMM
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(a) female speakers
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(b) male speakers
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(c) younger children (age 10-11)
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(d) older children (age 12-13)

Fig. 6. ROC curves for the different keyword spotting systems evaluated on female
speakers, male speakers, younger children (age between 10 and 11 years), and older
children (age between 12 and 13 years).

approach, and the CTC method shows a higher dependency on the childrens’ age
and gender than the proposed Tandem BLSTM-DBN.

Table V shows the average true positive rates for individual keywords at a false
positive rate of 1 %. Keywords are grouped into words expressing positive valence,
words expressing negative valence, and command words, according to Table IV. For
all keyword spotting systems, we observe the same trend: Command words seem
to be easier to detect than words related to valence. Besides differences in phonetic
composition and lengths of keywords, a plausible reason for this phenomenon is that
pronunciations of ‘positive’ or ‘negative’ words tend to be emotionally colored while
command words are rather pronounced in a neutral or emphatic way. Furthermore,
for most recognition engines, words expressing negative valence lead to higher error
rates than words associated with positive valence. Since the FAU Aibo Emotion
Corpus contains emotion annotations at the word-level, we analyzed which emo-
tions are typically assigned to which keyword. Table VI shows the emotion class
distributions for each word category: A considerable percentage of ‘positive’ and
‘negative’ keywords are pronounced in a motherese (positive valence) and angry
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DBN HMM BLSTM-HMM BLSTM-DBN

true positive rate mean std. mean std. mean std. mean std.

positive valence 0.716 0.281 0.724 0.223 0.595 0.317 0.741 0.280
negative valence 0.535 0.264 0.576 0.272 0.702 0.244 0.662 0.213

commands 0.817 0.182 0.858 0.118 0.929 0.051 0.926 0.070

all (unweighted) 0.767 0.222 0.803 0.178 0.848 0.194 0.865 0.166
all (weighted) 0.859 0.897 0.930 0.940

Table V. True positive rates for the DBN, HMM, BLSTM-HMM, and BLSTM-DBN keyword

spotter at a false positive rate of 0.01: mean and standard deviation (std.) of the true positive

rates for individual keywords expressing positive/negative valence or command words; weighted
and unweighted average true positive rate for the complete set of keywords; ‘unweighted’ refers to

the true positive rate averaged over all keywords while ‘weighted’ means the average of the true

positive rates weighted by the number of occurrences of the individual keywords.

[%] angry motherese emphatic neutral

positive valence 0 23 0 77
negative valence 15 0 16 69

commands 4 1 9 86
all 4 2 9 85

Table VI. Emotions assigned to the keyword categories in %: angry, motherese, emphatic, and

neutral.

(negative valence) way, respectively, whereas most of the command words are an-
notated as neutral or emphatic. Similar results were observed by Schuller et al.
[2009a], where emotional children’s speech led to higher error rates.

7. CONCLUSION

We proposed and evaluated a Tandem BLSTM-DBN technique tailored for robust
keyword detection in a child-robot interaction scenario. Applying the principle of
Long Short-Term Memory, our approach allows for flexible coarticulation modeling
in children’s speech. The system is trained on spontaneous emotionally colored Ger-
man children’s speech recorded during interaction with Sony’s pet robot Aibo. Our
Tandem recognizer consists of two main components: a bidirectional Long Short-
Term Memory recurrent neural network for context-sensitive phoneme prediction
and a Dynamic Bayesian Network for detecting keywords in continuous speech. The
system is vocabulary independent since it does not apply whole-word models but
rather interprets keywords as phoneme sequences. The comparison of the Tandem
approach with other state-of-the-art keyword spotting techniques shows that the
BLSTM-DBN can achieve the same performance as a recently proposed Connec-
tionist Temporal Classification approach, which however is less flexible since it is
based on whole-word modeling. Furthermore, our technique outperforms an HMM
system that is based on triphone modeling rather than Long Short-Term Memory:
At equal false positive rates, a true positive rate improvement of up to 12 % (abso-
lute) can be achieved. Generally, emotionally colored speech leads to higher error
rates than neutral speech.

Our experiments demonstrated that the proposed Tandem technique is equally
well suited for female and male children and that the word spotting performance of
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the Tandem BLSTM-DBN shows no dependency on the age of the children, while
other approaches lead to larger variations of the ROC curves for different age groups
and genders. Coarticulation modeling via bidirectional Long Short-Term Memory
was shown to increase recognition performance when compared to pure triphone
or monophone modeling – especially for younger children who tend to show more
variability in their speech production.

To further improve keyword spotting performance in real-life child-robot inter-
action, the proposed Tandem system can be extended and optimized in the same
way as common HMM techniques: Instead of conventional cepstral mean normal-
ized MFCC features, as used in this study, future experiments could incorporate,
e. g., model-based feature enhancement techniques [Wöllmer et al. 2010b], vocal
tract length normalization, feature transformation via linear discriminant analy-
sis, or histogram equalization [de la Torre et al. 2005]. Furthermore, discriminative
training of the emission probability distribution p(xt|st) or model adaptation might
result in additional performance gains.

Future research should also focus on the investigation of alternative BLSTM net-
work topologies such as bottleneck architectures [Grezl and Fousek 2008] and on
tuning the stream weights for MFCC and BLSTM observations. A further interest-
ing approach towards better recognition performance through combined BLSTM
and DBN modeling would be to jointly decode speech with LSTM networks and
DBNs by using techniques for data fusion of potentially asynchronous sequences
such as multidimensional dynamic time warping [Wöllmer et al. 2009a] or asyn-
chronous Hidden Markov Models [Bengio 2003].

In order to analyze and understand coarticulation effects in children’s speech
on the one hand and the degree of context modeled by LSTM networks that are
trained on children’s speech on the other hand, it might be interesting to examine
the sequential Jacobian [Graves 2008], i. e., the influence of past RNN inputs on
the output at a given time step in the phoneme sequence.
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