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Abstract—For emergency cases in the interventional room, 3D
long-object cone-beam (CB) imaging using a C-arm system could
save valuable time and reduce risks to the patient by avoiding
the traditionally-used CT scan, and thus could potentiallybe a
crucial tool for patient health. To accomplish such a task, the
reverse helix is an attractive trajectory, however theoretically-
exact and stable (TES) reconstruction with a reverse helix is
challenging. Two TES solutions are available, but both of them
come with a heavy computational load and some issues in terms
of image quality. This work proposes three new approximate
reconstruction algorithms for the reverse helix that are stable
and efficient, and thus practical. Though not exact, reconstruction
results obtained from all three methods appear acceptable.

I. I NTRODUCTION

For emergency cases in the interventional room, 3D long-
object cone-beam(CB) imaging using a C-arm system (e.g.,
to assess status of the aorta or the spine, or to perform whole-
body angiography) could save valuable time and reduce risks
to the patient by avoiding transfer to another room for a CT
scan. Thus, it could be a vital tool for patient care. However,
performing such an imaging task is difficult for a C-arm
system in terms of scanning geometry, because significant
constraints control the mechanical motions and there is no
slip-ring technology for C-arm systems. In this context, the
reverse helix suggested in [1] is an attractive solution.

For theoretically-exact and stable (TES) reconstruction,the
reverse helix is very challenging due to poor R-line coverage
within the field of view; there is a large region, called the
core, of points of interests that do not belong to R-lines. An
R-line is a line that connects two points on a continuous curve.
The group of Utah [2] has found a solution by applying the
DBP-HT method in the R-line region and employing an FBP
formulation of the method of Grangeat in the core region.
Another solution was proposed by the group of Chicago [3],
which utilizes the same DBP-HT formula for the R-line region
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and the Pack-Noo formula [4] for the core. Both methods
produce TES results while allowing axial data truncation.
However, both of them require one forward projection and two
backprojections, and thus are not computationally efficient.
Moreover, they come with some issues in terms of image
quality: the reconstructions over the set of points that belong
and do not belong to R-lines are not easily compatible in terms
of resolution, and this can yield undesirable artifacts.

In this work, we propose three new FDK-type reconstruction
methods for the reverse helical trajectory. The first method,
called Fusion-RFDK (R stands for ramp) employs a horizontal
ramp kernel based filtering, whereas the second method called
Fusion-HFDK (H stands for Hilbert) utilizes a horizontal
Hilbert transform along with differentiation between succes-
sive projections along the scan. The motivation for Fusion-
HFDK over Fusion-RFDK comes from studies related to the
conventional helical trajectory [5], [6], which have shownthat
oblique filtering, along the direction of the tangent to the helix,
can significantly reduce CB artifacts; the differentiationstep
in Fusion-HFDK induces an oblique component within the
filtering operation. To understand how the third method was
conceived, note that TES or near-TES reconstruction can be
easily achieved within the regions covered byπ-lines; aπ-
line is a line segment that connects any two points on a helix
that are separated by less than360◦. The third method, called
Voxel-Dependent-HFDK, make proficient use of this feature,
so that it nearly produces TES reconstructions within theπ-
line regions.

All three proposed methods require only one backprojection
and involve no forward projection, and thus are computational
efficient. In addition, since all three methods are of FDK-type,
they are simple and stable, and they are easily implemented
on current C-arm systems using existing hardware. Computer-
simulation results show no artifacts related to the transition
from the core to the region outside the core. Moreover, our
preliminary evaluations of CB artifacts show that all three
methods produce images of acceptable quality. Hereafter, we
first explain the scan geometry, then describe all three methods
and show our evaluation results.

II. GEOMETRY AND NOTATION

We denote the spatial distribution of the linear attenuation
coefficient asf(x), where the pointx has (x, y, z) as its
Cartesian coordinates. The functionf(x) is assumed to be
smooth and compactly supported within a cylinderΩ of radius
r, which is centered along thez-axis, as shown in Figure 1.
HereΩ is usually referred to as the region of interest (ROI).



A. The reverse helix

The reverse helical source trajectory is based on two mo-
tions, one is a circular rotation around thez-axis, and the
other is a linear unidirectional movement along thez-axis.
Figure 1 shows one iteration of the reverse helix, which can
be repeated as many times as desired along thez-axis. This
iteration is composed of two parts: the lower helix (here we
define its rotation as clockwise) and the upper helix (we define
its rotation as counter-clockwise), with rotation reversal at the
kink point,K. For convenience, we denote the horizontal plane
that goes through the kink point as kink plane. Without loss of
generality, we assume that the kink plane is the planez = 0.

(a) (b)

Fig. 1: Geometry of the reverse helical trajectory. (a) 3D-view;
Ω is the region of interest. (b) Projection in the(x, y)-plane;
r: radius of the region of interest;R: scan radius.

Let R be the rotation radius and letP be the pitch for
each helix turning forming the reverse helix (this pitch is the
distance traveled along thez-axis per360◦). Let a(λ) be the
source position on the reverse helix, whereλ is the rotation
angle. Without loss of generality, we define the rotation angle
for the kink point as0, and the angular range for the lower
helix as [−λm, 0], whereas for the upper helix it is[0, λm].
Then the source position can be expressed as

a(λ) =
{

(

R cosλ,−R sinλ, P λ/(2π)
)

, λ ∈ [−λm, 0]
(

R cosλ, R sinλ, P λ/(2π)
)

, λ ∈ [0, λm].
(1)

B. Detector arrangement

We consider a flat-panel detector that moves together with
the vertex point,a(λ). The detector is at fixed distanceD from
the source, and it is placed such that it is parallel to thez-axis
and it is orthogonal to the plane defined bya(λ) and thez-
axis; see Figure 2. For the representation of any point in the
detector plane, we use a right-handed 3D Cartesian coordinate
system defined by the following three orthogonal unit vectors:











e
w
(λ) = (cosλ, sin |λ|, 0)

e
u
(λ) = (− sin |λ|, cosλ, 0)

e
v
(λ) = (0, 0, 1).

(2)

We denote the axes that correspond toeu(λ), ev(λ) andew(λ)
asu, v andw. The origin of this 3D coordinate system, i.e.,
(u, v, w) = (0, 0, 0), corresponds to the orthogonal projection

of the source point onto the detector. Note thate
v
(λ) is parallel

to the z-axis ande
w
(λ) is pointing from the center of the

detector to the source point.

Fig. 2: Scan geometry and the detector arrangement.

Using the above notation, the CB projection froma(λ) to
a point of detector coordinate(u, v), can be expressed as:

g(λ, , u, v) =

∫

∞

0

f
(

a(λ) + t α(λ, u, v)
)

dt, (3)

where

α(λ, u, v) =
u eu(λ) + v ev(λ) −D ew(λ)√

u2 + v2 +D2
. (4)

C. The spatial distribution of π-lines

Note that Tuy’s condition [7] is satisfied everywhere within
the convex hull of the reverse helix. Hence, TES reconstruction
from non-truncated projections is possible over the portion of
Ω that is bounded by the convex hull of the reverse helix [8].
This data sufficiency condition and the currently available
π-line based algorithms motivate the third method, Voxel-
Dependent-HFDK, whose weighting scheme is designed from
the spatial distribution ofπ-lines.

(a) (b) (c)

Fig. 3: The spatial distribution ofπ-lines of the reverse helix.
(a) Theπ-line surfaces corresponding to the kink pointK.
(b) Theπ-line surfaces corresponding to the top and bottom
pointsT andB; (c) The spatial distribution ofπ-lines using
theπ-line surfaces. Spaces denoted byΩu andΩl are covered
by π-lines, whereasΩc is not.

In Figure 3, we illustrate the spatial distribution ofπ-lines.
Figure 3(a) and (b) show fourπ-surfaces: the two surfaces



in (a) are generated by connecting the kink pointK to the
points on the upper helix and to the points on the lower helix,
respectively, whereas the two surfaces in (b) are obtained by
connecting the endpointT (resp.B) to the other points of the
upper (resp. lower) helix. The ROIΩ within the convex hull
of the reverse helix can be divided into three parts:Ωu andΩl

covered byπ-lines, andΩc not covered byπ-lines, as depicted
in Figure 3(c). In Voxel-Dependent-HFDK, we apply different
weighting schemes depending on whether the point of interest
belongs toΩc or not.

III. R ECONSTRUCTIONMETHODS

This section is devoted to explaining the three proposed
FDK-type reconstruction methods for the reverse helix, which
are extended from two fundamental FDK-type [9] formulae,
one is ramp kernel based and the other is Hilbert kernel
based. For convenience, we denote them as RFDK and HFDK,
separately. In this work, all filtering lines are horizontal, i.e.,
ramp or Hilbert kernel based convolution is along lines that
are parallel to the detector axiseu(λ).

A. Fusion-RFDK

The Fusion-RFDK method consists of two stages. First, by
RFDK, Vol+ and Vol− are respectively reconstructed using
data from the upper and lower helices, as shown in the left
of Figure 4. We denote reconstructions in Vol+ and Vol− as
f+
R
(x) andf−

R
(x). Those two volumes are symmetric relative

to the kink plane along with a fusion-zone, which is the
overlapped region off+

R
(x) and f−

R
(x). Let [−H,H ] be the

z-range of the volume to be reconstructed, and letLF be the
length of the fusion-zone. This indicates that thez-range of
Vol+ and Vol− are [−0.5LF , H ] and [−H, 0.5LF ].

Fig. 4: Illustration of the Fusion-RFDK reconstruction method.
Vol+ and Vol− are reconstructions from the upper and lower
helices using RFDK.w+

F
(z) andw−

F
(z) are the fusion weight-

ing functions for Vol+ and Vol−. LF is the length of the fusion
zone, within which feathering is applied.

Second, to obtain the final reconstruction result denoted
fFR(x), we combinef+

R
(x) andf−

R
(x) by applying a feather-

ing process to the horizontal slices covering the fusion-zone.
This feathering process aims to smoothly incorporate both

information from the upper and lower helices. The feathering
process can be achieved by the use of a pair of fusion
weighting functionsw+

F
(z) andw−

F
(z), as shown in the right

of Figure 4. Assigning the weightsw+
F
(z) andw−

F
(z) to f+

R
(x)

andf−

R
(x), we get two weighted volumes, the summation of

which yields the final reconstruction of Fusion-RFDK. The
exact expression for the two weights is


















































w+
F
(z) =















1 z ∈ [0.5LF , H ]

sin2
(π(z + 0.5LF )

2LF

)

z ∈ [−0.5LF , 0.5LF )

0 otherwise

w−

F
(z) =















1 z ∈ [−H,−0.5LF ]

cos2
(π(z + 0.5LF )

2LF

)

z ∈ (−0.5LF , 0.5LF ]

0 otherwise.
(5)

Let wP (λ, u) denote the Parker weighting [10] and let
hF (u) be the ramp filter kernel, namely

hF (u) =

∫

R

|σ|ei2πσudσ. (6)

Also, let u∗ andv∗ be the coordinates for the projection ofx
onto the detector froma(λ), i.e.,















u∗ =
D
(

x− a(λ)
)

· eu(λ)
R− x · e

w
(λ)

,

v∗ =
D
(

x− a(λ)
)

· e
v
(λ)

R− x · e
w
(λ)

.

(7)

Then, the reconstruction result for Fusion-RFDK, which we
denote asfFR(x), can be obtained using the steps described
below:

Step 1: CB length correction and Parker weighting:

g1(λ, u, v) =
D√

u2 + v2 +D2
wP (λ, u)g(λ, u, v);

Step 2: ramp filtering along theu-axis:

gR(λ, u, v) =

∫

∞

−∞

du′hF (u− u′)g1(λ, u
′, v) ;

Step 3: backprojection:

f+
R
(x) =

∫ λm

0

dλ
RD

(R − x · e
w
(λ))2

gR(λ, u
∗, v∗),

f−

R
(x) =

∫ 0

−λm

dλ
RD

(R − x · e
w
(λ))2

gR(λ, u
∗, v∗);

Step 4: fusion:

fFR(x) = f+
R
(x)w+

F
(z) + f−

R
(x)w−

F
(z). (8)

B. Fusion-HFDK

Fusion-HFDK shares the same fusion concept as that of
Fusion-RFDK, the only difference is the algorithm used for
obtaining Vol+ and Vol−. Instead of using a ramp kernel based
FDK-type formula, in Fusion-HFDK, a Hilbert kernel based
formula is adopted. The reconstructed volumes, i.e., Vol+ and
Vol−, are denoted asf+

H
(x) andf−

H
(x)



Let hH(u) = 1/(πu) denote the Hilbert filter kernel,
and let fFH(x) be the final result of Fusion-HFDK, the
implementation steps of Fusion-HFDK can be described as
below.

Step 1: CB length correction and view-dependent differ-
entiation

g2(λ, u, v) =
D√

u2 + v2 +D2
g′
(

λ, α(λ, u, v)
)

;

Step 2: Hilbert filtering along theu-axis

gH(λ, u, v) =

∫

∞

−∞

du′hH(u − u′)g2(λ, u
′, v);

Step 3: Parker weighting

gP (λ, u, v) = wP (λ, u)gH(λ, u, v);

Step 4: backprojection

f+
H
(x) =

1

2π

∫ λm

0

dλgP (λ, u
∗, v∗),

f−

H
(x) =

1

2π

∫ 0

−λm

dλgP (λ, u
∗, v∗);

Step 5: fusion

fFH(x) = f+
H
(x)w+

F
(z) + f−

H
(x)w−

F
(z). (9)

C. Voxel-Dependent-HFDK

The third method is called Voxel-Dependent-HFDK(VD-
HFDK), because the angular range of the backprojection and
the weighting schemes are voxel dependent. The reconstruc-
tion using this method can be achieved by the following steps.

Step 1: CB length correction and view-dependent differ-
entiation

g2(λ, u, v) =
D√

u2 + v2 +D2
g′
(

λ, α(λ, u, v)
)

;

Step 2: Hilbert filtering along theu-axis

gH(λ, u, v) =

∫

∞

−∞

du′hH(u − u′)g2(λ, u
′, v);

Step 3: voxel-dependent weighting

gw(λ, u
∗, v∗) = w(λ, x)gH(λ, u∗, v∗);

Step 4: voxel-dependent backprojection

f(x) =
1

2π

∫

Λ(x)

dλg′w(λ, u
∗, v∗).

Note that the above steps are very similar to the first four
steps of Fusion-HFDK, but with a different weighting scheme
in step 3 and a different backprojection angular range in
step 4, denoted asw(λ, x) andΛ(x), respectively. Also note
that,w(λ, x) andΛ(x) are voxel-dependent functions (depend
on x), and are designed differently according to the spatial
distribution of π-lines, i.e.,Ωu, Ωl and Ωc, see Figure 3.
Details are given below.

1) x ∈ Ωu or x ∈ Ωl: As shown in Figure 5(a), the
π-segment is utilized for backprojection and a uniform

(a) (b)

Fig. 5: Backprojection angular ranges for the third method:
Voxel-Dependet-HFDK. (a) The point of interestx (black
star) belongs to aπ-line: π-segment (solid red) is used for
backprojection. (b) Pointx belongs toΩc: the backprojection
angular range is designed by extending the correspondingπ-
segment (solid red) to its both ends (solid blue).

weight of 1 is assigned to projections that is within the
π-segment.

2) x ∈ Ωc: As shown in Figure 5(b), the backprojection
angular range and weighting scheme in this case is more
complicated. Here we assume that the point of interest
x is above the kink plane and below theπ-surfaceS+

0 .
A similar explanation holds whenx is below the kink
plane and above theπ-surfaceS−

0 .
We denote the line that goes throughx and is parallel
to the z-axis asL(x, y). Together with the kink point
K, this line defines a plane that intersects with the
π-surfaceS+

0 along a π-line, as shown by the solid
black line. The angular range of the backprojection is
designed by extending theπ-segment, i.e., the solid red
curve in Figure 5(b) at both ends (the extensions are
indicated by the solid blue curves). The design criteria
is such that the closerx is to S+

0 , the smaller extensions
are. In the extreme cases: i) whenx is on the π-
line, the extensions (solid blue) become nil; ii) when
x is on the the kink plane, the whole reverse helix is
used for the backprojection. Finally, a modified Parker
weighting,w(λ, x), is applied to the projections within
the backprojection angular rangeΛ(x); this weighting is
based on a smooth functionc(λ) following the approach
explained in [11].

IV. EVALUATION

All the proposed methods either require horizontal ramp
filtering or horizontal Hilbert transform, which could yield
a lot of difference in terms of resolution. To perform a fair
comparative evaluation, we have first adjusted all reconstruc-
tion parameters such that the three methods produce results
with similar resolutions. Hence, all reconstructions shown here
correspond to resolution-matched algorithms.

The evaluations were based on computer-simulated data
of the FORBILD head phantom, shown in Figure 6. Two
angular ranges were used for the reverse helix, i.e.,240◦ and
360◦. In each case, the height of the reverse helix (distance
betweenB andT in Figure 1) and the number of views for



Fig. 6: FORBILD head phantom (gray scale: [0 100]HU). Left:
cross section in the(x, y)-plane. Right: cross section in the
(y, z)-plane withz ∈ [−3cm, 5cm].

each helix turning were fixed to12cm and600, respectively.
Also, the kink plane was positioned one centimeter above
the central plane through the phantom, to break symmetry
between the phantom and the source trajectory. The radius
R and the source-to-detector distanceD used for evaluations
were78.5 cm and119.9 cm, respectively. Projection data were
measured by the detector that consisted of700× 700 square
bins of side0.0616 cm.

A. Fusion effects

A fusion zone ofz ∈ [−1cm, 3cm] was used for Fusion-
RFDK and Fusion-HFDK. As shown in Figure 7, the fusion
process has a significant impact on cone-beam artifacts: the
strong CB artifacts around the bone areas in the left and right
columns have nearly opposite intensities, and thus are con-
siderably reduced by the fusion process. Figure 7 only shows
results for angular range of240◦, but the same observations
holds for the360◦ range.

Fig. 7: Fusion effects for scanning angular range of240◦ (gray
scale: [0 100]HU), the horizontal cross section is in the plane
z = −0.05cm. Upper: Fusion-RFDK; lower: Fusion-HFDK.
First column: reconstruction results by only using projection
data from the upper helix; second column: reconstruction
result after fusion process; third column: reconstructionresults
by only using projection data from the lower helix.

B. Visual inspection

Figure 8 shows the reconstruction results from all three
methods using angular ranges of240◦ and 360◦. For 240◦,
less CB artifacts were observed around the frontal sinus (upper
black ellipsoid with high contrast) in the results from the
Fusion-HFDK and VD-HFDK than that from the Fusion-
RFDK. However, regarding CB artifacts around the ventri-
cle (middle gray ellipsoid with low contrast), Fusion-RFDK
outperforms the other two methods. Different behavior of CB
artifacts can be observed for360◦. Fusion-RFDK produces
more CB artifacts around both the frontal sinus and ventricle
than Fusion-HFDK or VD-HFDK. The observations indicate,
not surprisingly, that the CB artifacts of all three methods
are location, object and angular range dependent. Overall,all
three methods produce images of acceptable quality, and no
artifacts are observed related to the transition from the core to
the region outside of the core.

As expected, in theπ-line regions (e.g., area close to the
left edge of the cross section in the(y, z) plane), VD-HFDK
produces little CB artifacts and outperforms the other two
methods. However, theπ-line regions only occupy a relatively
small portion of the whole reconstruction volume.

Fig. 8: Reconstruction results (gray scale: [0,100]HU). First
column:240◦; second column:360◦. First row: Fusion-RFDK;
second row: Fusion-HFDK; third row: VD-HFDK.



V. CONCLUSIONS

We have proposed three FDK-type reconstruction methods
for the reverse helix, they are simple, stable and thus practical.
The computer-simulation results show that all three methods
produce acceptable images, and the images are smooth near
the boundary of the core. Also, they only require one backpro-
jection and no forward projection, thus they are more efficient
compared to the previous solutions. We found that the CB
artifacts are location, object and angular range dependent. For
Fusion-RFDK and Fusion-HFDK, we found that the artifacts
are strongly mitigated through the fusion process.

Although VD-HFDK can provide almost TES results in
the π-regions, we found it to be only moderately attractive
over Fusion-RFDK and Fusion-HFDK because theπ-region,
due to its size being relatively small, turns out to have little
impact on the overall image quality, whereas the associated
reconstruction steps are much more complicated. Determining
which of the first two algorithms is preferable in terms of
image quality is not clear based on the results we presented
and will require further investigation. As far as computational
effort is concerned, these two algorithms are very similar and
can be easily implemented within the currently-used industrial
reconstruction framework.
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