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Abstract—For emergency cases in the interventional room, 3D and the Pack-Noo formula[4] for the core. Both methods
long-object cone-beam (CB) imaging using a C-arm system ctil  produce TES results while allowing axial data truncation.
save valuable time and reduce risks to the patient by avoidig  yqveyver, both of them require one forward projection and two

the traditionally-used CT scan, and thus could potentiallybe a backproiecti d th i tati v effici
crucial tool for patient health. To accomplish such a task, he ackprojections, an us are not compuiatonally enicien

reverse helix is an attractive trajectory, however theoreically- Moreover, they come with some issues in terms of image
exact and stable (TES) reconstruction with a reverse helixsi quality: the reconstructions over the set of points thabihg!
challeng_ing. Two TES solutic_)ns are available, but_ both Qf tem and do not belong to R-lines are not easily compatible in $erm
come with a heavy computational load and some issues in terms ot ragolytion, and this can yield undesirable artifacts.
of image quality. This work proposes three new approximate . .
reconstruction algorithms for the reverse helix that are sable In this work, we propose three new FDK-type reconstruction
and efficient, and thus practical. Though not exact, reconstiction ~methods for the reverse helical trajectory. The first method
results obtained from all three methods appear acceptable. called Fusion-RFDK (R stands for ramp) employs a horizontal
ramp kernel based filtering, whereas the second methodicalle
Fusion-HFDK (H stands for Hilbert) utilizes a horizontal
Hilbert transform along with differentiation between sesc
For emergency cases in the interventional room, 3D longive projections along the scan. The motivation for Fusion-
object cone-beam (CB) imaging using a C-arm system (e.Bli-DK over Fusion-RFDK comes from studies related to the
to assess status of the aorta or the spine, or to perform whalenventional helical trajectory [5], [6], which have shotinat
body angiography) could save valuable time and reduce rigiislique filtering, along the direction of the tangent to tediXh
to the patient by avoiding transfer to another room for a Cdan significantly reduce CB artifacts; the differentiatistep
scan. Thus, it could be a vital tool for patient care. Howgven Fusion-HFDK induces an obligue component within the
performing such an imaging task is difficult for a C-arniiltering operation. To understand how the third method was
system in terms of scanning geometry, because significaonceived, note that TES or near-TES reconstruction can be
constraints control the mechanical motions and there is masily achieved within the regions covered hylines; anr-
slip-ring technology for C-arm systems. In this contexg thline is a line segment that connects any two points on a helix
reverse helix suggested in [1] is an attractive solution. that are separated by less th#0)°. The third method, called
For theoretically-exact and stable (TES) reconstructibe, Voxel-Dependent-HFDK, make proficient use of this feature,
reverse helix is very challenging due to poor R-line coverago that it nearly produces TES reconstructions within the
within the field of view; there is a large region, called thdine regions.
core, of points of interests that do not belong to R-lines. An All three proposed methods require only one backprojection
R-line is a line that connects two points on a continuouseunand involve no forward projection, and thus are computation
The group of Utah[2] has found a solution by applying thefficient. In addition, since all three methods are of FDiey
DBP-HT method in the R-line region and employing an FBEhey are simple and stable, and they are easily implemented
formulation of the method of Grangeat in the core regiomn current C-arm systems using existing hardware. Computer
Another solution was proposed by the group of Chicago [3imulation results show no artifacts related to the tréosit
which utilizes the same DBP-HT formula for the R-line regiofrom the core to the region outside the core. Moreover, our
_ _ . ) . preliminary evaluations of CB artifacts show that all three
o v S sk e Sop s Methods produce images of acceptable qualiy. Hereafter, w
of Health (NIH) under Grant No. R21 EB009168.The concepesgnted in ISt €xplain the scan geometry, then describe all three ousth

this paper are based on research and are not commercialiigbdwa lts and show our evaluation results.
contents are solely the responsibility of the authors anchalonecessarily
represent the official views of the NIH.
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|I. INTRODUCTION



A. The reverse helix of the source point onto the detector. Note that\) is parallel
The reverse helical source trajectory is based on two m§- the z-axis ande,, (1) is pointing from the center of the

tions, one is a circular rotation around theaxis, and the detector to the source point.

other is a linear unidirectional movement along thexis.

Figure 1 shows one iteration of the reverse helix, which can i Agv(/\)
be repeated as many times as desired along:thgis. This

iteration is composed of two parts: the lower helix (here we

define its rotation as clockwise) and the upper helix (we éefin

its rotation as counter-clockwise), with rotation revéedathe . Od \
kink point, K. For convenience, we denote the horizontal plane Loey(N) /‘;\w

that goes through the kink point as kink plane. Without ldss 0 a(\)
generality, we assume that the kink plane is the plare0.

Az

W

Fig. 2: Scan geometry and the detector arrangement.

Using the above notation, the CB projection frarfi) to
a point of detector coordinate:, v), can be expressed as:

900 u,v) = /0 T a0 + o)) d ()

where
Fig. 1: Geometry of the reverse helical trajectory. (a) 3By wey,(\) +ve,(\) — Dey (M)
Q is the region of interest. (b) Projection in tiie, y)-plane; a(A,u,v) = — m_w : (4)

r: radius of the region of interesf}: scan radius.

Let R be the rotation radius and le® be the pitch for C. The spatial d|’str|but|(_)|7| of 7r-||_nes o o
each helix turning forming the reverse helix (this pitchtiet ~ Note that Tuy’s condition [7] is satisfied everywhere within
distance traveled along theaxis per360°). Let a(\) be the the convex hull of the reverse helix. Hence, TES reconstmct
source position on the reverse helix, wheves the rotation from non-truncated projections is possible over the porab
angle. Without loss of generality, we define the rotationlangf? that is bounded by the convex hull of the reverse helix [8].

for the kink point as0, and the angular range for the lowerThis data sufficiency condition and the currently available
helix as[—\.,0], whereas for the upper helix it i), \.,]. m-line based algorithms motivate the third method, Voxel-
Then the source position can be expressed as Dependent-HFDK, whose weighting scheme is designed from
the spatial distribution ofr-lines.
a() =
(Rcos A\, —Rsin X\, PA/(27)), A€ [-Am,0] B
(RcosA, Rsin\, PX/(2m)), A€ [0, An).

B. Detector arrangement

We consider a flat-panel detector that moves together with
the vertex pointa(\). The detector is at fixed distané&from
the source, and it is placed such that it is parallel toztfzexis
and it is orthogonal to the plane defined b)) and thez-
axis; see Figure 2. For the representation of any point in the

detector plz_ine, we use a right-handed 3D Cartesian_comediqgig_ 3: The spatial distribution of-lines of the reverse helix.
system defined by the following three orthogonal unit ve::tor(a) The n-line surfaces corresponding to the kink poifit

e,(A) = (cos\,sin|A[,0) (b) Thew-line surfaces corresponding to the top and bottom
e,(\) = (—sin|)|,cos \,0) @) pointsT" and B; (c) The spatial distribution ofr-lines using

- the 7-line surfaces. Spaces denote and(; are covere
“()\) (0,0,1) ’ ’ he 7-li f S d dsby and2 d

Qv = ) Y *

by 7-lines, whereas), is not.

We denote the axes that correspond to\), e, (\) ande,,(A\)

aswu, v andw. The origin of this 3D coordinate system, i.e., In Figure 3, we illustrate the spatial distribution eflines.
(u,v,w) = (0,0,0), corresponds to the orthogonal projectiofrigure 3(a) and (b) show four-surfaces: the two surfaces



in (&) are generated by connecting the kink paiftto the information from the upper and lower helices. The feattgerin
points on the upper helix and to the points on the lower heligrocess can be achieved by the use of a pair of fusion
respectively, whereas the two surfaces in (b) are obtailyed weighting functionsw}.(2) andw(z), as shown in the right
connecting the endpoirf (resp. B) to the other points of the of Figure 4. Assigning the weights}. (z) andw} () to fg(@
upper (resp. lower) helix. The RAR within the convex hull and f (z), we get two weighted volumes, the summation of
of the reverse helix can be divided into three pafts:and(); which yields the final reconstruction of Fusion-RFDK. The
covered byr-lines, and2. not covered byr-lines, as depicted exact expression for the two weights is

in Figure 3(c). In Voxel-Dependent-HFDK, we apply diffeten

weighting schemes depending on whether the point of inter 1 2 € [0.5LF, H]
belongs tof2.. or not. wh(z) = { sin? (W) 2 € [~05Lp,0.5L)
F
I1l. RECONSTRUCTIONMETHODS 0 otherwise
This section is devoted to explaining the three propos 1 ¢ € [-H,~05LF]
FDK-type reconstruction methods for the reverse helix,olvhi [ wy(z) = < cos? (M) z € (—=0.5LF,0.5LF]
are extended from two fundamental FDK-type [9] formulae 0 2LF otherwise

one is ramp kernel based and the other is Hilbert kernal
based. For convenience, we denote them as RFDK and HFDK
separately. In this work, all filtering lines are horizontiag.,
ramp or Hilbert kernel based convolution is along lines th
are parallel to the detector axis ().

(5)
Let wp(\,u) denote the Parker weighting [10] and let
g,[p(u) be the ramp filter kernel, namely

hF(u):A|a|ei2”“”da. (6)

A. Fusion-RFDK Also, letu* andv* be the coordinates for the projection of
The Fusion-RFDK method consists of two stages. First, ipnto the detector from()), i.e.,
RFDK, VoI™ and VoI~ are respectively reconstructed using

data from the upper and lower helices, as shown in the left u* = ,

of Figure 4. We denote reconstructions in Yoand Vo~ as 5 R *g)'\gwo‘) \ 7)
f# (z) and f5 (z). Those two volumes are symmetric relative v — (2 —aW) &)

to the kink plane along with a fusion-zone, which is the R—z-¢e,(N)

overlapped region of;t (z) and f (z). Let [-H, H] be the Then, the reconstruction result for Fusion-RFDK, which we
z-range of the volume to be reconstructed, andllgtbe the denote asfrx(z), can be obtained using the steps described
length of the fusion-zone. This indicates that theange of pelow:

Vol and Vo™ are[—0.5L, H] and[—H,0.5L ], Step 1: CB length correction and Parker weighting:
upper helix . D )
\ 2 91 (A, u,v) = W“’P(Aﬂ)g(}v%v%

Vol * Step 2: ramp filtering along the-axis:

o0
gr(A\, u, ) :/ du'hp(u—u')gr (N v, v);

— 00

Step 3: backprojection:

Am
fiw= [

0

RD

— L&y

B

_ 0 RD .
fr(@) = /_/\m dkmga(xu ;0);

Step 4: fusion:

Fig. 4: lllustration of the Fusion-RFDK reconstruction imed. _ o+ + — —

Vol and Vol are reconstructions from the upper and lower Jrr(@) = fr@wr () + fp@wp(). @)

helices using RFDKw . (z) andw}. (z) are the fusion weight- _

ing functions for Vot~ and VoI~ L is the length of the fusion B. Fusion-HFDK

zone, within which feathering is applied. Fusion-HFDK shares the same fusion concept as that of

Fusion-RFDK, the only difference is the algorithm used for

Second, to obtain the final reconstruction result denotetitaining Vol and Vol~. Instead of using a ramp kernel based

frr(z), we combinef;; () and f5; (z) by applying a feather- FDK-type formula, in Fusion-HFDK, a Hilbert kernel based

ing process to the horizontal slices covering the fusionezo formula is adopted. The reconstructed volumes, i.e. \aod

This feathering process aims to smoothly incorporate botol—, are denoted ag; (z) and £ ()

lower helix



Let hg(u) = 1/(mu) denote the Hilbert filter kernel,
and let fry(xz) be the final result of Fusion-HFDK, the
implementation steps of Fusion-HFDK can be described as

below.

Step 1: CB length correction and view-dependent differ-

entiation
D
aOu) = T e

Step 2: Hilbert filtering along the-axis

gu(A\ u,v) = /OO

du'hg(u —u')ga( N\, v, v);

"N a(\ u,v));

Step 3: Parker weighting

gP(Av Uu, ’U) = wp (>\a U)gH (>\a u, ’U);

Ke

@)

Fig. 5: Backprojection angular ranges for the third method:
Voxel-Dependet-HFDK. (a) The point of interest(black
star) belongs to ar-line: m-segment(solid red) is used for
backprojection. (b) Point belongs tof2.: the backprojection
angular range is designed by extending the corresponding
segment(solid red) to its both ends (solid blue).

Step 4: backprojection

1 Am
+ _ * *
fH(&) - o A d)‘gP()‘7u , U )7

0
E@Z%[A

Step 5: fusion

fru(@) = fh@wf(2) + fp(@)wp ().

d)\gp()\,u*,v*); 2)

9)

C. Voxel-Dependent-HFDK

The third method is called Voxel-Dependent-HFDK (VD-
HFDK), because the angular range of the backprojection and
the weighting schemes are voxel dependent. The reconstruc-
tion using this method can be achieved by the following steps

Step 1: CB length correction and view-dependent differ-

entiation
g2 (A, u,v) = #g'()\ (X u,v));
) ) \/m y = ) ) )
Step 2: Hilbert filtering along the-axis
gn(u) = [ du'batu = g )

Step 3: voxel-dependent weighting
gw()‘a U*7 U*) = ’LU()\, &)QH ()\a U*a ’U*)7

Step 4: voxel-dependent backprojection

1
fa :—/ drgl, (N, 0").
@=5z [ a0

weight of 1 is assigned to projections that is within the
m-segment.

z € Q. As shown in Figure 5(b), the backprojection
angular range and weighting scheme in this case is more
complicated. Here we assume that the point of interest
z is above the kink plane and below thesurfaceS; .

A similar explanation holds when is below the kink
plane and above the-surfaceS; .

We denote the line that goes throughand is parallel

to the z-axis asL(x,y). Together with the kink point
K, this line defines a plane that intersects with the
n-surface Sy along ar-line, as shown by the solid
black line. The angular range of the backprojection is
designed by extending thesegment, i.e., the solid red
curve in Figure 5(b) at both ends (the extensions are
indicated by the solid blue curves). The design criteria
is such that the closer is to 50+, the smaller extensions
are. In the extreme cases: i) whenis on the «-
line, the extensions(solid blue) become nil; ii) when
xz is on the the kink plane, the whole reverse helix is
used for the backprojection. Finally, a modified Parker
weighting, w(\, z), is applied to the projections within
the backprojection angular rangéx); this weighting is
based on a smooth functief)) following the approach
explained in [11].

IV. EVALUATION

All the proposed methods either require horizontal ramp
filtering or horizontal Hilbert transform, which could yikel

Note that the above steps are very similar to the first fodriot of difference in terms of resolution. To perform a fair
steps of Fusion-HFDK, but with a different weighting schemgomparative evaluation, we have first adjusted all recanstr

in step 3 and a different backprojection angular range {bn parameters such that the three methods produce results
step 4, denoted as(\, z) and A(z), respectively. Also note with similar resolutions. Hence, all reconstructions shdwere

that, w(A,z) andA(z) are voxel-dependent functions (dependorrespond to resolution-matched algorithms.

on z), and are designed differently according to the spatial The evaluations were based on computer-simulated data
distribution of w-lines, i.e.,Qu, O and Q., see Figure 3. of the FORBILD head phantom, shown in Figure 6. Two

Details are given below.
1)ze Q,orz e Q:

angular ranges were used for the reverse helix, 24 and
As shown in Figure 5(a), the 360°. In each case, the height of the reverse helix (distance

m-segment is utilized for backprojection and a unifornbetweenB andT" in Figure 1) and the number of views for



B. Visual inspection

/ Figure 8 shows the reconstruction results from all three
methods using angular ranges »f0° and 360°. For 240°,
less CB artifacts were observed around the frontal sinysdiup
black ellipsoid with high contrast) in the results from the
Fusion-HFDK and VD-HFDK than that from the Fusion-
RFDK. However, regarding CB artifacts around the ventri-

ftcle(middle gray ellipsoid with low contrast), Fusion-RFDK

outperforms the other two methods. Different behavior of CB
artifacts can be observed f@60°. Fusion-RFDK produces

more CB artifacts around both the frontal sinus and vemtricl
than Fusion-HFDK or VD-HFDK. The observations indicate,

each helix turning were fixed td2cm and 600, respectively. o .
Also, the kink plane was positioned one centimeter abO\r/]gt surprisingly, that the CB artifacts of all three methods

the central plane through the phantom, to break symme (¢ location, object and gngular range dependent. Qvaﬂall,
between the phantom and the source trajectory. The rad tee methods produce images of acceptable quality, and no
R and the source-to-detector distanPeused for evaluations artifacts are observed related to the transition from the ¢o

were78.5 cm and119.9 cm, respectively. Projection data werel® region OUtS'd_e of the_ core. _
measured by the detector that consisted@f x 700 square ~ As expected, in ther-line regions(e.g., area close to the

e

Fig. 6: FORBILD head phantom (gray scale: [0 100]HU). Le
cross section in théz, y)-plane. Right: cross section in the
(y, z)-plane withz € [—3cm, 5em].

bins of side0.0616 cm. left edge of the cross section in tlig, z) plane), VD-HFDK
produces little CB artifacts and outperforms the other two
A Fusion effects methods. However, the-line regions only occupy a relatively

. . small portion of the whole reconstruction volume.
A fusion zone ofz € [—1em, 3em] was used for Fusion-

RFDK and Fusion-HFDK. As shown in Figure 7, the fusion
process has a significant impact on cone-beam artifacts: t
strong CB artifacts around the bone areas in the left and rig
columns have nearly opposite intensities, and thus are co
siderably reduced by the fusion process. Figure 7 only sho
results for angular range @40°, but the same observations
holds for the360° range.

o

[

[
AR

Fig. 7: Fusion effects for scanning angular rang@4f° (gray
scale: [0 100]HU), the horizontal cross section is in thenpla
z = —0.05cm. Upper: Fusion-RFDK; lower: Fusion-HFDK.

First column: reconstruction results by only using pra@tt Fig. 8: Reconstruction results (gray scale: [0,100]HUYsFi
data from the upper helix; second column: reconstructig®lumn:240°; second column360°. First row: Fusion-RFDK;
result after fusion process; third column: reconstruct&sults second row: Fusion-HFDK: third row: VD-HFDK.

by only using projection data from the lower helix.




V. CONCLUSIONS

We have proposed three FDK-type reconstruction methods
for the reverse helix, they are simple, stable and thus ipedct
The computer-simulation results show that all three method
produce acceptable images, and the images are smooth near
the boundary of the core. Also, they only require one backpro
jection and no forward projection, thus they are more efficie
compared to the previous solutions. We found that the CB
artifacts are location, object and angular range depen&ent
Fusion-RFDK and Fusion-HFDK, we found that the artifacts
are strongly mitigated through the fusion process.

Although VD-HFDK can provide almost TES results in
the m-regions, we found it to be only moderately attractive
over Fusion-RFDK and Fusion-HFDK because theegion,
due to its size being relatively small, turns out to haveelitt
impact on the overall image quality, whereas the associated
reconstruction steps are much more complicated. Detengini
which of the first two algorithms is preferable in terms of
image quality is not clear based on the results we presented
and will require further investigation. As far as compuiatl
effort is concerned, these two algorithms are very simitat a
can be easily implemented within the currently-used irrist
reconstruction framework.
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