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Abstract
Cone-beam imaging with C-arm systems has become a valuable tool in
interventional radiology. Currently, a simple circular trajectory is used, but
future applications should use more sophisticated source trajectories, not only
to avoid cone-beam artifacts but also to allow extended volume imaging. One
attractive strategy to achieve these two goals is to use a source trajectory that
consists of two parallel circular arcs connected by a line segment, possibly with
repetition. In this work, we address the question of R-line coverage for such
a trajectory. More specifically, we examine to what extent R-lines for such a
trajectory cover a central cylindrical region of interest (ROI). An R-line is a
line segment connecting any two points on the source trajectory. Knowledge
of R-line coverage is crucial because a general theory for theoretically exact
and stable image reconstruction from axially truncated data is only known
for the points in the scanned object that lie on R-lines. Our analysis starts
by examining the R-line coverage for the elemental trajectories consisting of
(i) two parallel circular arcs and (ii) a circular arc connected orthogonally
to a line segment. Next, we utilize our understanding of the R-lines for the
aforementioned elemental trajectories to determine the R-line coverage for the
trajectory consisting of two parallel circular arcs connected by a tightly fit line
segment. For this trajectory, we find that the R-line coverage is insufficient
to completely cover any central ROI. Because extension of the line segment
beyond the circular arcs helps to increase the R-line coverage, we subsequently
propose a trajectory composed of two parallel circular arcs connected by an
extended line. We show that the R-lines for this trajectory can fully cover a
central ROI if the line extension is long enough. Our presentation includes a
formula for the minimum line extension needed to achieve full R-line coverage
of an ROI with a specified size, and also includes a preliminary study on the

0031-9155/11/123447+25$33.00 © 2011 Institute of Physics and Engineering in Medicine Printed in the UK 3447

http://dx.doi.org/10.1088/0031-9155/56/12/001
mailto:zyu@ucair.med.utah.edu
mailto:awunder@ucair.med.utah.edu
mailto:noo@ucair.med.utah.edu
http://stacks.iop.org/PMB/56/3447


3448 Z Yu et al

required detector size, showing that the R-lines added by the line extension are
not constraining.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over the last decade, cone-beam (CB) computed tomography (CT) has become a valuable
tool in interventional radiology. Its success stems from its ability to provide the physician
with immediate feedback during a clinical procedure, thereby allowing on-the-fly adjustments.
So far, circular data acquisition has been used, but more sophisticated geometries are being
considered due to the problem of CB artifacts and also due to limited volume coverage.

An attractive source trajectory for extended volume imaging with no CB artifacts is the
helix. This trajectory has been very successful in diagnostic CT, but it is unfortunately not
practical for interventional radiology. The problem is the need for a slip-ring technology, which
is difficult to implement (at reasonable cost) on C-arm systems. To perform extended volume
imaging with a C-arm system, another geometry must be found. Many options are possible,
from using a combination of circles and lines (or arcs) (Katsevich 2004a, 2005, Hoppe et al
2006) to using a reverse helix, as suggested by the group of X Pan at the University of Chicago
(Cho et al 2008). The reverse helix has many merits, but efficient and accurate reconstruction
from axially truncated data collected on such a helix appears to be challenging (Cho et al
2008, 2010, Noo et al 2009). The main difficulty stems from the fact that the R-lines do
not cover the whole scanned object (an R-line is any line segment that connects two source
positions). More specifically, the reverse helix is such that the theories that have been found
for efficient handling of axial truncation (Katsevich 2004b, Zou and Pan 2004, Pack et al 2005,
Pack and Noo 2005, Ye et al 2005) cannot be applied, because large portions of the object are
not intersected by R-lines.

In this work, we revisit the option of performing extended field-of-view imaging using
a sequence of circular short-scans connected by line segments. In particular, we investigate
R-line coverage with the goal of finding source-trajectory parameters such that a central
cylindrical region-of-interest (ROI) within the object is fully covered by R-lines.

The paper is organized as follows. First, we describe the source trajectory of interest.
Next, we discuss the R-line coverage resulting from two parallel circular arcs and also the
R-line coverage resulting from connecting a line orthogonally to the endpoint of a circular arc.
Subsequently, we are able to present the R-line coverage for the entire source trajectory. Our
analysis shows that R-line coverage is inadequate when the line scans have their endpoints on
the arcs. On the other hand, when the line scans are allowed to extend beyond the arcs, we
find that the full coverage of a central cylindrical ROI becomes possible. The required line
extension is analyzed as a function of the ROI radius and the length of the circular arcs, and a
preliminary analysis on detector size requirement is given.

2. Source-trajectory geometries

In this section, we introduce two source trajectories composed of circular arcs and a line
segment. Then, we introduce the terminology that is used in this work as well as a geometrical
theorem that will be needed later.
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(a) (b) (c)

Figure 1. Source-trajectory geometries. Extended volume imaging is performed using duplicates
of a path consisting of two circular arcs plus a line. Two options are considered for this path:
(a) the line is tightly fit between the arcs, so that each endpoint of the line corresponds to one
endpoint of an arc, and (b) the line extends beyond the arcs by a distance �h on each side.
Figure (c) shows the orthogonal projection of the source trajectory onto the x–y plane. Points
O− = (0, 0,−H) and O+ = (0, 0, H) are the centers of the lower and upper arcs, respectively.
Points E− = (R cos λi, R sin λi, −H − �h) and E+ = (R cos λi, R sin λi, H + �h) are the
extremities of the extended line. The polar angles λi and λe define the initial and end points of
each arc.

2.1. Source trajectories

We consider extended volume imaging using periodic duplicates of a source trajectory
consisting of two circular arcs connected by a line segment. The patient is assumed to
lie along the z-axis, the arcs are in parallel planes that are orthogonal to this axis, and the line
is orthogonal to each arc through one of its endpoints. Figure 1 depicts this trajectory. Two
options are considered: (a) the line is spatially limited by the arcs and (b) the line extends
beyond the arcs. In the first option, the trajectory is called the arc–line–arc (ALA) trajectory;
in the second option, it is called the arc–extended-line–arc (AELA) trajectory. Figure 1 also
shows how each circular arc is oriented relative to the x- and y-axes that form together with
the z-axis a Cartesian system of coordinates. The distance in z between the arcs is 2H , the
radius of the arcs is R, and the line extension in option (b) is �h on each end. Also, the plane
z = 0 is chosen to be at mid-distance between the two arcs.

Throughout the text, the circular arcs and the line segment that together form the source
trajectory are referred to as the T-arcs and the T-line, respectively, where T stands for trajectory.
The T-arcs at z = H and z = −H are distinguished from each other using the terms upper and
lower T-arcs, respectively. By extension, the term T-arc is also used to denote the orthogonal
projection of either the upper or the lower T-arc onto any plane that is parallel to the x–y
plane. The T-arc terminology is especially useful as it avoids confusion with other arcs that
will appear later.

Note that the endpoints of the upper T-arc are denoted as Ai
+ and Ae

+, whereas the endpoints
of the lower T-arc are Ai

− and Ae
−. By convention, the superscript i refers to the start (initial)

point on the T-arc and the superscript e to the end point. The line segment is defined to pass
through Ai

+ and Ai
−. The polar angle position of Ai

+ and Ai
− is denoted as λi , whereas the

polar angle position of Ae
+ and Ae

− is denoted as λe.
By Tuy’s condition (Tuy 1983), theoretically exact and stable reconstruction of the x-ray

linear attenuation coefficient from CB projections is only possible within the convex hull of
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Figure 2. (a) Illustration of theorem 1. The plane πh is parallel to the base plane and intersects
the partial cone from point A along Arc(O ′

b); this arc can be obtained by isotropically scaling the
base arc into Arc(Ob), then translating the result from Ob to O ′

b . (b) Illustration of the upside cone
from An

+.

the source trajectory (Finch 1985). Hence, we do not investigate R-line coverage outside this
convex hull. To be more precise, we only investigate R-line coverage within a specific cylinder
centered on the z-axis where Tuy’s condition is fulfilled. This cylinder extends from z = −H

to z = H and has radius Rm determined by the angular length, λm = λe − λi , of the T-arcs
according to the equation

Rm = R sin((λm − π)/2) . (1)

Basically, Rm is the radius of the largest central cylinder within the convex hull of the source
trajectory.

2.2. Preliminaries

Below, we introduce some terminology used in this work. First, note that we will make
extensive use of the conical surface that is defined by a point and a circular arc, called the
base arc, that are not coplanar. To simplify the text, we loosely refer to such a surface as
being a partial cone. In order to aid with the understanding of our terminology and for later
developments, we give the following theorem on partial cones that is proven in appendix A.

Theorem 1. As illustrated in figure 2(a), the intersection between a partial cone and a plane
that is parallel to the base of the cone is an arc that is a translation of a scaled copy of the
base arc, with the scaling being isotropically applied relative to the center of the base arc.

As shown in figure 2(b), a partial cone may be obtained by selecting one point An
+ on the

upper T-arc and connecting it to all of the points on the lower T-arc. Such a partial cone is
called the upside cone from An

+. Similarly, a partial cone may be obtained by connecting any
point on the lower T-arc to all of the points on the upper T-arc; such a partial cone is called a
downside cone.
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Figure 3. Arc–arc R-line coverage when the length of the T-arcs is 360◦. (a) Coverage in the plane
πh due to one point from the upper T-arc; this coverage is a circle centered on a point denoted as
On

h in the figure. (b) Coverage in the same plane as on the left, but due to several points on the
upper T-arc.

Let πh be the plane z = h, as illustrated in figure 2(b). Theorem 1 indicates that the
intersection between πh and any upside or downside cone is a circular arc. Throughout the
paper, such an arc is called an R-arc, since it consists of points covered by R-lines. Furthermore,
theorem 1 implies that the angular length of any R-arc is the same as the angular length of the
T-arcs, and it also implies that the line connecting the endpoints of any R-arc is parallel to the
line connecting the endpoints of either T-arc.

Two more interesting properties of R-arcs need to be noted. First, by construction, an
R-arc is within the disk delimited by the T-arc inside πh. Second, an R-arc always shares one
(and only one) point with the T-arc; this point is the intersection of πh with the line parallel to
the z-axis through the vertex of the partial cone defining the R-arc. Consequently, every R-arc
is tangent to the T-arc. See figures 3 and 4.

If an arc can be unambiguously identified by its center, we will denote it with the label
of its center point; for example, we denote the lower T-arc in figure 2(b) as Arc(O−) and the
R-arc in figure 4(a) as Arc

(
Oi

h

)
. Similarly, a circle that is unambiguously identifiable by its

center, O, is referred to as Cir(O).

3. The ALA trajectory

In this section, we discuss the R-line coverage for the ALA trajectory. First, we examine
the R-line coverage that is generated by connecting points from one T-arc to the other. Next,
we consider the additional R-line coverage that results from connecting points on the T-line
to points on the T-arcs. Note that the geometry of the problem at hand is mirror symmetric
relative to the z = 0 plane. Therefore, the R-line coverage in the plane z = z0 is the same as
that in the plane z = −z0 for any 0 � z0 � H . Hence, we only discuss the R-line coverage at
positions z � 0.
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Figure 4. Arc–arc R-line coverage when the length of the T-arcs is 234◦. (a) Coverage in πh due
to one point from the upper T-arc; this coverage is an R-arc centered on a point denoted as Oi

h in
the figure. (b) Coverage in the same plane as in (a), but due to several points on the upper T-arc.
(c) Full R-line coverage in πh, as obtained using a numerical simulation.

3.1. Arc–arc coverage

To understand the R-line coverage for the elemental arc–arc (AA) trajectory, we start by
considering the simpler case where each T-arc has a length of 360◦. We choose a value for
h ∈ [0,H ], draw πh, and then find the R-line coverage within this plane. The situation is
depicted in figure 3. Basically, we take a point on the upper T-arc, called An

+, and connect it
to all points on the lower T-arc as shown in figure 3(a). Doing so, we create (the surface of)
a cone that intersects πh along a circle, called an R-circle (in analogy with the earlier-defined
notion of an R-arc). This circle defines the R-line coverage coming from An

+ in πh. By
continuously moving An

+ along the upper T-arc, we obtain an infinite number of additional
R-circles, a coarse sampling of which is shown in figure 3(b). The union of all the R-circles is
the full R-line coverage in πh. This union is an annular region with external boundary C and
internal boundary D shown in figure 3(b). The boundary C is the T-arc in πh.
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As illustrated in figure 3(b), the R-line coverage within πh is conveniently described by
two parameters r1 and r2: r1 is the radius of the R-circle, and r2 is the radius of the circle formed
by the union of the centers of the R-circles. By construction, both r1 and r2 are functions of h,
and are easily found to be

r1 = H − h

2H
R and r2 = R − r1 = H + h

2H
R. (2)

Using the above formulae for r1 and r2, it follows that D has radius rD = r2 − r1 = Rh/H .
Now, we turn to the general situation where the T-arcs have an angular range of less than

360◦. We again consider the R-line coverage in the plane πh with h � 0, as illustrated in
figure 4. Comparing figure 3(a) with figure 4(a), we see that the R-line coverage resulting
from Ai

+ is not an R-circle, it is an R-arc, albeit of the same radius, r1. By moving Ai
+ along the

upper T-arc, we obtain a set of R-arcs whose union defines the R-line coverage within πh, as
shown in figure 4(b). Contrasting figure 3(b) with figure 4(b), we see that the R-line coverage
for two T-arcs of angular length shorter than 360◦ is a subset of that for two 360◦ T-arcs. The
R-line coverage resulting from a numerical simulation is shown in figure 4(c).

Note the following important property from figure 4(b): points Oh, Oi
h and Ai

h are aligned,
where Oh is the center of the T-arc, Oi

h is the center of the R-arc, and Ai
h is the orthogonal

projection of Ai
+ onto πh. This property is due to Ai

h being the point on the R-arc defined from
Ai

+ that is also on the T-arc. Indeed, under such circumstances, the line connecting Oh to Ai
h

and the line connecting Oi
h to Ai

h both must be orthogonal to the tangent to the T-arc at Ai
h.

We now describe an efficient numerical procedure to identify the R-line coverage within
any plane πh. Afterward, we will give geometrical insight into the origin of the R-line coverage
shown in figure 4(c). Efficient computation of the R-line coverage in πh is made possible by
the following corollary to theorem 1.

Corollary 1. For the arc–arc trajectory, all of the R-arcs in the plane πh are the translated
versions of each other (with their radius being equal to r1, as given by (2)).

Proof. The corollary is a direct consequence of the following observations: (i) as discussed
at the beginning of this section and illustrated with figure 3, all R-arcs in πh have the same
radius, namely r1; (ii) by theorem 1, all R-arcs in πh have the same angular length; and (iii) by
theorem 1, all R-arcs in πh are oriented in the same way as the T-arc, with the line connecting
their endpoints being parallel to the line connecting the endpoints of the T-arc.

Analytically, the corollary can also be explained as follows. Consider two R-arcs in πh.
By definition, each of these two R-arcs comes from the intersection of an upside cone with
πh, so that, by theorem 1, any point �x on the lower T-arc can be associated with a point
�x1 = s1�x + �t1 on the first R-arc and a point �x2 = s2�x + �t2 on the second R-arc, with s1 and s2

being scaling constants and �t1 and �t2 being translation vectors, all independent of �x. Since all
R-arcs in πh have the same radius, we have s1 = s2 and thus �x2 = �x1 + �c where �c = �t2 − �t1 is
independent of �x. Hence, the two R-arcs are translations of each other. �

Let �ez be the unit vector pointing in the z-direction. Thanks to the corollary, any point
�x ∈ πh that belongs to an R-line can be parameterized using two angles, λ and φ, according to

�x = r2
(

cos λ �ni + sin λ �n⊥
i

)
+ r1

(
cos φ �ni + sin φ �n⊥

i

)
+ h �ez, (3)

where �ni is the unit vector in πh that goes from the center of the T-arc toward the initial point
on the T-arc, and �n⊥

i is obtained by rotating �ni about the z-axis by 90◦ in the counter-clockwise
direction. This equation may be best understood by looking at figure 5, where two R-arcs are
shown in πh: Arc

(
Oi

h

)
which starts at the initial point on the T-arc, Ai

h, and Arc
(
On

h

)
which

is arbitrary, with its initial point denoted as An
h. By corollary 1, the line that connects On

h to
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Figure 5. The R-line coverage in πh can be fully parameterized with two angles, λ and φ, varying
both over [0, λm]. Angle λ is used to specify the center of the R-arc, whereas angle φ is used to
specify a location on the R-arc, which is identified as P n

h in the figure. The meaning of the other
symbols is as follows: R is the radius of the T-arc; r1 is the radius of the R-arc; r2 is the distance
between the z-axis and the center of the R-arc; �ni is the unit vector pointing from the center Oh to
the initial point Ai

h.

An
h is parallel to the line that passes through Oh, Oi

h and Ai
h, where Oh is the center of the

T-arc in πh. Vector �ni is the common direction of these two lines. The first term in (3) selects
the position of the center of the arbitrary R-arc relative to the line of direction �ni through Ai

h,
whereas the second term selects a point on the arbitrary R-arc, relative to the line of direction
�ni through An

h. Naturally, angles λ and φ in (3) are not allowed to take arbitrary values; they
are constrained to lie between 0 and λm.

An efficient algorithm for computation of the R-line coverage in πh is obtained by inverting
equation (3) to obtain λ and φ as functions of the first two coordinates of �x, denoted as x and
y. First, note from figure 3 that for a given (x, y), there are at most two solutions, denoted
(λ+, φ+) and (λ−, φ−), and these solutions only exist if (r1 − r2)

2 � x2 + y2 � (r1 + r2)
2.

Since �ni = [cos λi, sin λi, 0], we have{
x = r2 cos(λ + λi) + r1 cos(φ + λi)

y = r2 sin(λ + λi) + r1 sin(φ + λi),
(4)

and thus

(x − r2 cos(λ + λi))
2 + (y − r2 sin(λ + λi))

2 = r2
1 . (5)

Using ρ and θ for the polar coordinates of (x, y), (5) yields

cos(λ + λi − θ) = ρ2 + r2
2 − r2

1

2ρr2
, (6)

which gives the following expressions for λ+ and λ−:

λ+ = mod(θ − λi + η, 2π) (7)
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Figure 6. Arc–arc R-line coverage in the plane πh when h = 0 and the length of the T-arcs is
234◦. (a) R-line coverage of the AA trajectory due to several points on the upper T-arc. (b) Full
R-line coverage in πh, as obtained using numerical simulation.

λ− = mod(θ − λi − η, 2π) (8)

with mod(u, 2π) being equal to u modulo 2π , and with

η = arccos

(
ρ2 + r2

2 − r2
1

2ρr2

)
, (9)

which is a real number as long as r2 − r1 � ρ � r2 + r1. Rewriting (4) in the form{
r1 cos(φ + λi) = x − r2 cos(λ + λi)

r1 sin(φ + λi) = y − r2 sin(λ + λi),
(10)

we then see that φ+ and φ− can be expressed as

φ± = mod (−λi + atan2(y − r2 sin(λ± + λi), x − r2 cos(λ± + λi)), 2π) (11)

where atan2(v, u) is the four-quadrant inverse tangent function, which gives the polar angle
of point (u, v) in the x–y plane in the range [−π, π ]. The solution (λ+, φ+) is admissible
only if λ+ ∈ [0, λm] and φ+ ∈ [0, λm]. Similarly, the solution (λ−, φ−) is admissible only if
λ− ∈ [0, λm] and φ− ∈ [0, λm]. If both solutions are admissible, then (x, y) belongs to two
R-lines; otherwise (x, y) belongs to either one R-line or no R-line depending on whether one
of the two solutions is admissible or not.

The above procedure to evaluate if a point (x, y, h) ∈ πh lies on an R-line is
straightforward to implement on a computer. The result for h = 0.2H was shown in
figure 4(c) for a 234◦ T-arc. Figure 6 shows the R-line coverage for h = 0. In the rest
of this section, we provide some geometrical insight into why these R-line coverage diagrams
appear as they do.

Recall our construction of the R-line coverage in πh as the union of translated R-arcs
defined by upside cones with vertices on the upper T-arc; see figure 4. The region of R-
line coverage in πh may be geometrically understood by identifying the path traced by each
extremity of the R-arcs as λ is increased from 0 to λm. These two paths are denoted by the
dashed arcs shown in figure 7(a): the black-colored dashed arc corresponds to Ai

h, whereas
the gray-colored dashed arc corresponds to the other extremity, Bi

h. Observe that any point on
the path of Ai

h belongs to an R-line connecting the upper T-arc with Ai
−. Similarly, any point

on the path of Bi
h belongs to an R-line connecting the upper T-arc with Ae

−. Therefore, the
paths of Ai

h and Bi
h can be alternatively interpreted as the intersections of πh with downside
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Figure 7. Arc–arc R-line coverage in πh when the length of the T-arcs is 234◦. (a) The R-arcs
corresponding to λ = 0 and λ = λm and the path traced by each extremity of these R-arcs as λ

increases from 0 to λm. (b) The R-line coverage in πh is characterized by five curves: the paths
traced by Ai

h and Bi
h, the R-arcs at λ = 0 and λ = λm and the circle D. (c) The path traced by

Ai
h (dashed curve), seen as the intersection of πh with the downside cone from Ai−. (d) The path

traced by Bi
h (dashed curve), seen as the intersection of πh with the downside cone from Ae−.

cones from Ai
− and Ae

−; see figures 7(c) and (d). Analytically, the paths of Ai
h and Bi

h are the
solutions of (4) with φ = 0 and φ = λm, respectively, where λ ∈ [0, λm].

As illustrated in figure 7(b), the R-line coverage in πh is fully characterized by five curves:
the paths followed by Ai

h and Bi
h as λ increases from 0 to λm, the R-arcs corresponding to

λ = 0 and λ = λm, and the circle D that was introduced in figure 3(b). In particular, note that
the R-line coverage includes two small regions denoted as 	1 and 	2. Region 	1 is the area
bounded by the path traced by Bi

h, the R-arc at λ = 0 and the circle D. This region and the set
of points that belong to both the convex hull of the R-arc at λ = 0 and the convex hull of the
path of Bi

h are covered by the R-arcs corresponding to λ ∈ [0, λt ] with λt = λm − π because
these R-arcs each have two intersections with the path of Bi

h. Region 	2 is the mirror image
of 	1 relative to the line that connects the midpoint of the T-arc to the center of D; this region
is created with λ ∈ [π, λm].
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The above description for the R-line coverage in πh simplifies considerably when h = 0.
First, the regions 	1 and 	2 disappear because r1 = r2 and thus D is reduced to a point.
Second, the paths followed by Ai

h and Bi
h become equivalent to the R-arcs defined by upside

cones with vertices Ai
+ and Ae

+, respectively; this is due to the mirror symmetry relative to π0

(i.e. the plane πh with h = 0). Hence, the R-line coverage in π0 is determined entirely by the
paths followed by Ai

h and Bi
h, as shown in figure 6.

3.2. Arc–line coverage

Here, we examine the coverage associated with the R-lines that connect a point on the T-line to
a point on the T-arcs. This arc–line (AL) coverage is most easily analyzed in two steps. First,
we find the coverage from the T-line and the lower T-arc. Next, we find the coverage due to
the T-line and the upper T-arc. The union of these two regions is the complete AL coverage.

The R-line coverage for the AL trajectory composed of the lower T-arc and the T-line is
found from the following observation, which is proven in appendix B: any point P within the
convex hull of the partial cone from Ai

+ belongs to an R-line. Hence, the R-line coverage for
this trajectory is the convex hull of the upside cone with vertex at Ai

+. See figure 8(a). This
convex hull is called 
+.

The intersection of 
+ with the plane πh characterizes the R-line coverage in πh. This
region has the form of a partial disk, as illustrated in figures 8(b) and (d) for the case h = 0,
and can be computed with the following relations:{

(x − r2 cos λi)
2 + (y − r2 sin λi)

2 � r2
1

x cos α + y sin α � d
(12)

where d = R cos
(
λm/2

)
and α = (λi + λe)/2.

The two relations in (12) may be explained as follows, using figure 9. First, the curved
portion of the boundary for the partial disk in πh is an R-arc defined by the upside cone from
Ai

+. Because points on this R-arc satisfy (3) with λ = 0 and φ ∈ [0, λm], it follows that
the curved portion of the boundary for the partial disk belongs to the circle given by the first
relation in (12). Second, the straight portion of the boundary for the partial disk is determined
by the line connecting Ai

h and Ae
h, which is orthogonal to the vector �m = (cos α, sin α, 0) and

thus yields the second relation in (12).
The R-line coverage for the AL trajectory composed of the upper T-arc and the T-line

is found by symmetry: we just have to mirror the coverage for the previous AL trajectory
with respect to π0. To help visualize the situation, the upside and downside cones of R-lines
resulting from mirror-symmetric AL trajectories are illustrated in figure 8(c). Hence, the
sought union of R-lines is the convex hull of the downside cone from Ai

−. This convex hull
is called 
−. The partial disk characterizing the R-line coverage in πh for the AL trajectory
composed of the upper T-arc and the T-line is defined by the relations{

(x − r1 cos λi)
2 + (y − r1 sin λi)

2 � r2
2

x cos α + y sin α � d
. (13)

The first inequality follows from the fact that the intersection of πh with the downside cone
from Ai

− is the arc described by (3) with φ = 0 and λ ∈ [0, λm]. In the discussion at the end of
the previous section, this arc was identified as the path followed by Ai

h. The second inequality
is of course the same as in (12).

Note that the R-line coverage in π0 is the same for both AL trajectories, due to the mirror
symmetry relative to π0. Also, for h > 0, the R-line coverage in πh that comes from the T-line
and the lower T-arc is always included within the coverage that comes from the T-line and the
upper T-arc.
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(a) (b)

(c) (d)

Figure 8. Arc–line R-line coverage when the length of the T-arc is 234◦. The line is attached
orthogonally to one of the endpoints of the T-arc. (a) Illustration for lemma 1 (b) Partial disk of
R-line coverage in π0. (c) Due to mirror symmetry with respect to π0, the partial disk of R-line
coverage in π0 is the same for both of the AL trajectories. (d) The numerical result in π0.

3.3. Combined coverage

Using the results of the previous sections, we can obtain the R-line coverage for the ALA
trajectory. The ALA trajectory can be decomposed into three components: (i) the elemental
AA trajectory consisting of the upper and lower T-arcs, (ii) the elemental AL trajectory
consisting of the T-line and the lower T-arc, and (iii) the elemental AL trajectory consisting
of the T-line and the upper T-arc. It follows that the union of the three sets of R-lines
corresponding to these three elemental trajectories yields the complete set of R-lines for the
ALA trajectory.

The ALA R-line coverage in πh can be computed numerically by combining the procedure
described in section 3.1 for the AA trajectory together with (12) and (13) for the AL trajectories.
As an example, the R-line coverage in the plane z = 0.2H for a 234◦ ALA trajectory is
illustrated in figure 10. Figures 10(a) and (b) show the sets of R-line coverage for the AA
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Figure 9. R-line coverage in πh for the AL trajectory composed of the lower T-arc and the T-line.

trajectory and for the two AL trajectories, respectively, and the union of these sets is depicted
in figures 10(c) and (d). From these figures, we observe that the sets of R-line coverage for
the AA and AL trajectories compensate each other quite well in the plane z = 0.2H .

Practically, it is desirable to determine whether or not every point inside a specified ROI
belongs to an R-line. The following theorem, which is proven in appendix C, and its corollary
enable us to answer this question for a cylindrical ROI centered on the z-axis with radius
RROI � Rm and delimited by the planes z = −H and z = H . For the statement of the
theorem, we define the line L(x0, y0) to be the line parallel to the z-axis that passes through
(x0, y0, 0).

Theorem 2. For the ALA trajectory, if (x0, y0) satisfies x2
0 + y2

0 � R2
ROI, then there exists

a coordinate ẑ with |ẑ| � H such that the points on the line L(x0, y0) that are covered by
R-lines have z-coordinates in the set [−H,−ẑ] ∪ [ẑ, H ].

Corollary 2. Suppose that (x0, y0) satisfies x2
0 + y2

0 � R2
ROI. For the ALA trajectory, if a

point (x0, y0, z0) lies on an R-line, then all points (x0, y0, z) with z ∈ [−H,−|z0|] ∪ [|z0|,H ]
also lie on R-lines.

Corollary 2 implies that it suffices to check the R-line coverage in the plane π0. If the
entire ROI in π0 is covered by R-lines, then the whole ROI cylinder is also covered by R-lines.

Figures 11(a) and (b) depict the R-line coverage in the plane π0 for ALA trajectories
with angular ranges of 234◦ and 310◦, respectively. In both figures, an ROI with radius
RROI = R sin(27◦) is drawn (this is the largest possible ROI radius, Rm, for the 234◦ trajectory).
Examining these figures, we observe that the R-lines do not fully cover the ROI for either
of the ALA trajectories. In fact, it turns out that as long as the angular range of the ALA
trajectory is less than 360◦, there is always a moon-shaped region touching the origin that is
not covered by R-lines. Conversely, if the angular range of the ALA trajectory is 360◦, then
any central ROI with RROI � R is completely covered by R-lines. In the next section, we
propose a modification to the ALA trajectory that addresses this problem.
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(a) (b)

(c) (d)

Figure 10. Combined R-line coverage resulting from arc–arc and arc–line trajectories in the plane
z = 0.2H . (a) R-line coverage for the AA trajectory. (b) Outline of the R-line coverage for the
AL trajectories; the small partial disk is for the lower T-arc and T-line, whereas the larger partial
disk is for the upper T-arc and T-line. (c) Result of superimposing (b) onto (a). (d) Combined
coverage.

4. The AELA trajectory

To overcome the lack of R-line coverage mentioned in the previous section, we propose the
AELA trajectory, i.e the ‘arc–extended-line–arc’ trajectory, which was described in section
2.1. Below, we will see that the R-lines for the AELA trajectory can completely cover the
ROI cylinder if the line extension is properly chosen. We will also discuss the issue of
detector size and show that using the AELA trajectory for accurate CB tomography may not
be constraining in terms of detector size, in comparison with performing an approximate,
FDK-type, reconstruction from CB data collected on the two circular arcs only.

4.1. R-line coverage

Although theorem 2 and corollary 2 were stated for the ALA trajectory, it is important to
realize that they also apply to the AELA trajectory. This is true because the proof of theorem
2 is general enough to also apply to the AELA trajectory. Therefore, corollary 2 implies that
if all points inside the ROI in π0 belong to an R-line of the AELA trajectory, then the entire
ROI cylinder extending from z = −H to z = H is covered by R-lines. For this reason, the
following arguments only focus on the R-line coverage in π0.

As we did for the ALA trajectory, the R-line coverage for the AELA trajectory is
numerically obtained by combining the results for the elemental AA and AL trajectories.
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(a) (b)

(c) (d)

Figure 11. Numerical results for the R-line coverage in π0 of arc–line–arc and arc–extended-
line–arc trajectories. (a) Coverage of the ALA trajectory with 234◦ T-arcs. (b) Coverage of the
ALA trajectory with 310◦ T-arcs. (c) Coverage of the AELA trajectory with 234◦ T-arcs and
�h/(2H) = 0.82. (d) Coverage of the AELA trajectory with 310◦ T-arcs and �h/(2H) = 0.48.

Of course, the AA coverage remains unchanged. Only the AL coverage changes; it is now
given by equations (12) and (13) upon substituting r ′

1 and r ′
2 for r1 and r2, respectively, with

r ′
1 = H + �h − h

2H + �h
R and r ′

2 = R − r ′
1. (14)

Examples of the R-line coverage for the AELA trajectory in π0 are given in figures 11(c)
and (d) for source angular ranges of 234◦ and 310◦ and T-line extensions of �h/(2H) = 0.82
and 0.48, respectively. In these figures, a circular ROI of radius RROI = R sin(27◦) is shown
centered on the origin. Figures 11(c) and (d) demonstrate that the entire ROI is covered by
R-lines when the T-line extensions are 82% and 48% of the total axial length, 2H , when
λm = 234◦ and 310◦, respectively. Compared with the corresponding examples of the ALA
R-line coverage depicted in figures 11(a) and (b), figures 11(c) and (d) show how the T-line
extension can improve the R-line coverage.

The R-line coverage for the AELA trajectory in π0 may be understood geometrically, as
illustrated in figure 12. This figure depicts both the AA and AL contributions to the R-line
coverage. From the figure, it is seen that if the T-line is extended far enough beyond the T-arcs,
the partial disk of R-line coverage due to the AL elemental trajectories increases in size such
that the central ROI is covered by R-lines.

An important practical question for the AELA trajectory is how large the T-line extension,
�h, needs to be so that an ROI of a given radius, RROI, is covered by R-lines. The remainder
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Figure 12. The R-line coverage in π0 when the T-line of the ALA trajectory is extended beyond
the T-arcs by �h. This extension helps to increase the R-line coverage in the center. The dashed
circle delineates the extra coverage resulting from the T-line extension.

of this section is devoted to answering this question. Let λ∗
m be such that the short-scan from

λi to λi + λ∗
m just encompasses the ROI, i.e. λ∗

m = π + 2 arcsin(RROI/R). We will determine
how the required �h varies as λm increases from λ∗

m to 2π .
Figure 13 contains a geometrical construction depicting the R-line coverage for the AELA

trajectory in π0. In this figure, the contributions of both the AA and AL trajectories to the
R-line coverage are shown in three cases: (a) λm < λc, (b) λm = λc, and λm > λc, where λc

is a critical angle defined below. Observe that the R-line coverage for the AA trajectory is
delimited by the T-arc, Arc

(
Oi

0

)
and Arc

(
Oe

0

)
, and that the partial disk of R-line coverage for

the AL trajectory is delimited by the dashed circle and the line Ai
0A

e
0. We need to calculate

�h such that the contribution of the AL trajectory to the R-line coverage includes the portion
of the ROI that is not covered by the AA R-lines. This calculation requires a separation
between two cases, depending on the relative position of two particular points, D and K, on
the boundary of the ROI.

Let D be the point on the boundary of the ROI that is the farthest away from Ai
0. Let K

be the intersection of the ROI boundary with Arc
(
Oe

0

)
that is not within the triangle formed

by Ae
0, Ai

0 and O0. As λm increases away from λ∗
m, Arc

(
Oe

0

)
rotates counter-clockwise

around O0, and K moves toward D. We define λc to be the critical value of λm for which K
coincides with D; see figure 13(b). Using figures 13(a) and (b), it is straightforward to see
that λc = π + arccos(RROI/R). For λm < λc, K does not reach D, and the necessary �h is
independent of λm. To reach this conclusion, we identify all points Q that meet the following
condition while being on the boundary of the ROI: any neighborhood of Q contains a subset
of non-zero size that is not covered by AA R-lines. Of all such points Q, D is always the point
that is the farthest away from Ai

0 when λm < λc; thus, D consistently controls the required
value for �h, independently of λm. The situation changes when λm becomes larger than λc

because K passes D and becomes the relevant point. As the distance from K to Ai
0 decreases

with λm, we find that the required �h decreases with λm once λm > λc; see figure 13(c).
Using these observations together with the geometrical construction of figure 13, we show in
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(a) λm < λc , λm = λ∗
m (b) λm = λc , λm > λ∗

m (c) λm > λc , λm > λ∗
m

Figure 13. Geometrical constructions depicting the AELA R-line coverage in π0 for a given ROI
and different values of λm � λ∗

m, where λ∗
m = π + 2 arcsin(RROI/R) is the minimum allowable

angular length for the T-arcs, beyond which Tuy’s condition is not satisfied. Two points on the
boundary of the ROI play a particular role: K and D; K is the point on Arc(Oe

0) (i.e the R-arc
from Ae

+) that is not within the triangle formed by Ae
0, Ai

0 and O0, whereas D is the point that is
the farthest away from Ai

0. As illustrated in the figures, there exists a critical angle, λc , for λm

where D and K become identical. The required extension for the T-line, namely �h, takes different
expressions depending on whether λm < λc or not.

appendix D that the minimum relative length of the T-line extension required to cover an ROI
of radius RROI with R-lines is

�h

2H
=

{
RROI/(R − RROI), λ∗

m � λm � λc

Rx/(R − Rx), λc < λm � 2π,
(15)

where

Rx = |O0F | = d/ cos γ − R, (16)

with

d =
√

R2 + R2
ROI − 2RRROI cos η, (17)

η = λm − arccos(RROI/R), (18)

γ = −arcsin((RROI sin η)/d). (19)

Figure 14 plots the required �h/2H as a function of λm for RROI/R = 0.15, 0.30, and
0.45. The ratios RROI/R = 0.15 and 0.45 are representative of current C-arm and CT scanners,
respectively. Not surprisingly, figure 14 shows that the required T-line extension increases
as the relative size of the ROI grows. In addition, as λm increases to 360◦, the required �h

converges to zero, which is consistent with our findings for the full scan ALA trajectory in
section 3.3.

Equation (15) can be inverted to find how �h/2H varies with RROI/R at fixed λm.
Figure 15 shows this behavior for λm = 220◦, 270◦, 310◦ and 340◦; as expected, the required
T-line extension increases with increasing ROI size and decreases with increasing λm.

The plots in figures 14 and 15 indicate that the required T-line extension for the AELA
trajectory is reasonable for the RROI/R ratios that are typical of current C-arm scanners
(roughly 0.15). On the other hand, for larger ratios, such as those needed in CT, �h can be
fairly large when λm = λ∗

m. Fortunately, the required �h may be reduced to any practical
length by employing a suitable, larger value for λm.
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Figure 14. Minimum �h/(2H) required to fully cover the ROI with R-lines, plotted versus λm

for RROI/R = 0.15, 0.30, and 0.45.
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Figure 15. Minimum �h/(2H) required to fully cover the ROI with R-lines, plotted versus
RROI/R for λm = 220◦, 270◦, 310◦, and 340◦.

4.2. Detector size requirement

From the viewpoint of required detector size, the AELA trajectory may not look attractive at
first glance. Indeed, it seems like the detector size needed for the source positions that are at
the extremities, E+ and E−, of the extended line might be large, because these source positions
must provide measurements along lines that pass through the plane z = 0 while �h/(2H)

is not negligible. Fortunately, the source positions at E+ and E− are not needed to perform
reconstruction everywhere within the ROI; they are only needed to perform reconstruction
where R-line coverage of the ALA trajectory is deficient. As discussed hereafter, this aspect
of the problem strongly reduces the constraint on the detector size.
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Figure 16. Detector size requirement for the AELA trajectory. Each source position E′ above Ai
+

allows a portion of the region that is not covered by R-lines in π0 to be covered. This portion is the
intersection of the dashed circle within the shaded area. From the viewpoint of detector size, the
measurements must at least be made on the lines that connect E′ to the points on this intersection.
For a conventional detector arrangement, where the detector is parallel to the tangent to the T-arc
and to the z-axis, this requirement implies that the detector must be large enough to cover the line
connecting E′ to Q.

A large variety of reconstruction algorithms may be designed for CB tomography using
the AELA trajectory, some requiring more data than others. Finding the algorithm that is
optimal in terms of detector size is largely outside the scope of this paper. However, a
minimum requirement can be easily evaluated, namely the detector size needed to ensure that
all R-lines with endpoints on the extended portion of the line are measured. This evaluation
can be performed analytically using figure 16, which is drawn (without loss of generality)
for the particular case where Ai

+ is on the x-axis. For this evaluation, we consider a virtual
detector arrangement, such that the detector contains the z-axis and is parallel to the tangent to
the T-arc at Ai

+. Also, the detector rows are indexed by a Cartesian coordinate v that is equal
to zero in the plane orthogonal to the z-axis through E′. The direction for v is chosen so that
the rows below E′ have a positive v-coordinate.

The shaded area in figure 16(a) represents the region of π0 where there is missing R-line
coverage for the ALA trajectory. Each source position E′ that is above Ai

+ on the extended
line adds R-line coverage on a circle that intersects this shaded area, namely the dashed circle
in figure 16(a). Note that this circle corresponds to the AL R-line coverage in π0 due to E′.
The portion of the dashed circle within the shaded area defines R-lines that must be measured
when the source position is at E′; this portion reduces to point G when E′ approaches Ai

+ and
to point K when E′ approaches E+. Let the point J be the intersection of the dashed circle
with the ROI boundary, and let ψ be the polar angle of J. Since J lies between K and G on
the ROI boundary, ψ must be between ψ1 = λm − arccos(ρ) and ψ2 = 2π − arccos(ρ) with
ρ = RROI/R. It turns out that there is a one-to-one relation between ψ and the distance δh

that separates E′ from Ai
+. Trigonometric calculations may be used to show that this relation

is

δh = 2H
η − 1

2 − η
(20)

with

η = 1 + ρ2 − 2ρ cos ψ

1 − ρ cos ψ
, (21)

where R η represents the distance from Ai
0 to T in figure 16(a).
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Of all R-lines that must be measured with the source position at E′, the line going through
point J has the largest coordinate v, and this coordinate, denoted v∗, is the same as that for the
line that connects E′ to the orthogonal projection of J onto the x-axis, i.e. point Q in figure 16.
Trigonometric calculations yield

v∗

H
= 1 + ρ2 − 2ρ cos ψ

(1 − ρ2) (1 − ρ cos ψ)
, (22)

and an analytical evaluation of this expression shows that its maximum value, vm, over
ψ ∈ [ψ1, ψ2] is such that

vm

H
� 1/(1 − ρ) . (23)

Now, it can be shown that the detector size needed to perform an FDK-type reconstruction
over the region z ∈ [0,H ] using the CB data on the upper T-arc is precisely equal to 1/(1−ρ).
Therefore, the minimum requirement of measuring the R-lines corresponding to the extended
line does not impose any extra constraint on the detector size.

5. Conclusions and discussion

We presented a thorough analysis of the R-line coverage for the arc–line–arc (ALA) trajectory.
A key component of our analysis was a decomposition of the ALA trajectory into the elemental
arc–arc (AA) and arc–line (AL) trajectories. For the AA trajectory, we showed that the R-line
coverage in πh can be simply described by two angles: λ and φ; see (3). In section 3.1, this
parameterization was used to develop a procedure that enables efficient numerical evaluation
of the R-line coverage for the AA trajectory. For the AL trajectory, we found that the volume
of R-lines is the convex hull of a partial cone, and that the region of R-line coverage in πh is
described by either (12) or (13), depending on the orientation of the AL trajectory.

Our investigation of the R-line coverage for the ALA trajectory showed that the regions
of R-line coverage for the AA and AL elemental trajectories largely complement each other.
However, we found that as long as the angular length of the T-arcs is less than 360◦, there is
always a portion of the central ROI in π0 that is not fully covered by R-lines. The plane π0

is particularly important, since corollary 2 implies that when the entire ROI in this plane is
covered by R-lines, the whole ROI cylinder is also covered by R-lines.

Next, to address the weakness in the R-line coverage of the ALA trajectory, we introduced
the arc–extended-line–arc (AELA) trajectory, which extends the T-line beyond the T-arcs by
a length �h. Building on our analysis of the AA and AL elemental trajectories, we found that
if the T-line extension is long enough, then the AELA R-lines can completely cover a central
ROI. This finding was supported by a formula that may be used to calculate the necessary �h

given the ROI radius, RROI, and the angular length of the T-arcs, λm; see (16)–(19). Plots of
�h/(2H) versus both λm and RROI/R indicated that the required T-line extension is reasonable
for typical C-arm scanners.

Knowledge of the R-line coverage provided by the AELA trajectory and of the
existing redundancies in this coverage enables the development of a wide variety of image
reconstruction algorithms, which may be of filtered-backprojection type or not. Finding the
algorithm that is the least constraining in terms of detector size was outside the scope of this
paper, but definitely represents an important problem to solve, which will be part of our future
investigations. However, an early study on detector size requirement was feasible. This study,
presented in section 4.2, showed that the R-lines added by the line extension can be measured
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Figure 17. The helix–extended-line–helix trajectory composed of two helical segments and a line
(shown with solid curves). For comparison, the arc–extended-line–arc trajectory is also illustrated
with dashed curves.

with no increase in detector size, in comparison with the detector needs for performing an
FDK-type reconstruction based only on the CB data from the circular arcs. Combination
of this result with those published by Zamyatin et al (2008) provides confidence that CB
tomography based on the AELA trajectory should be feasible with little extra requirement
on the detector size, if any. Aside from the detector size, robustness to imperfections in
the measurement geometry and to deviations from the line integral model (related, e.g., to
the beam hardening effect and scattered radiation) should also be carefully considered when
designing the reconstruction algorithm.

From a practical viewpoint, the T-line extension of the AELA trajectory is only moderately
satisfactory because it requires a short pause in exposure. One way to circumvent this problem
is to replace the two T-arcs by helical arcs that touch the extended line at its endpoints as
shown in figure 17; we call this trajectory the helix–extended-line–helix (HELH) trajectory.
We have performed preliminary numerical simulations with the HELH trajectory and have
observed that it essentially retains the geometrical properties of the AELA trajectory studied
in this work, while not requiring a pause in exposure. However, our theoretical findings for
the AELA trajectory do not immediately apply to the HELH trajectory. Generalization of our
theoretical results to other trajectories, such as the HELH, is an interesting topic for future
research.
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Appendix A

This appendix gives a proof of theorem 1, which was stated in section 2.2. To prove the
theorem, we will need the following lemma. Because this is trivial, we will omit the proof.

Lemma 1. Let π1 and π2 be two parallel planes, and let π3 be another plane that is not
parallel to π1. Then the intersection between π3 and π1 is parallel to the intersection between
π3 and π2.

Now we prove theorem 1. As illustrated in figure 2(a), the intersecting plane is denoted
as πh, the vertex of the partial cone as A, and the center of the base arc as Ob. Furthermore,
let B and C be the endpoints of the base arc, and let O ′

b be the point where πh intersects the
line from A to Ob.

From basics of Euclidean geometry, we know that the intersection between πh and the
partial cone is an arc (which may be either circular or elliptical). This arc is denoted as
Arc(O ′

b). Also, any arbitrary point, D, on the base arc can be mapped to a unique point, F ′,
on Arc(O ′

b), and vice versa. Point F ′ is simply found as the intersection between πh and the
line from A to D. Again, see figure 2(a).

By construction, points A, F ′, D, Ob and O ′
b are coplanar and define a plane �, whose

intersections with the plane of the base arc and πh are the lines ObD and O ′
bF

′, respectively.
By lemma 1, the line ObD is parallel to the line O ′

bF
′, i.e.

ObD‖O ′
bF

′. (A.1)

Therefore, the triangle AObD is similar to the triangle AO ′
bF

′, and hence,

|O ′
bF

′|
|ObD| = |AO ′

b|
|AOb| . (A.2)

Now, we isotropically scale the base arc by a scaling factor |AO ′
b|/|AOb| relative to its

center, Ob, to obtain the arc connecting the points G, F and E, with the scaling mapping the
points B, D and C to the points G, F and E, respectively. Hence, the point F lies on the line ObD,
and (A.1) yields the relation ObF‖O ′

bF
′. Since, by definition, |ObF | = |ObD|·|AO ′

b|/|AOb|,
we also have |ObF | = |O ′

bF
′| from (A.2). Consequently,

−−→
ObF = −−−→

O ′
bF

′, which implies that−−→
FF ′ = −−−→

ObO
′
b. Recall that D was chosen arbitrarily. Therefore, any point on Arc(O ′

b) can

be obtained as a translation of a point on the arc connecting G, F and E by the vector
−−−→
ObO

′
b.

Because the arc connecting G, F and E is a scaled copy of the base arc, with the scaling being
isotropically applied relative to Ob, the theorem is proven.

Appendix B

This appendix proves the statement made in section 3.2 that any point within the convex hull
of the partial cone from A+

i belongs to an R-line. This proof uses figure 8(a). Let P be an
arbitrary point within the convex hull, 
+, of the partial cone from Ai

+. Points Ai
+, Ai

− and
P define a plane ζ that intersects the lower T-arc at the point W . Thus, the triangle defined
by points Ai

+, Ai
− and W is the intersection between 
+ and ζ , and this triangle contains P.

Consequently, the line through W and P must intersect the line connecting Ai
+ to Ai

− at some
point V which is between points Ai

+ and Ai
−. Since the points V and W both belong to the

source trajectory, P lies on an R-line, and the lemma is proven.
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(a) (b)

Figure C1. Diagrams used in the proof of theorem 2. (a) The ALA trajectory. (b) Orthogonal
projection of the ALA trajectory onto π0.

Appendix C

This appendix provides a proof of theorem 2, which was stated in section 3.3. For this
proof, refer to figure C1. Consider an arbitrary pair of x–y coordinates, (x0, y0), such that
x2

0 + y2
0 � R2

m, and let L(x0, y0) be the line parallel to the z-axis through (x0, y0, 0). We define
a function z(δ) as follows. First, let A+(λe − δ) be the point at polar angle λe − δ on the upper
T-arc, and let � be the plane defined by A+(λe − δ) and L(x0, y0). Second, let the point A−(δ)

be the intersection of � with the lower T-arc. Denote the R-line connecting A+(λe − δ) and
A−(δ) as L. Because L and L(x0, y0) are coplanar and not parallel, they have an intersection
at some point (x0, y0, z(δ)).

As δ increases from zero, A−(δ) moves toward Ai
−, so that z(δ) is a well-defined

function only for δ ∈ [0, δm], where δm is such that A−(δm) is the same point as Ai
−. Note

that (x0, y0, z(δm)) is thus the intersection of L(x0, y0) with the R-line connecting Ai
− and

A+(λe − δm)). Because the upper and lower T-arcs are connected curves, the function z(δ) is
continuous.

Let ẑ = minδ∈[0,δm] z(δ). It follows that all points (x0, y0, z) with z ∈ [ẑ, z(δm)] are
covered by R-lines with endpoints on the upper T-arc and the lower T-arc. Now, observe that
all points (x0, y0, z) with z ∈ [z(δm),H ] are covered by R-lines with endpoints on the upper
T-arc and the portion of the T-line that is between the two T-arcs, the endpoint on the upper
T-arc being always A+(λe − δm). Therefore, all points (x0, y0, z) with z ∈ [ẑ, H ] are covered
by R-lines. By the symmetry of the ALA trajectory, all points (x0, y0, z) with z ∈ [−ẑ,−H ]
are also covered by R-lines.

Appendix D

In this appendix, we derive the result expressed by (15)–(19) for the minimum T-line extension,
�h, needed to guarantee that the AELA trajectory covers the ROI with R-lines.
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Figure D1. Axial cross section of the AELA trajectory in the plane � used in appendix D.

Figure D2. Triangle extracted from figure 13(c) to derive the formula for Rx = |O0F |.

We start by proving (15) for the case λ∗
m � λm � λc; see figure 13(a). Consider the plane,

�, containing the z-axis and the point Ai
0. As depicted in figure D1, this plane contains the

initial points of the T-arcs, Ai
− and Ai

+, together with the points Ai
0, O0, and D that are shown

in figure 13(a). Also, figure D1 labels the intersection of � with the lower T-arc as Aπ
− and

the upper endpoint of the extended T-line as E. Since the triangle Aπ
−EAi

− is similar to the
triangle DEAi

0, we have∣∣Ai
−E

∣∣∣∣Aπ−Ai−
∣∣ =

∣∣Ai
0E

∣∣∣∣DAi
0

∣∣ , (D.1)

which simplifies to

2H + �h

2R
= H + �h

RROI + R
. (D.2)

Some algebra then yields

�h

2H
= RROI

R − RROI
, (D.3)
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which is the desired equation. The second case in (15) for λc � λm � 2π is proven similarly,
with D replaced by F in figure D1.

Next, we derive (16)–(19), which describe Rx = |O0F |. For this derivation, see figure D2,
which refers to several points in figure 13(c) and also labels the angles α, β, γ , and η. First, note
that Rx = ∣∣Ai

0F
∣∣ − ∣∣Ai

0O0

∣∣ = ∣∣Ai
0F

∣∣ − R. Substituting the relation
∣∣Ai

0F
∣∣ = ∣∣Ai

0K
∣∣/ cos γ

and defining d = ∣∣Ai
0K

∣∣, we obtain

Rx = d/ cos γ − R. (D.4)

By the law of cosines,∣∣Ai
0K

∣∣2 = |O0K|2 +
∣∣Ai

0O0

∣∣2 − 2|O0K|∣∣Ai
0O0

∣∣ cos(α + β). (D.5)

Recalling that d = ∣∣Ai
0K

∣∣, |O0K| = RROI, and
∣∣Ai

0O0

∣∣ = R, and using the fact that
η = 2π − (α + β), (D.5) yields

d =
√

R2
ROI + R2 − 2RRROI cos η. (D.6)

Observe that α = arccos(RROI/R) and β = 2π − λm. So η may be expressed as

η = λm − arccos(RROI/R). (D.7)

Finally, application of the law of sines gives |O0K|/ sin γ = ∣∣Ai
0K

∣∣/ sin(α+β), which implies
sin γ = −(RROI sin η)/d. Hence,

γ = −arcsin((RROI sin η)/d). (D.8)
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