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Abstract

This thesis is concerned with algorithms for the reconstruction of the scene struc-
ture and the camera motion of an input image sequence. In particular, we focus on
algorithms for sparse 3-D reconstruction, which represent the scene structure with
a limited number of feature points. In order to facilitate the application of the de-
veloped algorithms in the augmented reality gear of a cognitive vision system, our
main focus lies on their efficiency and robustness. Furthermore, the versatility of
the developed algorithms is demonstrated by the wide range of additional appli-
cations, like object tracking, object revisualization, and the reconstruction of objects
from fiberscopic images. In this thesis, the developed algorithms are categorized
into three work areas: feature point tracking, structure and motion estimation, and
point set registration.
Our feature point tracking system is based on the Kanade-Lucas-Tomasi tracker.

We propose several enhancements to increase its efficiency and robustness, like an
efficient hierarchical feature selection strategy, a new result propagation strategy for
hierarchical translation estimation, and the efficient integration of an affine linear
model for intensity equalization. In our experiments, the developed feature point
tracking system proves to be robust to strong intensity changes and severe motion
blur. At the same time, it is able to track 150 feature points at a rate of 60 frames per
second. We also present a special-purpose high-speed tracking system for the self-
localization of an augmented reality gear. This system is able to track ten feature
points at a rate of 200 frames per second on a relatively slow mobile computer.
In addition to the estimated 2-D feature positions, our proposed structure and

motion estimation system requires the intrinsic camera parameters as input. The
system achieves a high versatility by combining several efficient algorithms for per-
forming the initial reconstruction of the scene with an accurate bundle adjustment
approach for optimizing the obtained result. Its robustness to outliers is ensured
by the comprehensive application of M-estimators and the least median of squares
technique. In this work area, we also propose the extension of the POSIT algorithm
with a virtual reference point and a new key frame selection algorithm. In our ex-
periments, the estimation system successfully copes with outlier percentages of up
to 40%. It also reaches computation rates of 50 frames per second.
Our work on point set registration is based on the locally convergent ICP algo-

rithm. We compare three different techniques for increasing the robustness of this
algorithm to outliers. Our extensive experimental evaluation shows that the least
fractional squares extension provides the best overall performance. Furthermore,
we propose an extension for the integrated estimation of the scale factor between
two point sets. As long as the initial motion between the two point sets lies within
the basin of convergence of the ICP algorithm, this extension allows the accurate
registration of two differently scaled point sets.
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Chapter 1

Introduction

The main goal of this thesis is to develop, enhance, and evaluate algorithms for
sparse 3-D reconstruction within the scope of the VAMPIRE project [Sag11]. The
first section of this chapter shortly describes the VAMPIRE project in general, as
well as the purpose of sparse 3-D reconstruction in this project. Further sections of
this chapter present related work, the contribution of this thesis to the state-of-the-
art, and the outline of the remaining chapters.

1.1 Sparse 3­D Reconstruction in VAMPIRE

In recent years, computer vision systems have been successfully deployed in a va-
riety of application areas, which range from automatic quality control in manufac-
turing to image enhancement in medical science. However, the application area of
these computer vision systems is usually very constrained, which makes it possible
to separate and decouple their processes for learning and recognition. In contrast
to this, the superior performance of the human visual system is achieved by tightly
coupling learning and recognition, and by exploiting contextual information and
background knowledge. Therefore, humans are often capable of categorizing pre-
viously unknown objects and actions.
The aim of the VAMPIRE (Visual Active Memory Processes and Interactive Re-

trieval) project has been to integrate this ability into a computer vision system, and
thus build a cognitive vision system, which acquires, maintains, and delivers se-
lective knowledge. In order to achieve this goal, the visual active memory stores
the visual history of the dynamic world over an extended period of time. The cog-
nitive capabilities of the system are realized as processes that operate directly on
the memory, which provides the necessary contextual information and background
knowledge. Finally, information acquired by the cognitive vision system can be
interactively retrieved with external user queries.
For a meaningful evaluation of the VAMPIRE cognitive vision system, the devel-

oped components have been combined into a fully integrated demonstrator. This
demonstrator has been designed to work in an office scenario. In a simple use case,
the user first places his coffee cup on the table. This action is observed and recog-
nized by the system. When the user later looks for his cup, which has been covered
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Figure 1.1: The VAMPIRE augmented reality gear consists of a backpack and a helmet. The
left image shows the backpack, which houses a notebook, a custom-built single board com-
puter, and a battery pack. The right image depicts the helmet, which carries three digital
cameras and the video goggles.

with a newspaper in the meantime, he can query the system for the last known
position of the cup.
The most prominent part of the demonstrator is the augmented reality gear,

which is shown in Figure 1.1. It is used for acquiring data with the attached sen-
sors. In our example use case, the coffee cup and the action of putting the cup on
the table are both observed by the helmet-mounted cameras. In addition to that, the
augmented reality gear also serves as the primary user interface. Consequently, it
has to accept queries from the user and output the query results. For example, the
position of the hidden cup can be visualized in the stereo goggles by arrows point-
ing in its direction or by superimposing an image of the cup at its current position.
Together with the augmented reality gear, additional software and hardware

components form the VAMPIRE cognitive vision system, which is illustrated in
Figure 1.2. The visual active memory is structured into four different levels. On
the lowest level, image sequences are stored for further processing, whereas higher
levels of the memory store more abstract data. The data processing components of
the system are also organized into different levels, which correspond to the levels of
the visual active memory. Apart from the shown components, there are additional
memory processes for contributing important abilities like deleting data that is no
longer needed.
With the help of the system structure shown in Figure 1.2, we can examine the

role of sparse 3-D reconstruction in the VAMPIRE cognitive vision system. One
very important component of this system deals with localization, which includes
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content-based retrieval

contextual scene analysis
categorization

object recognition motion analysis context classification

tracking
segmentation

localization

image sequence model visualization

memory

pictorial memory

feature-based memory

episodic memory

categorial memory

Figure 1.2: The VAMPIRE cognitive vision system consists of several interdependent com-
ponents. In this figure, standard boxes represent internal system components, whereas
boxes with rounded corners contain components for data input or output.

the localization of objects as well as the self-localization of the augmented real-
ity gear. Especially for the self-localization, computing 3-D information about the
environment of the user and matching this information with the video images in
real-time is a vital task. Sparse 3-D reconstruction is also required for building 3-D
models, which are useful for object recognition, object localization, model-based
object tracking, and object revisualization. Therefore, sparse 3-D reconstruction is
an important part of several components of the VAMPIRE cognitive vision system.

In this thesis, the term 3-D reconstruction subsumes all aspects of the reconstruc-
tion and the processing of the scene structure and the camera motion of an input
image sequence. In particular, sparse 3-D reconstruction recovers the scene struc-
ture only for a limited number of feature points. In contrast to this, approaches that
result in a dense sampling of the scene structure, for example in the form of range
images, are not considered in this thesis. We categorize the algorithms for sparse
3-D reconstruction discussed in this thesis into three main work areas. In the fol-
lowing, we will shortly introduce these work areas and describe their relevance for
sparse 3-D reconstruction in VAMPIRE.

The algorithms of the first work area are generally referred to as feature point
tracking algorithms. As illustrated in Figure 1.3, their input data consists of a se-
quence of video images. Initially, the algorithms have to select a specified number
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image 1 image n image n + 1

Figure 1.3: The basic task of feature point tracking is to estimate themotion of feature points
in the images of a video sequence.

feature trails reconstructed scene

Figure 1.4: The basic task of structure and motion estimation is to recover the structure of
the scene and the motion of the camera from the estimated feature trails.

of suitable feature windows, which ideally correspond to a fixed 3-D point in the
captured scene. Then, the 2-D position of the feature windows is estimated in con-
secutive images of the video sequence. Accordingly, the output of a feature point
tracking algorithm is a sequence of 2-D coordinates for each feature window. These
sequences are also called feature trails. The particular importance of feature point
tracking algorithms for the VAMPIRE system derives from the high number of al-
gorithms that depend on feature trails as input data. The most prominent applica-
tion of feature point tracking is the self-localization of the augmented reality gear.
Without knowledge of the current position and orientation of the gear, the example
use case of finding a hidden coffee cup would not be feasible. There are additional
components that rely on feature point tracking, like an approach for building image
mosaics of planar subscenes and several different approaches for object tracking.

The basic task of the algorithms of the second work area is illustrated in Fig-
ure 1.4. These algorithms use the feature trails generated by the feature point track-
ing algorithms as input data. Their output consists of the 3-D coordinates of the
feature points and the position and orientation of the camera for every captured
image. As the structure of the scene is deduced with the help of the camera motion,
which in turn causes the feature motion in the image sequence, the problem at hand
is also known as structure from motion [Oli00]. In order to emphasize the recovery
of both scene structure and camera motion, we refer to this work area as structure
and motion estimation. Possible applications for the structure and motion estima-
tion algorithms in VAMPIRE include computing a 3-D map of the current scene
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model point set data point set registered point sets

Figure 1.5: The basic task of point set registration is to align two point sets that represent
the same scene or object.

and building 3-D models for object tracking and revisualization. In our example
use case, the position of the coffee cup can be determined by tracking it with an
object tracker when the user places it on the table. At a later date, a revisualization
of the coffee cup in the stereo goggles can be used to report its current position to
the user.
Finally, the algorithms of the third work area are responsible for merging different

reconstructions of the same scene or object. As the reconstructions are represented
by 3-D point sets in this thesis, this work area is also known as point set registration.
Its basic principle is illustrated in Figure 1.5. Reconstructions computed by struc-
ture and motion estimation algorithms are only known up to a global scale factor.
Therefore, we give special consideration to the registration of differently scaled re-
constructions. With two 3-D point sets as input data, the registration comprises the
estimation of the rotation, the translation, and the scale factor required to optimally
align the two point sets.

1.2 Related Work

As cognitive vision systems have attracted considerable interest within the com-
puter vision community, the VAMPIRE project is not the only research effort in this
field. In order to give an overview of the work related to the VAMPIRE project, we
present and compare other projects with a focus on cognitive vision in this section.
In addition to that, we also examine the role of sparse 3-D reconstruction algorithms
in these projects. Other work specifically related to one of the three mainwork areas
of this thesis is described in the respective chapters.
The PLAYBOT project is one of the first research projects to examine cognitive

vision from a systems perspective [Tso98]. Its main goal has been to develop a di-
rectable robot that enables physically disabled children to access and manipulate
toys. Important goals of the PLAYBOT project are the use of vision as the primary
sensor, the capability of visual search and recognition of objects, and the ability to
safely work in a real and unpredictable environment. Beside their use of vision
as the main input modality, both PLAYBOT and VAMPIRE share the strong inter-
est in a technically mature and enjoyable user interface. Both projects also rely on

5



Chapter 1 Introduction

sophisticated object recognition algorithms. However, the VAMPIRE system addi-
tionally tries to learn new objects and categories from the contextual information in
the scene. The PLAYBOT system completely avoids the use of 3-D reconstruction
by making suitable adaptions to the working environment, like the use of objects
and furniture with contrasting colors.
The CogVis (Cognitive Vision) project researches techniques for the construction

of cognitive vision systems that perform recognition and categorization of objects
and events in the context of a task-oriented mobile visual agent [Chr11]. One im-
portant assumption of the CogVis project is that a number of implicit and explicit
visual tasks form the basis for visual cognition, e. g., identification, recognition, de-
scription, and detection. Like the VAMPIRE project, the CogVis project emphasizes
the fundamental role of memory for the coupling of perception, control, and knowl-
edge in a cognitive vision system. Both projects also attach great importance to the
learning capabilities of their cognitive vision system in a natural environment. Due
to the complexity of building a complete cognitive vision system, the CogVis project
relies on several subsystems that focus on different aspects of the complete system.
In contrast to this, the integrated demonstrator of the VAMPIRE project combines
all developed components into a single system. The CogVis project does not require
accurate 3-D information and uses appearance-based methods for low-level vision.
The CogViSys (Cognitive Vision Systems) project concentrates on the develop-

ment of a virtual commentator that transforms visual information from the domains
of traffic surveillance, sign language understanding, and video annotation into a
textual description [Nag04]. The proposed applications of the CogViSys project do
not require interaction with a human user. Therefore, issues like task-oriented pro-
cessing strategies or response time limitations are not addressed. As a consequence
of using static cameras as vision sensors, the CogViSys project does not perform
3-D reconstruction.
The emphasis of the LAVA (Learning for Adaptable Visual Assistants) project is

on the robust and efficient categorization and interpretation of large numbers of ob-
jects, scenes, and events in real settings [Csu11]. There are two integrated demon-
strators for the evaluation of the project, the Association Assistant for analyzing
single digital images, and the Event Interpreter for dynamic scene understanding.
Both demonstrators rely on novel appearance-based approaches for low-level vi-
sion and do not consider 3-D information of the scene.
The CHIL (Computers in the Interaction Loop) project expands the scope of the

previous projects by additionally considering multi-modal input [Wai04]. Its pur-
pose is to create environments in which computers serve humans, who focus on
interacting with other humans instead of having to concentrate on the handling of
the computers. The CHIL project researches computer vision algorithms for, e. g.,
person tracking, gesture recognition, and activity analysis, which do not depend on
3-D reconstruction.
The presented cognitive vision projects exhibit two contrasting approaches for

the role of 3-D reconstruction. On the one hand, many projects completely avoid
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its use. Although the theory of 3-D reconstruction from image sequences is already
well understood, the development of efficient and robust algorithms that work in a
wide range of environments is still a very difficult problem. Therefore, many cog-
nitive vision projects prefer to work with appearance-based approaches. On the
other hand, the VAMPIRE project uses sparse 3-D reconstruction in several com-
ponents in order to provide the system with accurate 3-D data. In the VAMPIRE
demonstrator, this approach enables the estimation of the position and orientation
of the user’s head, which yields information required for the localization of hid-
den objects. Furthermore, sparse 3-D reconstruction is also used for the automatic
generation of object models, which facilitate the use of model-based approaches for
object tracking.

1.3 Contribution of this Work

The main aim of this work is to develop and enhance algorithms for sparse 3-D
reconstruction that can successfully be employed in the low-level components of
the VAMPIRE cognitive vision system. Thus, the requirements for these algorithms
can be directly derived from the components that either integrate them or use their
results. There are two requirements that are relevant for all of the developed algo-
rithms. First, the algorithms have to be efficient. This property is of major concern
in the components of the augmented reality gear, because the visual lag between
an action of the user and the reaction of the system must be as small as possible in
order to ensure good usability. But efficiency is also important for offline computa-
tions in the visual active memory, where many tasks have to be performed with a
limited amount of computational resources.
Second, the algorithms have to be as robust as possible. In the office scenario of

the VAMPIRE project, neither the environment nor the user can be fully controlled.
Therefore, the algorithms have to successfully cope with unexpected and challeng-
ing conditions. This is especially true for the low-level algorithms for sparse 3-D
reconstruction, because other algorithms rely on their output as input data. As a
consequence of the requirements imposed by the VAMPIRE system, we have fo-
cussed our contributions on improving the efficiency and robustness of the algo-
rithms for sparse 3-D reconstruction from image sequences. In the following, these
contributions are separately summarized for each of the three main work areas.
Feature point tracking is clearly the most active research area of this thesis. A

standard Kanade-Lucas-Tomasi feature point tracker forms the starting point for
our work [Luc81, Tom91]. In order to improve the efficiency of feature selection,
we developed a hierarchical feature selection algorithm. The translation estima-
tion is performed with a robustified strategy on a Gaussian image pyramid, which
enhances the tolerance for large frame-to-frame movements. The combination of
the inverse compositional approach for gradient descent motion estimation [Bak04]
with the intensity equalization described by [Jin01] ensures both high efficiency and
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high robustness. The previous enhancement also enables efficient affine motion
estimation in every frame, which is used to implement a feature drift prevention
scheme that is especially useful for long image sequences [Zin04].
Integrated into our feature point tracking system, these enhancements make it

possible to track 300 features points at 30 frames per second on a standard per-
sonal computer. This computation speed is sufficient for applications like building
image mosaics or object tracking. However, the self-localization of the augmented
reality gear has different requirements. In this application, the number of tracked
features is small, but the frame rate supported by the custom-built camera is very
high [Mue04]. By replacing the standard translation estimation algorithm with an
efficient block matching algorithm, we are able to achieve frame rates of more than
200 frames per second. We proposed this approach in [Zin05a].
Comprehensive overviews of structure from motion estimation are given in both

[Har00] and [Oli00]. Although the theory of structure from motion is already well
understood, developing an efficient and robust approach that works reliably and
without user interaction in an unconstrained environment is still a very difficult
problem. We advance the state-of-the-art of this work area with a structure and
motion estimation system that is based on the approach proposed by Nister in
[Nis04b]. The main design philosophy of our system is to combine efficient algo-
rithms for the initial reconstruction with accurate algorithms for the optimization
of the results. This approach yields a highly versatile system, which meets the re-
quirements of all applications in the VAMPIRE project.
Our structure and motion estimation system comprises existing algorithms like

the five-point algorithm for relative camera pose estimation described in Subsec-
tion 4.2.3, extended algorithms like the POSIT algorithm for absolute camera pose
estimation using a virtual reference point proposed in Subsection 4.2.2, and new
algorithms like our key frame selection algorithm detailed in Subsection 4.3.2. The
versatility of our system is improved by making it possible to balance conflicting
performance criteria like efficiency, accuracy, and robustness with user-defined pa-
rameters. Finally, all components of our structure and motion estimation system
employ state-of-the-art techniques for robust estimation to ensure a high level of
robustness to outliers.
The most widely used algorithm for 3-D point set registration is the ICP algo-

rithm presented by Besl and McKay [Bes92]. A concise overview of different vari-
ants of this algorithm can be found in [Rus01]. In this work, we compare three
different techniques for increasing the robustness of the ICP algorithm to outliers.
We introduced one of these techniques in [Zin03a]. In addition to that, we propose
an integrated estimation of the scale factor between the two point sets in Section 5.4.
We also presented this approach in [Zin05b]. Our contribution is a drop-in replace-
ment for the standard motion estimation, which makes it viable as an upgrade for
a large number of different ICP variants. Differently scaled point sets occur when
at least one of them is computed with a structure and motion algorithm, because
these reconstructions are only unique up to a scale factor.
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The quality of the contributions of this thesis is mirrored by the widespread adop-
tion of the developed algorithms. For example, the feature point tracking algo-
rithms are not only used by three different partners of the VAMPIRE project, but
also by other research groups. Further information on applications of the devel-
oped algorithms can be found in Chapter 7.

1.4 Outline

This section details the structure of the remaining parts of this thesis. In order to
convey a better understanding of the basic input modality of computer vision al-
gorithms, Chapter 2 explains the basic principles of image formation. The covered
topics include geometric image formation, radiometric image formation, and mul-
tiple view relations.
As the algorithms for sparse 3-D reconstruction are categorized into three main

work areas in this thesis, each work area is presented in a chapter of its own. Chap-
ter 3 covers the algorithms for feature point tracking. After describing the standard
Lucas-Tomasi-Kanade feature point tracker, we detail our enhancements for effi-
cient and robust tracking. In Chapter 4, we present our work on structure and mo-
tion estimation. The description of important state-of-the-art algorithms is followed
by a detailed analysis of the enhancements in our proposed structure and motion
estimation system. Chapter 5 is concerned with the algorithms for 3-D point set
registration. It contains sections on the standard iterative closest point algorithm,
robust correspondence estimation, and our proposed integrated scale estimation.
The experimental evaluation of the proposed algorithms is documented in Chap-

ter 6. All proposed algorithms are separately evaluated with artificial, but realistic,
data. In addition to that, the algorithms are also jointly evaluated with real input
data with known ground truth in Section 6.4. For all evaluations, we also provide
a thorough analysis of the obtained results. Chapter 7 is a collection of applications
of the algorithms proposed in this thesis. For each application, there is a description
of the problem and an explanation of how the respective algorithm is applied in its
solution. Finally, a summary and an outlook conclude this thesis in Chapter 8.
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Chapter 2

Basic Principles of Image Formation

Computer vision in general can be described as the automatic extraction of infor-
mation from images. This description is certainly valid for the feature point track-
ing algorithms covered in the next chapter, because they operate directly on image
sequences. But also the algorithms for structure and motion estimation, which pro-
cess the output of the feature point tracking algorithms, indirectly extract informa-
tion from image sequences. As most algorithms in this work directly or indirectly
operate on images to extract information about the 3-D world, it is important to un-
derstand the process of creating these images. Consequently, we explain the basic
principles of image formation in this chapter. In order to keep these explanations
short, we focus on the aspects of image formation that are relevant for the algo-
rithms in the following chapters. We also point out where model assumptions are
not met by reality.
This chapter starts with a general description of image acquisition and its result,

the digital image. The second section of this chapter presents geometric image for-
mation, which mainly describes the interrelation between the position of an object
in the 3-D world and its position in the digital image. In the section about radio-
metric image formation, we discuss the formation and representation of intensity
and color values in a digital image. In the next section, we cover the geometric rela-
tions between two images taken from different viewpoints. The last section of this
chapter contains a short summary.

2.1 Overview

2.1.1 Image Acquisition Fundamentals

The most important aspects of image acquisition can be explained with the help of
the basic image acquisition setup shown in Figure 2.1. The setup contains one or
more illumination sources, which are also called light sources. We are only inter-
ested in illumination sources that emanate visible light, which consists of electro-
magnetic waves with a wavelength between approximately 0.4 and 0.8 microme-
ters. As the notion of visible light is solely determined by the human visual system,
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camera

image object / scene element

lens

light source

Figure 2.1: The basic image acquisition setup

it is not surprising that there are also biological and electronic sensors for different
portions of the electromagnetic spectrum.
After the light has left the illumination source, it travels in an approximately

straight line, until it hits a scene element and is absorbed or reflected. The reflection
properties of the scene elements determine which fraction of the incoming light is
reflected in any possible direction. All scene elements together form the complete
scene. Some of the light reflected by the scene elements enters the imaging device
used for image acquisition. In our case, the imaging device is a camera, which con-
sists of a lens used for gathering light from the scene, and a camera body housing
an electronic sensor, which transforms the incoming light into electronic signals. A
more elaborate discussion of the geometric and radiometric properties of the ob-
jects that are part of the image acquisition setup is presented in the two following
sections. Before that, however, we have a look at the result of a successful image
acquisition process, the digital image itself.

2.1.2 The Digital Image

Inside a standard computer, any information is stored in digital form, which means
that it is represented by a sequence of bits, each of which can either be zero or
one. In contrast to this digital form of information, the left image in Figure 2.2 is a
continuous image of the scene corresponding to the light rays entering the camera.
It can be describedwith a continuous function, which is defined by the amplitude of
the image signal for any pair of image coordinates. In order to transform this image
into a digital image, two discretization steps have to be performed. Typically, both
discretization steps take place inside the digital camera.
The first discretization step consists of discretizing the coordinate values. To this

end, the image is sampled at equally spaced coordinate positions. This process is
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original image
image after
sampling

image after
quantization

Figure 2.2: This figure illustrates the effects of the discretization of a continuous image by
sampling and quantization. The original image is sampled at 48 × 36 coordinate positions
in the middle image, which contains a small section of the sampling grid in its upper left
corner.

also called image sampling. Another way to describe the effects of image sampling
is to say that the amplitude information for all other image coordinates is discarded.
Image sampling is one of the key factors for determining the spatial resolution of an
image, which is basically the smallest observable detail in an image. In accordance
with [Gon01], we refer to the width and height of an image in sampled coordinate
positions as the resolution of the image. The effects of image sampling are illus-
trated in the middle image of Figure 2.2, which has a resolution of 48 × 36 sampled
coordinate positions.
In the second discretization step, which is also called quantization, the amplitude

of the image signal is discretized. In the case of gray-level images, the amplitudes
are also called intensities. Due to the storage of digital images in computer memory,
the number of gray levels in an image is usually a power of two. The most com-
mon number is 256 gray levels, which can be efficiently stored in eights bits, or one
byte. In order to show no visible artifacts, an image has to contain aminimum num-
ber of approximately 32 gray levels [Gon01]. In the right image of Figure 2.2, the
amplitudes of the original image have been discretized into eight intensity values.
The image acquisition process implicitly contains a third kind of discretization.

The scene is not captured by the camera in a continuous way, but only at discrete
time steps. This behavior seems natural when only a single image is captured. Im-
age sequences, however, are usually used to capture some kind of motion in the
scene. In this case, the time interval between capturing two consecutive images is
directly proportional to the amount of motion measured in image coordinates. For
algorithms that search for correspondences in consecutive images, it is beneficial
when the motion between these images is limited. When speaking of image se-
quences or video sequences, we refer to a single image as a frame. Consequently,
the frequency of image captures in a video sequence is measured in frames per
second.
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A digital gray-level image with a resolution of W × H and L gray levels can be
represented by a discrete two-dimensional function

f (x) ∈ {0, . . . , L− 1}, x = (x, y)T, (2.1)

x ∈ {0, . . . ,W − 1},
y ∈ {0, . . . ,H − 1}.

By convention, the intensity value zero denotes black, and the maximum intensity
value denotes white. Furthermore, the coordinate pair (0, 0) is located in the upper
left corner of the image. A digital image can alternatively be represented by amatrix
of intensity values. Each element of the matrix corresponds to a valid coordinate
pair of the function f (x). The elements of the matrix are also called image elements,
picture elements, or pixels.

2.2 Geometric Image Formation

As already mentioned in the introduction of this chapter, geometric image forma-
tion determines the interrelation between the position of an object in the 3-D world
and its position in the digital image. Knowledge about this interrelation is most im-
portant for understanding the principles of structure and motion estimation, which
is basically the inversion of the geometric image formation process. Nevertheless,
the properties of geometric image formation also influence the design of feature
point tracking and 3-D registration algorithms. Consequently, the material pre-
sented in this section is relevant for all three main work areas of this thesis.

2.2.1 Coordinate Systems

For the mathematical description of the image formation process, the positions of
objects, feature points, and pixels are expressed as coordinate vectors in a coordi-
nate system. In order to efficiently describe different aspects of the image formation
process, several different coordinate systems are used. The four relevant coordinate
systems for our work are illustrated in Figure 2.3. The world coordinate system and
the camera coordinate system are both right-handed, three-dimensional coordinate
systems. The image coordinate system and the sensor coordinate system are two-
dimensional coordinate systems. The coordinates of the sensor coordinate system
are typically measured in pixel units.
The world coordinate system is used to specify the position of scene elements

and of one or more cameras in the 3-D world. In general, it can be chosen arbitrar-
ily. Consequently, it is possible that the world coordinate system and the camera
coordinate system coincide. If this is not the case, a point p in world coordinates
can be transformed into a point c in camera coordinates by applying a 3-D rotation
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Figure 2.3: The four coordinate systems of the image formation process

matrix R and a translation vector t as follows

c = Rp + t, c, p, t ∈ R
3, R ∈ R

3×3. (2.2)

In this notation, the columns of the matrix R correspond to the coordinate axes of
the world coordinate system in camera coordinates. Analogously, the translation
vector t can be interpreted as the origin of the world coordinate system in camera
coordinates.

The origin of the camera coordinate system is the optical center or center of pro-
jection, whereas the origin of the image coordinate system is the image center or
principal point. The two coordinate axes of the image coordinate system point into
the same direction as the first two coordinate axes of the camera coordinate system.
We discuss the relative position of these coordinate systems and the transforma-
tion between them in the next subsection. The intensity values of the final image
are sampled at discrete coordinates of the sensor coordinate system. The transfor-
mation between the image coordinate system and the sensor coordinate system is
discussed in Subsection 2.2.3.

It is important to know that the name, orientation, and description of the pre-
sented coordinate systems vary in the computer vision literature. In one publica-
tion, our sensor coordinate system is called image coordinate system, whereas our
image coordinate system is referred to as the projected camera coordinate system
[Tön05]. In another publication, the term retinal coordinate system is used instead
of sensor coordinate system [For03].
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Figure 2.4: The perspective projection model

2.2.2 Projection Models

Projection models are a mathematical description of the coordinate transformation
from the camera coordinate system to the image coordinate system. In the follow-
ing, we cover the three projection models that are relevant for our work. The per-
spective projection model describes the geometry of a pinhole camera. All light
rays entering a pinhole camera must pass through the pinhole, which ensures that
each point on the image plane receives light from exactly one direction. By tracing
a light ray from a 2-D image point through the pinhole into the scene, it is possible
to determine the 3-D point corresponding to it. Both the weak-perspective pro-
jection model and the paraperspective projection model are approximations to the
perspective projection model.

The perspective projection model is illustrated in Figure 2.4. In this model, the
pinhole is the center of projection, which is also the origin of the camera coordinate
system. In a real pinhole camera, the light rays passing through the pinhole are
recorded at the physical image plane. In our opinion, it is easier to discuss projec-
tion properties in terms of a virtual image plane, which is parallel to the physical
image plane, but lies on the opposite side of the center of projection. Consequently,
we refer to the virtual image plane as image plane.

The optical axis is a line that is perpendicular to the image plane and goes through
the center of projection. The intersection point between the optical axis and the im-
age plane is the principal point. As we know from the previous subsection, it is also
the origin of the image coordinate system. In order to simplify the mathematical
notation, we define the distance between the center of projection and the principal
point to be one unit. With these definitions, we can now write the basic equations
for projecting a point c = (cx, cy, cz)T in camera coordinates to a point q = (qx , qy)T
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Figure 2.5: Both the weak-perspective projection model in the left illustration and the para-
perspective projection model in the right illustration are affine projection models that ap-
proximate the perspective projection model. The reference point of the paraperspective
projection model is marked by a circle.

in image coordinates as

qx =
cx
cz

, qy =
cy

cz
. (2.3)

The weak-perspective projection model is shown in the left illustration of Fig-
ure 2.5. Each point in camera coordinates is first projected onto a reference plane
along a parallel to the optical axis. Then, the resulting points are all scaled by a
constant factor derived from the perspective projection model. As a consequence,
weak-perspective projection is also referred to as scaled orthographic projection.
The equations of the weak-perspective projection model are

qx =
cx
rz

, qy =
cy

rz
, (2.4)

where rz is the distance of the reference plane to the center of projection. In contrast
to the equations in (2.3), the projection equations of the weak-perspective projection
model are linear in the point coordinates, because rz is a constant.
For the paraperspective projection model, which is illustrated in the right image

of Figure 2.5, the orthographic projection of the weak-perspective projection model
is replaced. After the selection of a reference point (rx , ry, rz)T, the points in camera
coordinates are projected onto the reference plane along a parallel to the line from
this reference point to the center of projection. The equations for the paraperspec-
tive projection model are

qx =

(

cx
rz

+
rx
rz

(

1− cz
rz

))

, qy =

(

cy

rz
+

ry

rz

(

1− cz
rz

))

. (2.5)

Both the weak-perspective and the paraperspective projection are approxima-
tions to the perspective projection. As they do not model the effect that objects
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which are further away appear to be smaller, they work best when the average dis-
tance of the points from the center of projection is much larger than the distance of
any two points along the optical axis. Furthermore, the approximation errors are
minimized when the reference plane (weak-perspective projection) or the reference
point (paraperspective projection) lie close to the center of mass of all available
points in camera coordinates. For more information about projection models in
general, we recommend [Har00]. An elaborate discussion of the weak-perspective
and the paraperspective projection can be found in [Chr96]. In this thesis, the weak
perspective projection model is used by the POSIT algorithm described in Subsec-
tion 4.2.2.

2.2.3 Camera Parameters

In this subsection, we first describe the transformation between image coordinates
and sensor coordinates, which is the last transformation in the geometric image for-
mation process. Then, we summarize the parameters that are necessary to model
the complete transformation from the world coordinate system to the sensor coor-
dinate system. Finally, we show how to use homogeneous coordinates to formulate
this transformation in a linear matrix equation.
The transformation between image coordinates and sensor coordinates consists

of a translation and a scaling. The translation moves the origin of the sensor coor-
dinate system to the upper left corner of the digital image. It is represented by the
position (Ox,Oy)

T of the principal point in sensor coordinates. The scaling along
the coordinate axes ensures that the sensor coordinates are expressed in pixel units.
It depends on the focal length F, which is the distance between the center of pro-
jection and the physical image plane, and the relative sizes Sx and Sy of a pixel in
the horizontal and vertical direction, respectively. With these parameters, we can
represent the transformation between image coordinates and sensor coordinates as
follows

x =
F

Sx
qx +Ox , y =

F

Sy
qy +Oy . (2.6)

As we have argued in this section, the geometric image formation process gov-
erns the transformation of coordinates from the three-dimensional world coordi-
nate system to the two-dimensional sensor coordinate system. The complete trans-
formation is usually described by two types of camera parameters, the extrinsic
and the intrinsic camera parameters. Trucco and Verri define the extrinsic camera
parameters as “any set of geometric parameters that identify uniquely the transfor-
mation between the unknown camera reference frame and [...] the world reference
frame” [Tru98]. This definition is met by the rotation matrix R and the translation
vector t in equation (2.2).
The intrinsic camera parameters are properties of the camera used for capturing

an image. They describe the interrelation between camera coordinates and sen-
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2.2 Geometric Image Formation

sor coordinates. The most important intrinsic camera parameters are the position
(Ox,Oy)T of the principal point, the relative sizes Sx and Sy of the pixels, and the
focal length F. Another intrinsic camera parameter is the angle between the two
axes of the sensor coordinate system, which is typically π/2 in a standard digital
camera.
In order to formulate the transformation from the world coordinate system to the

sensor coordinate system in a linear matrix equation, we have to work with homo-
geneous vectors in projective spaces. Basically, the projective space P

n is the union
of the Euclidean space R

n and all n-dimensional points lying at infinity. An ele-
ment of P

n can be described by the homogeneous vector x = (x1, . . . , xn+1). If xn+1
is zero, the corresponding point x lies at infinity. Otherwise, x corresponds to the
Euclidean point x = (x1/xn+1, . . . , xn/xn+1). For a more thorough description of
homogeneous coordinates, we recommend the books [Tru98] and [Har00]. Finally,
we can combine the equations (2.2), (2.3), and (2.6) for the different coordinate sys-
tem transformations into a linear matrix equation

x = K M p =





F/Sx 0 Ox

0 F/Sy Oy

0 0 1



 (R | t) p , p = (p, 1)T , (2.7)

where the intrinsic and extrinsic camera parameters are represented by the matrices
K ∈ R

3×3 and M ∈ R
3×4, respectively.

According to [Tru98], camera calibration is the process of determining the intrin-
sic camera parameters, the extrinsic camera parameters, or both. There are many
algorithms for camera calibration, which differ both in the set of estimated param-
eters and the requirements for the input data. As a thorough review of camera
calibration techniques is outside the scope of this thesis, we refer to [Fau93] and
[Tru98] for further information. The algorithms for structure and motion estima-
tion discussed in Chapter 4 require that the intrinsic parameters of the camera are
known for every captured image. In contrast to this, the extrinsic camera param-
eters, i. e., the rotation and translation of the camera, are unknown and have to be
estimated by the algorithms.

2.2.4 Real Lenses

In the previous subsections, we derived a mathematical model of the geometric
image formation process, which finally resulted in the equation (2.7). In this sub-
section, we discuss where the model assumptions are not met by reality. On the
one hand, this is an important step to assess the validity of the derived model. On
the other hand, we use this approach to illustrate some of the less obvious difficul-
ties in computer vision and to emphasize the need for robust algorithms, which are
presented in the following chapters of this thesis.
The projection model derived from the pinhole camera is the main shortcoming

of the preceding description of geometric image formation. Although there are real
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(a) (b) (c) (d)

Figure 2.6: The small depth of field in images (a)-(c) is caused by using a wide open aper-
ture. Due to different focus settings, different parts of the scene are in sharp focus. In image
(d), the depth of field has been increased by reducing the size of the aperture.

pinhole cameras, the optical system of standard digital camera usually consists of
a sophisticated combination of several differently shaped lenses. This setup allows
the camera sensor to gather more light in a shorter amount of time, which makes
taking pictures of moving objects possible in the first place. In addition to that, some
modern compound lenses allow to change the focal length of the optical system by
moving some of their internal lenses, which is also known as the ability to zoom.

Mathematical descriptions of more sophisticated optical systems than the pin-
hole, e. g., the thin lens model and the thick lens model, explain some of the prob-
lems caused by real lenses [For03]. The thin lens model introduces the possibility
that objects may be out of focus. Only objects within a certain range of distances,
which is also called depth of field, are in acceptable focus. Objects outside this range
become blurred, because the light rays emanating from one point of the scene hit
different points on the image plane. Modern compound lenses allow to adapt the
focus setting, which can be used to keep the important parts of a scene in sharp fo-
cus. The first three images of Figure 2.6 illustrate different focus settings in the case
of a small depth of field. Additionally, the depth of field of a lens can be increased
by reducing the size of the aperture of the lens and vice versa. This effect can be
observed by comparing image (b) and image (d) of Figure 2.6.

The thick lens model adds explanations for other causes of image degradation.
There are four types of primary aberrations, which degrade the image by blurring
objects. They are called astigmatism, coma, field curvature, and spherical aberra-
tion. As high quality lenses are optimized to avoid these kind of aberrations, their
effects can safely be ignored in standard computer vision applications. The fifth
primary aberration is distortion, which changes the shape of the image as a whole.
The main reasons for distortion are imperfect lens shape, which can lead to radial
distortion, and improper lens assembly, which can additionally cause tangential
distortion. An example of radial distortion is shown in Figure 2.7.
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radial

distortion

test

Figure 2.7: This figure illustrates the effects of radial distortion. The left image shows a
downsized version of the original test pattern. The radial distortion of the lens causes the
lines in the captured image to be slightly curved.

(a) (b) (c)

Figure 2.8: This figure shows the correlation between vignetting and the used aperture size.
In image (a), which was captured with a wide open aperture, the corners are slightly darker
than the center. Image (b) was captured with a smaller aperture and exhibits a much more
uniform brightness. The difference image (c) illustrates the reduction of brightness towards
the image corners caused by vignetting in image (a).

According to [Zha96], distortion in a standard compound lens is likely to be com-
pletely dominated by the radial components. In addition to that, the distortion of
most standard lenses can be accurately modeled with at most two radial distortion
factors D1 and D2. In conformance with [Zha00], we specify the distorted image co-
ordinates qd in terms of the undistorted coordinates q, assuming that the distortion
center coincides with the optical center of the camera.

qd =
(

1+ D1r
2 + D2r

4
)

q, r = ‖q‖ (2.8)

As the radial distortion factors can be regarded as additional intrinsic camera pa-
rameters, we estimate them during camera calibration using external algorithms.
Good starting points for further details on algorithms for estimating the distortion
factors are both [Zha00] and [Har05].
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Compound lenses are prone to two additional effects, which partially belong to
radiometric image formation. Firstly, light rays of different wavelengths are re-
fracted at the lens elements in a slightly different way, which creates color fringes
at contrast borders. Secondly, various apertures inside the compound lenses block
some of the light entering the lens, which can lead to a drop in brightness at the im-
age borders. This effect, which is also called vignetting, is usually not perceived by
the casual observer, because the human eye is very insensitive to smooth brightness
gradients. With the help of a difference image, which reduces external influences
like non-uniform illumination, we illustrate the effect of vignetting in Figure 2.8.

2.3 Radiometric Image Formation

Radiometric image formation is concerned with the relation among the amounts of
light energy emitted from light sources, reflected from surfaces, and registered by
sensors. Other important topics of this section include the difference between inci-
dent energy and perceived energy, the intricacies of the representation of intensity
and color values, and the technical properties of real cameras. The contents of this
subsection are important for the discussion of feature point tracking algorithms in
the following chapter, because these algorithms operate directly on the intensity
values of digital images.

2.3.1 Light and Color

There are two different models for describing the phenomenon called light. On the
one hand, it can be thought of as propagating sinusoidal electromagnetic waves. On
the other hand, it can also be visualized as a stream of massless particles called pho-
tons, which contain a certain amount of energy. The amount of energy in a photon
is inversely proportional to the wavelength of the corresponding electromagnetic
wave.
Many aspects of radiometry are influenced by the human visual system. One

of these aspects is the notion of visible light, which is solely determined by the
properties of the human visual system. The human eye can register electromagnetic
waves with a wavelength between approximately 0.4 and 0.8 micrometers. In order
to faithfully reproduce the appearance of the real world, the sensors in modern
digital cameras are designed to emulate this behavior.
The notion of color is another aspect of radiometry that is heavily influenced by

the capabilities of the human visual system. The six to seven million cones in the
human eye are responsible for color vision. They can be divided into three cate-
gories, which are sensitive to three different portions of the visible electromagnetic
spectrum. These portions roughly correspond to the colors red, green, and blue.
As each of the cone types only provides a single intensity as output, it is possible
to describe colors by specifying a visually equivalent color created by combining
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three primary colors with fixed wavelengths. This principle is used for the RGB
color space, which represents colors with three separate intensities, one for the red,
green, and blue channel, respectively. The RGB color space is the native description
for color values presented on television sets and computer screens, which combine
subpixels with the three primary colors to full color pixels. There are also numerous
other color spaces besides RGB, which are not relevant for this thesis.

2.3.2 Sources, Surfaces, and Sensing

Any light captured by a camera originally emanates from a light source. The pre-
ferred quantity for measuring the amount of light in space is radiance, which is de-
fined as the power of light traveling at a specified point in a specified direction, per
unit area perpendicular to the direction and per unit solid angle. A related quantity
for measuring the amount of light incident on a surface is irradiance, which is de-
fined as the power of incident light at a specified point from a specified direction,
per unit area of the surface and per unit solid angle. As standard light sources are
not monochromatic, radiance and irradiance have to be measured for every possi-
ble wavelength.
When a light ray hits the surface of an object, it is either absorbed or reflected in a

particular direction. A model for this behavior is called a surface reflectance model,
and the bidirectional reflectance distribution function (BRDF) is the most general
surface reflectance model. It describes the ratio of the radiance in the outgoing di-
rection to the incident irradiance, depending on the angles of the incoming and out-
going light rays. As it is difficult and error-prone to measure the BRDF of a surface,
simpler surface reflectance models have been developed. The Lambertian model
approximates the behavior of rough non-specular surfaces like cotton cloth, matte
paper, and matte paint. Its BRDF is independent of incoming and outgoing direc-
tion, which implies that each surface point appears equally bright from all viewing
directions. To be more precise, the power of light reflected from a Lambertian sur-
face is proportional to the albedo of the surface, which is a constant depending only
on its material, and to the cosine of the angle between the incoming light and the
surface normal.
As a summary, the radiance emitted by a Lambertian surface does not change

for a moving camera. In addition to that, for flat Lambertian surfaces the radi-
ance is always directly proportional to the albedo when the surface or the light
source move. Unfortunately, many surfaces exhibit some degree of specular reflec-
tion, which does not conform to the Lambertian model. One property of specular
surfaces is to produce reflections of light sources when observed from a special
viewing angle. These highlights are much brighter than their surrounding and can
cause strong appearance changes for small movements of the object, the camera, or
the light source, which is a problem for our feature point tracking algorithms. Fig-
ure 2.9 shows a test target with two different surfaces under changing illumination
conditions.
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Figure 2.9: The four images of this figure show a planar test target, which has a non-specular
surface on the left side and a highly specular surface on the right side. The appearance of
the specular surface changes vigorously when it reflects the light rays from the light source
to the camera.

With the help of the thin lens model, it is possible to verify that the irradiance at
the camera sensor is proportional to the radiance leaving an object. Although the
irradiance falls off as the light rays deviate from the optical axis, this phenomenon
is usually much smaller than the vignetting discussed in the last subsection [For03].
At the sensor, another quantity influences the image formation process. The lumi-
nance is a measure for the power of light that an observer perceives. It is linked to
irradiance by a monotonic relation depending on the sensor. For example, red light
with high radiance will result in small luminance for a sensor that is most sensitive
in the blue portion of the spectrum.
During the image formation process, the luminance values observed for every

wavelength are accumulated by the sensor according to its sensitivity. After that,
they are translated into digital intensity values during quantization. The result is
either a gray-level image with one intensity value per pixel, or a color image, which
is often encoded in the RGB color space with three color values per pixel. When
the resulting image is inspected by a human, the term brightness is used to indicate
the subjective human perception of the image intensity. Experimental evidence
suggests that brightness is a logarithmic function of intensity [Gon01].

2.3.3 Gamma Correction

As we have shown in the previous subsection, the luminance values observed by
a camera depend on a large number of factors, including the position, power, and
spectral properties of the light sources, the reflection properties and orientation of
the corresponding surface, and the position and spectral sensitivity of the imaging
sensor. With some generous assumptions, like the Lambertian model for surface
reflection, it is possible to deduce that surface albedo and image intensity are di-
rectly proportional [Jin01]. However, one step that is often forgotten in this context
is the non-linear power-law transformation from luminance to intensity, which is
commonly referred to as gamma correction.
Gamma correction is often said to be needed for compensating the non-linear re-

sponse of the electron gun of standard CRT monitors. This proposition is wrong.
In reality, the non-linearity of a CRT monitor is almost the inverse of the intensity
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Figure 2.10: The left graph illustrates the relation between input intensities and output in-
tensities for gamma correction with different parameters. Image (a) depicts a gamma-
corrected gray-level gradient with a precision of five bits. Linearly coded intensity values
with the same precision generate the gradient in image (b). When this gradient is rear-
ranged to be perceptually uniform, the gradient in image (c) is obtained. In the dark areas
of this gradient, the lower quality of linearly coded intensity values can clearly be seen.

sensitivity of human vision, so that the response of the CRTmonitor is roughly per-
ceptually uniform. The main purpose of gamma correction in computer video and
graphics applications is to code the luminance values into a perceptually uniform
domain, in order to optimize the perceptual performance of a limited number of bits
in each intensity value. In order to reach the quality of eight bit gamma-corrected
coding, linearly coded intensity values have to be stored with at least eleven bits
[Poy98].

The relation between input intensity and output intensity is shown for three im-
portant gamma values in the graph in Figure 2.10. A transformation with a gamma
value of 2.5 represents the typical non-linear response of a CRT monitor, whereas
the transformation with a gamma value of 0.4 is often used to encode luminance
values into gamma-corrected intensities, because it is the inverse of the first trans-
formation. There are two possible choices when working with gamma-corrected
intensities in computer vision. The first choice is to accept or ignore the non-linear
relation between luminance values and intensity values. The second choice is to
linearize the intensity values by applying an inverse gamma correction, which im-
plies that the number of bits per value has to be increased to maintain the same pre-
cision. For our feature point tracking algorithms, which operate on small feature
windows, a linearization of the intensity values does not yield significant improve-
ments. Therefore, we deliberately chose to work with gamma-corrected intensities
in this thesis.
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Figure 2.11: Image (a) shows a standard Bayer color filter array, which contains twice as
many cells for green as for red or blue. When the sample input signal in image (b) is
recorded with a Bayer sensor and interpolatedwith a simple linear interpolation algorithm,
the resulting full color image (c) contains artifacts.

2.3.4 Real Cameras

Similar to the subsection on real lenses, this subsection provides supplementary
considerations for computer vision with respect to the practical aspects of the ra-
diometric image formation process. Some important details are governed by the
properties of the image sensor. Most cost-effective digital cameras use a single im-
age sensor, which is covered by a pattern of red, green, and blue color filters. The
predominant layout for these filters is the Bayer color filter array pattern, which is
illustrated in Figure 2.11. In order to produce a full color image, the two missing
color components for each pixel have to be interpolated by a demosaicing algo-
rithm [Mal04, Gun05, Hir05]. This process can lead to unwanted zippering arti-
facts, which are demonstrated in Figure 2.11. These artifacts may introduce errors
into the image that are detrimental to the accuracy of image processing algorithms,
even when the obtained color images are converted to gray-level images.
There are further physical phenomena related to the sensor that influence the im-

age formation process. A typical CCD sensor in a digital camera has one cell for
each pixel, and each cell converts incoming light energy into electric charge. This
charge is converted into a measurable voltage by an output amplifier. When the in-
coming light is too strong, the charge stored in a cell overflows to neighboring cells,
and consequently alters the recorded charge there. This phenomenon is also known
as blooming. For several other reasons, including fabrication defects, thermal and
quantum effects, and quantization noise, the actual pixel intensity can deviate from
the expected value. These effects are subsumed as image noise.
The final issue of this subsection deals with controlling the amount of light al-

lowed to fall on the sensor, which is also called exposure in photography. Each sen-
sor has a certain dynamic range, which is defined as the ratio between the smallest
and largest measurable luminance. Luminance values outside this range are trun-

26



2.4 Multiple View Relations

cated, and information is lost when this occurs. A digital camera offers three pos-
sibilities for controlling the exposure and keeping the luminance values inside the
dynamic range:

• The aperture controls the amount of incoming light by adapting the size of
a circular opening inside the lens. Incidentally, closing the aperture also in-
creases the depth of field of the lens, which allows a larger amount of the
scene to be in sharp focus.

• The shutter defines the duration of the exposure. If the camera or the objects in
the scene move, a short exposure time helps to decrease the amount of motion
blur in the image.

• For dark scenes, a digital camera may provide the possibility to adjust the
electronic amplification of the output amplifier. This setting is also known as
gain. Unfortunately, increasing the gain also considerably increases the image
noise.

For our algorithms, large depth of field, short exposure time, and low noise are
desirable. As a consequence, a compromise for the three settings that control the
exposure has to be found. Alternatively, strong illumination helps to keep all three
settings at acceptable levels.

2.4 Multiple View Relations

The image formation process records a lot of information about the captured scene.
However, the distance of a scene point from the camera is not accessible in a sin-
gle image. Only with two or more images, it is possible to extract the depth of a
scene point by triangulation. For this purpose, the images can either be acquired si-
multaneously by a stereo camera head or sequentially by a moving camera, as long
as the captured scene does not contain any other moving objects. This subsection
explains the basic geometry between two perspective views and introduces impor-
tant algebraic entities for describing this geometry. Consequently, the contents of
this subsection represent the theoretical foundation for the structure and motion
estimation algorithms described in Chapter 4.

2.4.1 Epipolar Geometry

Epipolar geometry describes the geometric relations of two perspective views, both
of which perform a projection according to (2.7). An illustration of epipolar ge-
ometry is given in Figure 2.12. The two perspective cameras are represented by
their centers of projection, ol and or, and by their image planes, πl and πr. The
figure also shows a scene point p, its projection pl onto the left image plane, and

27



Chapter 2 Basic Principles of Image Formation

el
er

ol or

pl
pr

scene point p

baseline

epipolar line
epipolar line

epipolar plane πp

image plane πl image plane πr

Figure 2.12: Epipolar geometry

its projection pr onto the right image plane. For the purely geometric discussion in
this subsection, the representation of points and lines is independent of any specific
coordinate system. Additionally, Figure 2.12 illustrates four important entities of
epipolar geometry.

• The baseline is the line joining the two centers of projection.

• An epipole is a point defined by the intersection of the baseline with one of
the image planes. As there are two image planes in epipolar geometry, there
are also two epipoles, el and er.

• An epipolar plane πp contains the baseline and an arbitrary scene point p.
Consequently, there is a whole family of epipolar planes.

• An epipolar line is defined by the intersection of an epipolar plane with one of
the image planes. The two epipolar lines belonging to the same epipolar plane
are called conjugated epipolar lines.

It is possible to deduce additional properties of epipolar geometry from the pre-
ceding definitions. Since both epipolar planes and image planes contain the epipole
of an image, every epipolar line, which is the intersection of an epipolar plane with
an image plane, goes through the epipole of the image. As a direct consequence,
any image point other than the epipole lies on exactly one epipolar line.
The practical importance of epipolar geometry is largely based on another prop-

erty. Given one point pl in the left image, the point p is bound to lie somewhere
on the ray from ol through pl. Thus, pr must lie somewhere on the image of this
ray in the right image, which is exactly the epipolar line through pr. This con-
straint on the position of the second image point is called the epipolar constraint.
It provides a geometric relation between points in one image and lines in the other

28



2.4 Multiple View Relations

image, which simplifies the search for a corresponding point in the second image to
a one-dimensional problem. Alternatively, the epipolar constraint allows to verify
the validity of a pair of corresponding points.

2.4.2 The Fundamental Matrix

As we have seen in the last subsection, the epipolar constraint is useful for finding
corresponding points in a pair of images. Interestingly, it is also possible to proceed
in the inverse direction, i. e., to deduce epipolar geometry from point correspon-
dences. This task calls for the fundamental matrix F ∈ R

3×3, which is an algebraic
representation of epipolar geometry.
The most important property of the fundamental matrix is its ability to express

the epipolar constraint. Given a pair of corresponding points xl and xr in homoge-
neous sensor coordinates, the matrix satisfies the equation

xTr F xl = 0 . (2.9)

The fundamental matrix encodes information on both the intrinsic and extrinsic
camera parameters. It has a rank of two and seven degrees of freedom. Further
properties of the fundamental matrix are described in [Tru98] and [Har00].
As it is possible to reconstruct the fundamental matrix from eight or more pairs

of corresponding points, epipolar geometry can be reconstructed without any in-
formation about the intrinsic or extrinsic parameters of the two cameras. Since we
intend to work with calibrated cameras, the intrinsic camera parameters are known
in advance and the generality afforded by the fundamental matrix is not required.
This leads us directly to the next subsection.

2.4.3 The Essential Matrix

When the intrinsic parameters of a camera are known, the homogeneous image
coordinates of a point can be computed from its homogeneous sensor coordinates
as follows

q = K−1 x . (2.10)

In order to express the epipolar constraint for points in camera coordinates, the
fundamental matrix F has to be specialized to the essential matrix E ∈ R

3×3. In ac-
cordance with (2.9), but for corresponding points q

l
and q

r
in homogeneous image

coordinates, the essential matrix satisfies the equation

qT
r
E q

l
= 0 . (2.11)

Unlike the fundamental matrix, the essential matrix encodes information on the
extrinsic camera parameters only. The relative motion between the two cameras
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can be represented by a rotation and a translation, which both have three degrees
of freedom. Due to the global scale ambiguity inherent in a stereo system with
unknown extrinsic camera parameters, the essential matrix has five degrees of free-
dom. The rank of the essential matrix is two. Therefore, its determinant, as well as
one of its singular values, is zero.

det(E) = 0 . (2.12)

The two non-zero singular values of the essential matrix are equal. According to
[Fau93], this property can also be formulated as a constraint on the essential matrix
as follows

1
2

(trace(E ET))2 − trace((E ET)2) = 0 . (2.13)

Furthermore, it is possible to characterize essential matrices with a single equation,
which yields nine cubic polynomials in the components of E

E ET E− 1
2

trace(E ET) E = 0 . (2.14)

The relation between the essential matrix and the fundamental matrix can easily
be deduced by comparing (2.9) with a combination of (2.10) and (2.11). When the
intrinsic camera parameters of the left and right camera are denoted by Kl and Kr

respectively, the fundamental matrix can be written as

F = K−Tr E K−1l . (2.15)

The fundamental matrix can be reconstructed from eight pairs of corresponding
points. Thus, it is not surprising that the essential matrix can be reconstructed from
corresponding points, too. Since the essential matrix has less degrees of freedom,
only five point pairs in camera coordinates are required. As the algorithm for recon-
structing the essential matrix forms the basis of our structure andmotion estimation
system, it is thoroughly detailed in Chapter 4.
When the essential matrix of a stereo system is known, its inherent connection

with the extrinsic camera parameters can be used to reconstruct the relative motion
between the two cameras. As the choice of the world coordinate system is arbitrary
in this situation, we let it coincide with the camera coordinate system of the left
camera. Consequently, the extrinsic parameters M l of the left camera do not change
the world coordinates, whereas the extrinsic parameters Mr of the right camera are
given by the relative motion between the two cameras

M l = (I | 0) =





1 0 0 0
0 1 0 0
0 0 1 0



 , Mr = (R | t) . (2.16)

For reconstructing the extrinsic parameters Mr of the right camera from the es-
sential matrix E, the mathematical relation between these two entities has to be
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known. First, the cross product of the translation vector t with a point p can be
rewritten as a multiplication with a rank-deficient matrix T as follows

t × p = T× p =





0 −t3 t2
t3 0 −t1
−t2 t1 0



 p . (2.17)

With this notation, the essential matrix is given by

E = T× R . (2.18)

The preceding discussion contains all relevant information for the recovery of the
extrinsic camera parameters from the essential matrix. As the actual algorithm is
deeply embedded into our structure and motion estimation system, it is also pre-
sented in Chapter 4.

2.5 Summary

The main purpose of this chapter is to provide a thorough introduction to the nam-
ing conventions, basic concepts, and selected details of the image formation pro-
cess. To this end, the section on geometric image formation describes the inter-
relation between the positions of a scene point in various reference frames, most
notably the 3-D world and the digital image. Furthermore, the section on radiomet-
ric image formation shows how the intensity and color values in a digital image
are generated. Finally, the section on multiple view relations lays the mathemat-
ical foundation for the recovery of structure and motion information from image
sequences.
Based on the fact that human vision functions effortlessly in everyday life, the

casual observer might have the impression that vision itself is an easy task. There-
fore, one additional purpose of this chapter is to point out the inherent complexity
of vision. This is done by providing a detailed description of the various intricacies
of the image formation process. In the light of this description, it is possible to fully
appreciate the amazing performance of the human visual system.
The second additional purpose of this chapter is closely coupled with the first

one. The description of several details of the image formation process ends with
the remark that the detail in question is not modeled in this work, either because
its effect is too small to be of much concern, or because modeling the effect is too
costly in terms of complexity or performance. Nevertheless, omitting the effects in-
troduces errors, whose impact on the final result of the computer vision algorithms
has to be minimized. Thus, this chapter helps to motivate the use of robust tech-
niques for all presented computer vision algorithms.
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Chapter 3

Feature Point Tracking

Feature point tracking is the first integral part of our approach for sparse 3-D re-
construction. Its main task is to compute the sensor coordinates of distinct scene
elements in the images of a video sequence by analyzing the intensity values in
these images. Consequently, the success of feature point tracking depends on the
careful consideration of the radiometric properties of image formation, which have
been described in Section 2.3. In our approach for sparse 3-D reconstruction, the
computed coordinates constitute the input data for the structure and motion esti-
mation presented in Chapter 4. Thus, feature point tracking has a strong influence
on the quality of the final reconstruction.

The utility of feature point tracking is not limited to sparse 3-D reconstruction.
There are a large number of additional applications for it, some of which are suc-
cinctly presented in Chapter 7. In light of the diverse requirements of the different
applications, high versatility has become the most important design goal of our fea-
ture point tracking system. To this end, we facilitate the manual configuration of
all components that involve a trade-off between performance criteria like accuracy,
efficiency, and robustness. In addition to that, the effects of all important configura-
tion options are described in this chapter. As the different application areas do not
share any common model knowledge, we have concentrated our efforts on a fully
data-driven tracking system.

In the first section of this chapter, we give an in-depth introduction to the problem
of feature point tracking. We also present and classify existing algorithms that are
part of this problem area. The next section contains a description of the Kanade-
Lucas-Tomasi tracker and its most important extensions, which form the basis of
our tracking system. In the third section of this chapter, we present our tracking
system, which contains several significant enhancements. Subsequently, the section
about high-speed tracking describes our adaptations of the system to the require-
ments of the self-localization of the VAMPIRE augmented reality gear. This chapter
is concluded by a short summary.
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Figure 3.1: This sequence of six images of a real-world scene illustrates common challenges
for feature point tracking. A feature window is marked in the middle of the first image.
In the following four images, the appearance of this feature window changes due to the
rotation of the object, varying illumination conditions, the perspective distortion of the non-
planar surface of the object, and the occlusion by another object. Finally, the last image
indicates that tracking has to stop when the feature window leaves the field of view.

3.1 Overview

3.1.1 Problem Statement

In general, image features can be described as parts of the image with special prop-
erties. Useful image features must be detectable, which means that there are al-
gorithms for locating instances of the feature in an image. Furthermore, image
features are meaningful when they correspond to an interesting element of the cap-
tured scene. The image features used in feature point tracking are called feature
points, point features, or corners. The combination of all relevant properties of a
feature point is called a feature descriptor. The most important property of a fea-
ture point is its 2-D position in sensor coordinates. As the position and the single
intensity value at this position do not provide enough information to detect or track
a feature point, a common approach is to represent feature points by small image
regions, which are also called feature windows. Their size lies between 5× 5 pixels
and 31× 31 pixels in most applications.
Given a sequence of M digital images ( f1(x), . . . , fM(x)) as input, a feature point

tracking algorithm has to perform at least two basic tasks. Its first task is to detect
suitable feature points in one or more of the given images, and its second task is
to compute the position of corresponding feature points in other images of the se-
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(a) (b)

(c) (d)

Figure 3.2: This figure illustrates potential problems in relating a 2-D feature window to a
unique 3-D feature point. The feature windows (a) and (b) both lie on a planar surface.
Feature window (a) also has a unique texture, which is the ideal case for feature point
tracking. However, feature window (b) looks exactly like an image region to its right, which
can lead to erroneous feature correspondences. Although the feature windows (c) and (d)
do not lie on a planar surface, feature window (c) can be reliably attributed to a unique 3-D
feature point. In contrast to this, feature window (d) spans across a depth discontinuity and
does not represent a unique point in 3-D space.

quence. The main output of a feature point tracking algorithm is a set of feature
trails, which specify the 2-D position of a feature point for every image in which
the position has been successfully computed.
All feature point tracking algorithms rely on the validity of several basic assump-

tions. The first assumption concerns the detection of feature points, which requires
that the intensity values of an image exhibit some kind of variance. It is obvious
that an image that is uniformly colored, e. g., an image that is completely white,
does not contain any suitable feature points. Another assumption is that the move-
ment of the feature points in the sensor coordinate system does not exceed a reason-
able threshold for consecutive images in the video sequence. An extreme violation
of this assumption is a video sequence in which the camera turns so fast that ev-
ery feature point is only visible in one single image. This example implies that the
frame rate of the video camera has to be sufficiently high in relation to the motion
of the camera and the scene objects.
In order to be able to compute the positions of a feature point in the images of

a video sequence, feature point tracking algorithms have to assume that the ap-
pearance of the scene objects remains more or less constant throughout the whole
sequence. As Figure 3.1 illustrates, there are many possible violations of this as-
sumption in video sequences of real-world scenes. Another example are the strong
appearance changes of specular and shiny surfaces discussed in Section 2.3. Conse-
quently, successful feature point tracking is only possible when the tracking algo-
rithms tolerate at least some degree of appearance change.
The most important assumption for the correctness of the computed feature trails

is that corresponding feature points in the image sequence can all be attributed to

35



Chapter 3 Feature Point Tracking

the same 3-D feature point in the captured scene. In addition to the specular reflec-
tions mentioned in the preceding paragraph, two more configurations are likely to
cause problems with regard to this assumption. When a scene object is covered with
a repeating texture, as illustrated in Figure 3.2, the feature point tracking algorithm
can fail to identify the correct correspondence. Figure 3.2 also shows a feature point
which spans across a depth discontinuity. Such a feature point is not guaranteed to
represent a single 3-D feature point in the scene when the camera moves.
Aswe have detailed, the input image sequences can violate the basic assumptions

of feature point tracking in many different ways. The feature point tracking prob-
lem is further complicated by the shortcomings of lenses and cameras described in
Subsections 2.2.4 and 2.3.4, like distortion, vignetting, sensor noise, or motion blur.
Feature point tracking algorithms are usually data-driven and work without any
information about the camera motion or the scene structure. Consequently, it is not
realistic to expect that all computed feature positions are absolutely correct.
Feature point tracking mainly incurs two different error types. The first kind of

error is a small deviation of the computed feature position from the correct feature
position. The average magnitude of the deviation strongly depends on the input
data, but due to effects like discretization artifacts and sensor noise it can never be
completely eliminated. The second kind of error is more severe, as it usually en-
tails a large deviation of the computed feature position. It occurs when a feature
correspondence is erroneous, i. e., when one feature trail is formed by two or more
distinct feature points. Unfortunately, a data-driven feature point tracking algo-
rithm cannot reliably detect this kind of error. Thus, all algorithms that use feature
trails as input data should be prepared to encounter both error types.
As feature point tracking algorithms are an important component in many com-

puter vision applications, they have to cope with a wide range of different input
image sequences. Accordingly, there are several different properties for describing
the input data. The most obvious property is the resolution of the input images. It
directly affects the required memory space and computation time, and influences
the selection of a suitable feature window size. Another property is the format of
the image data. A pixel can either be represented by a single intensity value or by
multiple color values, and each value is stored with a specified precision. We work
with 8-bit gray-level images in this thesis.
The maximum number of images in a video sequence affects important compo-

nents of a feature point tracking algorithm. When the maximum sequence length is
small, feature detection has to be performed only once, typically in the first image
of the sequence. In contrast to this, long image sequences require feature detection
whenever the number of successfully tracked features falls below a certain thresh-
old. The last important property of the input data is the frame rate of the video
sequence. When the feature point tracker has to process the incoming images in
real-time, the frame rate determines the maximum computation time per image. In
addition to that, the frame rate directly influences the maximum movement of a
feature point in the sensor coordinate system from one frame to the next.
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The widespread adoption of feature point tracking not only created the need to
cope with a wide range of different input data, but also generated a diversity of
application requirements. In order to facilitate the systematic comparison of differ-
ent feature point tracking algorithms, we propose to categorize these application
requirements into four performance criteria:

• The first performance criterion is the basin of convergence. In the context of
feature point tracking, it describes the maximum translation of a feature point
from one frame to the next that can be reliably estimated by the feature point
tracking algorithm. When it is possible to control the absolute value of transla-
tion in the video sequence, either by limiting the motion of the camera and the
scene objects or by adjusting the frame rate of the video camera, a relatively
small basin of convergence can be sufficient. Some tracking algorithms pro-
vide a way to directly specify their basin of convergence. Increasing the basin
of convergence, either directly or indirectly, is usually achieved at the expense
of the computation speed of the tracking algorithm.

• This leads us to the computational efficiency of the tracking algorithm, which
is crucial for real-time systems, but less important for off-line systems. For a
more detailed analysis, the operations of a tracking algorithm can be divided
into operations that are performed for every processed frame and operations
that are performed for every tracked feature. Consequently, the relative effi-
ciency of a tracking algorithm depends on the average number of features that
have to be tracked.

• Another important performance criterion of a tracking algorithm is the accu-
racy of the feature positions in the feature trails. As the feature trails are often
important input data for other components of a computer vision application,
their accuracy governs the accuracy of the final output.

• While accuracy can be interpreted as a measure for the average deviation from
the correct result under standard conditions, the robustness of a tracking algo-
rithm subsumes its ability to avoid large errors under adverse conditions. In
the case of feature point tracking, an adverse condition is any strong violation
of the model assumption that a feature window only moves in the sensor co-
ordinate system without changing its appearance. This can happen for a large
number of reasons, including strong noise in the input images, the distortion
or occlusion of a feature window, or changes in the illumination of the scene.

Finally, different applications have different requirements for the output data of a
tracking algorithm. Normally, all feature trails are passed to the subsequent compo-
nents of the computer vision application. Some algorithms for structure andmotion
estimation, however, can only work with complete feature trails, which include a
position for every frame of the processed video sequence. It is also possible that ad-
ditional information about the tracked features, like a confidence measure for the
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correctness of the estimated position, is needed by other components of the com-
puter vision application. These requirements can also prove to be important for the
choice of a suitable tracking algorithm.

3.1.2 Related Work

Most existing feature point tracking algorithms can be classified into two groups.
The algorithms of the first group detect feature points in every frame of the video
sequence and then build the feature trails by establishing correspondences between
the detected features. In contrast to this, the second group of algorithms detects
feature points only once per feature trail. The feature positions in the other frames
of the sequence are directly computed from the intensity values in the known and
tentative feature windows. Despite their differences, both groups of algorithms use
feature detection as an important processing step.
A large number of feature point detection algorithms compute a quality measure

for every pixel of an image. Subsequently, the resulting interest image is scanned
for local maxima of the feature quality measure. Moravec proposed one of the first
algorithms of this kind in [Mor80]. His algorithm computes the similarity of a fea-
ture window to slightly translated copies of itself. The feature quality is determined
by the minimum dissimilarity for all tested directions.
Harris and Stephens describe an auto-correlation detector that enhances several

key aspects of Moravec’s algorithm [Har88]. For example, the new detector makes
the quality measure isotropic and decreases its sensitivity to edges. Tomasi and
Kanade present a feature quality measure that is mathematically derived from the
tracking equations of the Kanade-Lucas-Tomasi tracker [Tom91]. Interestingly, the
resulting feature detector is closely related to the Harris detector. Both feature de-
tection algorithms will be presented more thoroughly in Subsection 3.2.2.
Unlike the two previous algorithms, the SUSAN (smallest univalue segment as-

similating nucleus) feature detector proposed by Smith and Brady does not require
the computation of image derivatives [Smi97]. Instead, the quality measure is de-
fined by the number of pixels with similar intensities in a local window around the
center pixel. The parametric feature detector presented in [Bak98] represents differ-
ent kinds of features in a low dimensional subspace of Hilbert space. Rosten and
Drummond employ a machine learning approach to speed up their FAST (feature
from accelerated segment test) algorithm for real-time feature detection [Ros06]. An
evaluation of a large number of feature point detectors can be found in [Sch00].
The mathematical properties of feature detection algorithms are analyzed with

the help of condition theory in [Ken03]. Other recent topics in the area of feature de-
tection include scale invariance and affine invariance. One way to achieve scale in-
variance is to convolve the image with a Difference of Gaussians kernel at multiple
scales, as demonstrated by Lowe with his SIFT (scale invariant feature transform)
feature framework [Low04]. Mikolajczyk and Schmid combine the computationally
more expensive Laplacian of Gaussian method with an affine invariant algorithm
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in [Mik04]. A comparison of several different affine invariant feature detectors is
presented in [Mik05b].
The choice of a suitable feature detector strongly depends on the used tracking

algorithm. For the first group of tracking algorithms described above, it is highly
important that feature points detected in one image are detected at corresponding
positions in subsequent images. The detected feature points should also be distin-
guishable from non-corresponding feature points by examining a suitable feature
descriptor.
There are a large number of algorithms that only use the positions of detected fea-

ture points for correspondence estimation [Che99b, Vee01, Sha05]. However, when
the images containing the features points are available, it is possible to devise much
more powerful feature descriptors. For example, the intensity values in a small
window around the feature are a straightforward addition to the feature descriptor.
Thus, with the help of a similarity measure for feature windows, a correspondence
can be established by finding the feature with themost similar feature window. Nis-
ter uses this technique together with a mutual consistency check in [Nis04c]. Bret-
zner and Lindeberg present another feature tracker, which incorporates automatic
scale selection and a more elaborate multi-cue correspondence measure in [Bre98].
Along with an evaluation of feature detectors, two more tracking algorithms are
described in [Tis04]. Finally, [Mik05a] contains an evaluation of a comprehensive
collection of feature descriptors with respect to correspondence estimation.
In contrast to the first group of tracking algorithms, the second group computes

the position of corresponding feature points directly from the intensity values of
the images. This approach is closely related to the computer vision problem of
optical flow, which aims to compute a dense motion field between two images for
all image pixels. In order to compute the two dimensional motion vectors from one
dimensional intensities, Horn and Schunck introduced the assumption of a smooth
motion field [Hor81]. A comprehensive evaluation of optical flow techniques can be
found in [Bar94]. Another overview, albeit without evaluation, is given by Mitiche
and Bouthemy in [Mit96].
Contrary to global optical flow estimation, a feature point tracking algorithm

computes the constant local optical flow, i. e., the translation of a feature window.
On the one hand, this can be done by iterative gradient-based algorithms like the
Kanade-Lucas-Tomasi tracker [Luc81, Tom91], which will be discussed in more de-
tail in Section 3.2. On the other hand, it is possible to determine the translation of
a feature window by matching it to all windows in a specified search region, us-
ing a suitable similarity measure. This approach, which is commonly referred to
as block matching, is mainly used for disparity estimation in stereo image pairs
[För86, Kan94].
Despite their apparent differences, iterative gradient-based algorithms and block

matching have been proven to be mathematically equivalent [Dav95]. Recently,
new approaches have also bridged the gap between local and global optical flow
estimation. In [Süh02] the global optical flow of an echocardiogram is determined
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with the help of a Kanade-Lucas-Tomasi tracker adapted to estimate local affine
motion. Bruhn et al. present a hybrid method that combines local and global optical
flow estimation [Bru05]. It is more robust to noise than a standard optical flow
algorithm and provides a confidence measure for the correctness of the computed
flow field.
Apart from the basic tracking algorithms themselves, there are further interesting

advances in the area of feature point tracking. Toyama and Hager present a frame-
work that incorporates a hierarchy of tracking algorithms for increased robustness
in [Toy99]. Algorithmic fusion is proposed to achieve the same effect in [McC02].
Increased robustness is also reported for a tracker that employs a spline-based
global deformation model to guide the feature point tracking process [Kan97]. In
[Hei99] the Kanade-Lucas-Tomasi tracker is extended to work with color images.
A mathematical analysis of the performance bounds for gradient-based tracking
algorithms is presented in [Rob04].
The integration of model knowledge into the feature point tracking algorithm is

another active research area. When the scene is static, a global image registration
can be used to compensate for camera motion [Zhe95]. In this case, it is also possi-
ble to detect outliers by an online reconstruction of the 3-D scene structure [Nis00].
Other approaches that exploit model knowledge include feature point tracking for
faces with Gabor wavelets [Wie02], extending interrupted trails under the assump-
tion of an affine camera model [Sug04], and grouping of feature points belonging
to independently moving objects [Siv06].
Algorithms for tracking a small number of larger regions are commonly referred

to as object tracking, region tracking, or template matching algorithms. They are
closely related to feature point tracking algorithms, but due to the larger size of the
tracked regions, they have to cope with stronger appearance variation and are more
prone to severe occlusions. As failing to track an object is usually more severe than
losing a feature point, object tracking algorithms employ a wide range of techniques
to make them more robust. Consequently, recent publications on object tracking
like [Bla98, Scl98, Hag98, Jur02, Bue04, Geo04, Buc06] provide valuable insight that
can also be applied to feature point tracking algorithms, e. g., techniques for coping
with partial occlusions of the tracked region. Furthermore, it is also possible to
combine both tracking types. For example, a block matching algorithm provides
input for a model-based object tracking algorithm in [Nic02], and SIFT features are
employed in the initialization of another model-based object tracking algorithm in
[Grä05].

3.2 The Kanade­Lucas­Tomasi Tracker

The Kanade-Lucas-Tomasi tracker is an iterative approach for correlation-based fea-
ture point tracking. Compared to the other feature point tracking algorithms de-
scribed in the preceding section, it provides a high level of computational efficiency,
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(a) (b) (c)

Figure 3.3: This figure illustrates the basic principle of correlation-based feature point track-
ing. The reference image fr(x) in image (a) contains an exemplary feature windowW . Im-
age (b) shows that the feature window is out of place in the current image fc(x), when the
scene objects move relative to the camera. Image (c) illustrates the values of the error func-
tion ǫ(d) for all possible positions of the feature window inside the current window. In this
context, dark pixels denote a small value of the error function, i. e., a small difference be-
tween the intensity values of the feature window in the reference image and the translated
feature window in the current image.

accuracy, and robustness. Furthermore, it is known to be very versatile and highly
customizable, which is confirmed by the large number of existing enhancements to
the basic algorithm. Thus, we have chosen the Kanade-Lucas-Tomasi tracker as the
basis of our tracking system.

3.2.1 Basic Principles

The basic tracking principle of the Kanade-Lucas-Tomasi tracker (KLT tracker) was
proposed by Lucas andKanade in [Luc81]. As their paper is concerned with solving
an image registration problem, where the region of interest is usually specified in
advance, it does not address the problem of feature detection. Accordingly, we
assume that a suitable feature point is given, and defer the problem of detecting
feature points to the next subsection.
The reference image fr(x) in Figure 3.3 contains a feature windowW . We define
W to be the set of sensor coordinates x = (x, y)T of all pixels inside the feature
window. Usually, the feature window is a square region around the corresponding
feature point. The task of the tracking algorithm is to compute the position of the
feature window in the current image fc(x). More precisely, the task is to find the
motion parameters which minimize a specified measure for the difference of the
intensity values at the corresponding pixel positions of the feature windows in both
images. When the motion parameters represent a translation and the difference
measure is the sum of squared differences, the following error function has to be
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minimized
ǫklt(d) = ∑

x∈W
( fr(x)− fc(x + d))2 , d ∈ R

2. (3.1)

The right image in Figure 3.3 illustrates the values of the error function for every
possible translation. The block matching algorithms mentioned in the preceding
section actually compute the error function for a large number of discrete trans-
lations in a defined search region. In contrast to this, the Kanade-Lucas-Tomasi
tracker iteratively minimizes the error function. In order to reflect the algorithm’s
iterative nature, the error function is reformulated as

ǫklt(∆d) = ∑
x∈W

( fr(x)− fc(x + d + ∆d))2 , ∆d ∈ R
2. (3.2)

Between successive iteration steps, the motion parameter vector d is updated ac-
cording to the rule d ← d + ∆d. Different ways of setting the initial value of the
motion parameter vector d will be discussed in the next section.
For the computation of the vector ∆d, the error function ǫklt(∆d) is transformed

with a first-order Taylor expansion on fc(x + d)

ǫ̃klt(∆d) = ∑
x∈W

(

fr(x)− (∇ f c(x + d))T ∆d− fc(x + d)
)2

, (3.3)

where ∇ f c(x) is the image gradient defined by

∇ f c(x) =

(

∂ fc(x)

∂x
,

∂ fc(x)

∂y

)T

. (3.4)

Now, setting the derivative of the revised error function ǫ̃klt(∆d) to zero

∑
x∈W

∇ f c(x + d)
(

fr(x)− (∇ f c(x + d))T ∆d− fc(x + d)
)

= 0 (3.5)

and solving for the update vector ∆d yields

∆d = H−1klt ∑
x∈W

∇ f c(x + d) ( fr(x)− fc(x + d)) (3.6)

with the matrix Hklt ∈ R
2×2 defined as

Hklt = ∑
x∈W

∇ f c(x + d) (∇ f c(x + d))T . (3.7)

The equations for the motion parameter update vector show that the tracking algo-
rithm of the Kanade-Lucas-Tomasi tracker is a specialized Gauss-Newton gradient
descent optimization algorithm. A detailed analysis of the computational cost of
the tracking algorithm and a comparison with other approaches for minimizing the
error function are given in [Bak04].
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In order to apply the tracking algorithm described above, a number of technical
details have to be resolved. The first problem is the computation of the image gra-
dient, which consists of the partial derivatives of an image in the direction of the
two coordinate axes. For this purpose, we rely on numerical differentiation with
the Sobel operator. It consists of two 3× 3 kernels

Sx =
1
8





1 0 −1
2 0 −2
1 0 −1



 and Sy =
1
8





1 2 1
0 0 0
−1 −2 −1



 , (3.8)

which are convolved with the original image to yield the respective partial deriva-
tives. Interestingly, a Sobel kernel can be decomposed into two or four primitive
kernels

Sx =
1
8





1 0 −1
2 0 −2
1 0 −1



 (3.9)
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1
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∗
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1
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.

It is a well-known fact that derivative computations emphasize high-frequency
noise [Gup97]. The last line of (3.9) illustrates that the Sobel operator counteracts
this problem by using three kernels for averaging and smoothing the results of the
derivative computation with the first kernel.
As the motion parameter vector is not limited to integer values, it is possible that

the pixel positions of a feature window lie between the pixel positions of the im-
age. The most efficient way to solve this problem is to use the intensity value of the
nearest pixel, which is also called nearest neighbor interpolation. However, this ap-
proach seriously impairs the accuracy of the tracking algorithm. In order to achieve
more accurate results, we compute the intensity values with the help of a bilinear
interpolation. This technique computes a weighted average of the intensities of the
four nearest pixels, which turns out to be a good compromise between accuracy
and efficiency. The same method is also applied to the interpolation of the partial
derivatives. Many more sophisticated interpolation techniques are described and
evaluated in [Mei01]. As these techniques incur a much higher computational cost
than bilinear interpolation, they are not considered in this thesis.
Like every iterative algorithm, the Kanade-Lucas-Tomasi tracker requires the def-

inition of one or more stopping criteria. When the algorithm is successful, the com-
puted sequence of motion parameter vectors converges. Consequently, the itera-
tive computation can be stopped when all components of the update vector ∆d fall
below a specified minimum threshold θtra_stop. It is also possible that the sum of
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squared differences of the two feature windows increases after an iteration step. In
this case, the iteration loop is terminated as well, and the previous motion parame-
ter vector is returned. In addition to that, the maximum number of iterations δtra_iter
can be specified as a safeguard. Finally, the tracking of a feature has to be stopped
when it moves out of the image.

3.2.2 Feature Detection

Many different algorithms for detecting feature points have beenmentioned in Sub-
section 3.1.2. One of the strong points of the Kanade-Lucas-Tomasi tracker is the
existence of a custom-made feature detection algorithm, which was first presented
by Tomasi and Kanade in [Tom91]. Instead of relying on some conceived assump-
tions about the nature of a good feature, it is directly based on the mathematical
properties of the tracking algorithm.
The most important condition for successful tracking is that the computation of

the motion parameter update vector described in (3.6) yields dependable results.
This is not the case when the entries of the matrix Hklt are dominated by noise.
Consequently, the two eigenvalues of Hklt should be large. When the matrix Hklt
is not well-conditioned, solving the system in (3.6) becomes unstable. Therefore,
the eigenvalues of Hklt should be roughly equal. As the maximum value of the
eigenvalues is bounded by the maximum intensity value, Tomasi and Kanade pro-
pose to use the minimum eigenvalue of Hklt as a measure for the quality of the
corresponding feature window.
The quality of prospective feature windows is typically computed for every pixel

of an image. Figure 3.4 illustrates the resulting interest images for different win-
dow sizes. Interestingly, the response of suitable image features like corners is not
limited to a single pixel. Instead, the interest images show that the feature qual-
ity is high in an extensive area around the corner. It can also be seen that the size
of this area directly depends on the size of the feature window. This observation
motivates the augmentation of the feature detection algorithm with an appropriate
feature selection strategy.
Tomasi and Kanade propose to ignore feature windows whose quality lies below

a threshold δftr_qual, which is determined by the quality of the feature windows in
an approximately uniform region of the image [Tom91]. Another possibility to pre-
vent the selection of unsuitable feature windows is to apply a local non-maximum
suppression as shown in [Nis04c]. There are different strategies for selecting the
best remaining features. Tomasi and Kanade build a list of features that is sorted
according to feature quality. Then, the best remaining features are selected in an it-
erative process, while features candidates that overlap existing features are deleted
from the list. A more efficient algorithm for feature selection will be presented in
Subsection 3.3.2.
A close examination of the selected features reveals that corners are very likely

to be positioned at the edges of the feature windows. In addition to that, these
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Figure 3.4: An exemplary gray-level image and three interest images for feature windows of
7× 7, 15× 15, and 23× 23 pixels. The feature quality, which is represented by the intensity
of the pixels in the interest images, increases from white to black. The areas highlighted by
the circles in the first image illustrate that two-dimensional variations in the image intensi-
ties, e. g., corners, result in a high feature quality. In contrast to this, feature windows that
only include the edge connecting the two highlighted corners are not visibly better than
feature windows in homogeneous areas of the image.

feature windows are filled with the brighter part of the image region in an over-
whelming majority of the cases. This noteworthy behavior of the feature detection
algorithm is illustrated in Figure 3.5 and has already been observed by Tomasi and
Kanade [Tom91]. It is explained by the fact that, as long as the corner is inside the
feature window, the feature quality is only influenced by the remaining intensity
variations, which are usually higher in the brighter regions of the image. This be-
havior can lead to suboptimal performance of the feature point tracking algorithm.
A surprisingly simple and effective solution to this problem is to decrease the size
of the feature windows for feature detection. Consequently, even if a corner lies at
the edge of the detection window, it lies safely inside the actual tracking window.
Another possibility is to emphasize the inner pixels of the detection window by ap-
plying Gaussian weights, but our experiments indicate that this method does not
further improve the performance of the tracking algorithm.

As the feature quality has to be computed for every pixel of an input image,
the efficiency of this computation is very important for real-time applications. The
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Figure 3.5: The results of feature selection for the interest images of Figure 3.4. All features
windows have a minimum distance of 12 pixels from each other. The two highlighted areas
illustrate the phenomenon that corners inside a feature window are often positioned at its
very edge, which is especially prominent for the large feature windows in the lower right
image.

entries of the matrix Hklt can be determined from the image derivatives by simple
operations that involve only summation and multiplication. When the matrix Hklt
is given by

Hklt =





∑
∂ f (x)

∂x
∂ f (x)

∂x ∑
∂ f (x)

∂x
∂ f (x)

∂y

∑
∂ f (x)

∂x
∂ f (x)

∂y ∑
∂ f (x)

∂y
∂ f (x)

∂y



 =

(

h11 h12
h21 h22

)

, (3.10)

its smaller eigenvalue can be written in closed form as

qT =
1
2

(

h11 + h22 −
√

(h11 − h22)2 + 4 h212

)

. (3.11)

In [Har88], Harris and Stephens present a similar quality measure that avoids the
explicit computation of the eigenvalues. It is defined by

qH = det(Hklt)− KH trace(Hklt)
2 = h11h22 − h212 − KH (h11 + h22)

2. (3.12)

Interestingly, the original work contains no advice on a suitable value for the con-
stant KH . However, values between 0.04 and 0.08 are recommended for KH in other
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publications. We use a value of 0.04. As the quality measure of the Harris detec-
tor requires fewer operations than the quality measure proposed by Tomasi and
Kanade, its computation is slightly more efficient. Nevertheless, our experiments
suggest that both computation speed and detection results of the two quality mea-
sures differ only by negligible amounts.
Zivkovic and van der Heyden propose a new feature detection technique, which

is based on the size of the convergence region of the feature point tracking algorithm
[Ziv04]. By tracking the feature from different starting points near its actual posi-
tion, the size of the convergence region is estimated. Unfortunately, this technique
requires a lot of computation time, which makes it unsuitable for a large number of
applications.

3.2.3 Outlier Rejection

The Kanade-Lucas-Tomasi tracker estimates the translation of a feature point from
one frame to the next. In other words, the current frame fc(x) becomes the reference
frame fr(x) when the tracking is finished, and the next frame in the video sequence
becomes the current frame. Consequently, the reference feature window of a feature
is constantly changing. In addition to that, a tracking error can never be recovered
in later frames, because an erroneous feature window becomes the new reference
feature window, which is the de facto standard for the appearance of the feature.
When a severe tracking error occurs, the dissimilarity of the two corresponding

feature windows is often conspicuously high. This case can be identified by setting
a maximum threshold for the sum of squared differences of the two feature win-
dows. In contrast to this, the accumulation of small tracking errors, which is also
known as the feature drift problem, cannot be detected reliably in this way. Un-
fortunately, small tracking errors are unavoidable, because the feature windows in
two consecutive frames will never be identical in a video sequence of a real-world
scene. A discussion of several reasons for this phenomenon can be found in Sub-
section 3.1.1.
In order to enhance the performance of outlier rejection, Shi and Tomasi propose

to measure the feature dissimilarity between the original frame and the current
frame [Shi94]. With the help of the original feature window, even incremental ap-
pearance changes can be detected reliably. Unfortunately, this approach gives rise
to a new problem. Although the motion model of pure translation is sufficiently
accurate for tracking small feature windows from one frame to the next, it is inad-
equate for describing the motion of a feature window over longer periods of time.
This problem is illustrated by the images of the feature window in the top row of
Figure 3.6.
Features that lie on a planar surface of a scene object change their appearance in

the image based on the properties of perspective projection. As the feature win-
dows used for feature point tracking are rather small, Shi and Tomasi recommend
to ignore the effects of perspective distortion and to use an affine motion model for
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Figure 3.6: The images in the top row illustrate how the appearance of a feature can change
when the scene object moves relative to the camera. Although the feature window lies on a
curved surface and the camera performs a perspective projection, the affine motion model
is sufficiently accurate for describing the motion of the feature window. This finding is
confirmed by the images in the bottom row, which contain the feature windows that were
reconstructed from the respective input images with the computed motion parameters.

measuring feature dissimilarity. In order to consolidate the different motion mod-
els in our feature point tracking system, we work with the parameterized warp
function g(x,φ). It represents either a translation

gt(x,φt) = x + d , d ∈ R
2, φt = ( d1, d2 )T

or an affine motion

ga(x,φa) = Ax + d , A ∈ R
2×2, d ∈ R

2, (3.13)

φa = ( a11−1, a12, a21, a22−1, d1, d2 )T.

In both cases, the parameter vector is defined such that the zero vector yields the
identity transformation. We can now rewrite the error function of the feature tracker
as

ǫfaa(∆φ) = ∑
x∈W

( fr(x)− fc(g(x,φ + ∆φ)))2 . (3.14)

The update vector ∆φ that minimizes the error function ǫfaa(∆φ) can be derived
with the same approach that was applied in (3.3) - (3.7). First, the error function is
transformedwith a first-order Taylor expansion on fc(g(x,φ)). Then, the derivative
of the revised error function is set to zero and the resulting system is solved for ∆φ.
After the introduction of the vector

hfaa(x) =

(

(∇ f c(g(x,φ)))T
∂g(x,φ)

∂φ

)T

(3.15)
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and the matrix
Hfaa = ∑

x∈W
hfaa(x) hfaa(x)

T , (3.16)

the update vector ∆φ can be written as

∆φ = H−1faa ∑
x∈W

hfaa(x) ( fr(x)− fc(g(x,φ))) . (3.17)

When the parameterized warp function g(x,φ) represents a translation, the vec-
tor hfaa(x) is defined as

ht(x) =

(

(∇ f c(gt(x,φt)))
T ∂gt(x,φt)

∂φt

)T

(3.18)

=

(

(∇ f c(x + d))T
∂(x + d)

∂d

)T

=

(

(∇ f c(x + d))T
(

1 0
0 1

))T

.

As can easily be seen, this notation yields the same results for the computation of
the motion parameter update vector ∆φ as (3.6). On the other hand, for an affine
motion, the vector hfaa(x) is given by

ha(x) =

(

(∇ f c(ga(x,φa)))
T ∂ga(x,φa)

∂φa

)T

(3.19)

=

(

(∇ f c(Ax + d))T
∂(Ax + d)

∂φa

)T

=

(

(∇ f c(Ax + d))T
(

x 0 y 0 1 0
0 x 0 y 0 1

))T

.

Consequently, the matrix H faa for solving the equation in (3.17) is a 6× 6 matrix. In
accordance with Subsection 3.2.1, the general rule for updating the motion param-
eter vector φ between two iterations of the motion estimation is

φ← φ + ∆φ . (3.20)

The second row of images in Figure 3.6 illustrates the reconstructions of a tracked
feature window for the affine motion model. It is obvious that only the affine mo-
tion model is able to cope with the types of motion that occur over longer periods
of time, e. g., rotation, scaling, and shearing. Shi and Tomasi estimate the affine mo-
tion from the first frame to the current frame of a feature trail and reject outliers by
monitoring the corresponding error function. Different uses for the affine motion
estimation and more elaborate techniques for outlier rejection will be presented in
the next section.
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3.3 The Feature Point Tracking System

This section details our contributions in the area of feature point tracking. To this
end, we present several independent enhancements to the Kanade-Lucas-Tomasi
feature point tracker in the five subsections 3.3.2 to 3.3.6. Furthermore, we describe
the cooperation of these enhancements in our feature point tracking system in Sub-
section 3.3.7. We start this section with an overview of the effects of the proposed
enhancements on the performance of the feature point tracking system with respect
to the criteria defined in Subsection 3.1.1.

3.3.1 Overview

As our feature point tracking system is used by a number of components of the
VAMPIRE system, like self-localization of the augmented reality gear, building im-
agemosaics, and object tracking, its main goal is to be sufficiently versatile to satisfy
the diverse requirements. In order to achieve this versatility, we have taken care that
the enhancements presented in the following subsections are both independent and
optional. This design decision is especially important for enhancements that yield
both positive and negative effects with respect to the four performance criteria de-
fined in Subsection 3.1.1.
The associated trade-offs of the proposed extensions concerning the defined per-

formance criteria are discussed in their respective subsection. In addition to that,
the following general observations can be made:

• The basin of convergence of the standard Kanade-Lucas-Tomasi tracker is ap-
proximately half the size of the feature windows, which is not sufficient for
many applications. The hierarchical translation estimation described in Sub-
section 3.3.5 considerably increases the basin of convergence of the translation
estimation.

• The computational efficiency of the standard KLT tracker is already very good.
The enhancements in Subsections 3.3.2 and 3.3.3 further improve its efficiency
without interfering with the other performance criteria. In addition to that, the
efficient implementation of all algorithms of the tracking system is essential to
obtain real-time capabilities.

• Although the requirements on the accuracy of the computed feature positions
vary widely for the different applications of our tracking system, the accuracy
of the standard tracker is usually sufficient. With the help of the feature drift
prevention approach presented in Subsection 3.3.3, the tracker gains the ability
to maintain its subpixel accuracy in the case of long video sequences.

• The low robustness against adverse conditions in video sequences of real-
world scenes is a weak point of the standard Kanade-Lucas-Tomasi tracker.
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First and foremost, the intensity equalization approaches discussed in Subsec-
tion 3.3.4 greatly alleviate this weakness. However, they also result in a mod-
erately reduced basin of convergence. The approaches for outlier rejection de-
scribed in Subsection 3.3.6 indirectly increase the robustness of the tracker by
rejecting erroneous feature positions. These approaches have no measurable
impact on the other performance criteria.

3.3.2 Efficient Feature Selection

In the literature on the standard Kanade-Lucas-Tomasi tracker, feature selection is
only performed in the first frame of the video sequence [Tom91, Shi94]. Thus, the
efficiency of this operation has never been a pressing issue. In our work, the track-
ing system is also used to process long video sequences, where some features are
invariably lost due to one of the following reasons:

• Feature points are occluded by other objects.

• Feature points leave the field of view of the camera.

• Feature points are discarded by outlier rejection.

Therefore, in order to replace lost feature points regularly, feature selection also has
to be performed in intermediate frames. As a consequence, the employed feature
selection strategy has to be very efficient to retain the real-time performance of the
tracking system.
The input data for our feature selection strategy is an interest image, which stores

a feature quality measure for every pixel. In our tracking system, the feature quality
measure is computed according to either (3.11) or (3.12). In both cases, the compu-
tation of the interest image requires two derivative images, which are generated
with the Sobel operator as detailed in Subsection 3.2.1. There are three design goals
for our feature selection strategy. It has to find the best remaining features in the
interest image, avoid the selection of overlapping features, and operate in a highly
efficient way.
In order to achieve the desired goals, our feature selection strategy uses the hier-

archical search structure illustrated in Figure 3.7. The pixels of the interest image
are grouped into logical blocks, which have a typical size of 8× 8 pixels. These
blocks are hierarchically grouped into higher-level logical blocks, until the interest
image is completely covered by one block on the highest level. For each block, the
position and the quality measure of the best feature are stored. This operation re-
quires slightly more computation time than scanning the entire interest image for
the best feature once. When all blocks are initialized, the best remaining feature is
stored in the top-level block.
After the selection of the best remaining feature, its quality measure is set to zero

in the interest image. When the selection of overlapping features is not desired, the
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interest image logical blocks (1) logical blocks (2) logical blocks (3)

storage vector for hierarchical search structure

Figure 3.7: The hierarchical search structure partitions the interest image into several levels
of logical blocks. The only physical representation of each block is an element in the storage
vector, which contains the position and the quality measure of the best feature in this block.
Metadata like the address of a block in the storage vector or the set of its elements can be
directly computed from the resolution of the image, the size of the blocks, and the position
of the block.

interest image logical blocks (1) logical blocks (2) logical blocks (3)

storage vector for hierarchical search structure

Figure 3.8: Exemplary update of the hierarchical search structure. A dashed rectangle
marks the values around the selected feature that are set to zero to prevent overlapping
feature windows. Pixels and logical blocks that have to be examined for the update of
blocks on the next higher level are marked in light gray, whereas blocks that are potentially
updated are shown in dark gray.

quality measure of all pixels within the distance δftr_dist from the selected feature
has to be set to zero. As a side note, it is also important to perform this action for all
currently active features when the feature selection is used on intermediate frames
in a video sequence. In this case, it is most efficient to edit the interest image before
the hierarchical search structure is initialized.
In order to find the next best remaining feature, an update of the hierarchical

search structure is necessary. As the interest image has only been changed in a
known local area around the last selected feature, only a small number of blocks
have to be examined and updated. This process is demonstrated in Figure 3.8,
where examined pixels and blocks are shown in light gray and updated blocks are
shown in dark gray. It can easily be seen that only a small fraction of the pixels and
blocks has to be examined during an update of the hierarchical search structure. All
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in all, feature selectionwith the presented strategy is much faster than the algorithm
proposed in [Tom91]. As it is even faster than the highly optimized computation of
the interest image, further speed improvements would only show a small effect on
the complete system.

3.3.3 Efficient Motion Estimation

When the basin of convergence of the tracker is increased with our robustified strat-
egy for hierarchical translation estimation, which is described in Subsection 3.3.5,
the motion parameter vector φ has to be computed iteratively for every starting po-
sition on every level of the image pyramid for every feature point in every frame of
the video sequence. Due to the very high number of invocations, the computation
of the motion parameter update vector ∆φ, which is specified in (3.17), has to be as
efficient as possible to achieve real-time performance. Baker andMatthews propose
an algorithm with improved efficiency in [Bak04]. Furthermore, they also present a
consistent framework for several closely related feature point tracking algorithms.
In their framework, the original algorithm by Lucas and Kanade is classified as a

forwards additive algorithm. The term “forwards” denotes that the motion of the
feature window in the current image is estimated with respect to its position in the
reference image. Furthermore, the algorithm is labelled “additive”, because the mo-
tion parameter vector φ is updated by adding the motion parameter update vector
∆φ. Baker and Matthews propose the inverse compositional algorithm. Compared
to the original algorithm, it estimates the inverse motion, i. e., the motion of the
feature window in the reference image with respect to the position of the feature
window in the current image. In addition to that, the motion parameter update
vector ∆φ represents an incremental motion, which has to be composed with the
current motion.
The error function of the inverse compositional algorithm is given by

ǫica(∆φ) = ∑
x∈W

( fr(g(x,∆φ))− fc(g(x,φ)))2 . (3.21)

A first-order Taylor expansion on fr(g(x, 0)) yields

ǫ̃ica(∆φ) = ∑
x∈W

(

fr(g(x, 0)) + (∇ f r(g(x, 0)))T
∂g(x,φ)

∂φ
∆φ− fc(g(x,φ))

)2

= ∑
x∈W

(

fr(x) + (∇ f r(x))
T ∂g(x,φ)

∂φ
∆φ− fc(g(x,φ))

)2

. (3.22)

When the derivative of the revised error function is set to zero, solving for the mo-
tion parameter update vector ∆φ results in

∆φ = H−1ica ∑
x∈W

hica(x) ( fc(g(x,φ))− fr(x)) , (3.23)
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with the vector hica defined as

hica(x) =

(

(∇ f r(x))
T ∂g(x,φ)

∂φ

)T

, (3.24)

and the matrix Hica given by

Hica = ∑
x∈W

hica(x) hica(x)
T . (3.25)

The main advantage of the inverse compositional algorithm is that both the vector
hica and the matrix H ica are independent of the current frame and the current mo-
tion parameter vector. Consequently, they have to be computed at most once for
every iterative optimization, instead of in every step of the iteration like in the for-
wards additive algorithm. As the matrix Hica has to be inverted for computing the
motion parameter update vector, the number of required matrix inversions is also
considerably reduced.
The rule for updating the motion parameter vector in the inverse compositional

algorithm is
g(x,φ)← g(g(x,∆φ)−1,φ) . (3.26)

In accordance with its introduction in Subsection 3.2.3, the parameterized warp
function g(x,φ) represents either a translation or an affine motion. In the case of
translation, the new motion is given by

gt(gt(x,∆φt)
−1,φt) = x− ∆d + d (3.27)

= x + (d− ∆d) .

In the case of affine motion, the composition of the motions yields

ga(ga(x,∆φa)
−1,φa) = A

(

(∆A)−1 (x− ∆d)
)

+ d (3.28)

=
(

A(∆A)−1
)

x +
(

d− A(∆A)−1∆d
)

.

The only disadvantage of the inverse compositional algorithm is the more costly
procedure for updating affine motions, but that is easily outbalanced by the more
efficient computation of the motion parameter update vector. For further details,
we refer to the thorough analysis of the computational cost of both algorithms in
[Bak04] and to the proof of their equivalence to first order in [Bak01].
The outstanding efficiency of the inverse compositional algorithm facilitates the

integration of our robustified strategy for hierarchical translation estimation, which
is described in Subsection 3.3.5, into our real-time feature point tracking system. In
addition to that, it also extends the scope of affine motion estimation, which can
now be continuously performed in every frame of a video sequence. The result-
ing structure of the motion estimation is illustrated in Figure 3.9. For any given
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first frame preceding frame current frame

translation estimation

affine motion estimation

Figure 3.9: The motion estimation of our feature point tracking system comprises a trans-
lation estimation followed by an affine motion estimation. The result of the translation
estimation from the preceding frame to the current frame is used to initialize the displace-
ment vector d of the affine motion estimation from the first frame to the current frame. In
contrast to this, the affine distortion matrix A is initialized with the matrix obtained by the
affine motion estimation in the preceding frame.

feature and any current frame, the translation estimation is performed from the
preceding frame to the current one. In order to retain a large basin of convergence
for strongly distorted scene objects, the translation of a feature is always computed
with a square feature window. Afterwards, the affine motion of the feature win-
dow is estimated with the first frame of the feature trail as reference frame. To this
end, the affine distortion matrix A is initialized with the matrix estimated in the
preceding frame, whereas the displacement vector d is initialized with the result
of the translation estimation in the current frame. It is also possible to specify dif-
ferent window sizes δtra_size and δaff_size for the estimation of translation and affine
motion, respectively. As the affine motion model has more motion parameters, the
feature windows for its estimation are commonly larger.
Compared to the approach for outlier rejection described in Subsection 3.2.3,

where the affine motion of a feature point is only estimated in the last frame of
the feature trail, our approach for motion estimation offers several clear advan-
tages. The first advantage is that outlier rejection can be performed in every frame
of the video sequence. Consequently, it is possible to detect and reject outliers much
earlier than in the last frame of the feature trail, i. e., before more computational re-
sources are wasted on tracking them. Different methods for detecting outliers with
the help of our motion estimation component are discussed in Subsection 3.3.6.
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Another advantage of our approach for motion estimation originates from the
incremental estimation of the affine distortion matrix. The gradient descent opti-
mization algorithms for motion estimation have a basin of convergence for every
estimated parameter. For translation estimation, the basin of convergence only per-
tains to the translation of the feature window. For affine motion estimation, the
basin of convergence additionally applies to the entries of the affine distortion ma-
trix. Consequently, the affine motion estimation only converges to the correct result
when this result is not too far from the starting position. For example, it is very un-
likely that a rotation of the feature window by more than 90 degrees can be reliably
estimated in one step. Nevertheless, this problem often arises when the affine mo-
tion is only estimated at the end of the feature trail. With our approach, the affine
motion parameters are updated in every frame, so that affine distortions that are
too strong occur much less frequently.
Finally, our approach for motion estimation offers a solution to the feature drift

problem, which becomes apparent in video sequences of more than 100 frames.
There are several reasons why a feature window is never exactly identical in two
different frames of a video sequence of a real-world scene:

• geometric distortions like rotation or non-rigid deformation,

• image noise and sampling artifacts caused by the image sensor,

• intensity changes induced by variation in illumination or exposure.

These effects are usually very small in consecutive frames. Nevertheless, they tend
to introduce small errors in the frame-to-frame translation estimation. Over time,
these estimation errors accumulate and invariably cause the feature windows to
drift from their true position. As the feature drift problem is mainly limited to long
video sequences, it has not been observed in early work on feature point tracking
[Luc81, Tom91, Shi94].
Our solution to the feature drift problem is to use the translation parameters of

the affine motion estimation as the final values of the feature position. In order
to prevent small errors in the affine distortion matrix from negatively affecting the
computed translation parameters, we center the coordinate system for the affine
motion estimation on the original feature window. As the estimation is always per-
formed with the first feature window of the feature trail as a reference, the feature
drift problem is practically eliminated. It is also possible to use affine motion es-
timation exclusively [Jin01], but this approach abandons the much larger basin of
convergence of the preceding translation estimation. Further strategies for prevent-
ing feature drift in the context of region tracking are discussed in [Mat04].

3.3.4 Integrated Intensity Equalization

It is a basic assumption of feature point tracking that the appearance of the scene
objects remains approximately constant throughout the video sequence. However,
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Figure 3.10: The automatic exposure correction of digital cameras is based on the assump-
tion that a correctly exposed scene yields an average intensity value of medium gray. When
a very dark object is introduced into the scene, the camera counteracts by making the whole
image brighter, which affects the appearance of all scene objects.

especially the assumption of constant image intensity is often violated in video se-
quences of real-world scenes, which has a number of different reasons:

• Movements of the scene objects, the light sources, or the camera change the
angle of incidence and the angle of irradiance of the light rays.

• Movements of the scene objects, the light sources, or the camera affect and
alter the shadows in the scene.

• The lighting conditions change because light sources are added, removed, or
otherwise modified.

• The automatic exposure correction of the digital camera adjusts the shutter
time, the aperture size, or the electronic amplification.

As an example, the effects of automatic exposure correction of a digital camera on
the appearance of the scene objects are illustrated in Figure 3.10.
The existence of various violations of the constant image intensity assumption

suggests that the robustness of our feature point tracking system can be consid-
erably improved by performing an intensity equalization on the involved feature
windows. One promising approach is dynamic histogram warping, which models
the intensity deviations of two images with a non-linear monotonically increasing
function [Cox95]. It is mainly used for equalizing the intensities of complete images
and disregards any independent local intensity deviations. Consequently, we pre-
fer alternative approaches, which use less elaborate intensity equalization models,
but are better suited for operating on corresponding feature windows.
The affine linear model α f (x) + β is used as an intensity equalization model in

many feature point tracking algorithms. It has the ability to adapt both the contrast
and the brightness of the feature windows, which is a rather coarse adjustment,
especially in light of the non-linear encoding of the intensity values described in
Subsection 2.3.3. In practice, however, the affine linear model has proven to be
more than adequate, which is mainly due to the small size of the involved feature
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windows. We always compute the intensity equalization parameters α and β for
the reference feature window in our feature point tracking system. In line with
the handling of the motion parameters in the inverse compositional algorithm, the
estimated intensity equalization parameters are inverted and applied to the current
feature window for performance reasons

f̂c(x) =
1
α
fc(x)−

β

α
. (3.29)

There are several different methods for computing the intensity equalization pa-
rameters. The first method is based on the average value µ and the standard de-
viation σ of the intensity values in both feature windows. The equations for the
reference feature window are

µr =
1
|W| ∑

x∈W
fr(x) and σ2

r =
1
|W| ∑

x∈W
f 2r (x)− µ2

r . (3.30)

The average value µc and the standard deviation σc of the intensity values in the cur-
rent feature window are defined analogously. It is possible to normalize the feature
windows independently by subtracting the mean value and dividing by the stan-
dard deviation as proposed in [Fus99]. However, the same result can be achieved
more efficiently with the affine linear model, when its parameters are computed
according to

αdie =
σc
σr

and βdie = µc −
σc
σr

µr , (3.31)

where the index “die” is an abbreviation of the term “distribution normalization
intensity equalization”.
The second method directly estimates the intensity equalization parameters by

minimizing the sum of squared differences of the intensity values in the adapted
reference feature window and the current feature window

ǫsie(α, β) = ∑
x∈W

(α fr(x) + β− fc(g(x,φ)))2 . (3.32)

Setting the derivative of the error function to zero and solving for the intensity
equalization parameters yields

(

αsie
βsie

)

=

(

∑
x∈W

(

fr(x)
1

)(

fr(x)
1

)T
)−1(

∑
x∈W

(

fr(x)
1

)

fc(g(x,φ))

)

. (3.33)

As this method compares the intensity values at corresponding positions in the fea-
ture windows, it is more sensitive to strong misalignments of the feature windows
than the first method. Both methods have in common that they are performed in
alternation with the motion estimation. Consequently, the convergence rate of the
combined iterative estimation is low.
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A more efficient solution is achieved by combining the estimation of motion and
intensity equalization into a single algorithm. This approach is described for the
forwards additive algorithm in [Jin01]. In this thesis, we propose the integration
of the affine linear model for intensity equalization into the inverse compositional
algorithm for motion estimation. Let us define the corresponding error function as

ǫiie(∆φ, α, β) = ∑
x∈W

(α fr(g(x,∆φ)) + β− fc(g(x,φ)))2 . (3.34)

A first-order Taylor expansion on fr(g(x, 0)) yields the revised error function

ǫ̃iie(∆φ, α, β) = ∑
x∈W

(

α fr(x) + α (∇ f r(x))
T ∂g(x,φ)

∂φ
∆φ + β− fc(g(x,φ))

)2

.

This optimization problem can be solved with the help of the intermediate param-
eter vector

φiie =
(

α ∆φT, α , β
)T

. (3.35)

After setting the derivative of the revised error function to zero, the solution of the
optimization problem is given by

φiie = H−1iie ∑
x∈W

hiie(x) fc(g(x,φ)) , (3.36)

where the vector hiie and the matrix Hiie are defined as

hiie(x) =

(

(∇ f r(x))
T ∂g(x,φ)

∂φ
, fr(x) , 1

)T

, (3.37)

and
Hiie = ∑

x∈W
hiie(x) h

T
iie(x) . (3.38)

The resulting algorithm inherits the improved robustness of the intensity equal-
ization and the outstanding efficiency of the inverse composition algorithm for mo-
tion estimation. As the parameters for motion and intensity equalization are esti-
mated together, this algorithm has a higher convergence rate than the algorithms
with alternating estimation. Compared to an algorithm without intensity equaliza-
tion, the number of parameters increases from two to four for translation estimation
and from six to eight for affine motion estimation. The larger parameter space po-
tentially decreases the basin of convergence with respect to the motion parameters.
However, when strong intensity variations occur, an algorithm without intensity
equalization is very unlikely to converge to the correct motion parameters at all.
Translation estimation is commonly performedwithout applying intensity equal-

ization, because the intensity variations from one frame to the next are negligible in
most video sequences. In contrast to this, the estimation of affine motion from the
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Figure 3.11: The images in the top row illustrate the effects of intensity changes on the ap-
pearance of a scene object. In order to allow an easy comparison with the results of the
affine motion estimation in Figure 3.6, the changes were performed in an image editing
program by modifying the contrast and the brightness of the images, as well as applying
non-linear intensity transfer functions. The reconstructed feature windows in the bottom
row demonstrate the performance of the integrated intensity equalization with the affine
linear model in this test case.

first frame of a feature trail to the current frame often suffers from large intensity
variations. Consequently, the algorithm with integrated intensity equalization is
mostly used for affine motion estimation. In this case, the reduced basin of conver-
gence with respect to the motion parameters is not critical, because the necessary
updates are usually quite small. The robustness of our tracking system with inte-
grated intensity equalization is illustrated in Figure 3.11.

3.3.5 Hierarchical Translation Estimation

The basin of convergence for successful translation estimation with the Kanade-
Lucas-Tomasi tracker strongly depends on the specific appearance of each feature
window. In general, our experimental evaluation suggests that displacements of
approximately half the size of the feature window can be reliably estimated with
the standard error function, which is defined in (3.21). The basin of convergence
for translation estimation with integrated intensity equalization, as defined by the
error function in (3.34), is even smaller. Thus, feature windowswith a size of 11× 11
pixels allow the estimation of a maximum displacement of 5 pixels, which is less
than one percent of the width of an image with a size of 640× 480 pixels. For many
applications of our tracking system, this basin of convergence is too small.
There are several different approaches for improving the basin of convergence of

the translation estimation. One solution is to increase the size of the feature win-
dows. However, this approach yields only a small improvement for the basin of
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gray-level images derivative images (∂x) derivative images (∂y)

Figure 3.12: Gaussian image pyramids for one gray-level image and two derivative images.
For efficiency reasons, we compute the derivative images from the gray-level images on the
corresponding level in the pyramid. As the size of the additional images decreases very
rapidly, the Gaussian image pyramid for an image requires at most 35%more memory than
the original image.

convergence, but considerably reduces the computational efficiency of the feature
point tracker. In addition to that, a larger feature window has a higher risk of strad-
dling a depth discontinuity and is more prone to occlusions by other scene objects.
Another solution, which was proposed by Lucas and Kanade in [Luc81], is to in-
crease the basin of convergence by using a low-pass filter to smooth the image. As
small details are suppressed by the filter, this approach decreases the accuracy of
the estimated feature positions.
Based on the observation that a low-pass filtered image can be resampled at a

lower resolution without loss of information, it is possible to devise an approach
that yields a much larger basin of convergence. In our tracking system, the input
image is first smoothed with a 5× 5 Gaussian filter
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and then downsampled by a factor of two along both coordinates axes by removing
all odd rows and columns of the image. The result of the recursive application of
this procedure is a Gaussian image pyramid, which is illustrated in Figure 3.12.
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border

image

feature window

Figure 3.13: The images in our image pyramid are extended with a border in order to im-
prove the efficiency of the translation estimation. This approach ensures that every pixel of
the feature window lies inside the extended image, as long as the central pixel of the feature
window lies inside the original image. For example, the 5× 5 feature window in this figure
requires an additional border of two pixels. During the initialization of the border, the in-
tensity value of every pixel in the additional border is copied from its nearest neighbor in
the image. As a consequence, the intensity values of the pixels in any gray rounded box are
identical.

For feature point tracking, image pyramids with two to five levels are used. As an
example, the size of the image on the fourth level of the pyramid is 80× 60 pixels
for an input image with a size of 640× 480 pixel.

The standard way of applying the Gaussian image pyramid is to start the hierar-
chical translation estimation at the highest level of the pyramid and to iteratively
refine the estimated feature translation on the lower levels of the pyramid. When
the physical feature window size in pixels is held constant, the effective feature
window size doubles from one level to the next higher level. On the one hand, the
effective feature window size is large for the initial estimation of the translation at
the highest level of the pyramid, which improves the basin of convergence of the
tracking algorithm. On the other hand, the refinement of the feature position at the
lower levels of the pyramid helps to maintain the high accuracy of the standard
algorithm. This approach is detailed by Bouguet in [Bou00]. As our experimental
evaluation suggests that every level of the image pyramid approximately doubles
the basin of convergence, the additional computation time required for computing
the Gaussian image pyramid represents a negligible drawback.

When the size of the feature windows is held constant on all levels of the im-
age pyramid, the image borders have to be treated with special attention. For a
standard input image with a size of 640× 480 pixels, the requirement that a fea-
ture window with a size of 11× 11 pixels has to lie completely inside all images
of a four level image pyramid results in a border of 5× 23 − 5 = 35 pixels where
no features can be tracked. This problem can be eliminated by requiring that only
the center pixel of a feature window has to lie inside the current image. Bouguet

62



3.3 The Feature Point Tracking System
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Figure 3.14: This figure illustrates our robustified result propagation strategy for hierarchi-
cal translation estimation on one level of the Gaussian image pyramid. The three starting
positions on the left are optional, but one of them has to be present at the highest level of the
pyramid, because the fourth starting position is not available there. A standard hierarchical
translation estimation can be simulated by using one of the optional starting positions at
the highest level and only the propagated position estimate on all other levels.

proposes to exclude those pixels of the feature window that lie outside the current
image [Bou00]. For this approach, the location of every pixel has to be checked in
every computation. In contrast to this, we extend the images of the image pyramid
with an additional border. As illustrated in Figure 3.13, every pixel in the additional
border has the same intensity value as the nearest pixel inside the image. Conse-
quently, all computations can be done without explicitly checking the position of
every pixel.
Estimation errors on the higher levels of the Gaussian image pyramid are a com-

mon problem of the hierarchical translation estimation. One reason is that the im-
plicit blurring of the input image can erase small details and possibly make whole
features disappear. Another reason is that the large effective feature window size
increases the risk of drastic appearance changes, which has already been detailed
above. In both cases, the estimation error can become so large that it cannot be
recovered on the lower levels of the pyramid. However, for small translations, sim-
ply starting the estimation on one of the lower levels might have been sufficient to
estimate the correct translation. In the following, we put forward a strategy that
eliminates the described estimation errors.
Figure 3.14 illustrates the process of translation estimation on one level of the

Gaussian image pyramid with our robustified result propagation strategy. Basi-
cally, the translation estimation is run with a number of different starting positions,
and afterwards one translation vector is chosen as the final result for the current
level. Thus, the estimated translation is given by the final result on the lowest level
of the pyramid. The quality measure for selecting the best translation vector on
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one level of the pyramid is defined by the final value of the error function of the
tracking algorithm.
The four possible starting positions for translation estimation are shown in Fig-

ure 3.14. The external prediction is only available in special applications, where
model knowledge allows to compute the approximate feature position in advance.
The prediction for constant feature velocity can be computed internally, as long as
the feature position is known in the two preceding frames. When the velocity of
the feature points is indeed more or less constant, this prediction also increases the
basin of convergence of the feature point tracker. The third starting position is given
by the position of the feature in the preceding frame. Consequently, it is especially
useful for small or erratic motions of the feature points, and whenever none of the
other predictions are available. The fourth starting position is the propagated result
of the hierarchical estimation, which is obviously available on any level other than
the highest one.
Although the translation estimation is performed with a very efficient algorithm,

computing it several times on every level of the image pyramid for every feature
point can have a negative impact on the computational efficiency of the tracker.
Consequently, our result propagation strategy can be configured for maximum ro-
bustness or for maximum computation speed. When computation speed is not an
issue, the predictions for constant velocity and for constant position can be used in
parallel. It is also possible to activate only one of the predictions in order to im-
prove the computation speed of the tracker. For maximum computation speed, the
use of the predicted starting positions can be limited to the higher levels of the im-
age pyramid, as the probability for large estimation errors decreases on the lower
levels.

3.3.6 Revised Outlier Rejection

The standard approach for outlier rejection by Shi and Tomasi has already been dis-
cussed in Subsection 3.2.3. Corresponding feature windows in the first frame and
the current frame of a feature trail are aligned with the help of an affine motion
model. Subsequently, the dissimilarity between corresponding feature windows
as defined by the error function in (3.21) is monitored. This approach also forms
the basis of the outlier rejection in our feature point tracking system. As a first en-
hancement to the standard approach, we improve the accuracy of the affine motion
estimation and the significance of the associated dissimilarity measure by integrat-
ing the three approaches for intensity equalization described in Subsection 3.3.4.
In order to reject features based on their dissimilarity values, a threshold on the

maximum dissimilarity value has to be specified. Shi and Tomasi work with a user-
defined threshold that is determined after manual inspection of the computed dis-
similarity values [Shi94]. In contrast to this, the threshold is computed automati-
cally with the X84 rejection rule in [Fus99]. The rule requires that the inliers have
a Gaussian distribution and determines the threshold with the help of the median
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absolute deviation. Our experiments show that the integrated intensity equaliza-
tion in our tracking system considerably widens the gap between the dissimilarity
values of correctly tracked features and outliers, because most violations of the as-
sumption of constant image intensity are eliminated. Consequently, we rely on a
predefined value θout_mse for the threshold on the maximum dissimilarity value.
Both [Shi94] and [Fus99] perform outlier rejection after processing all frames of

a video sequence. This approach is perfectly valid for tracking in short video se-
quences, but has some problemswhenworkingwith longer video sequences, where
features are continually lost and lost features are regularly replaced with new fea-
tures. In order to check all tracked features, the outlier rejection component has to
consider more than the first and the last frame of the video sequence. In addition
to that, rejecting outliers as soon as possible reduces the computation time wasted
on tracking them and allows new features to replace them. Therefore, our tracking
system performs outlier rejection after every frame of the video sequence.
Another interesting idea for outlier rejection is put forward in [Jin01]. As the

scale of the current feature window is determined by the affine distortion matrix, it
may become much smaller or much larger than the reference feature window. Both
cases are strong indications for an estimation error, and thus an outlier. In addition
to that, when the current feature window becomes too small, the information it con-
tains is not sufficient for successful motion estimation. Consequently, a minimum
and a maximum threshold on the relative scale of the reference feature window can
be used for outlier rejection.
We extend this approach by monitoring the singular values of the affine dis-

tortion matrix, which represent the scale of the feature window along the prin-
cipal axes of the affine transformation. Thus, a feature point is rejected when at
least one of the singular values of its affine distortion matrix lies outside the range
[1/θout_sv, θout_sv]. Our default value for θout_sv is four. In contrast to the original
approach, this allows us to reject features that are extremely distorted, but have
approximately retained their original area. Our experiments confirm that high dis-
tortion is a strong sign for an erroneous feature window.
Although the outlier rejection in our feature point tracking system helps to in-

crease the quality of the computed feature trails, some outliers simply cannot be
detected by data-driven approaches. Fortunately, the number of remaining outliers
is rather small in most applications. As an important consequence, all algorithms
that use feature trails as input data must always be able to cope with a certain num-
ber of outliers.

3.3.7 System Structure

In this subsection, we provide a detailed description of the structure of our feature
point tracking system, which is illustrated in Figure 3.15. In addition to that, we
explain the application of the enhancements presented in the preceding subsections.
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FOR every image c in the image sequence

apply Gaussian filter of size δfil_size to reduce noise (cf. text below)

compute Gaussian image pyramid with δtra_lvl levels (cf. Subs. 3.3.5)

FOR every feature point in the preceding image

perform (hierarchical) translation estimation (cf. Subs. 3.3.5)
- with the inverse compositional algorithm (cf. Subs. 3.3.3)
- with optional intensity equalization (cf. Subs. 3.3.4)
- or with block matching (cf. Subs. 3.4.2)

perform affine motion estimation
- with the inverse compositional algorithm (cf. Subs. 3.3.3)
- with optional intensity equalization (cf. Subs. 3.3.4)

perform outlier rejection (cf. Subs. 3.3.6)

IF tracking has been successful

THEN store feature point in corresponding feature trail

IF (c mod δftr_step = 0) AND (# of tracked feature points < δftr_num)

THEN detect and select new features (cf. Subs. 3.3.2)

Figure 3.15: The structure of our feature point tracking system

We also disclose important technical details of our feature point tracking system.
Finally, we analyze its user-defined parameters, which are summarized in Table 3.1.
In our tracking system, the images of an image sequence are processed one after

another in chronological order, which is the standard approach for data-driven fea-
ture point tracking. However, our tracking algorithms also provide an interface for
processing images in an arbitrary order, which is utilized by the application pre-
sented in Subsection 7.2.2. As this approach depends on additional information on
the position and the orientation of the camera for every captured image, it is not
considered any further in this chapter.
The first operation of our feature point tracking system is to smooth the input

image with a Gaussian filter of size δfil_size. This preprocessing step reduces the
noise in the input images and increases the basin of convergence of the translation
estimation. However, using a large window size for the filter blurs the relevant
features in the images. In addition to that, the application of the filter increases
the computation time. Consequently, we recommend to omit the filtering when
the input images contain only a small amount of noise or when computational ef-
ficiency is of utmost importance. In all other cases, a small 3 × 3 filter window
is usually sufficient. The second preprocessing step generates a Gaussian image
pyramid containing one gray-level image and two derivative images as illustrated
in Figure 3.12. The default value for the number of hierarchy levels δtra_lvl is usually
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name type description def
δfil_size preprocessing filter window size 3
δftr_bord feature selection minimum distance to image border 7
δftr_dist feature selection minimum feature distance 6
δftr_num feature selection maximum number of features 200
θftr_qual feature selection minimum feature quality 0.1
δftr_size feature selection feature window size 3
δftr_step feature selection select features every δftr_step frames 1
δftr_type feature selection feature type ∗
δtra_iter translation est. maximum number of iterations 16
δtra_lvl translation est. number of hierarchy levels 3
δtra_min translation est. minimum level with multiple est. 0
δtra_pred translation est. motion prediction type ∗
δtra_size translation est. feature window size 7
θtra_stop translation est. minimum translation update 0.1
δtra_type translation est. translation estimation type ∗
δbm_chk block matching check for multiple local maxima false
δbm_rfn block matching refine estimated translation true
δbm_rng block matching search range 8
δaff_iter affine motion est. maximum number of iterations 16
δaff_size affine motion est. feature window size 15
θaff_stop affine motion est. minimum relative error reduction 0.1
δaff_type affine motion est. affine motion estimation type ∗
θout_mse outlier rejection maximum error for affine window 225.0
θout_sv outlier rejection maximum distortion of affine window 4.0

Table 3.1: This table summarizes the parameters of our feature point tracking system. Its
fourth column contains the default values of the parameters. Default values shown as ∗ are
discussed in the text below.

a good compromise between the basin of convergence of the translation estimation
and its computational efficiency.
The cooperation of translation estimation and affine motion estimation in our

feature point tracking system is explained in Subsection 3.3.3 and illustrated in Fig-
ure 3.9. Furthermore, our robustified result propagation strategy for hierarchical
translation estimation is presented in Subsection 3.3.5. It can be customized by spec-
ifying a minimum level for performing multiple translation estimations with the
parameter δtra_min, whose default value enables multiple translation estimations on
all levels of the image pyramid. For most input image sequences, multiple transla-
tion estimations can be disabled on the lowest levels of the image pyramid without
reducing the success rate of the translation estimation. However, this only results in
a minor increase of the computational efficiency of the tracking system. Two start-
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ing positions of our translation estimation are computed from the previous feature
positions by assuming either a constant position or a constant motion of the feature
point. A discussion of both prediction types can be found in Subsection 3.3.5. It
is possible to activate them independently with the parameter δtra_pred. By default,
our tracking system uses only the constant motion prediction.
Our tracking system supports several options for the type δtra_type of the transla-

tion estimation algorithm. The default algorithm is based on the inverse composi-
tional approach and minimizes the error function in (3.21). The robustness of the
tracking system with respect to strong intensity changes between consecutive im-
ages can be improved by using the error function defined in (3.34), which provides
integrated intensity equalization. However, this approach also reduces the basin
of convergence and the computational efficiency of the translation estimation. In
both cases, the iterative estimation is stopped when the elements of the translation
update vector ∆d fall below the threshold θtra_stop, which is measured in pixels. As
a safeguard, the parameter δtra_iter limits the maximum number of iterations of one
estimation.
In addition to the gradient descent algorithms, our tracking system offers a block

matching algorithm for translation estimation. This algorithm has been developed
for a high-speed feature point tracking application and is described in Subsec-
tion 3.4.2. It supports three difference measures, which are defined in equations
(3.40), (3.41), and (3.42), respectively. In contrast to the gradient descent algorithms,
the block matching algorithm allows the direct specification of its basin of con-
vergence by adjusting its search range δbm_rng. As a consequence, this algorithm
does not benefit from an image hierarchy, and the associated parameters δtra_lvl and
δtra_min are not relevant for it. Further details on block matching, including the
meaning of the parameters δbm_rfn and δbm_rng, are given in Subsection 3.4.3.
There are four types δaff_type of affine motion estimation in our tracking system.

The inverse compositional approach with or without integrated intensity equaliza-
tion is based on the error functions in (3.34) and (3.21), respectively. In addition to
that, our tracking system provides two algorithms that perform motion estimation
and intensity equalization in alternation. These algorithms estimate the intensity
equalization parameters according to (3.31) and (3.33). The iterative estimation of
the affine motion parameters is stopped when the relative reduction of the error
function falls below θaff_stop. Furthermore, the number of iterations can be limited
with the parameter δaff_iter. The parameters for outlier rejection are explained in
Subsection 3.3.6.
Every δftr_step images, our tracking system checks if less than δftr_num features

were successfully tracked in the current image. If this is the case, a feature detection
algorithm is used to compute an interest image as described in Subsection 3.2.2. To
this end, the parameter δftr_type activates either the Tomasi-Kanade detector (3.11)
or the Harris detector (3.12). Subsequently, our efficient feature selection algorithm
presented in Subsection 3.3.2 selects new features until the sum of tracked and
newly selected features reaches δftr_num, or the quality measure of all remaining
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Figure 3.16: The left image shows the custom-built high-speed CMOS camera of the aug-
mented reality gear with attached inertial sensor. The camera captures complete images
like the middle image at a resolution of 1024 × 1024 pixels and a frame rate of 7.5 fps. It
is possible to increase the frame rate by decreasing the resolution. The right image illus-
trates the high-speed mode of the camera, which provides subwindows of selectable size
and position.

pixels in the interest image lies below θftr_qual. The parameter δftr_bord defines the
minimum distance of the center of the feature window to the image border. In order
to obtain feature windows that lie completely inside the image, it should be at least
half as large as the largest feature window, which is usually the feature window of
the affine motion estimation.

3.4 High­Speed Feature Point Tracking

3.4.1 Motivation

As stated in the introduction of this thesis, the self-localization of the custom-built
augmented reality gear is the most prominent application of feature point tracking
in the VAMPIRE project. Its task is to estimate the position and the orientation of
the user’s head. This task is solved with a hybrid tracking system that combines
a vision-based component with an inertial tracker [Rib02]. The required hardware
is shown in the left image of Figure 3.16. It consists of a helmet-mounted CMOS
camera for the vision-based component and an inertial sensor, which is attached
on top of the camera with a lacing cord. In this configuration, even small rotations
of the helmet can cause large movements in the image plane. In order to limit the
inter-frame movements of the feature points, the custom-built high-speed CMOS
camera has been designed to support very high frame rates [Mue04].
The requirements of the vision-based component differ in several aspects from

most other applications of feature point tracking:

• The number of tracked feature points is very small. As six non-collinear fea-
ture points with known 3-D positions are sufficient to estimate the position
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and orientation of a calibrated camera, there is no need to track more than 30
feature points at a time.

• The frame rate of the video sequence is very high. In contrast to most other
digital cameras, which deliver frame rates of up to 30 frames per second, the
custom-built CMOS camera supports frame rates of up to 2500 frames per
second.

• Due to limits in bandwidth and processing power, the CMOS camera does
not provide complete images at higher frame rates, but only subwindows of
individually selectable size and position. An example of this operating mode
is given in the right image of Figure 3.16.

• An external prediction of the current feature position is available. The iner-
tial tracker estimates the position and the orientation of the camera with an
update rate of more than 500 Hertz. This data can be used to select suitable
subwindows and to initialize the current feature position.

Although high versatility is a very important design goal of our feature point
tracking system, this list of requirements is hard to satisfy. First of all, the external
prediction can be incorporated easily, thanks to the robustified result propagation
strategy described in Subsection 3.3.5. However, it is difficult to achieve the de-
scribed type of computational efficiency. An analysis of our feature point tracking
system shows that the very low computation cost per tracked feature is balanced by
the relatively high computation cost for processing the input images. This configu-
ration is optimal for tracking a large number of features at a moderate frame rate,
but problematic for the differing requirements of the self-localization of the aug-
mented reality gear. Finally, working with subwindows as input data completely
prevents the use of the hierarchical translation estimation, because the subwindows
quickly become too small in higher levels of the Gaussian image pyramid. As a
direct result of the inability to employ the hierarchical translation estimation, the
basin of convergence of the feature point tracker becomes very small.
Considering the preceding discussion, we have to conclude that translation es-

timation with the Kanade-Lucas-Tomasi gradient descent algorithm is not the op-
timal solution for the self-localization application. Consequently, it is necessary to
replace the current hierarchical translation estimation with an algorithm that entails
less overhead per frame and works with subwindows, though possibly at the cost
of longer computation times per feature. These properties are fulfilled by the block
matching approach, which has already been briefly mentioned in Subsection 3.1.2.
The following subsection contains a thorough explanation of block matching and
the final subsection gives further details about the adapted tracking system.
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3.4.2 Block Matching

In a sense, block matching can be considered to be a predecessor of the Kanade-
Lucas-Tomasi tracking algorithm. This notion is substantiated by the fact that the
section on existing techniques in the original work of Lucas and Kanade mainly
deals with block matching algorithms [Luc81]. The close relationship between the
Kanade-Lucas-Tomasi tracking algorithm and block matching is further demon-
strated in [Dav95], which contains a proof of the mathematical equivalence of the
two approaches.

As explained in Subsection 3.2.1, the task of blockmatching is identical to the task
of the Kanade-Lucas-Tomasi tracking algorithm. Both algorithms estimate the mo-
tion of the feature window W from the reference frame fr(x) to the current frame
fc(x). To this end, a difference measure between the reference feature window and
the prospective current feature windows is minimized. In contrast to the Kanade-
Lucas-Tomasi tracking algorithm, where the difference measure is expressed as an
error function that is iteratively minimized by refining the initial motion estimate, a
standard block matching algorithm computes the difference measure for all possi-
ble translations in a defined search region. Consequently, standard block matching
algorithms forfeit the subpixel accuracy of the gradient descent tracking algorithm,
but gain the ability to reliably find the optimal value of the difference measure in
the defined search region.

The difference measure can be exchanged without affecting the other parts of a
standard block matching algorithm. Consequently, a large variety of measures is
employed for block matching. Typical difference measures are the sum of absolute
differences and the sum of squared differences, which also forms the basis of the
error function in the Kanade-Lucas-Tomasi tracking algorithm. In this thesis, we
evaluate three more elaborate difference measures. The first one is the normalized
sum of squared differences, which is given by

ǫnssd(d) =

∑
x∈W

( fr(x)− fc(x + d))2

√

∑
x∈W

( fr(x))
2

∑
x∈W

( fc(x + d))2
. (3.40)

It adds a normalization factor that removes the influence of the mean intensity of
two similar feature windows on the difference measure, but does not cope with
feature windows that require intensity equalization.

In contrast to the preceding difference measures, the following two measures are
similarity measures, which means that they have to be maximized for block match-
ing. The normalized cross correlation is invariant to changes in contrast, i. e., in-
tensity changes of a feature window described by the linear model α f (x). It is
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computed according to

ǫcorr(d) =

∑
x∈W

fr(x) fc(x + d)

√

∑
x∈W

( fr(x))
2

∑
x∈W

( fc(x + d))2
. (3.41)

The normalized correlation coefficient, which is also known as the zero mean nor-
malized cross correlation, is invariant to changes in contrast and brightness, which
are described by the affine linear model α f (x) + β. The equation of the normalized
correlation coefficient is

ǫcoef(d) =

∑
x∈W

(

fr(x)− f̄r
) (

fc(x + d)− f̄c
)

√

∑
x∈W

(

fr(x)− f̄r
)2

∑
x∈W

(

fc(x + d)− f̄c
)2

, (3.42)

where f̄r and f̄c denote the mean intensity values of the feature windows.
In the following, we discuss the properties of blockmatching in comparison to the

Kanade-Lucas-Tomasi tracking algorithm and with respect to the desired applica-
tion in the translation estimation of a high-speed feature point tracking system. As
block matching exclusively considers the intensity values of the feature windows,
there is no need for the computation of derivative images. In addition to that, the
basin of convergence of block matching directly depends on the user-defined size
of the search region. Thus, block matching does not require a Gaussian image pyra-
mid in order to achieve a sufficiently large basin of convergence. Without the need
for derivative images and image pyramids, no processing of the input images is per-
formed at all, except for the optional filtering of the input images. Consequently,
the achievable frame rate is only limited by the computation time per feature win-
dow. Furthermore, it is easily possible to adapt the block matching algorithm to
work with the subwindows captured by the CMOS camera in high-speed mode.
Another advantage of block matching is that the invariance to intensity devia-

tions does not come at the cost of a reduced basin of convergence. However, in-
variant similarity measures like the normalized correlation coefficient take longer
to compute than more basic difference measures. In addition to that, compared to
the very efficient Kanade-Lucas-Tomasi tracking algorithm, block matching has a
relatively long computation time per feature for any difference measure. Conse-
quently, several approaches for improving the efficiency of block matching have
been proposed.
The sequential similarity detection algorithm of [Bar72] stops the computation of

the difference measure at a certain position as soon as it detects that the examined
position is not the best one. However, this algorithm is restricted to cumulative
difference measures, like the sum of absolute differences or the sum of squared dif-
ferences. Another possibility is to employ a search strategy that reduces the number

72



3.4 High-Speed Feature Point Tracking

of tested positions in the search region. As the search strategies take the risk of miss-
ing the best position, they are mainly used in video coding applications. A recent
example of an efficient search strategy is given in [Toi02]. In order to perform effi-
cient block matching without the limitations of the approaches discussed above, we
employ a software library of optimized algorithms, which support the SIMD (single
instruction / multiple data) processing capabilities of modern processors. In light
of the small number of features that have to be tracked, this solution is sufficiently
efficient for our desired application.
Although block matching looks like a perfect fit for our high-speed feature point

tracking application, it also has some disadvantages compared to the original gra-
dient descentmotion estimation algorithm. In its current form, blockmatching only
compares the feature windows at integer pixel positions. Consequently, it is less ac-
curate than the replaced gradient descent algorithm. In addition to that, the affine
motion estimation, which plays a central role in our tracking system, cannot be per-
formed by the block matching algorithm. Finally, block matching has a tendency to
mismatch features, especially when several similar windows lie within the search
region. As these problems have to be solved in the context of the complete tracking
system, the respective solutions are described in the following subsection.

3.4.3 The Adapted Tracking System

The most important step towards high-speed tracking with our tracking system is
the substitution of the gradient descent translation estimation with a block match-
ing algorithm. In order to achieve maximum performance, we propose several fur-
ther steps, which can be divided into two groups. The first group consists of en-
hancements to the block matching algorithm, which were also integrated into the
feature point tracking system described in Subsection 3.3.7. The second group con-
sists of adaptations of implementation details of the tracking system, which do not
affect its basic structure. Thus, the structure of the adapted tracking system coin-
cides with the structure presented in Figure 3.15. We start our discussion with the
second group of enhancements.
After the substitution of the translation estimation algorithm, derivative images

are only required for feature detection and affine motion estimation. Due to the
use of the inverse compositional algorithm, the gradient information for the affine
motion estimation can be precomputed in the first frame of a feature trail. Conse-
quently, it is sufficient to compute derivative images for input images that are used
for feature detection. This is one of the main reasons for the high efficiency of our
adapted feature point tracking system. In order to minimize the average computa-
tional overhead per input image, feature detection should be performed as rarely
as possible.
In order to achieve very high frame rates, the high-speed mode of the CMOS

camera has to be used most of the time, so that complete images are only acquired
for feature detection. Unfortunately, the original idea of copying the captured sub-
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Figure 3.17: The left image shows five subwindows around feature points, which are cap-
tured by the CMOS camera in sequential order. Copying the subwindows into a common
virtual input image results in unwanted artifacts when the subwindows overlap and the
feature points move during the capturing process.

windows into a virtual input image has proven to be problematic. As Figure 3.17
illustrates, overlapping subwindows lead to an inconsistent composite image when
the camera or the scene objects move during the capturing process. Consequently,
the subwindows have to be stored separately, together with additional information
about their position in the full image.
Another problem concerns the storage of the feature data. Although it is possible

to inspect the tracking results after every frame, many applications query the fea-
ture data en bloc when the complete video sequence has been processed. Therefore,
our standard feature point tracking system stores all feature data until the main pro-
gram terminates. Due to the extremely high frame rate of the CMOS camera and
the open-ended nature of the self-localization application, this strategy slowly but
surely consumes the complete main memory of the computer. Consequently, the
adapted tracking system only stores the data of currently tracked feature points.
After the description of the implementation details of our adapted feature point

tracking system, we are finally able to address the disadvantages of stand-alone
block matching discussed in the last paragraph of the preceding subsection. In our
adapted tracking system, most of these disadvantages are mitigated or even elim-
inated by the subsequent estimation of the affine motion with a gradient descent
algorithm. Obviously, the inability to estimate affine motion with our block match-
ing algorithm is rendered irrelevant. Furthermore, the low accuracy of our block
matching algorithm does not negatively affect the final feature position, because
this position is refined during the affine motion estimation. However, due to the
small basin of convergence of the gradient descent algorithm for affine motion es-
timation, a more accurate initialization of the feature position is often beneficial.
Therefore, we propose to improve the accuracy of block matching by biquadratic
interpolation of the difference measure, which yields subpixel accuracy at a neg-
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Figure 3.18: Block matching with biquadratic interpolation for achieving subpixel accuracy.
In order to simplify the explanation, we only cover the one-dimensional case. The feature
window in the first image lies at pixel position eight and the intensities in the second image
have been shifted by 1.5 pixels to the left. The computed values of the difference measure
are shown in the graph on the right. Instead of using pixel position seven, which yields
the smallest difference measure, a quadratic curve is fitted through the three data points
closest to the optimum. The final estimate is determined by the position of the vertex of the
parabola, which lies at pixel position 6.53 in our example.

Figure 3.19: The occurrence of similar feature windows in an image can cause the block
matching algorithm to produce erroneous feature trails. As shown in the left image, similar
feature windows are quite common in images of any type of text. Another example for
an increased probability of similar feature windows are regular man-made objects like the
building in the right image.

ligible computational cost. This approach is illustrated in Figure 3.18. It can be
activated with the parameter δbm_rfn.
The only remaining disadvantage of block matching is its propensity to mismatch

features. This problem occurs when the feature window and a window with sim-
ilar appearance both lie within the search region. Similar windows are common
in images that show man-made objects, like office buildings, and artificial textures,
like block letters. Figure 3.19 demonstrates the occurrence of similar windows in
images of real-world scenes. The probability of a feature mismatch can be reduced
by decreasing the size of the search region or by increasing the size of the feature
windows, but both possibilities negatively affect more important properties of the
block matching algorithm.
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In contrast to block matching, gradient descent translation estimation only suf-
fers from feature mismatch when the frame-to-frame displacement is too large, i. e.,
when a similar feature window is closer to the starting position than the correct
feature window. In order to simulate the behavior of the replaced gradient descent
algorithm, we propose the following mismatch prevention strategy. First, the dif-
ference measure is computed for all positions in the search region and its optimum
is determined. Then, a dynamic threshold is computed as the mean value of the
difference measure in the 4-neighborhood around the optimum. Finally, from the
set of all local optima in the search window whose difference value is below the
threshold, we choose the optimum that is closest to the expected position. This
strategy effectively reduces the number of mismatches, especially when the current
feature window is near its expected position, and requires only a small amount of
additional computation time. It can be enabled with the parameter δbm_chk.

3.5 Summary

This chapter is dedicated to the problem of feature point tracking, which repre-
sents the first part of our approach for sparse 3-D reconstruction. An important
part of the first section is the discussion of the performance criteria of feature point
tracking, which make it possible to objectively compare different algorithms. The
high importance of feature point tracking in the computer vision tool box is empha-
sized by the presentation of the large amount of related work. The second section
describes the Kanade-Lucas-Tomasi tracker, which forms the basis of our feature
point tracking system.
Our contribution to the state-of-the-art of feature point tracking is presented in

the third and forth section of this chapter. The third section details the advances in
areas like efficient feature selection, hierarchical translation estimation, integrated
intensity equalization, and effective outlier rejection. It is concluded by a detailed
explanation of the structure of our versatile feature point tracking system. Finally,
the forth section contains the description of a special-purpose high-speed feature
point tracking system, which was custom-made to meet the specific requirements
of the self-localization of the VAMPIRE augmented reality gear.
The high versatility of our standard feature point tracking system is one of the

reasons for its successful adoption in a large number of applications, some of which
are presented in Chapter 7. However, in order to achieve optimum performance for
a specific application, the tracking system can be tuned with more than 20 user-
specified parameters. Although all parameters are listed and explained in Subsec-
tion 3.3.7, the high number of parameters prevents a comprehensive discussion of
all possible combinations of parameter values. As a starting point for further in-
formation on the key parameters of our feature point tracking system, we highly
recommend to check its experimental evaluation in Chapter 6.
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Structure and Motion Estimation

The second integral part of our approach for sparse 3-D reconstruction consists of a
system for structure and motion estimation. Its main purpose is the simultaneous
estimation of the scene structure and the camera motion from the feature positions
computed by the feature point tracking system described in Chapter 3. The theoret-
ical foundation for what amounts to a successful inversion of the image formation
process is laid in the sections on geometric image formation and multiple view re-
lations in Chapter 2.

As the estimation of the scene structure requires a movement of the camera rel-
ative to the scene, the problem discussed in this chapter is also known as structure
from motion. It has undisputedly been the most active research area of computer
vision for more than two decades. In addition to that, photogrammetry has been
dedicated to determining the geometric properties of objects from one or more pho-
tographic images since the invention of modern photography in the nineteenth cen-
tury. Despite the large amount of research, the automatic reconstruction of structure
and motion is a very difficult problem to date.

The main goal of our structure and motion estimation system is to work as a re-
liable part of real-world applications, especially within the VAMPIRE project. Such
applications include model-based object tracking and visualization with image-
based models, which are both presented in Chapter 7. Consequently, our empha-
sis lies on versatility, efficiency, and robustness in a variety of common scenarios.
In contrast to this, the special treatment of unusual scene configurations has been
deemed less important.

The first section of this chapter contains an introduction to structure and motion
estimation, as well as an overview of the related work in this problem area. In
the second section, we describe the state-of-the-art algorithms that lie at the core
of our structure and motion estimation system. The system itself as well as the
incorporated enhancements are presented in the third section. The final section
reiterates the most important aspects of this chapter.
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4.1 Overview

4.1.1 Problem Statement

As we have already stated in the introduction of this chapter, the main purpose of
structure and motion estimation is the simultaneous estimation of the scene struc-
ture and the camera motion from an image sequence. In this work, we rely on our
feature point tracking system to process the image sequence and use its output,
the 2-D coordinates of distinct 3-D feature points, as the input of our structure and
motion estimation system. Other possible input types include line features, dense
motion fields, and single image cues. Some approaches with alternate input types
are presented in Subsection 4.1.2.
As the input of our structure andmotion estimation system consists of the trails of

the tracked feature points, the estimated scene structure is given by the 3-D position
of these feature points in an arbitrary world coordinate system. The reconstructed
camera motion is represented by the extrinsic camera parameters in the same world
coordinate system, which usually coincides with the camera coordinate system of
the first camera. As detailed in Subsection 2.2.3, one set of extrinsic camera param-
eters is defined by a rotation matrix R ∈ R

3×3 and a translation vector t ∈ R
3. Our

structure andmotion estimation system computes a Euclidean reconstruction of the
scene, which is allowed to differ from the true reconstruction by a similarity trans-
formation, i. e., by a rotation, a translation, and a uniform scaling. When the image
sequence contains M images and the feature tracker has detected N feature points,
the input consists of at most MN 2-D feature positions. Furthermore, the output
comprises M sets of extrinsic camera parameters and N 3-D feature positions.
Depending on the selected approach for structure and motion estimation, the

intrinsic camera parameters, which encode properties of the camera like the focal
length and the position of the principal point, are either input or output. When
the intrinsic camera parameters are required as input, these parameters have to
be estimated before using a camera for capturing image sequences for structure
and motion estimation. This process is also called camera calibration. It can be
performedwith an effective algorithm that requires only a simple planar calibration
pattern [Zha00]. An extension to this algorithm makes it possible to estimate the
radial distortion parameters of the lens [Har05].
A disadvantage of the calibrated framework is that it is not possible to process

arbitrary video sequences from unknown cameras. In addition to that, changing
the focal length of a camera lens during the capture of an image sequence is not
supported. However, these restrictions are not relevant for the planned applications
of our structure and motion estimation system. What is more, working with an
uncalibrated camera has several disadvantages:

• Most approaches for uncalibrated reconstruction are not able to estimate the
non-linear radial distortion parameters of the camera lens, which makes these
algorithms less accurate.
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• Camera calibration benefits from camera rotation, whereas structure estima-
tion requires sufficient camera translation. It is difficult to reconcile both con-
straints in every input image sequence.

• Euclidean reconstruction with an uncalibrated camera is more susceptible to
special configurations of the scene structure. The most prominent example is
the impossibility to recover the intrinsic camera parameters in the case of a
planar but otherwise unknown scene.

• Ignoring the calibration information when it is available needlessly increases
the number of unknowns to be estimated. In general, this causes the estima-
tion to become more sensitive to noise and less robust with respect to difficult
configurations of scene geometry and camera motion.

As one of our main design goals is a high versatility with respect to different con-
figurations of scene geometry and camera motion, the calibrated framework is a
natural choice for our structure and motion estimation system.
The a priori knowledge of the intrinsic camera parameters is an important re-

quirement of our structure and motion estimation system. In addition to that, our
system requires the input data to satisfy several other assumptions. The most im-
portant assumption for all structure and motion estimation algorithms is that the
camera moves relative to the scene, which is also implied by the alternative desig-
nation “structure from motion”. Most of the work on structure and motion estima-
tion, including the algorithms in this thesis, also rely on the fact that scene objects
are rigid and do not move independently from each other. Other assumptions di-
rectly concern the tracked feature points. It is obvious that every image of the image
sequence must contain at least a small number of feature points. In addition to that,
the 2-D position of every feature point has to be known in at least two images, be-
cause a feature point with only one known position contains no useful information.
In fact, most algorithms for structure and motion estimation benefit from feature
trails that are as long as possible.
Figure 4.1 illustrates three scenarios for structure andmotion estimation. The first

scenario represents a configuration obtained by capturing a scene with a hand-held
camera. In the given example, the depth of the complete scene is approximately as
large as the distance of the scene to the camera. The camera motion mainly consists
of a translation perpendicular to the optical axis of the camera and the translation
distance is approximately as large as the distance of the camera to the scene ob-
jects. This configuration of scene structure and camera motion is perfectly suited
for structure and motion estimation, because the resulting feature positions deter-
mine both the scene geometry and the cameramotion in a reliable way. When either
the depth of the scene or the camera translation distance decreases, it becomes more
difficult to separate the effects of camera translation and camera rotation on the fea-
ture positions.
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Figure 4.1: Three scenarios for structure and motion estimation demonstrate possible con-
figurations of scene geometry and camera motion.

The second scenario is typical of a turntable setup, where an object is rotated on a
motorized disc and the camera remains stationary. When the rotating disc is chosen
as the frame of reference, the camera appears to revolve around the object on a circle
of fixed radius. As can be seen, the relevant aspects of scene geometry and camera
motion of the second scenario closely resemble those of the first scenario. However,
there is an important difference in the average length of the resulting feature trails.
In the first scenario, most feature points are visible from all camera positions. In
contrast to this, a large fraction of the feature points on the front of the object is
invisible after half a turn of the turntable in the second scenario. Consequently, the
average length of the feature trails is much smaller in the second scenario. This phe-
nomenon can cause problems for algorithms that only work with complete feature
trails.

The third scenario represents one of the most difficult configurations of scene
geometry and camera motion. It might occur in an augmented reality application
when the user moves towards a far wall of the room. The forward motion of the
camera makes it difficult to recover the scene structure accurately, because the view
rays to any one feature point are close to parallel. As detailed above, the small depth
of the scene impedes the accurate estimation of the camera motion, because the
effects of translation and rotation are very difficult to separate in this case. Finally,
the almost planar nature of the scene structure introduces additional ambiguities
for many algorithms.

The categorization of different configurations of scene geometry and camera mo-
tion into scenarios is only the first step towards a systematic evaluation of different
algorithms for structure and motion estimation. As the next step, we identify three
performance criteria, which can be used to compare the performance of an algo-
rithm to the requirements of its intended application:
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• The computational efficiency of an algorithm for structure and motion esti-
mation has two distinct aspects. On the one hand, the computation time for
processing a given number of frames is a measure for the general efficiency of
the algorithm. On the other hand, the delay between the input of the data for a
frame and the output of the corresponding reconstruction defines the latency
of the algorithm. While the general efficiency is relevant for all possible appli-
cations, the latency of an algorithm is only important for a subset of real-time
applications, like augmented reality or robot navigation.

• The accuracy of an algorithm for structure and motion estimation can be mea-
sured independently for the scene structure and the camera motion. Inci-
dentally, the relative importance of both results is determined by the applica-
tion. For example, object modeling is interested in the structure of the object,
whereas self-localization only depends on the recovery of the camera motion.
There are some algorithms for structure and motion estimation that use a sim-
plified mathematical model of the problem in order to exchange optimum ac-
curacy for computability or higher efficiency. Even when the algorithm is op-
timal for perfect input data, the final accuracy of the reconstruction depends
on the quality of the feature positions provided as input.

• The robustness of an algorithm describes its ability to avoid large errors under
difficult conditions. In the context of structure and motion estimation, this is
first and foremost a concern of dealing with outliers in the feature positions.
The numerous reasons for the occurrence of outliers are detailed in Subsec-
tion 3.1.1. Another aspect of the robustness of an algorithm is its ability to
work with input data representing unusual configurations of scene geometry
and camera motion. Our broad definition of the robustness of an algorithm
prevents the specification of a unique measure for this performance criterion.
In Section 6.2, we evaluate the robustness of our structure and motion estima-
tion system with respect to several different aspects. To this end, we analyze
the accuracy of the reconstruction for input data with varying levels of diffi-
culty.

The preceding definition of three performance criteria enables us to state the de-
sign goals for our structure and motion estimation system more precisely. Compu-
tational efficiency is an important goal of our system. However, the self-localization
of the augmented reality gear, which is the only application of structure andmotion
estimation with stringent latency requirements in the VAMPIRE project, employs a
highly specialized hybrid ego-motion estimation system. Therefore, we do not re-
quire low latency and are free to focus on higher accuracy and better robustness
instead. As there are many different applications for our system, the reconstruction
of scene structure and camera motion has to be performed with equal accuracy. Fi-
nally, the robustness of the employed algorithms is an important aspect for the fully
automatic operation of our structure and motion estimation system. Consequently,
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all relevant components of our system have to be designed to successfully cope with
a reasonable amount of outliers. In this context, we expect the relative frequency of
erroneous feature positions to lie below 50% in every frame. The desired versatil-
ity of our system will be achieved by employing algorithms that work for a wide
range of configurations, but without resorting to algorithms that are specialized for
specific scene structures or specific types of camera motions.
One important limitation of structure and motion estimation is the inability to

recover the global scale of the scene. Using the equations in Chapter 2, we can
easily verify that an arbitrary scaling of the scene structure and the camera motion
does not change the captured images. In this chapter, the unknown scale factor
has to be estimated when two partial reconstructions of the same scene have to
be merged. In addition to that, we present a solution for the registration of two
complete reconstructions with unknown correspondences and unknown relative
scale factor in Chapter 5.

4.1.2 Related Work

Since the publication of the first computer algorithms for structure and motion es-
timation, for example by Longuet-Higgins in [LH81], a large variety of theoretical
approaches, practical algorithms, and complete systems have been proposed in this
active area of computer vision. Oliensis gives a comprehensive overview of the
most important approaches for structure and motion estimation in [Oli00]. He also
analyzes the differences between algorithms for calibrated and uncalibrated cam-
eras.
In order to obtain a Euclidean reconstruction for an input sequence captured

with an uncalibrated camera, the camera calibration has to be performed by the
reconstruction algorithm for every input sequence. This process is also called self-
calibration. Classical algorithms for self-calibration like [Fau92, Oli99b, Pol99b]
compute the extrinsic and intrinsic camera parameters before the scene structure
is estimated. Stratified self-calibration is a more recent approach, which first re-
covers the projective structure and then upgrades it to the Euclidean structure by
using available constraints [Har93, Hey97, Pol99a]. Both types of self-calibration
are reviewed by Fusiello in [Fus00].
Apart from the distinction between the calibrated and the uncalibrated frame-

work, it is very instructive to categorize the algorithms for structure and motion
estimation by their general structure. One large category is formed by the factor-
ization algorithms, whose basic assumption is that the feature positions can be ex-
plained as a bilinear combination of the structure and motion parameters. Conse-
quently, recovering these parameters involves the factorization of a measurement
matrix, which contains the feature positions of the feature trails. The first factoriza-
tion algorithm, which assumes an orthographic projection model, was presented by
Tomasi and Kanade in [Tom92]. Poelman and Kanade introduced a factorization al-
gorithm for paraperspective projection [Poe94]. The algorithm of Christy and Ho-
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raud computes a perspective reconstruction by iteratively updating the measure-
ment matrix to represent an affine projection [Chr96]. Sturm and Triggs proposed
a factorization algorithm for perspective projection with an uncalibrated camera
in [Stu96]. Iterative extensions of this algorithm are put forward in [Mah01] and
[Oli07]. A general overview of factorization algorithms is given by Kanade in
[Kan98].
The factorization algorithms described above share some common limitations.

As batch methods, they process a complete video sequence at a time, which makes
them unsuitable for real-time applications with low latency requirements. What is
more, the measurement matrix must not have unknown entries. In other words,
the factorization algorithms can only use complete feature trails. For the second
scenario of Figure 4.1, this limitation entails the choice between discarding a large
number of images and discarding a large number of incomplete feature trails, both
of which reduce the available input data considerably. A final drawback of the
described factorization algorithms is their inability to cope with strong outliers in
the input data.
Most limitations of the original factorization algorithms have been addressed by

enhanced algorithms. [Mor97] presents a sequential factorization algorithm for or-
thographic projection that is capable of real-time operation. The iterative approach
in [Hey99], which employs subspace methods, is another example of a factoriza-
tion algorithm with low latency. The problem of recovering missing features has
already been treated in [Tom92]. A more efficient solution using an expectation
maximization algorithm is presented in [Gue02]. Another area of interest is the in-
corporation of information on the uncertainty of the feature positions. Aguiar and
Moura propose a factorization algorithm that attaches weights to the feature points
in [Agu03], whereas Anandan and Irani model the directional uncertainty of every
feature point, which allows their algorithm to work in the extreme case of normal
flow data [Ana02]. Finally, [Aan02] and [Huy03] describe different approaches for
the iterative correction of outliers.
Althoughmost limitations of factorization have been addressed, there is no single

algorithm that incorporates all necessary enhancements. What is more, long video
sequences with highly incomplete feature trails are still a weak point of all factor-
ization algorithms. As a consequence, we focus our attention on another category
of algorithms for structure and motion estimation, the invariant-based algorithms.
Their basic principle is to derive constraints on the image data by explicit algebra.
In the case of two-view motion estimation, the properties of the matrix encoding
the relative camera motion can be used to recover this matrix from a number of
corresponding features. The most prominent two-view algorithm is the eight-point
algorithm for estimating the fundamental matrix, which was presented by Hartley
in [Har92]. Its performance was improved with the help of a normalization step in
[Har97a], whose effects are examined with statistical methods in [Cho03].
[Har94b] details an algorithm for estimating the fundamental matrix from seven

feature points, which yields at most three possible solutions. This algorithm is
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compared with other techniques for estimating the fundamental matrix in [Zha98].
As the focus of this thesis lies on the calibrated framework, we are interested in
invariant-based algorithms that estimate the camera motion with the help of the
essential matrix. An efficient algorithm for estimating the essential matrix from
five feature points was given by Nister in [Nis04b]. It is conceptually similar to
the seven-point algorithm by Hartley and yields up to ten possible solutions. As
it is one of the key algorithms of our structure and motion estimation system, we
discuss it thoroughly in Subsection 4.2.3. Another variety of invariant-based algo-
rithms estimate the relative motion between three views with an algebraic entity
that is known as the trifocal tensor. Such algorithms can be found in [Fit98] and
[Nis00].
For successful structure and motion estimation, invariant-based motion estima-

tion algorithms have to be complemented with additional methods. When the rela-
tive camera motion between at least two frames is known, it is possible to triangu-
late the feature points as described in Subsection 4.2.1. With the obtained 3-D fea-
ture positions, the pose of additional cameras can be estimated by the absolute pose
estimation algorithms detailed in Subsection 4.2.2. There are also several different
generic approaches for making invariant-based motion estimation algorithms more
robust to outliers in the input data. An experimental evaluation of these approaches
is presented in [Tor97]. Our efforts for improving the robustness of our structure
and motion estimation system are documented in Subsection 4.3.4.
Most invariant-based motion estimation algorithms are defined for a small num-

ber of features in two or three frames. Even though some of these algorithms, like
the five-point algorithm, are able to incorporate a larger number of features into
their computations, the resulting solution optimizes no meaningful cost function.
Thus, the accuracy of these motion estimation algorithms with respect to noisy in-
put data is suboptimal. A discussion of relevant optimization criteria used in two-
view algorithms can be found in [Zha02]. The standard way for improving the
accuracy of the reconstruction is to refine the results with an additional optimiza-
tion algorithm. These algorithms, which constitute our third category of algorithms
for structure and motion estimation, can be divided into two distinct groups. The
first group consists of specialized algorithms for one problem domain and one cost
function, like the exact two-view motion estimation for the directional least-squares
error put forward in [Oli02]. The second group uses standard techniques for non-
linear minimization and its members are generally known as bundle adjustment
algorithms. An elaborate overview of bundle adjustment is given in [Tri99]. As
bundle adjustment plays an important role in our structure and motion estimation
system, we provide further information on this technique in Subsection 4.2.4.
At this point, it should have become apparent that a structure andmotion estima-

tion system that combines a number of different approaches to benefit from the rela-
tive advantages of the individual algorithms requires an elaborate design and a fair
amount of auxiliary components. Relevant examples of such systems can be found
in [Bou95, Fit98, Nis00, Gib02]. Many of these systems share a number of recurring
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features, like the careful selection of key frames for the initial motion estimations,
the use of a defined process for merging the resulting partial reconstructions, and
the refinement of intermediate and final reconstructions with the help of optimiza-
tion algorithms. Recently, real-time structure and motion estimation systems have
been proposed for augmented reality [Lou05a] and robot navigation [Nis06] appli-
cations. The details of our proposed system are discussed in Section 4.3.

After the preceding overview of the most important categories of structure and
motion estimation, we briefly present other related approaches in this work area.
There are several specialized algorithms for dealing with difficult scene configura-
tions. Both [Sze98] and [Pol02] are concerned with the reconstruction of a mostly
planar scene, whereas [Oli99a] and [Ved07] propose algorithms for small camera
translations and pure forward motion of the camera, respectively. Another class
of algorithms makes use of established probabilistic methods like the extended
Kalman filter [Soa98a, Soa98b] or the variable state dimension filter [McL95,McL00]
to incrementally recover the unknown structure and motion. The approach in
[Cha02] employs a sampling-based uncertainty representation to increase its ro-
bustness to outliers.

Other approaches for structure and motion estimation are somewhat difficult to
classify. [Las98] proposes a coordinate-free approach that is based on a geometric
algebra. In [Oli01], Oliensis presents algorithms that do not fit into any of the pre-
vious categories. Different problems of structure and motion estimation are solved
with the quasiconvex optimization approach in [Ke05, Ke06]. A generic framework
for structure and motion estimation from images of arbitrary camera types is de-
scribed in [Ram06]. Another interesting problem is the reconstruction of non-rigid
scenes, which either contain non-rigid surfaces or independently moving objects
[Car02, Han03, Tor04, Xia06]. In some applications, different types of input data like
lines [Bar05] or single image cues [Sax07] are used to provide additional informa-
tion. Finally, interesting applications of structure and motion estimation, including
plenoptic modeling and robot navigation, are described in [Koc99, Pol04, Dav07].

4.2 State­of­the­Art Algorithms

As we have observed in the preceding section, structure and motion estimation
with an invariant-based approach requires the combination of different algorithms
for several isolated subproblems. In order to separate the discussion of the state-of-
the-art algorithms from the description of their combination into our structure and
motion estimation system, we focus our attention on the algorithms themselves
in this section. To this end, every subsection contains a short problem statement, a
concise overview of possible alternatives, and a thorough description of the selected
algorithms.
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Figure 4.2: The triangulation of a feature point with non-intersecting view rays requires a
suitable approximation to the point of intersection.

4.2.1 Triangulation

When the intrinsic and extrinsic camera parameters are known for at least two cam-
era positions, it is possible to reconstruct the 3-D position of a feature point from
the corresponding feature positions in image coordinates. Solutions to this problem
require the intersection of two rays in space and are widely known as triangulation
algorithms. As neither the camera parameters nor the feature positions are abso-
lutely accurate in practice, there is a very high probability that the two rays will
not actually intersect in space. Thus, the approach for finding a suitable approxi-
mation to the point of intersection constitutes the main distinction between existing
triangulation algorithms.
In our system for structure and motion estimation, triangulation is the only ap-

proach for the initial estimation of the scene structure, but we strongly encourage
the use of bundle adjustment for a subsequent optimization of the reconstruction.
As a consequence, in our case, the efficiency of a potential triangulation algorithm
is more important than its accuracy. A number of different triangulation algorithms
are presented and evaluated in [Har97b]. In the case of Euclidean reconstruction,
simple algorithms like the linear methods or the midpoint method perform quite
well, despite their theoretical shortcomings. There are also more sophisticated al-
gorithms for optimal two-view triangulation [Oli02], for optimal three-view trian-
gulation [Ste05], and for non-iterative multi-view triangulation [Liu05]. As we are
mainly interested in an efficient solution, we use the midpoint method in our esti-
mation system.
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Given the extrinsic camera parameters (R1, t1) and (R2, t2) of two cameras and
the projections q1 ∈ R

2 and q2 ∈ R
2 of a feature point in image coordinates, we

have to compute the position p ∈ R
3 of the feature point in world coordinates.

This configuration is illustrated in Figure 4.2. The basic approach of the midpoint
method is to estimate the 3-D position of the feature point as the point of mini-
mum distance from both view rays v1 and v2. In particular, the midpoint method
determines the line segment that is perpendicular to both rays and computes the
midpoint of this line segment. When the view rays are defined as

v1 = o1 + a1R
T
1q1

, o1 = −RT
1 t1 , a1 ∈ R , (4.1)

v2 = o2 + a2R
T
2q2

, o2 = −RT
2 t2 , a2 ∈ R , (4.2)

the direction of the perpendicular line segment is given by

v3 =
(

RT
1q1
× RT

2q2

)

. (4.3)

Building a closed vector path that leaves o1 in the direction of the view ray v1, goes
through p on the perpendicular line segment v3, goes to o2 in the opposite direction
of the view ray v2, and finally returns on a straight line to o1 yields

a1R
T
1q1

+ a3

(

RT
1q1
× RT

2q2

)

− a2R
T
2q2
− o2 + o1 = 0 . (4.4)

This equation can be written as a linear system with three unknowns

(

RT
1q1
| − RT

2q2
| RT

1q1
× RT

2q2

)





a1
a2
a3



 = o2 − o1 . (4.5)

After the solution of the linear system, the optimum values â1 and â2 are known,
and the feature point p is given by

p =
1
2

(

o1 + â1R
T
1q1

+ o2 + â2R
T
2q2

)

. (4.6)

It is obvious that the triangulation cannot succeed when the two view rays are par-
allel. This configuration possibly occurs when the feature point lies close to the
baseline or when the feature point is very distant from both cameras.
A slightly different triangulation problem arises in the five-point algorithm dis-

cussed in Subsection 4.2.3. The camera coordinate system of the first camera coin-
cides with the world coordinate system (R1, t1) = (I, 0) and the essential matrix E
of the stereo system is known. The main difference, however, is due to the proper-
ties of the five-point algorithm, which estimates the camera motion for five feature
position pairs in such a way that the view rays of these pairs actually intersect in
space. Consequently, it is not necessary to approximate the point of intersection,
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which makes the triangulation algorithm given in [Nis04b] evenmore efficient than
the midpoint method. The algorithm consists of the computation of the vector

h = q
2
×
(

diag(1, 1, 0) Eq
1

)

, (4.7)

which is used to express the feature point p in homogeneous coordinates as

p =
(

qT
1

(

tT2h
)

| − qT
1
RT
2h
)T

. (4.8)

4.2.2 Absolute Camera Pose Estimation

Given at least three feature points, whose positions are known both in the world
coordinate system and in one image coordinate system, absolute camera pose es-
timation is concerned with computing the extrinsic camera parameters of the cor-
responding camera. In the minimal case of three feature points, this problem is
known to have at most four possible solutions [Har94a]. When more than three
feature points are available, the solution is usually unique, unless the optical center
of the camera and all feature points lie on the same twisted cubic curve [DeM95]. In
this case, there are two different sets of extrinsic camera parameters that explain the
feature positions equally well, and it is not possible to determine the correct camera
pose based on the feature data alone.
Six similar direct solutions for the estimation of the camera pose from three fea-

ture points are analyzed in [Har94a]. A generalized algorithm for three arbitrary
view rays is presented in [Nis04a]. For increased accuracy, it is beneficial to use
more than three feature points in the estimation. Both iterative algorithms [DeM95,
Lu02] and non-iterative algorithms [Qua99, Fio01, Ans03, MN07] were proposed
to solve this problem. They differ in the number of required feature points, the
accuracy of the solution, and their computational efficiency. In our structure and
motion estimation system, we employ one of the three-point algorithms detailed in
[Har94a] for the disambiguation of the relative camera pose estimation discussed in
Subsection 4.2.3. We additionally use the POSIT algorithm of [DeM95] to estimate
the camera pose when a high number of features points is available, because this
algorithm is proven to be very efficient despite its iterative nature.

4.2.2.1 The Three­Point Algorithm

For our work, we have selected the algorithm of Fischler and Bolles from the three-
point algorithms in [Har94a]. The geometric setup of the three-point algorithm is
illustrated in Figure 4.3. Given the positions of three feature points in world coor-
dinates and image coordinates, the algorithm has to recover the extrinsic camera
parameters (R, t). To this end, we define the side lengths of the triangle of feature
points as

a = ‖ p2− p3‖ , b = ‖ p1 − p3‖ , c = ‖ p1 − p2‖ . (4.9)
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Figure 4.3: The three-point algorithm computes the pose of the camera from the positions
of three feature points in world coordinates and image coordinates.

We also define the unit vectors in the direction of the view rays from the optical
center o to the feature points in camera coordinates as

q̆
i
=

q
i

‖q
i
‖ , q̆

i
∈ R

3 , i ∈ {1, 2, 3} (4.10)

and the angles between the view rays as

cos α = q̆T
2
q̆
3
, cos β = q̆T

1
q̆
3
, cos γ = q̆T

1
q̆
2
. (4.11)

With these definitions, the first step of the solution is to determine the position
of the feature points in the camera coordinate system, which can be expressed with
the unknown distance si of the feature points from the optical center as

ci = siq̆i
, ci ∈ R

3 , i ∈ {1, 2, 3} . (4.12)

Thus, the vectors pi and ci represent the same feature points in different coordinate
systems. Applying the law of cosines to the three triangles formed by the optical
center and each subset of two feature points yields

a2 = s22 + s23 − 2s2s3 cos α , (4.13)

b2 = s21 + s23 − 2s1s3 cos β ,

c2 = s21 + s22 − 2s1s2 cosγ .

After replacing s2 = us1 and s3 = vs1, we get

s21 =
a2

u2 + v2 − 2uv cos α
=

b2

1+ v2 − 2v cos β
=

c2

1+ u2 − 2u cos γ
. (4.14)
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By combining these expressions, Fischler and Bolles eliminate v and obtain the
fourth order polynomial equation

d4u
4 + d3u

3 + d2u
2 + d1u + d0 = 0 , (4.15)

d4 = 4b2c2 cos2 α− (a2 − b2 − c2)2 ,

d3 = −8b2c2 cos2 α cosγ− 4c2(a2 + b2 − c2) cos α cos β

+4(a2 − b2 − c2)(a2 − b2) cosγ ,

d2 = 8c2(a2 + b2) cos α cos β cos γ

+4c2(a2 − c2) cos2 β + 4c2(b2 − c2) cos2 α

−4(a2 − b2)2 cos2 γ− 2(a2 − b2 − c2)(a2 − b2 + c2) ,

d1 = −8a2c2 cos2 β cos γ− 4c2(b2 − c2) cos α cos β

−4a2c2 cos α cos β + 4(a2 − b2 + c2)(a2 − b2) cos γ ,

d0 = 4a2c2 cos2 β− (a2 − b2 + c2)2 .

For every root of the fourth order polynomial, the corresponding value of v can be
determined from

v =
(a2 − b2 − c2)u2 + 2(b2 − a2)(cosγ)u + a2 − b2 + c2

2c2(cos β− (cos α)u)
. (4.16)

When u and v are known, it is easy to compute s1, s2, and s3, and consequently the
position of the feature points in camera coordinates.
The roots of the polynomial can be computed as the eigenvalues of the compan-

ion matrix








d3/d4 d2/d4 d1/d4 d0/d4
−1 0 0 0
0 −1 0 0
0 0 −1 0









. (4.17)

With the help of any standard linear algebra package, the implementation of this
approach is trivial. According to [Nis04b], however, it is more efficient to bracket
the roots with a Sturm chain and to determine their accurate value with a root pol-
ishing scheme. The appendix of [Nis04b] contains a concise introduction to recur-
sive Sturm chains, which also form the basis of our root finding algorithm. Instead
of the standard bisection approach used in [Nis04b], we polish the bracketed roots
with a modified regula falsi approach, which is more efficient on average. To this
end, our implementation uses a variant of the modified regula falsi approach also
known as the “Illinois” method, which is described and evaluated in [For95].
The second step of the three-point algorithm consists of computing the camera

motion by aligning the world coordinate system and the camera coordinate system
with the help of the three input feature points. Four different algorithms for this
problem are reviewed in [Egg97], where the algorithm based on the singular value
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decomposition exhibits the best overall performance. We start our description of
this algorithm by expressing the problem as a least-squares optimization problem
for N feature points

(R̂, t̂) = argmin
(R,t)

N

∑
i=1

‖ci − Rpi − t‖2 . (4.18)

At first, the translation is eliminated by moving the center of mass of both sets of
feature points to the origin of their respective coordinate system

c̄ =
1
N

N

∑
i=1

ci , p̄ =
1
N

N

∑
i=1

pi , (4.19)

R̂ = argmin
R

N

∑
i=1
‖(ci − c̄)− R (pi − p̄)‖2 . (4.20)

Then, as explained in [Egg97], a singular value decomposition of the correlation
matrix

N

∑
i=1

(ci − c̄) (pi − p̄)T = VDUT (4.21)

allows the computation of rotation and translation as

R̂ = VUT , t̂ = c̄− R̂p̄ . (4.22)

In the case of planar sets of feature points, this algorithm is prone to estimating a
reflection instead of a rotation. This case can be detected by checking the determi-
nant of the rotation matrix. When the determinant is negative, the third column of
matrix V has to be multiplied by −1 before computing R̂ [Egg97].

4.2.2.2 The POSIT Algorithm

As its name implies, the three-point algorithm efficiently computes the extrinsic
camera parameters from exactly three feature points. However, when the feature
positions are perturbed by noise, algorithms for a larger number of feature points
can provide more accurate results. As a consequence, we resort to the POSIT al-
gorithm of [DeM95] whenever more feature points and more computation time are
available. The POSIT algorithm simplifies the absolute camera pose problem by
assuming a weak-perspective projection model. In order to compute a solution for
the perspective projection model, the feature points in the image coordinate system
are iteratively moved to updated positions that conform to the weak-perspective
projection model. A very similar approach is used in the factorization algorithm of
Christy and Horaud in [Chr96].
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The input of the POSIT algorithm consists of N feature points in both world co-
ordinates and image coordinates, and one additional reference feature point

pi ∈ R
3 , qi ∈ R

2 , ∀i ∈ {1, . . . ,N} , N ≥ 3 , pr ∈ R
3 , qr ∈ R

2 . (4.23)

The extrinsic camera parameters, which form the output of the algorithm, can be
written as

R =





rT1
rT2
rT3



 ∈ R
3×3 , t ∈ R

3 . (4.24)

In the initial phase of the algorithm, the matrix A and its pseudoinverse A+ are
computed from the positions of the feature points in world coordinates

A =





(p1 − pr)
T

. . .
(pN − pr)

T



 ∈ R
N×3 , A+ = (ATA)−1AT . (4.25)

Assuming a weak-perspective projection model for the input data, we arrange the
image coordinates of the feature points as

Q̃ = ((q1 − qr) . . . (qN − qr))
T =

(

q̃1 q̃2
)

∈ R
N×2 . (4.26)

This allows us to estimate two scaled row vectors of the rotation matrix

r̃1 = A+q̃1 , r̃2 = A+q̃2 . (4.27)

With the scale factors defined by the row vectors

s1 = ‖r̃1‖ , s2 = ‖r̃2‖ , s =
s1 + s2

2
, (4.28)

we can finally compute the extrinsic camera parameters

r1 =
1
s1

r̃1 , r2 =
1
s2

r̃2 , r3 = r1 × r2 , t = sq
r
− Rpr . (4.29)

As the row vectors r1 and r2 are computed independently from each other, they
are not necessarily orthogonal. Therefore, it is possible that the matrix R is not a
perfectly orthonormal rotation matrix. As a consequence, we enforce its orthonor-
mality with the help of a singular value decomposition.
In subsequent iterations of the algorithm, the estimated camera parameters are

used to adjust the positions of the projected feature points to the weak-perspective
projection model. To this end, the relative distance of every feature point from the
reference feature point along the optical axis is computed as

di = s (pi − pr)
T r3 , i ∈ {1, . . . ,N} . (4.30)
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Figure 4.4: The POSIT algorithm adjusts the positions of the feature points qi to simulate a
weak-perspective projection. In this illustration, we show the feature points pi and pr as
ci = Rpi + t and cr = Rpr + t in camera coordinates. The values di are computed in (4.30)
as the distance of ci and cr along the optical axis, relative to the distance of cr and the optical
center along the optical axis. Therefore, the distances marked with solid lines at the bottom
of this illustration have a ratio of 1 : (1+ di). Simple geometric considerations confirm that
the other marked distance pairs exhibit the same ratio, which explains the feature position
adjustment for q̂i given in (4.31).

With this information, the positions of the feature points in image coordinates are
updated according to

q̂i = (1+ di) qi , i ∈ {1, . . . ,N} . (4.31)

The updated feature positions replace the standard positions in (4.26), which is also
the starting point for new iterations. As the position of the reference feature point
is identical for perspective and weak-perspective projection, its position does not
have to be updated. The geometry of the feature position update is illustrated in
Figure 4.4. The stopping criterion of the original POSIT algorithm is based on the
change of the relative distances di. In contrast to this, we monitor the change of
the vectors r1 and r2. Our approach has the benefit of directly checking a part of
the desired output. It is also slightly more efficient when the number of processed
feature points is large.
Unlike the three-point algorithm, the POSIT algorithm does not limit the number

of considered feature points. Therefore, we employ it to process all available fea-
ture points, which potentially increases the accuracy of the absolute camera pose
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estimation. However, even when the POSIT algorithm processes a large number of
feature points, its accuracy strongly depends on the accuracy of the position of the
reference feature point. This shortcoming can be verified in the equations of (4.25) -
(4.29). As a consequence, we propose an enhanced version of the POSIT algorithm,
which uses the center of mass of the feature points as its virtual reference point.
The position of the virtual reference point pv in world coordinates is easily com-

puted as the average of all feature points

pv =
1
N

N

∑
i=1

pi . (4.32)

In contrast to this, the position of the virtual reference point qv in image coordinates
is more difficult to determine, because the projection of the center of mass is not
equal to the center of mass of the projections for the perspective projection model.
However, the above relation holds true for the weak-perspective projection model.
As the projection of the virtual reference point is identical for the perspective and
the weak-perspective projection model by construction, we can update the position
of the virtual reference point q̂v in image coordinates as the center of mass of the
feature points q̂i in every iteration of the algorithm

qv =
1
N

N

∑
i=1

qi , q̂v =
1
N

N

∑
i=1

q̂i =
1
N

N

∑
i=1

(1+ di) qi . (4.33)

The proposed enhancement of the POSIT algorithm has two beneficial effects.
On the one hand, the accuracy of the algorithm is considerably improved, because
the noise in the positions of the feature points is partially canceled by the averag-
ing in the computation of the virtual reference point. Therefore, from a statistical
point of view, the virtual reference point is more accurate than any single feature
point selected as reference point in the standard algorithm. On the other hand, the
position of the virtual reference point at the center of mass of the feature points
is the optimum configuration for the approximation of the perspective projection
model with the weak-perspective projection model. This configuration increases
the probability for successful convergence and decreases the number of required
iterations. The only disadvantage of our enhancement is that the iterative correc-
tion of the position of the virtual reference point is prone to slightly increase the
number of required iterations. Our experiments in Subsection 6.2.2 prove that the
proposed enhancement of the POSIT algorithm is considerably more accurate than
the standard algorithm.

4.2.3 Relative Camera Pose Estimation

In this subsection, we consider the problem of estimating the motion of the cam-
era between two views from the corresponding projections of a number of feature
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Figure 4.5: The five-point algorithm estimates the camera motion between two views from
the positions of five or more feature points in image coordinates.

points. This problem requires the positions of at least five feature points in the
calibrated framework, which yield up to ten possible solutions in general. An ef-
ficient algorithm suited for a numerical implementation is the five-point algorithm
presented by Nister in [Nis04b]. Its basic idea is to compute a tenth degree polyno-
mial, whose roots directly correspond to the possible solutions. The disambigua-
tion of the solutions can then be performed with the help of an additional feature
point or an additional view. Like all structure and motion estimation algorithms
whose input consists solely of feature positions in image coordinates, the five-point
algorithm is generally unable to recover the global scale of the scene.
The five-point algorithm of Nister is currently the state-of-the-art algorithm for

calibrated two-view motion estimation. It is compared to the established seven-
point [Har94b] and eight-point [Har97a] algorithms in the original work, where it
is found to deliver the most consistent results [Nis04b]. In addition to that, as a
member of the calibrated framework, the five-point algorithm can also cope with
planar scenes, whereas the algorithms of the uncalibrated framework cannot deter-
mine a unique reconstruction from two views and a planar scene due to the pla-
nar structure degeneracy. Recently, three modifications for the five-point algorithm
have been proposed. [Li06] uses the hidden variable technique to simplify the com-
putation of the tenth degree polynomial. In [Ste06], the framework of algebraic
geometry is employed to derive an alternate solution to the five-point relative pose
problem. Finally, [Bat07] reformulates this problem as a constrained optimization
problem that yields nine quadratic equations in six variables. Although all pro-
posed modifications slightly improve the accuracy of the five-point algorithm, we
rely on the original algorithm, whose efficiency is still unsurpassed.
The five-point relative pose problem is illustrated in Figure 4.5. As it is only

possible to recover the relative motion, we are free to let the camera coordinate
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system of the first view coincide with the world coordinate system. Therefore, the
extrinsic camera parameters of the first view are (R1, t1) = (I, 0) and the relative
motion between the two views can be expressed in terms of the extrinsic camera
parameters of the second view as

(

RT
2 ,−RT

2 t2
)

. The positions of the feature points
are given in homogeneous coordinates as

q
1,i

=





q1,i,1
q1,i,2
q1,i,3



 , q
2,i

=





q2,i,1
q2,i,2
q2,i,3



 , i ∈ {1, . . . , 5} (4.34)

for the left and right view, respectively.
The first step of the five-point algorithm is to recover the essential matrix E. As

described in Subsection 2.4, every pair of corresponding feature points has to satisfy
the epipolar constraint

qT
2,i

E q
1,i

= 0 . (4.35)

After the definition of the matrix Qi = q
2,i
qT
1,i

and the two vectors q̌i and ě

q̌i = (Qi,11 Qi,12 Qi,13 Qi,21 Qi,22 Qi,23 Qi,31 Qi,32 Qi,33)
T ,

ě = (E11 E12 E13 E21 E22 E23 E31 E32 E33)
T ,

this constraint can be reformulated as the inner product

q̌Ti ě = 0 . (4.36)

In order to compute the vector representation ě of the essential matrix E, the vectors
q̌i are arranged as the rows of the matrix Q̌

Q̌ = (q̌1 q̌2 q̌3 q̌4 q̌5)
T ∈ R

5×9 (4.37)

and the four vectors spanning the right nullspace of this matrix are estimated

kernel(Q̌) = {x̌, y̌, ž, w̌} . (4.38)

The vector ě can then be expressed as a linear combination of these vectors

ě = x x̌ + y y̌ + z ž + w w̌ , x, y, z,w ∈ R . (4.39)

As the essential matrix is only defined up to a scale factor, we assume w = 1 and
insert the resulting equation into the constraints on the essential matrix in (2.12)
and (2.14). Thus, we obtain an equation system with ten cubic polynomials in the
variables x, y, and z. Performing an incomplete Gauss-Jordan elimination with
partial pivoting yields the equation system shown in Table 4.1. We combine selected
equations and arrange the results into the equation system





〈e〉 − z〈 f 〉
〈g〉 − z〈h〉
〈i〉 − z〈j〉



 =





Z11(z) Z12(z) Z13(z)
Z21(z) Z22(z) Z23(z)
Z31(z) Z32(z) Z33(z)









x
y
1



 = Z v = 0 . (4.40)
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x3 y3 x2y xy2 x2z x2 y2z y2 xyz xy x y 1

〈a〉 1 . . . . . . . . . [2] [2] [3]
〈b〉 0 1 . . . . . . . . [2] [2] [3]
〈c〉 0 0 1 . . . . . . . [2] [2] [3]
〈d〉 0 0 0 1 . . . . . . [2] [2] [3]
〈e〉 0 0 0 0 1 0 0 0 0 0 [2] [2] [3]
〈 f 〉 0 0 0 0 0 1 0 0 0 0 [2] [2] [3]
〈g〉 0 0 0 0 0 0 1 0 0 0 [2] [2] [3]
〈h〉 0 0 0 0 0 0 0 1 0 0 [2] [2] [3]
〈i〉 0 0 0 0 0 0 0 0 1 0 [2] [2] [3]
〈j〉 0 0 0 0 0 0 0 0 0 1 [2] [2] [3]

Table 4.1: The main equation system of the five-point algorithm consists of ten polynomials
in three variables. The illustrated state of the system is obtained by performing an incom-
plete Gauss-Jordan elimination with partial pivoting. A dot represents a real number and
[ n ] denotes a polynomial of degree n in z.

The matrix Z contains univariate polynomials of degree 3 (first two columns) and
degree 4 (third column) in z. For every solution of this equation system, the vector v
has to be a nullvector of the matrix Z. Consequently, the determinant of the matrix
Z, which is a tenth degree polynomial in z, must be zero. Therefore, the values of z
can be computed as the real roots of a tenth degree polynomial. For each solution
for z, we evaluate the polynomials in the first two rows of the matrix Z, and obtain
the values of x and y by solving the equation system

(

Z11 Z12
Z21 Z22

)(

x
y

)

=

(

−Z13
−Z23

)

. (4.41)

Finally, the essential matrix can be determined for every solution of the equation
system in (4.40) by applying the corresponding values of x, y, and z to (4.39).
In the following, we will complement the mathematical description of the first

step of the five-point algorithm with a brief discussion of further technical details.
A valuable property of the five-point algorithm is its ability to process more than
five points. In the overdetermined case, the matrix Q̌ has as many rows as there
are points. Its nullvectors are computed with a singular value decomposition as
the four singular vectors that correspond to the smallest singular values. The other
steps of the five-point algorithm remain unaffected. In the minimal case, however,
the nullspace of the matrix Q̌ can be determined much more efficiently with a QR
factorization. Another important computation step for the efficiency of the algo-
rithm is the extraction of the roots of the tenth degree polynomial in z. This problem
has already been discussed in the context of the three-point algorithm in the previ-
ous subsection and is solved with the same root bracketing and polishing scheme.
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The second step of the five-point algorithm consists of recovering the relative
camera motion from the essential matrices corresponding to the roots of the tenth
degree polynomial. A singular value decomposition of the essential matrix yields

E = U diag(d, d, 0) VT, d ∈ R
+. (4.42)

After the definition of the matrix

D =





0 1 0
−1 0 0
0 0 1



 , (4.43)

the extrinsic camera parameters of the second view are given by

R2 = UDVT or R2 = UDTVT, (4.44)

t2 = (U13 U23 U33)
T or t2 = − (U13 U23 U33)

T .

All four combinations of R2 and t2 satisfy the epipolar constraint. In order to de-
termine the correct configuration, it is necessary to enforce the cheirality constraint,
which states that the feature points must lie in front of the cameras. This can be
achieved by triangulating a single feature point, because every feature point lies in
front of both cameras only for the correct configuration.
In the appendix of [Nis04b], Nister describes a custom-made singular value de-

composition of the essential matrix. The specialized algorithm requires only a small
number of mathematical operations and is much more efficient than the standard
singular value decomposition. In the minimal case of five feature points, the tri-
angulation of these feature points can be performed with the efficient algorithm
described at the end of Subsection 4.2.1. We have already stated that the five-point
algorithm is unable to recover the global scale of the scene. It is interesting to note
that the equations for the recovery of the camera motion fix the length of the recov-
ered translation vector at ‖t2‖ = 1.
The final step of the five-point algorithm is to determine the true solution from the

up to ten putative solutions computed as the roots of the tenth degree polynomial.
This is possible with an additional feature point, which has to be triangulated and
back-projected. For the back-projection, the extrinsic camera parameters and the
position of the feature point in world coordinates are combined according to (2.2)
and (2.3). When the position of the observed feature point q and the position of
the back-projected feature point ~q are known, the squared back-projection error is
defined as

ǫbp = ‖q−~q‖2. (4.45)

For the disambiguation of the putative solutions, the solution with the smallest
sum of squared back-projection errors for the additional point and the two views is
chosen as the final solution. However, when all feature points lie on a single plane,
this approach suffers from the existence of special scene configurations, which lead
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to an ambiguity with two distinct solutions, one of which is obviously incorrect
[Nis04b].
In order to robustify the five-point algorithm with respect to the described scene

configurations, we employ the alternative approach of disambiguating the com-
puted solutions with an additional view. To this end, the five feature points are
triangulated and the corresponding extrinsic camera parameters of the third view
are estimated with the three-point algorithm. Then, the estimated camera param-
eters are used to back-project the two remaining feature points into the additional
view. The final solution is obtained by finding the smallest sum of squared back-
projection errors. As the absolute camera pose problem with three feature points
has up to four possible solutions, the total number of putative solutions is at most
forty. The only remaining practical restriction of the described approach is that the
centers of projection of the different views must not coincide, which is an inherent
limitation of all structure and motion algorithms.

4.2.4 Bundle Adjustment

The algorithms of the preceding subsections efficiently solve specific aspects of the
structure and motion estimation problem. Although all presented algorithms ex-
hibit perfect theoretical accuracy when ideal input data is processed with high-
precision arithmetics, they are not optimized for generating accurate results with
noisy input data. In addition to that, these algorithms are generally unable to
compute a globally optimal reconstruction due to their restricted scope. Conse-
quently, we complement the presented algorithms with a bundle adjustment ap-
proach, which refines the computed reconstruction by simultaneously optimizing
both the camera motion and the scene structure with respect to a geometrically
meaningful cost function. Its name derives from the bundles of light rays that pass
through both the feature points and the optical centers of the cameras. An elabo-
rate overview of historical, theoretical, and practical aspects of bundle adjustment
is given in [Tri99].

4.2.4.1 Problem Statement

Bundle adjustment approaches can be applied to problems of different sizes, which
range from the optimization of the position of a single feature point to the opti-
mization of the reconstruction of a complete image sequence. In order to provide
a general description of bundle adjustment, we assume that the optimization prob-
lem consists of M views and N feature points. Furthermore, we assume that every
feature point has been observed in every view, which is by no means a require-
ment of bundle adjustment itself, but considerably simplifies the mathematical no-
tation. Thus, the input of bundle adjustment consists of MN 2-D feature positions
qij with i ∈ {1, . . . ,M} and j ∈ {1, . . . ,N}. Like other approaches for non-linear
optimization, bundle adjustment depends on initial estimates of the parameters to
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be optimized. In our case, these estimates comprise the extrinsic camera parameters
(

R̃i, t̃i
)

with i ∈ {1, . . . ,M} and the 3-D feature positions p̃j with j ∈ {1, . . . ,N}.
The standard cost function used for bundle adjustment is the sum of the squared

back-projection errors of all feature points in all views. It can be shown that this
cost function yields a maximum likelihood estimator when the errors in the ob-
served 2-D feature positions conform to a zero-mean Gaussian distribution [Tru98].
However, even one single strong outlier in the feature positions can perturb the
final solution by an arbitrarily large amount. This problem will be solved by the
robust cost functions presented in Subsection 4.3.4. We now turn to the definition
of the standard cost function, which requires a number of preliminary explanations.
Let the optimization parameters, i. e., the extrinsic camera parameters and the 3-D
feature positions, be encoded in the parameter vector φ in a yet unspecified way.
Although the 2-D back-projection ~qij of feature point j into view i implicitly de-
pends on the parameter vector, we do not indicate this relationship in the following
equations to simplify our mathematical notation. With the definition of the vector
function

ǫ(φ) =
(

(q11 −~q11)
T (q12 −~q12)

T . . . (qMN −~qMN)T
)T

, (4.46)

the standard bundle adjustment cost function is given by

E(φ) =
1
2

ǫ(φ)Tǫ(φ) (4.47)

and the bundle adjustment problem can be formulated as

φ̂ = argmin
φ

E(φ). (4.48)

4.2.4.2 Parameterization

The definition of the parameter vector φ, also known as the parameterization of
the optimization problem, is an important detail of every parameter estimation ap-
proach. The following properties indicate a suitable parameterization:

• The parameterization is finite near the current parameter estimate. Large or
infinite parameter values require an overly large number of finite update steps
of the iterative optimization algorithm.

• According to [Tri99], the parameterization should be locally close to linear
with respect to its effect on the vector function ǫ(φ). This property improves
the convergence rate of the optimization algorithm. In contrast to this, param-
eterization singularities are prone to cause slow convergence and numerical
instabilities.
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• The parameterization is minimal, i. e., the number of parameters equals the
degrees of freedom of the modeled geometric entity. A parameterization that
violates this property increases the size of the parameter space, which usually
decreases the computational efficiency of the optimization algorithm, unless
this parameterization also has a positive effect on its convergence rate.

• The parameterization is fair, i. e., any rigid transformation of space results in
an orthogonal transformation of the parameter values. This property ensures
that the sensitivity of the optimization parameters on small errors in the input
data is not governed by the choice of the world coordinate system [Hor99].

It is possible that two parameterization properties exclude each other for some ge-
ometric entities. For example, the 3-D feature positions in standard coordinates can
become quite large when a feature point lies far from the center of the world coor-
dinate system. This problem does not arise for homogeneous coordinates, which
allow the representation of any feature point, even including feature points at infin-
ity, with a normalized vector of unit length. However, homogeneous coordinates
are not a minimal parameterization of the point positions. As a consequence, se-
lecting a parameterization for a given geometric entity often involves judging the
respective trade-offs by experience.
We are especially interested in the computational efficiency provided by a min-

imal parameterization. Thus, we represent both the camera translations and the
feature positions in standard coordinates. The camera rotation, which is usually
specified as a 3× 3 rotation matrix, has only three degrees of freedom. Alternative
representations include Euler angles, which are not a fair parameterization, quater-
nions, which are not a minimal parameterization, and the angle-axis representation,
which has all desired properties. The angle-axis representation consists of a vector
ř ∈ R

3 that points in the direction of the rotation axis. The rotation angle is encoded
in the Euclidean norm of the vector. A rotation in angle-axis representation can be
converted into a rotation matrix with Rodrigues’ rotation formula:

R = I +
sin ‖ř‖
‖ř‖





0 −ř3 ř2
ř3 0 −ř1
−ř2 ř1 0



+
1− cos ‖ř‖
‖ř‖2





0 −ř3 ř2
ř3 0 −ř1
−ř2 ř1 0





2

.

As it is not possible to apply a rotation directly in the angle-axis representation,
Rodrigues’ rotation formula is used very often in the course of the optimization
process, e. g., for the computation of the current reprojection error. However, di-
rectly using the rotation matrix representation also requires additional operations.
As the elements of the parameter vector are optimized without considering the or-
thonormality of the encoded rotation matrices, the matrices have to be normalized
after every parameter update. All in all, the computation time saved by the angle-
axis representation easily outweighs the time required for the additional conversion
operations.
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We are finally able to specify our parameter vector φ. It can be partitioned into
the vectors φc,i, which describe the extrinsic camera parameters, and the vectors
φp,j, which describe the feature positions, as follows

φ =
(

φT
C , φT

P

)T
=
(

φT
c,1 , . . . , φT

c,M , φT
p,1 , . . . , φT

p,N

)T
. (4.49)

The camera parameter vectors φc,i consist of six components forming a minimal
parameterization of the rotation and the translation of a single camera:

φc,i =
(

řTi , tTi
)T
∈ R

6. (4.50)

The feature positions are represented in standard coordinates as

φp,j = pj ∈ R
3. (4.51)

All in all, the parameter vector φ has 6M + 3N components.

4.2.4.3 Optimization Algorithms

The non-linear least-squares optimization problem arising in bundle adjustment is
traditionally solved with one of the many variants of the Levenberg-Marquardt op-
timization method. For the derivation of this method, we introduce a linear model
l(h) of the vector function ǫ(φ) by performing a Taylor expansion around the cur-
rent parameter value

ǫ(φ + h) ≈ l(h) = ǫ(φ) + J(φ)h , (J(φ))ij =
∂ǫi
∂φj

(φ) . (4.52)

The partial derivatives of ǫ(φ) are stored in the Jacobian matrix J(φ). As the sym-
bolic computation of the partial derivatives of ǫ(φ) is quite complex, we compute
the entries of the Jacobian matrix by numerical differentiation. By combining (4.47)
and (4.52), we can define the linear model L(h) of the cost function E(φ) as

E(φ + h) ≈ L(h) =
1
2
l(h)Tl(h) = E(φ) + hTJ(φ)Tǫ(φ) +

1
2
hTJ(φ)T J(φ)h .

The vector minimizing the linearized cost function L(h) is known as the Gauss-
Newton step hgn

hgn = argmin
h

L(h) . (4.53)

After setting the first derivative of L(h) to zero

L′(h) = J(φ)Tǫ(φ) + J(φ)T J(φ)h = 0 , (4.54)
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the Gauss-Newton step hgn can be computed as the solution of the so-called normal
equations

(

J(φ)TJ(φ)
)

hgn = −J(φ)Tǫ(φ) . (4.55)

Although hgn is a descent direction for E(φ), the actual length of the update step
has to be determined with an additional line search to obtain guaranteed conver-
gence. The Levenberg-Marquardt method avoids the additional effort by using a
minor variation of (4.55) called the augmented normal equations

(

J(φ)T J(φ) + λ I
)

hlm = −J(φ)Tǫ(φ) , λ > 0 . (4.56)

The introduction of the damping parameter λ has several effects:

• As λ > 0, the coefficient matrix (J(φ)T J(φ) + λ I) is positive definite. Thus,
the augmented normal equations always have a unique solution.

• For small values of λ, hlm almost equals hgn, which is ideal when the cost
function E(φ) and its linear model L(h) closely resemble each other.

• For large values of λ, hlm is a small step in the steepest descent direction.
Therefore, guaranteed convergence can be achieved by choosing values of λ
that are large enough.

The general approach of the Levenberg-Marquardt method can be summarized
as follows. At first, the parameter vector φ is set to the initial parameter estimates
provided as input and the damping parameter λ is initialized. Then, the main loop
of the method is entered. In every iteration, the parameter update hlm is computed
by solving the augmented normal equations for the current parameters. When the
cost function decreases for the new parameters (φ + hlm), the parameter update
is accepted, otherwise it is rejected. There are a number of different strategies for
updating the damping parameter λ. However, all strategies have in common that
the damping parameter λ has to be increased in the case of a rejected parameter
update. Finally, different stopping criteria are used for the termination of the main
optimization loop.
A description of the traditional Levenberg-Marquardt method can be found in

the appendix of [Har00]. In this thesis, we use the modern variant described in
[Lou05b]. Apart from the fact that [Har00] does not specify any stopping criteria,
the differences between the two variants are related to the damping parameter λ.
The traditional variant initializes λ with a user-defined value. In contrast to this,
the initialization of λ in the modern variant is

λ̃ = λinit ∗ max
i

(

J(φ̃)TJ(φ̃)
)

ii
, λinit = 0.001 , (4.57)

which takes the input data into account and facilitates a faster convergence in the
early iteration steps. In a similar way, the update strategy for the damping pa-
rameter λ is more sophisticated in the modern variant. The traditional approach is
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to increase or decrease λ by a factor of ten after every iteration, depending on the
change of the cost function. This strategy can cause the damping parameter to alter-
nate between the same two values, which is prone to slow down the convergence.
The update strategy of the modern variant is based on the gain ratio γ

γ =
E(φ)− E(φ + hlm)

L(0)− L(hlm)
, (4.58)

L(0)− L(hlm) =
1
2
hTlm

(

λ hlm− J(φ)Tǫ(φ)
)

, (4.59)

which measures how well the linear model approximates the true cost function.
When the gain ratio γ is greater than zero, i. e., the cost function has decreased, the
damping parameter λ is multiplied by the maximum of 1

3 and 1− (2γ− 1)3. Oth-
erwise, the damping parameter is multiplied by 2i for the i-th consecutive failure
to decrease the cost function. This strategy carefully tunes the damping parameter
λ when the gain ratio is positive, but also takes decisive corrective action when the
cost function has not been decreased for several iterations.
Our implementation of the Levenberg-Marquardt optimization method supports

three stopping criteria. In order to protect the method against an infinite loop, we
limit the maximum number of iterations with the help of the user-specified pa-
rameter δbun_iter. The standard stopping criterion checks if the gradient of the cost
function is sufficiently close to zero

‖ J(φ)Tǫ(φ)‖∞ ≤ θbun_gra , (4.60)

which is a necessary condition for a local minimum. Finally, we check the actual
change in the parameter vector φ with the third stopping criterion

‖hlm‖ ≤ θbun_upd
(

‖φ‖+ θbun_upd
)

. (4.61)

This criterion complements the second criterion, which is prone to the effects of
rounding errors when θbun_gra is very small. In our implementation, we use

θbun_gra = 10−6 and θbun_upd = 10−6 . (4.62)

Lourakis and Argyros proposed to replace the Levenberg-Marquardt method
with Powell’s dog leg method in [Lou05b]. Both methods compute their parameter
updates as a combination of the Gauss-Newton and the steepest descent directions.
Unlike the Levenberg-Marquardt method, the dog leg method solves the normal
equations without adding a damping parameter. Instead, it controls the maximum
step size with the help of the radius of a trust region. The better efficiency of the
dog-leg algorithm mainly derives from the fact that the normal equations have to
be solved at most once for every successful iteration, instead of once for every iter-
ation, including unsuccessful ones. However, while the augmented normal equa-
tions usually yield a positive definite matrix, which can be inverted with an efficient
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Cholesky factorization, the standard normal equations are prone to produce posi-
tive semi-definite and indefinite matrices, which can only be inverted with more
complicated and less efficient algorithms. All in all, the marginal increase in com-
putation speed that we have been able to achieve in our experiments does not war-
rant a replacement of the reliable Levenberg-Marquardt method in our case.

4.2.4.4 Efficient Bundle Adjustment

The most time-consuming operation during the solution of the augmented normal
equations is the inversion of a matrix of size (6M + 3N) × (6M + 3N), which has
a run-time complexity of O((6M + 3N)3). Consequently, the efficient solution of
large bundle adjustment problems requires additional techniques. There are several
possible techniques for accelerating bundle adjustment:

• The most obvious technique is the reduction of the amount of data, which can
be achieved by removing either cameras or feature points from the input data.
Examples include the use of virtual key frames in [Shu99], the restriction of the
optimization to the most recent frames in the real-time approach of [Eng06],
and the independent processing of the segments of a video sequence described
in Subsection 4.3.5. The main drawback of this technique is that the discard-
ing of relevant data possibly reduces the accuracy of the bundle adjustment
approach.

• Another technique for avoiding the inversion of the largematrix is called inter-
leaving. Its basic idea is to alternate the optimization of the camera parameters
and the point positions. As each camera is independent of the other cameras
when the feature points are fixed, and vice versa, the largest matrix that has
to be inverted has a size of 6 × 6. However, the theoretical advantage of a
much lower computational complexity is mostly offset by the much slower
convergence. Especially when the average trail length is small compared to
the length of the video sequence, parameter changes take very long to propa-
gate from one end of the sequence to the other.

• The most promising technique for accelerating bundle adjustment is to exploit
the sparsity of the problem structure, which manifests itself in the Jacobian
matrix J(φ). All elements of a row of the Jacobian matrix are zero except for
the parameters of one camera and one feature point. Detailed descriptions of
the algorithm for exploiting the resulting structure of the matrix J(φ)T J(φ)
are given in [Har00] and [Eng06]. The new algorithm has to invert one matrix
of size 6M× 6M and N matrices of size 3× 3. This reduction in computational
complexity, which comes without any significant disadvantages, is especially
impressive when the number of feature points is large. Nevertheless, the ad-
ditional omission of cameras can be advisable for long video sequences, when
ultimate computational efficiency is required.
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As we accelerate the bundle adjustment approach in our structure and motion
estimation system by exploiting the sparsity of the Jacobian matrix, we provide
a concise explanation of this technique. Compared to the standard Levenberg-
Marquardt method, only the normal equations are solved differently, whereas all
other parts remain unaffected. When the Jacobian matrix is split into two subma-
trices J(φ) = ( JC(φ) JP(φ) ) and the vector φ is omitted for better readability, the
augmented normal equations can be written as

(

JTC JC + λ I JTC JP
JTP JC JTP JP + λ I

)(

hC
hP

)

=

(

−JTC ǫ

−JTP ǫ

)

. (4.63)

The matrices HCC = JTC JC + λ I and HPP = JTP JP + λ I are both block-diagonal,
whereas the structure of the matrix HCP = JTC JP = (JTP JC)T depends on the input
data. Multiplying the augmented normal equations by

(

I 0

0 H−1PP

)

and
(

I −HCP

0 I

)

(4.64)

from the left yields the equation

(

HCC− HCP H−1PP HT
CP 0

H−1PP HT
CP I

)(

hC
hP

)

=

(

−JTC ǫ + HCP H−1PP JTP ǫ

−H−1PP JTP ǫ

)

. (4.65)

The update vector hC for the extrinsic camera parameters can be computed from the
first row of this equation. Afterwards, it is possible to determine the update vector
hP for the feature positions from the second row of the equation. The most impor-
tant aspect of an efficient implementation is to capitalize on the block structure of
the matrix HPP.

4.2.4.5 Gauge Freedom

As we have already discussed in the first section of this chapter, there are proper-
ties of the reconstructed scene that cannot be estimated from the images of a video
sequence alone. When the video sequence has been captured with a calibrated cam-
era, the reconstruction has seven degrees of freedom, which correspond to the po-
sition and orientation of the world coordinate system and the global scale of the
reconstruction. The freedom to arbitrarily choose these properties is called gauge
freedom. Although failing to constrain the gauge of the reconstruction can lead to
numerical problems in the solution of the normal equations, we did not encounter
any such problems with our bundle adjustment approach. A more elaborate dis-
cussion of many aspects of gauge freedom can be found in [Tri99]. Furthermore,
Bartoli presents an approach for gauge invariant bundle adjustment in [Bar03].
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Figure 4.6: The three examples of this figure illustrate different strategies for the segmenta-
tion of an input image sequence.

4.3 The Structure and Motion Estimation System

This section contains a detailed description of our proposed structure and motion
estimation system. In the first subsection, we give a short overview of our strat-
egy for processing the input image sequence. In addition to the algorithms dis-
cussed in Section 4.2, our structure and motion estimation system employs two
new algorithms. The key frame selection algorithm is described in Subsection 4.3.2,
and the algorithm for estimating the relative scale factor of two independent recon-
structions is detailed in Subsection 4.3.3. In Subsection 4.3.4, we present different
approaches for increasing the robustness of the algorithms in our structure and mo-
tion estimation system. Finally, we closely examine the structure of our estimation
system in Subsection 4.3.5. To this end, we show how the discussed algorithms
interoperate with each other and review our design decisions with respect to the
design goals stated in Subsection 4.1.1.

4.3.1 Overview

Choosing a strategy for the segmentation of the input image sequence is one of the
most important design decisions for every structure and motion estimation system.
Wewill substantiate our choice by analyzing the examples shown in Figure 4.6. The
left example is typical of real-time systems that have a strong focus on low latency
operation like [McL00, Lou05a, Eng06]. At first, an initial estimate of the scene
structure and the camera motion is obtained from a small number of views. Then,
the remaining views are processed one after the other as they are captured by the
camera. Although this strategy is unrivaled when low latency is the most impor-
tant requirement, it has several drawbacks for less specialized applications. First
of all, the quality of the initial reconstruction often suffers from the limited amount
of available input data. The resulting inaccuracy also affects the later processing
stages, where the remaining views are merged with the initial reconstruction. In
addition to that, many systems have to improve their accuracy by recomputing a
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considerable part of the scene structure and the camera motion for every added
view, which has a negative impact on their general computational efficiency.
The strategy in the middle of Figure 4.6 is the direct opposite of the first strategy.

Its main goal is to process as many views as possible in one step. Prominent expo-
nents of this strategy are the factorization algorithms discussed in Subsection 4.1.2.
Using all or most of the input data simultaneously increases the potential accu-
racy of the reconstruction, which is one of the inherent strengths of this strategy.
However, long image sequences often include a high percentage of incomplete fea-
ture trails. In the worst case, the first and the last view do not have any feature
points in common. This poses severe problems to factorization algorithms aswell as
invariant-based algorithms. Consequently, some practical implementations pursue
a hybrid strategy, which consists of reconstructing the largest possible subsequence
first and adding the remaining views one by one afterwards [Sch04]. Unfortunately,
this approach vitiates the advantages of both original strategies.
The segmentation strategy used in our structure and motion estimation system is

illustrated in the right example of Figure 4.6. It partitions the image sequence into
segments that are reconstructed independently. Although the performance of this
strategy is mostly determined by the rules for computing the segmentation, it tends
to provide a balanced combination of efficiency and accuracy. By allowing for the
fact that it is usually not possible to reconstruct a complete image sequence in one
step, it also gains a lot of versatility over the strategy in the middle of Figure 4.6.
Furthermore, when highest accuracy is required, it is always possible to optimize
the complete reconstruction with a bundle adjustment algorithm. Other structure
andmotion estimation systems employing this segmentation strategy are presented
in [Shu99] and [Gib02].
The segmentation strategy of our estimation system strongly influences its ba-

sic approach for processing the input image sequence. As illustrated in Figure 4.7,
our estimation system uses a three-step process. The first step is the segmentation
of the input image sequence, which is controlled by the key frame selection algo-
rithm described in Subsection 4.3.2. The second step consists of the independent
reconstruction of the individual segments, which is discussed in Subsection 4.3.5.
This subsection also contains a detailed explanation of the system structure and the
technical specifications of our structure and motion estimation system. Finally, the
reconstructed segments are merged into one reconstruction in the third step. We
provide further information on this step in Subsection 4.3.3.

4.3.2 Key Frame Selection

The key frame selection algorithm described in this subsection computes the start
frame and the end frame of every segment. In order to facilitate the merging of
the reconstructed segments, adjacent segments have one key frame in common.
Furthermore, the segmentation of the input image sequence has to possess two im-
portant properties. On the one hand, every segment must contain a certain num-
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segmentation

reconstruction
of segments

merging of
segments

Figure 4.7: The basic approach of our structure andmotion estimation system for processing
the input image sequence consists of three distinct steps. In order to facilitate the merging
of the segments in the third step, the segmentation ensures that adjacent segments have one
view in common.

ber of feature points that are available in all frames of the segment. This property
allows our reconstruction algorithms to process the segments as described in Sub-
section 4.3.5. On the other hand, every segment has to contain a sufficiently large
baseline, which is the amount of camera translation perpendicular to the view rays
from the optical center to the feature points. This is a vital requirement for the
estimation of the camera motion with the five-point algorithm as well as the subse-
quent triangulation of the feature points.

Although the key frame selection algorithms in other structure and motion esti-
mation systems often have to meet differing requirements, it is instructive to exam-
ine their quality criteria. The most basic quality criterion is given by the number
of frames in the resulting segment. It is used in [Nis00] to induce a bias towards
long segments, which are preferable to a larger number of small segments. Another
quality criterion considers the number of feature points that are available both in
the previous key frame and the current frame. This criterion is present in many key
frame selection algorithms [Whi01, Gib02, Sai03, Rep05], where it is often expressed
as the ratio between the number of lost features and the total number of features in
the previous key frame.

Most key frame selection algorithms try to obtain a rough estimate of the scene
configuration, which is then used to find key frames that facilitate the subsequent
reconstruction of the segments. A simple measure for the camera motion is pro-
vided by the translation of the feature points [Whi01]. However, this criterion can-
not discern camera rotation, which does not affect the reconstruction, and camera
translation, which has to be sufficiently large for a successful reconstruction. A
more reliable way of detecting the presence of camera translation is to estimate a
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angle of 15◦ angle of 45◦ angle of 75◦

optical
center

probable
feature
position

Figure 4.8: The accuracy of the triangulation of a feature point strongly depends on the an-
gle between the view rays from the optical centers. The probable position of a triangulated
feature point is defined by the intersection of two cones, which represent the uncertainty of
the positions of the tracked feature points in the image plane.

planar projective homography for the corresponding feature points of two frames
[Sai03]. Feature data that accurately conforms to the homographic model can either
be explained by a dominantly planar scene structure or by the absence of camera
translation. In both cases, the concerned frame is not well suited as a key frame.
An additional criterion for double-checking the scene configuration is the epipo-
lar model represented by the fundamental matrix, which should be able to fit all
correctly tracked feature points for all scene configurations [Gib02]. The Geometric
Robust Information Criterion (GRIC) model selection approach is used to perform
a quantitative comparison of the homographic model and the epipolar model in
[Rep05]. While the presented criteria are primarily used to avoid degenerate scene
configurations, the approach in [Tho04] expressly selects the best key frames with
respect to the estimation error of the reconstruction. Although the publication con-
tains no information about the efficiency of the proposed approach, its description
suggests that it is very time-consuming.
All of the quality criteria discussed in the preceding paragraph are generally ap-

plied to uncalibrated image sequences. In contrast to this, our structure and motion
estimation system only works with calibrated image sequences. This fact strongly
affects the requirements of our key frame selection algorithm. First, we do not have
to detect a possible planarity of the scene structure, because our algorithms are able
to cope with this configuration. Furthermore, it allows us to efficiently compute a
Euclidean reconstruction of two views with the five-point algorithm. The general
inability to recover the global scale factor makes it impossible to compare the cam-
era translations of different view pairs directly. Thus, we use the angle of the view
rays from the optical centers to the available feature points instead. As the angles
are faithfully recovered in the Euclidean framework, they can easily be compared
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standard frame

eligible frame

key frame

segment

Figure 4.9: The exemplary computation of the first two segments of an image sequence il-
lustrates the basic approach of our key frame selection algorithm.

for different view pairs. Under the assumption that the distance of the camera from
the scene is roughly constant, the median angle of the view rays is a good way to
judge the potential accuracy of a reconstruction. This proposition is further sub-
stantiated in Figure 4.8.
Figure 4.9 illustrates the basic approach of our key frame selection algorithm.

The first frame of the input image sequence is automatically selected as the first key
frame, because the resulting segmentation has to cover the whole image sequence.
The second key frame is both the last frame of the first segment and the first frame
of the second segment. Its position is confined by two user-defined parameters,
which specify the minimum number δfrm_min and the maximum number δfrm_max
of frames in a segment. For the purpose of illustration, these parameters are set to
values of three and ten in Figure 4.9. The default values of these two parameters in
our structure and motion estimation system are discussed in Subsection 4.3.5.
Our key frame selection algorithm computes the last frame m̂2 of every new seg-

ment by maximizing a quality measure qo for the segment defined by the previous
key frame m̂1 and one frame m2 of the set F of eligible frames

m̂2 = argmax
m2 ∈F

qo(m̂1,m2) . (4.66)

The overall quality measure is the product of three separate quality measures

qo(m1,m2) = qangles(m1,m2) qframes(m1,m2) qtrails(m1,m2) . (4.67)

The first quality measure qangles(m1,m2) is defined as the median of the sines of
the view ray angles of the feature points available in the frames m1 and m2. It is
computed with a robust version of the five-point algorithm, which is described in
Subsection 4.3.4. The sine of the angle is used to obtain a value between zero and
one. Furthermore, it introduces a non-linear mapping that decreases the probability
that key frames resulting in very small view ray angles are selected.
The second quality measure qframes(m1,m2) is based on the ratio between the

number of frames in the segment and the maximum number of frames

qframes(m1,m2) = 1−
(

m2 −m1 + 1
δfrm_max

− 1
2

)2

. (4.68)
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Figure 4.10: This graph visualizes the shape of the quality measures qframes(·) and qtrails(·)
with respect to the corresponding ratios. Theminimum relative number of complete feature
trails in a segment can be adjusted with the parameter θseg_rat.

As illustrated in Figure 4.10, this quality measure introduces a small bias towards
segments of medium length. The third quality measure

qtrails(m1,m2) =
(

1+ 10−10(Nratio(m1,m2)−θseg_rat)
)−1

(4.69)

is based on the ratio

Nratio(m1,m2) =
Nfp(m1,m2)

Nfp(m1,m1)
(4.70)

between the number Nfp(m1,m2) of feature points available in all frames from m1
to m2 and the number Nfp(m1,m1) of feature points in framem1. This ratio is mono-
tonically decreasing with the distance from m2 to m1. Figure 4.10 illustrates that the
quality measure qtrails(m1,m2) rapidly diminishes when the ratio Nratio(m1,m2) ap-
proaches the user-defined parameter θseg_rat from above. The purpose of the third
qualitymeasure qtrails(m1,m2) is to ensure that the number of complete feature trails
in every segment is sufficiently large for a robust and accurate reconstruction. At
the same time, it has almost no impact on the key frame selection when the ratio
Nratio(m1,m2) is much larger than θseg_rat. The default value of θseg_rat in our struc-
ture and motion estimation system is 0.25.
In summary, our key frame selection algorithm sequentially processes the input

image sequence by alternating two operations. Given the last computed key frame,
the algorithm determines the set of eligible key frames by limiting the size of the
resulting new segment. From this set, it selects the frame with the highest overall
quality measure as the next key frame. When our key frame selection algorithm
reaches the end of the input image sequence, the following two distinct problems
can occur:

• The last key frame does not coincide with the last frame of the image sequence,
but there are not enough remaining frames for another segment.
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end of image sequence

extending last segment

inserting additional segment

Figure 4.11: When the end of the input image sequence has been reached, a post-processing
step in our key frame selection algorithm ensures that the segmentation covers the whole
sequence. To this end, our algorithm either extends and resizes the last segment or inserts
an additional segment. The meaning of the different camera symbols is explained in Fig-
ure 4.9.

• The last key frame coincides with the last frame of the image sequence, but the
value of the quality measure of the final segment is very small.

Our key frame selection algorithm tackles these problems in a post-processing step
that explores the two alternative solutions illustrated in Figure 4.11. First, the last
segment is extended to the last frame of the sequence, and the second to last key
frame is repositioned by maximizing the minimum of the overall quality measures
of the last two segments. Second, an additional key frame is used to split the frames
after the second to last segment into two segments. In this case, the position of the
additional key frame is determined by maximizing the minimum of the overall
quality measures of the last three segments. Finally, the alternative solution yield-
ing the better one of the two maximized quality measures is selected.
During the reconstruction of the segments, which is described in Subsection 4.3.5,

the solutions of the five-point algorithm for the relative camera pose of the two
outer key frames of a segment are disambiguated by applying the three-point algo-
rithm to a third key frame. For a segment with the outer key frames m̂1 and m̂2, the
intermediate key frame m̂3 is computed according to

m̂3 = argmax
m3 ∈Fmid

qmid(m̂1, m̂2,m3) , Fmid = {m̂1 + 1, . . . , m̂2 − 1} , (4.71)

where qmid(·) is defined as

qmid(m1.m2,m3) = min(qangles(m1,m3), qangles(m3,m2)) . (4.72)

The quality measure qmid(·) prevents that the camera position in the intermediate
key frame lies too close to the camera position of either of the outer key frames. For
a large number of frame pairs m1 and m2, the quality measure qangles(·) is consid-
eredmore than once during the key frame selection process. Consequently, we store
the computed values of qangles(·) in a temporary data cache to avoid unnecessary
recomputations.
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For applications that require very high efficiency, the computation of the median
view ray angles required for the quality measure qangles(·) can be deactivated with
the user-defined parameter δseg_vra. The modified overall quality measure is then
given by

q̃o(m1,m2) = qframes(m1,m2) qtrails(m1,m2) (4.73)

and the intermediate key frames are determined as

m̂3 = (m̂1 + m̂2)/2 . (4.74)

However, this approach is only recommended when the configuration of the scene
structure and the camera motion is known to be unproblematic. We evaluate the
performance of our key frame selection algorithm both with and without the com-
putation of the median view ray angles in Section 6.2.

4.3.3 Merging of Segments

Our key frame selection algorithm partitions the image sequence into segments,
which are reconstructed independently as described in Subsection 4.3.5. After-
wards, the reconstructed segments have to be merged into a complete reconstruc-
tion. One important aspect of our approach for the merging of the segments is the
organization of themerging process. Furthermore, the merging itself can be divided
into two distinct steps. In the first step, the two considered segments are placed into
one common coordinate system. In the second step, the final feature positions are
determined from the possibly inconsistent estimates in the reconstructed segments.
Our approach for the merging of the segments is sequential. At first, the complete

reconstruction is initialized with the first segment. Then, the remaining segments
are appended consecutively to this reconstruction. This approach makes it possible
to efficiently optimize the data of every merged segment as described at the end of
Subsection 4.3.5. As the segments are fully reconstructed before the merging takes
place, processing them in a different order does not provide any significant advan-
tage. More sophisticated approaches, like the hierarchical approach proposed in
[Nis00], are only beneficial when the reconstruction and the merging of the seg-
ments are closely coupled.
The first step of the merging process is to place the two reconstructions into a

common coordinate system. For Euclidean reconstructions, this problem requires
the estimation of a rotation, a translation, and a relative scale factor. Our solution
to this problem is detailed in Figure 4.12. It estimates the rotation and the trans-
lation by aligning the common view of the two reconstructions. This reduces the
problem to the estimation of the relative scale of the reconstructions. We estimate
the relative scale factor by considering the feature points that are available in both
reconstructions. Incidentally, it is also possible to compute the complete alignment
with these feature points alone. However, in this case the two sets of extrinsic cam-
era parameters of the shared view are not guaranteed to coincide and the obtained
final result is not necessarily better.
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independently
reconstructed segments

segments aligned
with shared view

segments after
scale estimation

Figure 4.12: This figure illustrates our basic approach for placing two independently recon-
structed segments into a common coordinate system. The relative motion between the two
segments is defined by a rotation, a translation, and a relative scale factor. As our key frame
selection algorithm ensures that adjacent segments have one view in common, we can esti-
mate the rotation and the translation between the two segments by aligning this view. After
that, we estimate the relative scale factor with the help of the feature points available in both
segments.

We prepare the estimation of the relative scale factor by transforming all feature
points n available in both the reconstruction r and the reconstructed segment t into
the camera coordinate system of the shared view m

cr,mn = Rr,m pr,n + tr,m , ct,mn = Rt,m pt,n + tt,m . (4.75)

The relative scale factor ŝm of the reconstructions with the shared key frame m is
then computed by minimizing the sum of the squared distances of the common
feature points n

ŝm = argmin
sm

∑
n

‖cr,mn − sm ct,mn‖2 =
∑n c

T
r,mnct,mn

∑n c
T
t,mnct,mn

. (4.76)

In order to decrease the influence of the outliers among the feature points, our sys-
tem uses a robust version of this algorithm, which is further described in Subsec-
tion 4.3.4. After the estimation of the relative scale factor, the triangulated feature
points of the reconstructed segment t can be transformed into the world coordinate
system of the reconstruction r according to

p̂t,n = RT
r,m Rt,m ŝm pt,n + RT

r,m (ŝm tt,m − tr,m) . (4.77)

Finally, the extrinsic camera parameters of the views l in the segment t have to be
transformed into the coordinate system of the reconstruction r. The new rotation
matrices Rr,l = R̂t,l are given by

R̂t,l = Rt,l R
T
t,m Rr,m , l > m , (4.78)
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and the new translation vectors tr,l = t̂t,l are given by

t̂t,l = ŝm tt,l − R̂t,l R
T
r,m (ŝm tt,m − tr,m) (4.79)

= ŝm tt,l − Rt,l R
T
t,m (ŝm tt,m − tr,m) , l > m .

As the transformed extrinsic camera parameters are unique, they can simply be
copied into the merged reconstruction.
The second step of the merging is concerned with the processing of the possibly

inconsistent feature positions. Feature points that are only available in one segment
have exactly one triangulated position, which can be copied into the complete re-
construction after its transformation into the correct world coordinate system. In
contrast to this, feature points that are available both in the reconstruction r and the
reconstructed segment t can have two inconsistent positions pr,n and p̂t,n. Our so-
lution to this problem is to select the position yielding the smaller median squared
back-projection error with respect to all available views in the merged reconstruc-
tion. Thus, we back-project the reconstructed feature point positions into image
coordinates according to (2.2) and (2.3). For one feature point n and one view m,
the squared back-projection error is defined as

ǫbp,mn = ‖qmn −~qmn‖2, (4.80)

where qmn is the observed position of the feature point and~qmn is the back-projected
position of the feature point. The most promising alternative solution is to retri-
angulate the feature points with all available views in the merged reconstruction,
which is less efficient but more accurate. In our view, the first solution is more
versatile, because the accuracy of the feature positions can easily be improved by
activating one of the optional bundle adjustment approaches described in Subsec-
tion 4.3.5, whereas the higher computational cost of the alternative solution cannot
be recovered.

4.3.4 Robust Estimation

Although robustness to outliers is one of the most important design goals for our
structure and motion estimation system, the algorithms presented in Section 4.2
are not specifically prepared to cope with outliers in their input data. In order to
remedy this obvious shortcoming, we employ two common techniques for robust
estimation, which are known as least median of squares (LMedS) andM-estimators.
In addition to an overview of our outlier handling strategy, this subsection contains
a short description of both techniques, which is based on both [Zha97] and [Ste99].
We also explain how these techniques are applied to the algorithms in our structure
and motion estimation system.
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4.3.4.1 Basic Approach

In the description of our feature point tracking system in Chapter 3, the term outlier
is exclusively used for erroneous feature positions that are part of the output of
the tracking system. In contrast to this, outliers can occur in the input data, the
intermediate results, and the output data of our structure and motion estimation
system. Our outlier handling strategy is based on these rules:

• All algorithms in our system have to be sufficiently robust against outliers in
their respective input data.

• Outliers detected by one algorithm are not deleted from the input data of sub-
sequent algorithms.

• Outliers in the output data are neither detected nor deleted.

Both the second and third rule seem counterproductive at first glance. In order
to justify these rules, we take a closer look at the conditions in our structure and
motion estimation system.
There are several different configurations for incorrect feature positions in a fea-

ture trail. Single outliers can be caused by a single blurred image, whereas consec-
utive outliers occur when the feature tracker completely loses the correct feature
point. When the feature tracker flip-flops between two similar feature points, even
alternating patterns of inliers and outliers are possible. During the segmentation
of the input image sequence, a feature trail is possibly divided into two or more
parts. Consequently, the algorithms performing the reconstruction of the segments
do not have enough information to decide between inliers and outliers, as a large
part of the feature trail might lie outside the current segment. In addition to that,
removing feature positions as outliers leads to non-contiguous feature trails, which
considerably complicate the implementation of the reconstruction framework. Fi-
nally, leaving potential outliers in the input data gives all algorithms the chance to
consider all the available data.
In contrast to our feature point tracking system, our structure and motion esti-

mation system does not screen the output data for outliers. In our opinion, leaving
this task to the algorithms processing the results of the structure and motion esti-
mation provides a higher versatility, because the requirements of these algorithms
for the accuracy and the completeness of the provided data can differ substantially.
This approach is possible because the camera parameters, the feature positions, and
the feature trails contain all the information necessary for a successful outlier detec-
tion. This is also the main difference to our feature point tracking system, where
the actual image sequence is usually deleted after the tracking, which renders a
later outlier detection impossible.
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Figure 4.13: The probability of finding at least one set of good samples with a random sam-
pling technique depends on the fraction po of outliers, the size Na of the sample set, and the
number of iterations Ni.

4.3.4.2 Least Median of Squares

We use the least median of squares technique to robustify several algorithms in our
structure and motion estimation system. Its basic idea is to minimize the median of
the squared residuals

φ̂ = argmin
φ

med
i∈{1, ...,Ns}

ǫi(φ)2. (4.81)

The definition of the parameter vector φ and the cost function ǫi(φ) is specific to the
robustified algorithm, whereas the size Ns of the sample set depends on the input
data. We complement the following introduction of the least median of squares
technique with a discussion of its application to the algorithms in our estimation
system further below.
Robustness is oftenmeasuredwith the breakdown point, which specifies themin-

imum fraction of outliers that can cause the estimate to diverge arbitrarily far from
the correct estimate. The least median of squares technique has a breakdown point
of 0.5, because its objective function ignores the values of the worse half of the
residuals. Unfortunately, the use of the median in the objective function prevents
a closed form solution for most problems. As a consequence, practical implemen-
tations rely on a random sampling technique for searching the parameter space.
When the fraction of outliers in the input data is po and the number of random
sampling iterations is Ni, the probability of finding at least one set of Na good sam-
ples is given by

prs(po,Ni,Na) = 1− (1− (1− po)
Na)Ni . (4.82)

The number of random sampling iterations is commonly selected by asserting a
maximum value for the fraction of outliers and specifying a minimum value for the
probability prs. As random sampling techniques are generally unable to guarantee
that at least one set of good samples is found, the specified minimum probability
has to be smaller than 1.0. Consequently, typical values lie between 0.99 and 1.0.
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input: sample set Ss with |Ss| = Ns

FOR j ∈ {1, . . . ,Ni}
randomly select Na samples from Ss into sample set Sj
compute parameter vector φj for sample set Sj
compute squared residuals ǫi(φ j)

2 for all samples in Ss
compute median of squared residuals

select best parameter vector φ̃ according to (4.83)

estimate standard deviation σ(φ̃) of residuals according to (4.85)

compute sample set of inliers S∗ according to (4.86)

compute final parameter vector φ̂ for sample set S∗

Figure 4.14: The basic approach of the least median of squares technique

Figure 4.13 shows the values of prs as a function of the number Ni of iterations for
several combinations of the fraction po of outliers and the size Na of the sample set.
It can clearly be seen that the number of iterations required to obtain a specified
minimum probability increases both with the fraction of outliers and the size of the
sample set.
The basic approach of our implementation of the least median of squares tech-

nique is illustrated in Figure 4.14. During the random sampling, the minimum
number Na of samples required for a successful estimation of the parameter vector
φ is randomly drawn from the input data. After the estimation of the parameter
vector φj for the sample set Sj, the median of the squared residuals is computed for
all samples in the input sample set Ss. Finally, the parameter vector φ̃ yielding the
smallest median error is selected according to

φ̃ = argmin
φj

med
i∈{1,...,Ns}

ǫi(φ j)
2. (4.83)

As the least median of squares technique uses a minimal subset of samples for
estimating the parameter vector, its accuracy in the presence of noise in the input
data is rather low. Consequently, the estimated parameter vector φ̃ is commonly
refined in an additional processing step. To this end, the standard deviation of the
residuals can be estimated as

σ̃(φ̃) = 1.4826
(

1 +
5

Ns − Na

)

√

med
i∈{1,...,Ns}

ǫi(φ̃)2. (4.84)

The derivation of this equation is explained in [Rou87, page 202]. In order to sim-
plify the computation, we omit the finite sample correction factor in our implemen-
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Na Ni sample algorithm cf. refine alt. ref.

segmentation 5 16 3× q five-point 4.2.3 - -
outer motion 5 64 3× q five-point 4.2.3 five-point bun. adj.
inner motion 3 32 q, p three-point 4.2.2 POSIT bun. adj.
triangulation 2 16 2× q midpoint 4.2.1 - bun. adj.
relative scale 3 32 2× p (4.76) 4.3.3 (4.76) -

Table 4.2: This table provides an overview of all applications of the least median of squares
technique in our structure and motion estimation system. It details the number Na of sam-
ples used for the computation of the parameter vector in the random sampling phase, as
well as the default number Ni of random sampling iterations. For all applications in this
table, one sample is defined by a varying number of positions of one feature point in world
coordinates p ∈ R

3 and image coordinates q ∈ R
2. The last two columns list the supported

algorithms for refining the parameter vector estimated in the random sampling phase. We
give further details on the robustified algorithms in the text below.

tation and estimate the standard deviation as

σ(φ̃) = 1.4826
√

med
i∈{1,...,Ns}

ǫi(φ̃)2. (4.85)

Input samples whose residuals are larger than the estimated standard deviation
multiplied by a factor θout_lms are treated as outliers and excluded from the final
sample set

S∗ =
{

Ss[i] | 1 ≤ i ≤ |Ss| and ǫi(φ̃)2 < (θout_lms σ(φ̃))2
}

. (4.86)

In accordance with the publications [Zha97] and [Ste99], our implementation uses
the factor θout_lms = 2.5. The final solution of the least median of squares technique
is given by the parameter vector φ̂ computed for the sample set S∗ of inliers. Inter-
estingly, the computation of the final solution can also be expressed as a weighted
least-squares problem

φ̂ = argmin
φ

∑
i

wi ǫi(φ)2, wi =

{

1 : ǫi(φ̃)2 ≤ (θout_lms σ(φ̃))
2

0 : otherwise
. (4.87)

Thus, the practical implementation of the least median of squares technique is ba-
sically a least-squares estimation with integrated outlier rejection.
Table 4.2 gives an overview of all applications of the least median of squares tech-

nique in our structure andmotion estimation system. In the following, we addition-
ally provide a detailed explanation of the specific characteristics of each application.
As described in Subsection 4.3.2, our key frame selection algorithm, which controls
the segmentation of the image sequence, uses a robust version of the five-point al-
gorithm to compute the quality measure qangles(m1,m2). In this context, one sample
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is defined as the position of one feature point in three different frames in image
coordinates. The three frames are the first frame, the last frame, and the middle
frame of the tentative segment. The squared residual corresponding to one sam-
ple is given by the sum of the squared back-projection errors for all three views.
The definition of a single squared back-projection error can be found in (4.80). In
the random sampling phase, the relative pose of the camera for the first frame and
the last frame is computed with the five-point algorithm. As described in Subsec-
tion 4.2.3, the five-point algorithm yields up to ten solutions for the relative pose. In
order to disambiguate the solutions, we triangulate all available feature points with
the midpoint algorithm as detailed in Subsection 4.2.1. We also use the triangulated
positions of three of the five feature points of the minimal sample set to compute the
absolute pose of the camera for the middle frame with the help of the three-point
algorithm, which is presented in Subsection 4.2.2. Finally, we use the median of
the sum of the squared back-projection errors of all three views both for the disam-
biguation of the multiple solutions and the selection of the best parameter vector of
the random sampling phase. For our key frame selection algorithm, the efficiency
of the described computation is more important than its accuracy. Therefore, we
completely skip the refinement described in the last three lines of Figure 4.14 in this
application of the least median of squares technique.
The task of the second application is to compute the relative pose of the camera

for the outer key frames of every segment. Like the first application, it uses the
three-point algorithm in conjunction with an additional key frame to disambiguate
the solutions computed with the five-point algorithm. The selection of the three
key frames is described in Subsection 4.3.2. In contrast to the first application, the
accuracy of the relative pose estimation has a strong influence on the accuracy of
the reconstruction. As a consequence, we refine the estimation by applying the
five-point algorithm to all feature points in the set of inliers S∗. As the five-point
algorithm yields up to ten solutions, the disambiguation described above also has
to be performed for the final solution.
For the computation of the inner motion, i. e., the absolute pose of the camera

for all inner frames of a segment, we use the three-point algorithm in the random
sampling phase of the least median of squares technique. The three-point algorithm
is detailed in Subsection 4.2.2. The squared residual corresponding to one sample
is given by the squared back-projection error of the respective feature point as de-
fined in (4.80). The three-point algorithm cannot process more than three feature
points. Thus, we have to use another algorithm for estimating the final solution. To
this end, we use the POSIT algorithm with virtual reference point, which has been
proposed in Subsection 4.2.2. However, according to [DeM95], certain configura-
tions of the input data result in divergent behavior of the POSIT algorithm. What is
more, the POSIT algorithm is not suitable for planar scenes. As a consequence, we
only use the solution of the POSIT algorithm when this solution actually reduces
the median of the squared back-projection errors of the available feature points.
The triangulation of the feature points is the fourth application of the least me-
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dian of squares technique in Table 4.2. In the random sampling phase, the sample
set consists of two feature positions in image coordinates. One squared residual
is given by the squared back-projection error of the feature point in the respective
view. In our structure and motion estimation system, the feature points are trian-
gulated with the midpoint algorithm, which is described in Subsection 4.2.1. In
the default case, we do not refine the triangulated feature positions by considering
more than two views for the triangulation. However, Table 4.2 shows that our sys-
tem supports an alternate approach for refining the final solution of the estimation
of the outer motion, the inner motion, and the triangulation. When the alternate
approach is activated with the user-specified parameter δbun_type, the standard al-
gorithms for refining the final solution are replaced with a bundle adjustment ap-
proach. The basic principles of bundle adjustment are explained in Subsection 4.2.4.
Further details on the application of bundle adjustment approaches in our structure
and motion estimation system are presented in Subsection 4.3.5. Our experimental
evaluation in Section 6.2 shows that the alternate approach increases both the accu-
racy of the reconstruction and the required computation time.
Our algorithm for the estimation of the relative scale of two reconstructions is

defined by (4.75) and (4.76) in Subsection 4.3.3. It is the final application of the
least median of squares technique in our structure and motion estimation system.
One sample comprises the positions of one feature point in two different world
coordinate system. Likewise, one squared residual is given by the squared distance
of the two positions of one feature point after applying the scale factor sm. Although
it is possible to estimate the scale factor with a single feature point, we use three
feature points in the random sampling phase, in order to increase the robustness of
the algorithm against noise in the feature point coordinates. As shown in Table 4.2,
the refinement of the scale factor is also performed with the algorithm used in the
random sampling phase.

4.3.4.3 M­Estimators

The second robust estimation technique used in this work consists of a class of algo-
rithms known as M-estimators. We use them exclusively to increase the robustness
of the bundle adjustment approach described in Subsection 4.2.4. The basic idea of
an M-estimator is to replace the square of the residuals by a different function ρ(.)
of the residuals as follows

φ̂ = argmin
φ

∑
i

ρ(ǫi(φ)) . (4.88)

In order to improve the robustness of the original least-squares approach, the func-
tion ρ(.) has to grow subquadratically. We will omit the parameter of the residual
function in some of the following equations for better readability. For the solution
of the optimization problem, we define the influence function ψ(.) and the weight
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LS
Cauchy
Fair
Huber

residual function ρ influence function ψ weight function w

Figure 4.15: M-estimators are defined by their residual function ρ, which also determines
the corresponding influence function and the weight function. In addition to the three im-
plemented M-estimators, the graphs also illustrate the respective functions of the standard
least-squares approach.

function w(.) as

ψ(ǫi) =
∂ρ(ǫi)

∂ǫi
, w(ǫi) =

ψ(ǫi)

ǫi
. (4.89)

Using these definitions, we are able to reformulate the optimization problem in
(4.88) as an iteratively reweighted least-squares problem

φ̂ = argmin
φ

∑
i

w(ǫ̌i(φ̌)) ǫi(φ)2 , (4.90)

where ǫ̌i(φ̌) represents the residuals computed in the previous iteration. This alter-
native formulation is derived in [Zha97].
A large number of different M-estimators have been suggested in the literature.

We focus on three commonly used M-estimators with complementary properties.
These three M-estimators are illustrated in Figure 4.15. Our first estimator is the
Cauchy estimator, which is defined as

ρc(ǫi) =
1
2
c2c log

(

1 +

(

ǫi
cc

)2
)

, wc(ǫi) =
1

1+ (ǫi/cc)
2 . (4.91)

It is the maximum likelihood estimator for the Cauchy distribution, which is a very
heavy-tailed distribution. As the Cauchy estimator has a redescending influence
function, it is especially robust against gross outliers. However, this type of in-
fluence function also tends to create false local minima, which makes an accurate
initialization of the parameter vector very important. The other two estimators are
the Fair estimator

ρ f (ǫi) = c2f

(

|ǫi|
c f
− log

(

1+
|ǫi|
c f

))

, w f (ǫi) =
1

1+ |ǫi|/c f
(4.92)
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and the Huber estimator

ρh(ǫi) =

{

ǫ2i /2 : |ǫi| ≤ ch
ch (|ǫi | − ch/2) : |ǫi| > ch

, wh(ǫi) =

{

1 : |ǫi| ≤ ch
ch/|ǫi | : |ǫi| > ch

. (4.93)

Both estimators are less robust to outliers than the Cauchy estimator, but they are
also less prone to generating false local minima. The residual function of the Fair
estimator has continuous derivatives of the first three orders, whereas the residual
function of the Huber estimator has a discontinuous second derivative. However,
this theoretical shortcoming rarely affects the convergence properties of this widely
used estimator.
The integration of the M-estimators into our bundle adjustment approach makes

a small number of adaptations necessary. As the Levenberg-Marquardt method is
iterative, we apply the weights of the M-estimator in every Levenberg-Marquardt
iteration, instead of solving the iteratively reweighted least-squares problem di-
rectly. All three M-estimators use one additional parameter, which is computed as
the product of a tuning constant and the robust estimate of the standard deviation
of the residuals

cc = 2.3849 σ(φ̌) , c f = 1.3998 σ(φ̌) , ch = 1.345 σ(φ̌) . (4.94)

The estimate of the standard deviation is defined in (4.85), whereas the tuning con-
stants are explained in [Zha97]. As it is more difficult for the Levenberg-Marquardt
algorithm to converge when the estimate of the standard deviation is adjusted in
every iteration, the estimate of the standard deviation is fixed after δrob_iter itera-
tions. Our default value for this user-specified parameter is eight.
The standard cost function of our bundle adjustment approach considers the

back-projection errors of all available feature positions. According to equation
(4.46), the residual for one feature point n and one view m is defined as the back-
projection error

ǫmn(φ) = (qmn −~qmn(φ)) ∈ R
2 . (4.95)

However, the two components of the back-projection error are strongly dependent.
Consequently, it does not make sense to compute separate weights for them. In ac-
cordance with [Eng06], we use the norm of the back-projection errors for the com-
putation of the weights required in (4.90)

ǫi(φ) = ‖qmn −~qmn(φ)‖2 , (4.96)

where the index i corresponds to feature point n in view m. Yet, the Levenberg-
Marquardt optimization method requires the components of the back-projection
errors for its processing. Thus, the weight function of the M-estimator has to be
computed for the norm of the back-projection error, but must then be applied to the
components of this error. This can be achieved by multiplying the components of
the back-projection error with the square root of the weights computed for its norm

w(ǫ̌i(φ̌)) ǫi(φ)2 = ǫ̂mn(φ)Tǫ̂mn(φ) , (4.97)

124



4.3 The Structure and Motion Estimation System

import feature trails (cf. text below)

select key frames and create segments (cf. Subs. 4.3.2)

FOR every segment t ∈ {1, . . . , T}
compute relative pose for outer key frames m̂1 and m̂2 (cf. Subs. 4.2.3)

triangulate feature points using outer key frames (cf. text below)

FOR every inner frame m ∈ {m̂1 + 1, . . . , m̂2− 1}
compute absolute pose for frame m (cf. Subs. 4.2.2)

FOR every feature point n in segment t

triangulate feature point n (cf. Subs. 4.2.1)

(optionally) optimize segment t (cf. Subs. 4.2.4)

initialize current reconstruction with segment t = 1

FOR every segment t ∈ {2, . . . , T}
merge segment t with current reconstruction (cf. Subs. 4.3.3)

(optionally) optimize merged segment t (cf. Subs. 4.2.4)

(optionally) optimize complete reconstruction (cf. Subs. 4.2.4)

Figure 4.16: This figure illustrates the structure of our structure and motion estimation sys-
tem. The given references lead to the description of the standard algorithms for the respec-
tive problem. In addition to that, we provide a detailed explanation of the techniques for
robust estimation used in our system in Subsection 4.3.4. Furthermore, an overview of our
system can be found Subsection 4.3.1.

where

ǫ̂mn(φ) =
√

w(ǫ̌i(φ̌))ǫmn(φ) . (4.98)

The user-specified parameter δrob_type allows the activation of one of the three im-
plemented M-estimators for all applications of bundle adjustment in our structure
and motion estimation system. While the additional computational cost per iter-
ation is negligible, it is possible that this robust estimation technique moderately
increases the number of required iterations. In contrast to this, the robustness to
outliers is improved considerably. As a consequence, we recommend to activate
one of the M-estimators whenever the input data is not completely free of outliers.

4.3.5 System Structure

In this subsection, we provide a detailed description of our structure and motion
estimation system. To this end, its structure is illustrated in Figure 4.16. In addition
to that, all user-defined parameters of our structure and motion estimation system
are presented in Table 4.3. The input data of our estimation system consist of the
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name type description default
δlen_min trail import minimum trail length 3
δfrm_min segmentation minimum number of frames 5
δfrm_max segmentation maximum number of frames 64
θseg_rat segmentation ratio of tracked / total trails 0.25
δseg_vra segmentation compute view ray angle true
δseg_iter segmentation number of LMedS iterations 16
δout_iter outer motion number of LMedS iterations 128
δinn_iter inner motion number of LMedS iterations 64
δtri_iter triangulation number of LMedS iterations 32
δsca_iter relative scale number of LMedS iterations 64
δbun_type bundle adjustment bundle adjustment type ∗
δrob_type bundle adjustment M-estimator type ∗
δbun_iter bundle adjustment maximum number of iterations 32
δrob_iter bundle adjustment iterations with update of σ 8

Table 4.3: This table lists the parameters of our structure and motion estimation system. Its
fourth column contains the default values of the parameters. Default values shown as ∗ are
discussed in the text below.

2-D positions of tracked feature points in sensor coordinates and the intrinsic cam-
era parameters of the camera that captured the image sequence. During the import
of the feature trails, the intrinsic camera parameters are used to transform the co-
ordinates of the feature positions from the sensor coordinate system to the image
coordinate system. Furthermore, feature trails that are shorter than the minimum
trail length δlen_min are deleted from the input data, because such feature trails of-
ten give rise to spurious 3-D feature points in the reconstruction. The preprocessed
feature trails are the only input of the subsequent processing steps.
In the next step, the key frame selection and the creation of the segments are

performed. Our key frame selection algorithm is detailed in Subsection 4.3.2. The
application of the least median of squares technique to the estimation of the quality
measure representing the median view ray angle between two tentative key frames
is discussed in Subsection 4.3.4. Table 4.3 details the user-specified parameters for
setting the number of random sampling iterations for every application of the least
median of squares technique. After the key frame selection, the actual segmentation
is performed by creating one data storage object with all relevant feature positions
for every segment. This approach facilitates the independent reconstruction of the
created segments.
The reconstruction of a segment t is split into several processing steps. First, the

relative pose of the two outer frames of the segment is computed with the robust
version of the five-point algorithm described in Subsection 4.3.4. As our approach
for the disambiguation of the solutions of the five-point algorithm has to triangu-
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late the available feature points anyway, we are able to omit the second processing
step by storing the feature positions computed in the first processing step. As the
quality of the result of this processing step determines the success of the whole re-
construction of the segment, we use a large default value for the number δout_iter
of the random sampling iterations of the least median of squares technique. The
robust computation of the absolute pose for the inner frames is detailed in Subsec-
tion 4.3.4. Finally, all feature points are triangulated with a robust version of the
midpoint algorithm as explained in Subsection 4.3.4. This subsection also contains
detailed references to the descriptions of the standard algorithms in Section 4.2.
As discussed in Subsection 4.3.4, the user-specified parameter δbun_type allows the

activation of our bundle adjustment approach for refining the estimation of the rel-
ative pose, the absolute pose, and the triangulation of the feature points described
above. For the estimation of the relative pose, the extrinsic camera parameters
for the three key frames and the feature positions of all feature points available
in all frames of the segment are optimized at once. In this case, the iterations of the
Levenberg-Marquardt algorithm are limited by δbun_iter = 32 and δrob_iter = 16. For
the estimation of the absolute pose, the extrinsic camera parameters of the inner
frames are optimized independently using the feature positions identified as inliers
in the random sampling phase of the least median of squares technique. Similarly,
the feature positions are optimized independently using all tracked feature posi-
tions identified as inliers. As the optimized parameter vector is much smaller in the
last two cases, we set δbun_iter = 16 and δrob_iter = 8. In all three cases, the bundle
adjustment approach can be robustified by using the parameter δrob_type to activate
one of the three M-estimators described in Subsection 4.3.4
The parameter δbun_type allows the independent activation of three further appli-

cations of our bundle adjustment approach. The first application constitutes the
last processing step of the reconstruction of the segments. It optimizes all extrinsic
camera parameters and all feature positions simultaneously. However, it is mainly
useful for improving the success rate of the subsequent merging of the segments,
especially when the input data contains a large percentage of outliers or represents
a difficult scene configuration. Otherwise, it is preferable to activate the second ap-
plication, which is performed directly after merging a segment with the data of the
current reconstruction. Like the first application, it optimizes the camera parame-
ters and feature positions of one segment at a time. In addition to that, it considers
the reprojection errors of the currently optimized feature points in the frames of the
preceding segments. Our experimental evaluation in Section 6.2 proves that this
approach yields more accurate results, while being only marginally less efficient.
The third and final application of bundle adjustment, which is the last processing
step in Figure 4.16, optimizes the complete reconstruction and provides the highest
accuracy. As we have stated in Subsection 4.2.4, the run-time complexity of bundle
adjustment is governed by the factor (6M)3, where M is the number of optimized
views. Therefore, we recommend to activate this optimization only for short image
sequences or when accuracy is more important than efficiency.
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4.4 Summary

This chapter is concerned with the problem of structure and motion estimation. Its
first section contains an overview of both the problem and the related work. In
contrast to the previous chapter, where we basically enhance an existing system
by adding, improving, and replacing algorithms, our contribution in this chapter
mainly consists of combining existing algorithms into a completely new system.
As a consequence, we first describe the employed algorithms independently in the
second section of this chapter. Afterwards, we explain the assembly of our structure
and motion estimation system in the third section.
Our main design philosophy is to build a versatile structure and motion estima-

tion system by combining an efficient initial reconstruction with an accurate opti-
mization. Thus, it is possible for the user to emphasize either accuracy or efficiency
by deciding between the activation or deactivation of the optional optimization
steps. Under all circumstances, our system should be able to successfully cope with
a certain amount of outliers and the most common scene configurations. Our main
contribution in the area of structure and motion estimation lies in the assembly of a
versatile and robust estimation system from a number of carefully selected state-of-
the-art algorithms. The performance of this system will be examined in Chapter 6.
In addition to that, we enhanced existing and developed new algorithms. In this
context, the extension of the POSIT algorithm with a virtual reference point and our
new key frame selection algorithm are especially noteworthy.
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Point Set Registration

The basic task of point set registration is to align two point sets that represent at least
partially overlapping parts of the same scene or object. In our approach for sparse
3-D reconstruction, these point sets are obtained as the output of the system for
structure and motion estimation described in Chapter 4. The impossibility to deter-
mine the global scale of the reconstruction with a structure and motion estimation
algorithm has already been discussed in Subsection 4.1.1. As a consequence, two
independently reconstructed point sets are bound to have a different scale. Thus,
their registration requires the estimation of the rigid motion and the relative scale
that bring the two point sets into alignment.
In the first section of this chapter, we thoroughly examine the problem of point

set registration and provide an overview of the existing approaches in this problem
area. The second section contains a description of the iterative closest point (ICP)
algorithm, which is the prevalent algorithm for point set registration in the litera-
ture. In addition to that, we also provide a classification of the existing extensions
to this algorithm. Several techniques for improving the robustness of the ICP al-
gorithm to outliers are discussed in the third section. In the fourth section of this
chapter, we present our approach for integrating the estimation of the relative scale
between the two point sets into the ICP algorithm. Section 5.5 comprises an illus-
tration of the structure of our variant of the ICP algorithm as well as a discussion
of its user-specified parameters. The short summary in the final section completes
this chapter.

5.1 Overview

5.1.1 Problem Statement

We start our overview with a description of the ideal motion problem, which is
a simplification of the general problem of point set registration. The input data
of the ideal motion problem consists of two point sets, the data point set A and the
model point set B. These point sets are required to have the same number of points.
Furthermore, there has to be a rigid motion which aligns the two point sets, so that
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(a) (b) (c)

(d) (e)

Figure 5.1: Two-dimensional examples illustrate the wide range of configurations for the
input data of point set registration.

every point ai ∈ A is moved to a corresponding point bj ∈ B:

∀ai ∈ A ∃bj ∈ B : bj = Rai + t . (5.1)

In this thesis, we only consider 3-D point sets, which means that

ai ∈ R
3, i ∈ {1, . . . , |A|} , (5.2)

bj ∈ R
3, j ∈ {1, . . . , |B|} .

Consequently, the rigid motion is defined by the rotation matrix R ∈ R
3×3 and the

translation vector t ∈ R
3, which are invariably applied to the points of the data

point set A.
Figure 5.1 (a) represents an instance of the ideal motion problem. In practice,

however, the assumptions of the ideal motion problem are rarely satisfied. When
a partial reconstruction of an object is compared to a complete model of this ob-
ject, one of the point sets is a subset of the other. This configuration is illustrated
in Figure 5.1 (b). In this case, the number of points in the two point sets differs,
and one point set contains points that have no corresponding point in the other
point set. The registration of two partial reconstructions depicted in configuration
(c) is conceptually similar, except that both point sets contain points that have no
corresponding point in the other point set.
As we stated in the introduction of this chapter, two point sets generated by struc-

ture and motion estimation algorithms have an unknown relative scale, which has
to be computed during their registration. This configuration is shown in Figure 5.1
(d). The two preceding chapters provide many reasons why the reconstruction of
the 3-D points cannot be totally accurate. It is common knowledge that most other
methods for obtaining 3-D point positions from real-world scenes are also affected
by some level of noise. These issues are illustrated in Figure 5.1 (e). In addition to
that, even a perfect reconstruction of the depth of a feature point does not guarantee
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(a) (b) (c)

(d) (e)

Figure 5.2: The two-dimensional examples in this figure demonstrate configurations that
complicate or prevent successful point set registration.

that the same feature points were selected during the generation of the two point
sets. The impact of this problem is reduced when the density of the feature points
is increased.
In order to generalize the ideal motion problem as suggested by the configura-

tions in Figure 5.1, we introduce the set of corresponding point pairs

C = {(i, j) | ai ∈ A and bj ∈ B are corresponding points} . (5.3)

Then, the task of point set registration is to compute themotion (R, t) that aligns the
point pairs defined by C. The additional computation of the relative scale s yields
the motion (R, t, s). It is discussed in Section 5.4. Due to the noise in the point
positions, the computed motion cannot be expected to achieve a perfect alignment
of the corresponding point pairs. Interestingly, there are straightforward solutions
for computing the correspondences when the motion is known, and vice versa.
Nevertheless, the simultaneous estimation of the correspondences and the motion
is a difficult problem.
In the following, we discuss the basic assumptions for successful point set regis-

tration by examining the violations of these assumptions in Figure 5.2. The general
shape of the point sets in example (a) does not allow the estimation of an unam-
biguous alignment. A similar case is shown in Figure 5.2 (b), where the shape of
the smaller point set occurs in more than one location of the large point set. Exam-
ple (c) illustrates that even two point sets with complex shapes can be insufficient
when their overlap is too small. Finally, Figure 5.2 (d) demonstrates that a large
overlap can also be insufficient for a successful alignment when high levels of noise
distort the shape of the point sets. We subsume all four examples under the as-
sumption that the shape of the overlapping region of the two point sets must be
suitable for an unambiguous alignment.
The example in Figure 5.2 (e) illustrates that the registration of two point sets

becomes difficult when the motion for aligning them is large. As the algorithms

131



Chapter 5 Point Set Registration

discussed in this chapter are only locally convergent, they require a coarse pre-
alignment of the input point sets. Although globally convergent algorithms are
outside the scope of this work, a short overview of suitable pre-alignment tech-
niques is given in the following subsection.
We employ the following performance criteria for the systematic comparison of

different registration algorithms:

• The basin of convergence is an important criterion for locally convergent al-
gorithms. In the context of point set registration, it measures the probabil-
ity of finding the globally optimal registration subject to the magnitude of
the initial motion. In principle, the basin of convergence determines if a pre-
alignment of the point sets is necessary and how accurate this pre-alignment
has to be. Unfortunately, for many registration algorithms, the basin of con-
vergence strongly depends on the shape of the point sets and the particular
direction of the motion.

• The computational efficiency of point set registration algorithms can easily be
measured with the total computation time for a complete registration. For
most algorithms, this time strongly depends on the number of points in the
input point sets. Furthermore, the number of points in the input point sets
is highly application-specific. Consequently, it is important to evaluate the
computational efficiency of the algorithms with realistic point sets for every
application.

• In the context of point set registration, outliers are points that do not have a
corresponding point in the other point set. In contrast to the algorithms in the
two preceding chapters, which encounter outliers that are either the result of
a measurement error or an estimation error, point set registration algorithms
additionally have to cope with outliers that are a direct consequence of par-
tially overlapping point sets, even if the point sets themselves are completely
devoid of erroneous data. As a consequence, the robustness to outliers is a
very important performance criterion for point set registration.

• When a registration algorithm is sufficiently robust to successfully cope with
the outliers in the input point sets, the accuracy of the estimated motion can
be evaluated. This performance criterion is mainly used to measure how dif-
ferent levels of noise in the coordinates of the input points affect the estimated
motion.

A small basin of convergence can be counteracted by using multiple starting posi-
tions, which increases the overall computation time. Furthermore, aggressive out-
lier elimination tends to increase robustness, while reducing the basin of conver-
gence, at least for the algorithms discussed in [Phi07]. Our intended applications
induce us to prioritize the robustness of our algorithms and to balance their perfor-
mance with respect to the other criteria.

132



5.1 Overview

5.1.2 Related Work

There are several alternatives for categorizing the existing approaches for point set
registration. One possible categorization distinguishes between globally and lo-
cally convergent algorithms. While globally convergent algorithms can estimate
arbitrary motions, locally convergent algorithms require that the motion aligning
the point sets lies inside their basin of convergence. A comprehensive selection of
existing algorithms from both categories is presented and evaluated in [Sal07].
One common property of many globally convergent algorithms is their low ac-

curacy. Consequently, these algorithms are often used to compute a rough pre-
alignment for more accurate locally convergent algorithms. The framework pro-
posed in [Li07] is a notable exception, because it promises both global convergence
and high accuracy. As a downside, it is only applicable to small point sets and lacks
robustness to outliers. Similarly, many globally convergent algorithms depend on
special properties of the input data, which limits their general applicability. In the
following, we shortly discuss some globally convergent algorithms to substantiate
our allegations.
The pre-alignment algorithm proposed in [Chu98] is based on aligning the prin-

cipal axes of the input point sets. Consequently, the accuracy of this algorithm
strongly depends on the degree of overlap of the point sets. The RANSAC-based
DARCES algorithm of [Che99a] employs a constrained exhaustive search. It is ro-
bust to partially overlapping point sets, but it is very susceptible to noisy input data.
The genetic algorithm presented in [Lom06] estimates the overlap of the point sets
during the registration. Its accuracy is sufficient for the intended task of perform-
ing a pre-alignment for a locally convergent algorithm. Other globally convergent
algorithms find and match special features in the input data. For example, [Gel05]
computes a feature descriptor for every input point. It requires the input data to
contain densely sampled object surfaces. An extreme case of application-specific
global registration is given by the pre-alignment algorithm in [Mur01], which ex-
tracts and matches the skeletons of underwater offshore structures.
As a consequence of our application requirements, we concentrate on locally con-

vergent algorithms in the remainder of this chapter. The most popular algorithm in
this category is the iterative closest point (ICP) algorithm, which was put forward
by Besl and McKay in [Bes92]. At the same time, Chen and Medioni proposed a
similar algorithm in [Che92]. The popularity of the ICP algorithm is demonstrated
by the large number of extensions proposed for it in the literature. A comprehen-
sive overview of existing extensions is given in [Rus01]. As our work is also based
on the ICP algorithm, we provide a detailed discussion of this algorithm and its
extensions in Section 5.2.
Recently, several locally convergent registration algorithms that are not based on

the ICP algorithm have been proposed. Fitzgibbon employs the general-purpose
Levenberg-Marquardt algorithm for point set registration in [Fit03]. Compared to
the ICP algorithm, this approach is reported to have a larger basin of convergence

133



Chapter 5 Point Set Registration

and higher efficiency when the input data is discretized in a preprocessing step.
Other approaches are based on the combination of instantaneous kinematics and
squared distance functions [Pot04], the optimization of a robust surface interpene-
tration measure with an enhanced genetic algorithm [Sil05], and the local optimiza-
tion of a probabilistic cost function with a Nelder-Mead simplex search [Sha08].
However, it is difficult to judge the overall performance of these approaches from
the application-specific experiments presented in the original papers.
Another categorization considers the different types of input data supported by

the registration algorithms. The basic ICP algorithmworks with unstructured point
sets, which only contain the coordinates of the points. This is also the data repre-
sentation used in our algorithms. Although range images are basically structured
3-D point sets, the implicitly provided neighborhood relations of the points can be
used to approximate local surface patches and to compute local surface normals.
Some variants of the ICP algorithm use this information to increase their computa-
tional efficiency [Che92] or their robustness to outliers [Pul99]. Sharp et al. compute
invariant features from the range images and combine both positional and feature
distances in [Sha02]. It is also possible to incorporate information about the in-
tensity [Wei97] or the color [Dou06] of the points into the registration algorithm.
Further data representations used in variants of the ICP algorithm include triangle
meshes [Tur94] and parametric surfaces [Bis96].
Our final categorization is concerned with the number of input point sets. We

focus on the registration of two point sets, and all algorithms discussed up to now
belong to this category. The other category consists of algorithms for multiple input
data sets. Although no dedicated overview of this category is known to us, [Pul99],
[Hub03], and [Ben04] provide a thorough introduction to this problem area.
Point set registration has a surprisingly large number of applications. The in-

tended applications for the algorithms presented in this subsection include the in-
spection of surfaces in manufacturing [Bis96], the computation of scene models for
remotely operated underwater vehicles [Mur01], and the generation of digital 3-D
models of complex real-life objects in the cultural heritage domain [Ben04]. Further
interesting applications comprise the registration of human retinal images [Ste03],
the comparison of scanned faces to a database of 3-D face models for face recogni-
tion [Lu04], and the registration of 3-D data reconstructed from endoscopic images
to computer tomography data [Bur05].

5.2 The Iterative Closest Point Algorithm

5.2.1 Basic Principles

The ICP algorithm proposed by Besl andMcKay in [Bes92] is a special-purpose non-
linear optimization algorithm for point set registration. Its input consists of a data
point set A and a model point set B, and the ICP algorithm estimates the motion
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(R, t) aligning these point sets. As the ICP algorithm is only locally convergent, a
successful registration requires that the motion to be estimated lies inside the basin
of convergence of the algorithm.
The main loop of the iterative closest point algorithm consists of two steps. In

the first step, the set of corresponding point pairs C is determined. To this end,
the data points are transformed according to the current motion parameters (R, t),
and the point pairs are created by searching for the closest model point for every
transformed data point:

∀(i, j) ∈ C : bj = argmin
bh∈B

‖bh − Rai − t‖2. (5.4)

This operation is performed with the help of a nearest neighbor algorithm. In the
second step, the motion parameters that optimally align the current point pairs are
estimated. The objective function of the respective optimization is defined as the
sum of the squared intra-pair distances of the point pairs

ǫicp(R, t) = ∑
(i,j)∈ C

‖b j− Rai − t‖2. (5.5)

Consequently, the estimation of the motion parameters (R, t) can be expressed as
the least-squares problem

(R̂, t̂) = argmin
R,t

ǫicp(R, t) = argmin
R,t

∑
(i,j)∈ C

‖b j − Rai − t‖2. (5.6)

In the context of point set registration, the estimated minimum value of the objec-
tive function ǫicp(R̂, t̂) is also called registration error. In order to avoid the accu-
mulation of rounding errors, the motion parameters are not estimated incremen-
tally, but for the original input point sets in every iteration. Finally, as an iterative
algorithm, the ICP algorithm requires a stopping criterion. Besl and McKay pro-
pose to stop the algorithm when the reduction of the registration error falls below
a specified threshold [Bes92].
One important property of the ICP algorithm is its guaranteed convergence to a

local minimum. Besl and McKay argue in [Bes92] that this property can be proven
by showing that the registration error ǫicp is both bounded below and monotoni-
cally decreasing. The first condition is easily satisfied, because ǫicp cannot fall below
zero. For the second condition, it is instructive to examine the two operations that
affect the registration error. When the point pairs are computed with the nearest
neighbor algorithm, every data point either keeps its corresponding model point,
or is assigned a new one, which has to be closer than the old one to be eligible.
In any case, the registration error cannot increase during this operation. The sec-
ond operation consists of the minimization of the registration error with respect to
the motion parameters. This operation cannot increase the registration error either,
because in this case the old motion parameters would represent a solution with a
smaller registration error.
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In the following, we describe further details of the ICP algorithm that are specific
to our proposed variant. There are many different algorithms for the nearest neigh-
bor search among the model points in the first step of the main loop. When the
selection is limited to exact nearest neighbor algorithms, only the computational
efficiency of the ICP algorithm is affected. However, this performance criterion can
be affected very strongly, because nearest neighbor search with simple algorithms
like exhaustive search is easily the most time-consuming operation of the ICP al-
gorithm [Zin03b]. As a consequence, we employ an efficient k-D tree algorithm,
whose search in the model point set has a computational complexity of O(log2 |B|)
for every data point. Further details on our specific variant of the k-D tree algorithm
lie outside the scope of this work, but can be found in [Zin03b].
Interestingly, the problem of motion estimation as defined in equation (5.6) is

identical to the problem in the second step of the three-point algorithm for absolute
camera pose estimation in Subsection 4.2.2. In order to prepare the discussion of
integrated scale estimation in Section 5.4, we shortly reiterate the equations in (4.19)
to (4.22) with updated notation. After computing the center of mass of the points

ā =
1
|C| ∑

(i,j)∈ C
ai , b̄ =

1
|C| ∑

(i,j)∈ C
bj , (5.7)

the point sets are centralized, which yields

R̂ = argmin
R

∑
(i,j)∈ C

∥

∥

(

bj − b̄
)

− R (ai − ā)
∥

∥

2 . (5.8)

This problem can be solved with a singular value decomposition of

∑
(i,j)∈ C

(

bj − b̄
)

(ai − ā)T = VDUT, (5.9)

which is used to compute the motion parameters as

R̂ = VUT , t̂ = b̄− R̂ā . (5.10)

A negative determinant of the rotation matrix indicates that the true solution can
be obtained by multiplying the third column of matrix V by −1. Further details on
this algorithm and potential alternatives are presented in [Egg97].
Some techniques for robust estimation presented in Section 5.3 cancel the guaran-

teed convergence of the ICP algorithm, because they can cause the registration error
to increase from one iteration to the next. With the standard stopping criterion of
Besl andMcKay, every occurrence of this behavior terminates the ICP algorithm. In
order to avoid this problem in our variant of the ICP algorithm, we use two different
stopping criteria. The first stopping criterion considers the norm of the differences
between the current motion parameters and the motion parameters of the previous
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iteration. If this norm falls below the user-specified threshold θstop for both the ro-
tation matrix and the translation vector, our ICP algorithm is stopped. In addition
to that, we use the maximum number δiter of iterations as a second stopping cri-
terion, in order to prevent a divergent computation from causing an endless loop.
Section 5.5 contains both an illustration of the complete structure of our variant of
the ICP algorithm and further details on the respective user-specified parameters.

5.2.2 Existing Extensions

The persistent popularity of the ICP algorithm is responsible for the large number
of existing extensions, which customize the algorithm for a wide range of different
applications. As we focus on working with unstructured 3-D point sets, we limit
our discussion in this subsection to extensions that are compatible with this type
of input data. In order to provide a systematic overview, we distinguish between
three categories of extensions:

• The first category is concerned with extensions that enhance the selection of
control points, i. e., the selection of the first point of every point pair in the set
of corresponding point pairs.

• Extensions of the second category alter the correspondence estimation, which
determines the second point of every point pair. Additionally, we allocate
extensions that remove unsuitable point pairs to this category.

• The third category comprises extensions of the motion estimation, which com-
putes the motion parameters for the set of corresponding point pairs.

All extensions presented in this subsection can be integrated into our variant of the
ICP algorithm. However, in order to concentrate our efforts on our main work ar-
eas, we decided to implement only the extensions described in the two subsequent
sections.
The standard ICP algorithm does not perform an explicit selection of control

points, but uses all data points as control points. For this approach, the amount
of outliers in the set of corresponding point pairs can be reduced by using the point
set with the higher proportion of overlap as data point set. When no information
about the actual overlap is available, it is advisable to use the smaller point set as
data point set. Especially for very large point sets, the computation time of the ICP
algorithm can be reduced by using only a subset of the data points as control points.
Furthermore, it is possible to improve the computational efficiency without impair-
ing the accuracy by employing a hierarchy with different levels of subsampling as
proposed in [Neu97]. Finally, another extension is to select control points from both
input point sets. Small improvements of the basin of convergence are reported for
this approach in [Rus01]. As a downside, searching for nearest neighbors in both
point sets doubles the initialization cost of the nearest neighbor algorithm.
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Although there are many extensions for improving the search for correspond-
ing points, most of these extensions cannot be applied to unstructured 3-D point
sets [Rus01]. The lack of additional information makes it difficult to outperform
standard nearest neighbor algorithms for this kind of input data. Fitzgibbon pro-
poses to precompute the nearest neighbors on a discretized grid around the model
points, which is closely related to the approach of the distance transform [Fit03]. Al-
though this extension increases the computational efficiency of the ICP algorithm,
the involved discretization is also bound to impair its accuracy. In contrast to this,
extensions that remove unsuitable point pairs from the set of corresponding point
pairs are an important tool for increasing the robustness of the ICP algorithm. We
thoroughly discuss these extensions in Section 5.3.
There are several starting points for extending the motion estimation of the ICP

algorithm. It is possible to implicitly alter the cost function in equation (5.6) by
introducing an additional weighting of the point pairs. Incidentally, the removal
of point pairs described in Section 5.3 can also be interpreted as a weighting of the
point pairs with a factor of either one or zero. Rusinkiewicz and Levoy report in
[Rus01] that more elaborate weighting approaches do not significantly improve the
performance of the ICP algorithm in their experiments.
Another starting point for extending the motion estimation of the ICP algorithm

is to replace the direct solution for minimizing the cost function presented in Sub-
section 5.2.1. The use of an alternate cost function makes this approach inevitable
when no direct solution of the resulting optimization problem exists. For instance,
Blais and Levine employ a simulated annealing algorithm for minimizing their cost
function in [Bla95]. However, this iterative optimization algorithm requires consid-
erably more computation time than the direct solution [Rus01]. Besl and McKay
propose to increase the convergence speed of the standard motion estimation algo-
rithm by extrapolating the motion parameters from the estimation results of con-
secutive iterations [Bes92].
Finally, the motion estimation of the ICP algorithm can be extended by changing

the underlying motion model. In view of our application requirements, we are
especially interested in the additional estimation of the relative scale of the two
input point sets. In contrast to this, more elaborate motion models, for example for
non-rigid motions, lie outside the scope of our work. As a consequence, we dedicate
Section 5.4 to the presentation of our extension for integrated scale estimation.

5.3 Robust Correspondence Estimation

As we have already motivated in Subsection 5.1.1, the robustness to outliers is a
very important aspect of point set registration. For the standard ICP algorithm,
however, even a single outlier can cause an arbitrarily large deviation from the cor-
rect registration. Consequently, several robust variants of the ICP algorithm have
been proposed since its initial publication. Early exponents include the robust al-
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gorithm presented by Masuda and Yokoya in [Mas95] and the RICP algorithm put
forward in [Tru99]. For the sake of brevity, we refer to the former robust algorithm
as the MICP algorithm in the following discussion.
The robustness of both the MICP algorithm and the RICP algorithm is increased

with the least median of squares (LMedS) technique, which has already been dis-
cussed in Subsection 4.3.4. Its basic principle is to minimize the median of the
squared residuals. In the context of the ICP algorithm, one residual represents the
intra-pair distance of one point pair. Thus, the objective function defined in (5.5) is
replaced with

ǫlms(R, t) = med
(i,j)∈ C

‖bj − Rai − t‖2. (5.11)

As no closed form solution is known for this problem, both robust algorithms apply
the standard approximation procedure, which consists of sampling the parameter
space by repeatedly solving the original least-squares problem for aminimumnum-
ber of randomly selected samples of the input data and choosing the solution that
yields the best median error for all samples.
Although both the MICP algorithm and the RICP algorithm share the same theo-

retical background, their practical approaches are very dissimilar. The main loop of
the MICP algorithm selects a random sample of the data point set, which is aligned
to the model point set with the help of a standard ICP algorithm. The estimated
motion parameters are retained when the median error for all data points has been
reduced, and discarded otherwise. Thus, the MICP algorithm is designed as an
LMedS technique wrapped around the ICP algorithm. In contrast to this, the RICP
algorithm uses the LMedS technique for the motion estimation inside the main loop
of the ICP algorithm. To this end, motion parameters are estimated for several ran-
dom samples consisting of three point pairs and rated with the help of the median
error for all point pairs. The best motion parameters are refined according to the ap-
proach illustrated in Figure 4.14. In short, a maximum threshold for the residuals is
determined by multiplying the robustly estimated standard deviation of the resid-
uals by a user-defined factor. Then, point pairs with residuals beyond the threshold
are removed and the motion parameters are re-estimated with the standard least-
squares approach of (5.6) for the remaining point pairs. Both the MICP algorithm
and the RICP algorithm contain two nested loops, one of which is the main loop
of the standard ICP algorithm. Consequently, it is not surprising that both robust
algorithms are considerably less efficient than the standard ICP algorithm for many
configurations of the input data [Zin03a].
In the remainder of this section, we describe the three extensions for robust cor-

respondence estimation that are implemented in our variant of the ICP algorithm.
The basic approach of all three extensions is to identify and remove outliers among
the corresponding point pairs at the end of the correspondence estimation step. The
resulting structure of our variant of the ICP algorithm is illustrated in Figure 5.3. As
no additional information is provided by the input data in our work, the intra-pair
distance of a point pair, which is equivalent to the residual of this point pair, is the
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only available criterion for identifying outliers. Furthermore, inliers are expected
to have a smaller residual than outliers. Consequently, the basic principle of the
implemented extensions is to determine a threshold for the residuals that separates
inliers and outliers.
Our first extension is based on the integrated outlier rejection of the least me-

dian of squares technique described in Subsection 4.3.4. According to (4.85), the
extension robustly estimates the standard deviation of the residuals as

σ = 1.4826
√

med
(i,j)∈C

‖bj − Rai − t‖2 . (5.12)

Point pairs with a residual of more than θout_lms σ are treated as outliers and deleted
from the set of corresponding point pairs C. As proposed in [Zha97] and [Ste99],
we use the factor θout_lms = 2.5.
Alternatively, we can derive this extension from the RICP algorithm by omit-

ting its random sampling step. In the standard approach of the LMedS technique,
the random sampling step is required to obtain a solution that is not perturbed by
outliers. In the ICP algorithm, however, an approximate solution for the motion
parameters is available from the preceding iteration. In addition to that, the ini-
tial alignment of the two point sets can be seen as an approximate solution for the
first iteration. Consequently, it is possible to perform an outlier removal without
the random sampling step by relying on the motion parameters robustly estimated
in the preceding iteration. As a result, our first extension exhibits a much better
computational efficiency than the RICP algorithm, while its robustness to outliers
is similar [Zin03a].
The breakdown point of the LMedS technique is 0.5. Thus, in theory, our first ex-

tension can cope with configurations where up to 50% of the computed point pairs
are outliers. However, in practice, the fraction of outliers also influences the basin
of convergence of the estimation. Consequently, the higher the fraction of outliers,
the more accurate the initial alignment of the two input point sets has to be for
a successful registration. Compared to the standard ICP algorithm, our LMedS ex-
tension shows a much improved robustness to outliers [Zin03a], but also twominor
drawbacks. Firstly, the guaranteed local convergence of the ICP algorithm can no
longer be proven when the extension is integrated, which requires the adaptation
of the stopping criteria described in Subsection 5.2.1. Secondly, the additional op-
erations of the LMedS extension slightly reduce the computational efficiency of the
ICP algorithm. We evaluate this aspect of all implemented extensions in Section 6.3.
In the same way that our first extension is derived from the LMedS technique, the

second extension for robust correspondence estimation is derived from the least
trimmed squares (LTS) technique. In principle, the LTS technique minimizes the
smallest possible sum of a specified fraction θlts of the squared residuals. A com-
prehensive discussion of this technique, also regarding its application to the ICP
algorithm, is given in [Che05]. The objective function of the LTS extension is given

140



5.3 Robust Correspondence Estimation

by
ǫlts(R, t, θlts) = ∑

(i,j)∈D(θlts)

‖bj − Rai − t‖2, (5.13)

where D(θlts) is defined as the subset of C with ⌊ θlts |C| ⌋ elements that yields the
smallest value for ǫlts(R, t, θlts). In practice, the LTS extension sorts the point pairs
according to their intra-pair distance and retains the first ⌊ θlts |C| ⌋ point pairs. In
other words, the threshold for the residuals is set to the residual of the point pair at
position ⌊ θlts |C| ⌋ in the sorted sequence of all point pairs of C. This approach has
already been proposed, albeit without the theoretical background, in [Pul99].
In contrast to the LMedS extension, the LTS extension preserves the guaranteed

convergence of the ICP algorithm, because the number of inliers remains constant
in all iterations of the algorithm. A more elaborate proof of the local convergence of
the LTS extension is given in [Che05]. However, the necessity to directly specify the
fraction of inliers θlts before the registration is a severe drawback of this approach,
because the actual fraction of inliers is an unknown quantity in many applications.
When the specified value of θlts is higher than the actual value, the remaining out-
liers will impair the accuracy of the estimation. On the other hand, specifying a
lower fraction of inliers reduces the basin of convergence of the algorithm. As a
consequence, a practical implementation of the LTS extension for arbitrary input
point sets requires an automatic approach for roughly estimating the fraction of
inliers θlts.
Our implementation of the LTS extension is based on the approach proposed in

[Che05]. The basic concept of this approach is to balance the minimization of the
registration error and the maximization of the fraction of inliers θlts. This goal is
achieved with the objective function

ǫots(θlts) =

(

1
θlts

)θelts

ǫ̂lts(θlts) , (5.14)

where ǫ̂lts(θlts) is the final value of the objective function in (5.13) for a specified
fraction of inliers θlts after a complete registration with the ICP algorithm. The
default value of θelts is 4 in [Che05]. Increasing the value of this parameter leads to
a higher fraction of included point pairs, and vice versa.
The objective function ǫots(θlts) is minimized with a golden section search in a

specified search interval for the fraction of inliers θlts. Our implementation uses the
search interval [0.2, 1.0]. In every iteration, the golden section search analyzes the
objective function at two positions v2 and v3 in the current interval [v1, v4], where

v2 = v1 + 0.5(3−
√
5)(v4 − v1) (5.15)

v3 = v4 − 0.5(3−
√
5)(v4 − v1) .

The search interval is then reduced to

ǫots(v2) < ǫots(v3)⇒ [v1, v3] (5.16)

ǫots(v2) ≥ ǫots(v3)⇒ [v2, v4] .
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As the size of the search interval is decreased by approximately 38% in every itera-
tion, it is smaller than 1% of its original size after ten iterations of the golden section
search. This accuracy is sufficient for the fraction of inliers θlts in practice. Due to
the special placement of the positions v2 and v3, it is possible to reuse one function
value in the next iteration. Nevertheless, the LTS extension with golden section
search is far less efficient than the LMedS extension, because every evaluation of
the objective function ǫots(θlts) entails a registration of the two input point sets with
the ICP algorithm.
The third and final extension for robust correspondence estimation in our work

was proposed in [Phi07]. Following the designation of the algorithm in the original
work, we denominate this approach as the least fractional squares (LFS) extension.
Its basic idea is to optimize an objective function that is equivalent to (5.14) inside
the main loop of the ICP algorithm. The objective function of the LFS extension is
given by

ǫlfs(R, t, θlts) =

(

1
θlts

)θelfs

ǫlts(R, t, θlts) . (5.17)

We have unified the notation in (5.14) and (5.17) with respect to the exponents
θelts and θelfs. Consequently, the respective parameter values given in [Che05] and
[Phi07] have to be adjusted to our notation. Interestingly, the theoretical analysis in
[Phi07] suggests that optimal performance is achieved for θelfs ≈ 2.9, whereas the
experimental evaluations in the same work show better performance for θelfs = 7.
We present and analyze the results of our evaluations regarding the parameters θelts
and θelfs in Subsection 6.3.3.
Our implementation of the LFS extension computes the value of ǫlfs(R, t, θlts) for

every possible fraction of inliers θlts at the end of the correspondence estimation
step. After the sorting of the residuals, the extension only requires a constant num-
ber of operations for every one of the |C| possible fractions, as long as the current
value of ǫlts(R, t, θlts) is reused in the computation for the next fraction. The fraction
of inliers θlts that results in the lowest value of ǫlfs(R, t, θlts) is used to determine the
point pairs for the subsequent motion estimation. Although the estimated fraction
of inliers θlts possibly changes from one iteration to the next, the LFS extension of
the ICP algorithm retains the guaranteed convergence of the original ICP algorithm
[Phi07].

5.4 Integrated Scale Estimation

In this section, we present an extension of the ICP algorithm that allows the registra-
tion of two point sets with an unknown relative scale. In [Bur05], the relative scale
of the two input point sets is determined with a preprocessing algorithm, while
the subsequent ICP algorithm is limited to refining the rotation and the translation.
Due to the integration of the scale estimation into the ICP algorithm, our exten-
sion allows a more accurate registration in this scenario. Recently, Du et al. have
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proposed an extension of the ICP algorithm that estimates independent scale fac-
tors for every axis of the coordinate system of the data point set [Du07]. However,
the experimental evaluation in their work suggests that the increased number of
parameters strongly decreases the basin of convergence of the estimation for three-
dimensional input data.
Our extension for integrated scale estimation replaces the objective function of

the motion estimation defined in (5.5) with

ǫise(R, t, s) = ∑
(i,j)∈ C

‖bj − sRai − t‖2. (5.18)

The optimization of the respective least-squares problem

(R̂, t̂, ŝ) = argmin
R,t,s

∑
(i,j)∈ C

‖b j − sRai − t‖2 (5.19)

is based on the observation that the estimation of the optimum rotation matrix R̂
presented in (5.7) to (5.10) is not affected by the scale factor s at all. Applying a
scale factor s to the data points only affects the singular values in the matrix D,
whereas the matricesU and VT of the singular value decomposition in (5.9) remain
unaltered. Consequently, the rotation matrix can still be computed as defined in
(5.10). After the estimation of the optimal rotation matrix R̂, the scale factor s is the
only remaining unknown in the minimization problem

ŝ = argmin
s

∑
(i,j)∈ C

‖(b j− b̄)− sR̂(ai − ā)‖2 . (5.20)

After setting the derivative of this sum to zero, the scale factor ŝ is given by

ŝ =



 ∑
(i,j)∈ C

b̃
T
j ãi







 ∑
(i,j)∈ C

ãTi ãi





−1

, (5.21)

where the vectors ãi and b̃j are defined as

ãi = R̂ (ai − ā) , b̃j =
(

bj − b̄
)

. (5.22)

Finally, the translation vector t̂ can be computed according to

t̂ = b̄− ŝR̂ā . (5.23)

Our extension for integrated scale estimation replaces the motion estimation step
of the original ICP algorithm. In other parts of the algorithm, only the application
of the motion parameters to the data point set has to be extended with the added
scale factor. As a consequence, this extension can easily be applied to a wide range
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initialize nearest neighbor search with model point set B
FOR k = 1 TO δiter

compute Ak by applying the current motion to the data point set A
compute the set of corresponding point pairs Ck for Ak,B (cf. Subs. 5.2.1)

compute C∗k by optionally rejecting point pairs (cf. Sect. 5.3)

IF scale estimation is enabled

THEN compute new motion (Rk, tk, sk) for C∗k ,A,B (cf. Sect. 5.4)

ELSE compute new motion (Rk, tk) for C∗k ,A,B (cf. Subs. 5.2.1)

IF ‖Rk − Rk−1‖ < θstop

AND ‖tk − tk−1‖ < θstop

AND ‖sk − sk−1‖ < θstop

THEN EXIT FOR

Figure 5.3: The structure of our variant of the ICP algorithm

of variants of the ICP algorithm. In particular, the extensions for robust correspon-
dence estimation described in Section 5.3 are perfectly compatible with the exten-
sion for integrated scale estimation. The scale estimation results in a minor increase
of the computation time per iteration. We investigate its effects on the basin of con-
vergence of the ICP algorithm in Section 6.3. In addition to that, we also evaluate
the basin of convergence of the ICP algorithm with integrated scale estimation with
respect to the initial scale factor.

5.5 Technical Specifications

We illustrate the structure of our variant of the ICP algorithm in Figure 5.3. The re-
spective approach for rejecting outliers from the set of corresponding point pairs for
the LMedS extension, the LTS extension, and the LFS extension is described in Sec-
tion 5.3. In contrast to the other two extensions, the LTS extension requires a golden
section search to automatically determine the optimum value for the fraction of in-
liers θlts. As the additional search, which repeatedly calls the ICP algorithm with
different values of θlts, is unique to the LTS extension, it has been omitted from the
illustration of the structure of our variant of the ICP algorithm in Figure 5.3. In our
implementation, only one extension for outlier rejection can be activated at any one
time. Of course, it is also possible to completely deactivate the outlier rejection.
Table 5.1 presents all user-specified parameters of our variant of the ICP algo-

rithm. The parameter δiter specifies the maximum number of iterations of the ICP
algorithm. We use it exclusively to stop a possible infinite loop caused by diver-
gent behavior of the ICP algorithm when the LMedS extension is enabled. As a
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name type description default
δiter stopping criterion maximum number of iterations 256
θstop stopping criterion minimum motion difference 10−9

δtype outlier rejection outlier rejection type ∗
δilts outlier rejection number of search iterations for LTS 8
θelts outlier rejection exponent for LTS 4.0
θelfs outlier rejection exponent for LFS 5.0
δscale scale estimation enable scale estimation false

Table 5.1: This table enumerates the user-specified parameters of our variant of the ICP al-
gorithm. Its fourth column contains the default values of the parameters. Default values
shown as ∗ are discussed in the text below.

consequence, its default value of 256 iterations has been chosen to be large enough
to allow the convergence of the ICP algorithm for most configurations of the in-
put data. When the maximum number of iterations is reached although the ICP
algorithm is still converging, e. g., for very large point sets with more than 100000
points, the value of δiter has to be increased. Commonly, our variant of the ICP al-
gorithm is terminated by the stopping criterion controlling the minimum motion
difference θstop. Its value can be adjusted to better reflect the accuracy required by
the application.
The parameter δtype allows the selection of one of the extensions for outlier rejec-

tion, which are presented in Section 5.3. In addition to the omission of any outlier
rejection, the possible choices comprise the LMedS extension, the LTS extension
with automatic search, and the LFS extension. The respective parameters δilts, θelts,
and θelfs are discussed in Section 5.3. Finally, the parameter δscale allows the activa-
tion of the integrated scale estimation, which is described in Section 5.4.

5.6 Summary

This chapter covers the problem of point set registration. In its first section, we de-
rive the problem definition by generalizing the ideal motion problem. In addition
to that, we illustrate the required assumptions for a successful registration of two
point sets and discuss the performance criteria for evaluating point set registration
algorithms. We also categorize the existing work on point set registration with re-
spect to several different aspects. In accordance with our application requirements,
we focus on a locally convergent algorithm that allows the registration of two 3-D
point sets, the ICP algorithm. As a consequence, the second section of this chapter
comprises an explanation of the ICP algorithm and its most important extensions.
The third section contains the description of three extensions for more robust cor-

respondence estimation. Our detailed analysis correlates the three approaches and
exposes interesting similarities between them. However, our main contribution in

145



Chapter 5 Point Set Registration

this problem area is the thorough experimental evaluation of the implemented ap-
proaches in Subsection 6.3.3. In the fourth section, we present a new approach for
adding the estimation of an unknown scale factor to the ICP algorithm. The sys-
tematic experimental evaluation of this approach can be found in Subsection 6.3.4.

146



Chapter 6

Experimental Evaluation

This chapter contains the experimental evaluation of the algorithms presented in
the three preceding chapters. Its main task is to evaluate the performance of the
proposed algorithms with respect to the criteria defined in Subsection 3.1.1, Sub-
section 4.1.1, and Subsection 5.1.1, respectively. In addition to that, we use the
experimental evaluation of the algorithms to analyze the impact of important user-
specified parameters on the performance of these algorithms.
For a meaningful interpretation of the computation times presented in this chap-

ter, it is necessary to consider the configuration of the test environment. Unless
explicitly noted otherwise, the experiments were performedwith the following con-
figuration. The test images were captured with the digital camera Sony DFW-VL
500 at a resolution of 640× 480 pixels. For the implementation of the algorithms,
we used the C++ programming language. The algorithms were compiled with g++
4.3.3 in 64 bit mode. We evaluated the resulting programs on a computer equipped
with one AMD Athlon X2 5000+ dual-core cpu and 4096 MB of main memory.
The first three sections of this chapter correspond to the three main work areas of

this thesis. For every experiment described in these sections, we provide a detailed
description of the experimental setup. Furthermore, we present and thoroughly
analyze the results of the performed experiments. In the final section of this chapter,
we demonstrate the joint operation of our proposed algorithms using three test
sequences with known ground truth data.

6.1 Feature Point Tracking

This section is concerned with the experimental evaluation of the feature point
tracking algorithms presented in Chapter 3. To this end, we analyze the properties
of the individual algorithms by simulating the displacement of the tracked feature
points on images of real-world test scenes. This approach strikes a fine balance
between the accuracy of the quantitative evaluation and the transferability of the
results to real-world applications. In addition to that, we evaluate the performance
of our feature point tracking system in Subsection 6.1.3. Furthermore, our track-
ing system is evaluated in conjunction with our structure and motion estimation
system in Section 6.4.
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algorithm type motion intensity reference
gd tra gradient descent t - Subs. 3.3.3, (3.21)
gd tra iie gradient descent t b + c Subs. 3.3.4, (3.34)
gd aff gradient descent a + t - Subs. 3.3.3, (3.21)
gd aff die gradient descent a + t b + c Subs. 3.3.4, (3.31)
gd aff sie gradient descent a + t b + c Subs. 3.3.4, (3.33)
gd aff iie gradient descent a + t b + c Subs. 3.3.4, (3.34)
bm nssd block matching t - Subs. 3.4.2, (3.40)
bm corr block matching t c Subs. 3.4.2, (3.41)
bm coef block matching t b + c Subs. 3.4.2, (3.42)

Table 6.1: This table lists all motion estimation algorithms that are available in our feature
point tracking system. The abbreviations in the first column are used throughout this sec-
tion to reference the respective algorithms. Some algorithms estimate only the translation
(t) of a feature point, whereas other algorithms also estimate its affine distortion (a). The
robustness of the algorithms to intensity changes in the feature windows is specified for
changes in brightness (b) and contrast (c).

6.1.1 Experimental Setup

Table 6.1 provides an overview of all motion estimation algorithms described in
Chapter 3. While our block matching algorithms only estimate the translation of a
feature point, we have implemented gradient descent algorithms that allow the ad-
ditional estimation of the affine distortion of the feature window. There are variants
of both types of algorithms that are robust to changes in brightness and contrast in
the feature windows. As described in Subsection 3.3.4, the gradient descent algo-
rithms achieve this robustness by explicitly estimating the parameters of an affine
linear intensity equalization model. In contrast to this, the respective block match-
ing algorithm resorts to a difference measure that is invariant to changes in both
brightness and contrast. The default values of the user-defined parameters of all
evaluated motion estimation algorithms are listed in Table 3.1 in Subsection 3.3.7.
For the evaluation of the individual motion estimation algorithms, we captured

images of the four static scenes depicted in Figure 6.1. For each scene, the captured
images comprise one base image, one image that is identical to the base image up
to image noise, and two images that are slightly overexposed and slightly underex-
posed, respectively. The resulting images are illustrated for one of the four scenes
in Figure 6.2. An important step in our evaluation of the individual algorithms is
the selection of suitable feature points in the four base images. To this end, we select
the 2000 features points with the highest values of the computed quality measure
for every considered combination of the feature selection parameters. As default
parameter values, we use the values specified in Table 3.1 with the Tomasi-Kanade
detector, except for the minimum distance to the image border, which is set to 32.
Furthermore, the user-specified parameters δftr_num and θftr_qual are not applicable
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6.1 Feature Point Tracking

Figure 6.1: Four static test scenes are used for the evaluation of the individual motion esti-
mation algorithms.

Figure 6.2: In addition to the images captured with standard exposure settings (middle im-
age), every static test scene was slightly overexposed (left image) and underexposed (right
image). The resulting images are used to evaluate the robustness of the individual motion
estimation algorithms to intensity changes in the feature windows.
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Figure 6.3: The feature points in both images were selected using the parameters described
in the text below. The left image shows 461 features points obtained with the Tomasi-
Kanade detector, whereas the right image shows 472 feature points obtainedwith theHarris
detector. In both cases, the total number of feature points in all four base images is 2000.

to the described feature selection approach. Figure 6.3 depicts the feature points
selected in one base image for two different feature quality measures.
As illustrated in Figure 3.3, the individual motion estimation algorithms require

both a reference image and a current image as input data. In our experimental
setup, the captured base images are always used as reference images. For standard
experiments, we use the images with identical exposure settings as current images.
For evaluating the robustness of the algorithms to intensity changes, we use both
the overexposed and the underexposed images as current images. The individual
motion estimation algorithms also require a starting position for their estimation
of the feature position in the current image. As the four test scenes are static, the
feature points lie at the same position in all input images of a test scene. Thus,
we simulate the motion of the feature points by displacing the starting position in
the current image. To this end, we generate starting positions by specifying the
absolute value of the displacement and randomly choosing the direction of the dis-
placement from a uniform distribution. In the subsequent subsection, all motion
estimation algorithms are evaluated with a feature window size of 11× 11 pixels to
facilitate the comparison of the individual algorithms. Unless explicitly noted, all
other parameters are set to their default values listed in Table 3.1.
Our proposed experimental setup has the following properties. As our test im-

ages were captured with a real camera, they contain realistic amounts of noise. In
addition to that, the fixed feature positions result in highly accurate ground truth
data for evaluating the accuracy and the basin of convergence of the individual
motion estimation algorithms. In contrast to this, image sequences with moving
objects make it difficult to obtain accurate ground truth data due to problems like
sampling artifacts and distortions caused by the camera lens. As a downside, our
experimental setup does not allow the evaluation of the motion estimation algo-
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Figure 6.4: The accuracy of three motion estimation algorithms for images with identical
exposure settings is illustrated with a histogram of the translation error. The rightmost
value of the histogram also represents the translation errors that are outside the range of
the graph. One million estimations were performed for every algorithm.

rithms with respect to phenomena that only occur when either the camera or the
scene objects move, e. g., the perspective distortion of the feature windows. Con-
sequently, we investigate these phenomena during the evaluation of the complete
feature point tracking system with more realistic input data in Subsection 6.1.3.

6.1.2 Evaluation of Individual Algorithms

In our first experiment, we evaluate the accuracy of three motion estimation algo-
rithms using the test images with identical exposure settings. In order to ensure a
successful convergence of the algorithms, we use initial displacements of less than
2 pixels. Each of the 2000 feature points in our four test scenes contributes to 50
estimations for every distance between 0.0 pixels and 1.8 pixels that is a multiple of
0.2 pixels. The results of this experiment are illustrated in Figure 6.4. The accuracy
of the three algorithms is very similar, but the gradient descent translation estima-
tion algorithm is slightly more accurate than the other two algorithms. However, it
is important to note that our experimental setup prevents sampling artifacts, which
potentially decrease the accuracy of the algorithms in real image sequences.
Our second experiment evaluates the accuracy of three suitable motion estima-

tion algorithms using the test images with differing exposure settings. As the eval-
uation considers both the overexposed and the underexposed images of the four
test scenes, the total number of estimations per algorithm is doubled. The results
of our second experiment are depicted in Figure 6.5. Again, the results of the three
algorithms are very similar. In this experiment, the block matching algorithm is
slightly more accurate than the two gradient descent algorithms. Comparing the
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Figure 6.5: The accuracy of three motion estimation algorithms for the test images with dif-
fering exposure settings is illustrated with a histogram of the translation error. The right-
most value of the histogram also represents the translation errors that are outside the range
of the graph. Two million estimations were performed for every algorithm.

gd tra gd tra iie gd aff gd aff iie bm coef

Figure 6.6: The images in this figure illustrate the shape of the basin of convergence of five
motion estimation algorithms for the test images with identical exposure settings. From
left to right, the gradient descent algorithms estimate two, four, six, and eight parameters.
Further details on this figure are given in the text below.

histograms in Figure 6.4 and Figure 6.5, we have to conclude that the intensity
changes in the second experiment impair the accuracy of the motion estimation,
even though the tested algorithms are designed to be robust to intensity changes.
In the following experiments, we evaluate the basin of convergence of the indi-

vidual motion estimation algorithms. To this end, we deem the tracking of a feature
point successful when the translation error, i.e, the distance between the true posi-
tion and the estimated position of a feature point, lies below a certain threshold.
Taking the accuracy of the algorithms presented in Figure 6.4 and Figure 6.5 into
account, we set this threshold to 0.4 pixels for the images with identical exposure
settings and to 0.8 pixels for the images with differing exposure settings.
Figure 6.6 illustrates the shape of the basin of convergence of five motion esti-

mation algorithms. For this experiment, 2000 feature points were tracked with dif-
ferent initial displacements using the test images with identical exposure settings.
The pixel position in the images represents the initial displacement of the feature
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Figure 6.7: The basin of convergence of five motion estimation algorithms for the test im-
ages with identical exposure settings is visualized by plotting the success rate against the
distance of the initial displacement.

points. In the center of the images, the initial displacement is zero. It increases to a
maximum of ten pixels in both horizontal and vertical direction at the borders of the
images. The gray value of the pixels is directly proportional to the success rate of
the motion estimation. Figure 6.6 shows that the shape of the basin of convergence
is approximately circular for the gradient descent algorithms and closely resembles
the rectangular search window for the block matching algorithm. In addition to
that, it visualizes that the basin of convergence of the gradient descent algorithms
decreases when the number of estimated parameters increases.
As the shape of the basin of convergence is very regular for our motion estima-

tion algorithms, we analyze the basin of convergence with respect to the distance
of the initial displacements in the remaining experiments of this subsection. For
every feature point and every distance of the initial displacement, we generate 50
starting positions by randomly choosing the direction of the initial displacement.
Consequently, every observation in the following experiments is based on 100000
estimations for images with identical exposure settings and on 200000 estimations
for images with differing exposure settings.
Like the images in Figure 6.6, the graph in Figure 6.7 visualizes the basin of con-

vergence of five motion estimation algorithms for the test images with identical ex-
posure settings. When the distance of the initial displacement is larger than the size
of the search range δbm_rng, the random direction of the initial displacement influ-
ences whether the positions evaluated by the block matching algorithm include the
correct feature position. Consequently, the progressive decline of the success rate
of “bm coef” for simulated translations between eight and twelve pixels is a direct
result of the geometric shape of its search range. For the application of the motion
estimation algorithms in our feature point tracking system, only success rates of
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Figure 6.8: The basin of convergence of five motion estimation algorithms for the test im-
ages with differing exposure settings is illustrated by plotting the success rate against the
distance of the initial displacement.

more than 95% allow the estimation of sufficiently long feature trails. Therefore,
with the current set of user-specified parameters, the gradient descent algorithm
“gd tra” with the largest basin of convergence is restricted to translations of less
than four pixels.

Figure 6.8 presents the basin of convergence of the same motion estimation algo-
rithms as in the preceding experiment for the test images with differing exposure
settings. Evidently, the gradient descent algorithms without intensity equalization
are not able to cope with the intensity changes in the test images. Furthermore,
the gradient descent algorithm “gd aff iie” fails to achieve a success rate of 100%
even for very small distances. Figure 6.15 illustrates this problem more clearly and
shows that it can be mitigated by increasing the size of the feature windows for the
affine motion estimation.

Figure 6.9 provides a direct comparison of the basin of convergence of all gradient
descent algorithms for affine motion estimation listed in Table 6.1. As this exper-
iment is based on the test images with differing exposure settings, the algorithm
“gd aff” without intensity equalization has a very low success rate for all distances
of the initial displacement. For distances of more than two pixels, the algorithm
“gd aff die”, which is based on the normalization of the intensity distributions, is
clearly superior to the other algorithms. However, in practice, the success rates of
all four algorithms are not sufficient for reliably estimating distances of more than
two pixels. As the three algorithms with intensity equalization yield quite similar
results for distances of less than two pixels, the choice of the default algorithm for
our feature point tracking system depends on additional performance criteria, like
the computational efficiency. To this end, we analyze the computational efficiency
of the algorithms for affine motion estimation in Subsection 6.1.3.
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Figure 6.9: This graph visualizes the basin of convergence of the four gradient descent al-
gorithms for affine motion estimation itemized in Table 6.1. The evaluation is based on the
test images with differing exposure settings.
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Figure 6.10: This graph illustrates the basin of convergence of the three blockmatching algo-
rithms listed in Table 6.1. The evaluation is based on the test images with differing exposure
settings.

The basin of convergence of the three block matching algorithms listed in Ta-
ble 6.1 is compared in Figure 6.10. The test images with differing exposure settings
are too difficult for the algorithms based on the normalized sum of squared dif-
ferences “bm nssd” and the normalized cross correlation “bm corr”. In contrast
to this, the normalized correlation coefficient “bm coef” demonstrates its superior
robustness to intensity changes in this experiment. Furthermore, our experiments
indicate that the computational efficiency of the three block matching algorithms
is comparable. Therefore, we use the algorithm “bm coef” as our default block
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Figure 6.11: This graph shows the basin of convergence of the algorithm “gd tra” for differ-
ent filter sizes δfil_size. The evaluation is based on the test images with identical exposure
settings.

matching algorithm, even though the intensity changes from one image to the next
are usually quite small in practice.

In the following experiments, we evaluate the influence of several important
user-specified parameters on the performance of the respective motion estimation
algorithms. As explained in Subsection 3.3.7, our feature point tracking system
smoothes the input images with a Gaussian filter. Figure 6.11 illustrates the effects
of the window size δfil_size of this filter on the basin of convergence of the algorithm
“gd tra” for the test images with identical exposure settings. For small distances,
window sizes δfil_size of more than three pixels reduce the success rate of the gra-
dient descent algorithm, because the blurring becomes so strong that an increasing
number of feature points cannot be reliably localized anymore. In contrast to this,
the additional smoothing provided by larger window sizes facilitates the motion
estimation for distances of more than four pixels. As we set a high value on an
excellent success rate for small distances, we recommend adhering to our default
value of δfil_size = 3 for most applications of our feature point tracking system.
As described in Subsection 3.3.7, the parameter δftr_type controls the type of the

feature detector. Our feature point tracking system supports the Tomasi-Kanade
feature detector as well as the Harris feature detector. The respective quality mea-
sures are detailed in Subsection 3.2.2. In addition to that, the parameter δftr_size al-
lows the specification of the size of the feature windows. The basin of convergence
of the algorithm “gd tra” is presented for both feature detectors and two different
window sizes in Figure 6.12. Evidently, the type of the feature detector has no tan-
gible effect on the success rates of the motion estimation algorithm. For historical
reasons, we employ the Tomasi-Kanade feature detector by default in our feature
point tracking system. Figure 6.12 also shows that the larger window size results in
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Figure 6.12: This graph presents the basin of convergence of the algorithm “gd tra” for two
feature detectors δftr_type and window sizes δftr_size. The feature detectors are the Tomasi-
Kanade detector (tom) and the Harris detector (har), respectively. The evaluation is based
on the test images with identical exposure settings.
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Figure 6.13: This graph illustrates the effects of the number δtra_lvl of hierarchy levels of the
Gaussian image pyramid on the basin of convergence of the algorithm “gd tra” for a feature
window size of 11× 11 pixels. The evaluation is based on the test images with identical
exposure settings.

a slightly higher success rate for large distances. As we prefer the feature windows
for feature detection to be smaller than the feature windows for motion estimation
due to the issues described in Subsection 3.2.2, we use a default value of δftr_size = 3.

As discussed in the analysis of Figure 6.7, the practical application of the gradient
descent algorithms is limited to translations of less than four pixels when the fea-
ture window has a size of 11× 11 pixels. Our approach for hierarchical translation
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Figure 6.14: This graph visualizes the basin of convergence of the algorithm “gd tra” for
five different feature window sizes δtra_size. The evaluation is based on the test images with
identical exposure settings.

estimation, which is detailed in Subsection 3.3.5, uses a Gaussian image pyramid to
increase the basin of convergence of the gradient descent algorithms for translation
estimation. Figure 6.13 illustrates the basin of convergence of the algorithm “gd
tra” for different values of the number δtra_lvl of hierarchy levels. Every additional
level of the image pyramid considerably increases the basin of convergence of the
gradient descent algorithm. However, on the fourth level of the image pyramid,
an input image with a resolution of 640× 480 pixels is reduced to an image with a
resolution of 80× 60 pixels. Analogously, as the physical size of the feature win-
dow remains constant on all levels of the image pyramid, a feature window with
a size of 11× 11 pixels on the fourth level of the image pyramid covers an area of
88× 88 pixels in the input image. In practice, feature windows of this size are prone
to occlusions, depth discontinuities, and independently moving scene objects. Fur-
thermore, the prediction of the feature positions described in Subsection 3.3.5 re-
duces the required basin of convergence when the motion of the feature points is
not completely erratic. Consequently, the optimum value of the number δtra_lvl of
hierarchy levels depends on the characteristics of the input image sequence. In our
experience, δtra_lvl = 3 is a viable setting for most applications.

Finally, we evaluate the effect of the size of the feature windows on the basin of
convergence of the gradient descent algorithms. The first experiment is concerned
with the gradient descent algorithm “gd tra” for translation estimation. Its results
are presented in Figure 6.14. A feature window size of 3× 3 pixels is clearly in-
sufficient for a reliable translation estimation. In contrast to this, a feature window
size of 5× 5 pixels results in an acceptable basin of convergence of the gradient
descent algorithm. Larger feature window sizes continue to improve the basin of
convergence by small quantities. In the second experiment, we analyze the basin
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Figure 6.15: This graph shows the basin of convergence of the algorithm “gd aff iie” for
five different feature window sizes δaff_size. The evaluation is based on the test images with
differing exposure settings.

of convergence of the gradient descent algorithm “gd aff iie” for affine motion esti-
mation. The corresponding results are provided in Figure 6.15. In this experiment,
the success rate of the algorithm improves with every increase of the feature win-
dow size. Furthermore, it is obvious that the algorithm for affine motion estimation
requires larger feature window sizes than the algorithm for translation estimation.
As described in the preceding paragraph, large feature windows have disadvan-
tages that cannot be uncovered by our experimental setup. In addition to that, the
computation time of the motion estimation algorithms increases with the size of the
feature windows. Consequently, we recommend the default values of δtra_size = 7
and δaff_size = 15 as a good compromise between the basin of convergence and the
computational efficiency of the respective motion estimation algorithms.

6.1.3 Evaluation of the Tracking System

We complement the evaluation of the individual motion estimation algorithms in
the preceding subsection with the evaluation of our feature point tracking system
in this subsection. First and foremost, the use of an image sequence of a real-world
scene results in more realistic conditions for the evaluation of the motion estimation
algorithms, because the image sequence introduces problems like the perspective
distortion of the feature windows. However, as the input sequence contains no
ground truth data for the correct feature positions, its use also prevents the precise
evaluation of the accuracy and the basin of convergence of the algorithms. As a
consequence, we focus on other performance criteria in this subsection.
For the evaluation of our feature point tracking system, we use the test image

sequence illustrated in Figure 6.16. The image sequence consists of 100 images and
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Figure 6.16: From left to right, this figure shows image 1, 50, and 100 of the test image
sequence used for the evaluation of our feature point tracking system.

Figure 6.17: The feature windows in the three sample images represent the experimental
result of test run 3 with 20 feature points (cf. Table 6.2). One feature point was rejected in
image 91 of the test image sequence. A visual inspection of the remaining feature points
does not reveal any significant tracking errors.

includes strong intensity changes and perspective distortions of a planar scene ob-
ject. In most image sequences, a large number of feature points leave the field of
view of the camera or are occluded by other scene objects. In contrast to this, nearly
all potential feature points remain visible in all images of our test video sequence.
Consequently, a perfect tracking system should be able to track the selected feature
points throughout all images of the test sequence. In Section 6.4, we use further
test image sequences with different properties to analyze the performance of our
feature point tracking system.
Table 6.2 contains the results of twelve test runs of our tracking system. In gen-

eral, we rely on the default values of the parameters of our feature point tracking
system, which are specified in Table 3.1. However, we increased the minimum
distance of the feature windows to the image border to δftr_bord = 40, so that all
selected feature points remain visible throughout the whole image sequence. Fur-
thermore, we deactivated the selection of additional feature points after the first
image by changing δftr_step to 0. This setting prevents additional runs of the feature
selection algorithm, which possibly distort the measured computation times. Each
test run was performed with 20, 100, and 400 feature points by adjusting the pa-
rameter δftr_num accordingly. Finally, the parameter settings of individual test runs
are documented in the second column of Table 6.2.
The average length of the feature trails cannot be larger than the length of the
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no. configuration t 20 t 100 t 400 atl ait tra ait aff

1 gd tra + gd aff die 4.59 8.12 21.06 99.60 9.375 2.187

2 gd tra + gd aff sie 4.48 8.09 20.97 99.52 9.377 2.191
3 gd tra + gd aff iie 4.47 7.52 18.98 99.74 9.377 2.072

4 • δtra_min = 1 4.35 7.46 18.43 99.74 7.317 2.073
5 • δtra_min = 2 4.40 7.21 17.67 99.14 5.357 2.073

6 • δtra_size = 11 4.81 9.13 24.93 99.76 8.945 2.034
7 gd tra iie + gd aff iie 4.66 8.76 24.11 99.76 9.345 2.010

8 bm coef + gd aff iie 3.25 6.70 20.07 93.90 - 2.077
9 • δbm_chk = true 3.43 7.33 21.84 99.75 - 2.068

10 • δfil_size = 0 2.73 6.70 21.42 99.29 - 2.067
11 • δtra_size = 11 3.57 8.17 25.40 98.11 - 2.025

12 • δbm_rng = 12 3.93 9.50 30.64 99.75 - 2.068

Table 6.2: This table contains the experimental results of the evaluation of our feature point
tracking system. The computation times of our feature point tracking system were mea-
sured for 20, 100, and 400 feature points. They are specified as average computation times
per image in milliseconds in the third, fourth, and fifth column. The remaining columns
refer to the test runs with 400 feature points. The sixth column (atl) contains the average
length of the feature trails. The final two columns state the average number of iterations
of the gradient descent algorithms for translation estimation and affine motion estimation,
respectively.

test image sequence. Although the average trail length does not discriminate be-
tween accurate feature trails and erroneous feature trails, it indicates if the basin
of convergence and the robustness of the applied algorithms are sufficient for the
test image sequence. A visual inspection of the results of several test runs corrob-
orated this hypothesis by showing very few erroneous feature trails. Figure 6.17
depicts the feature windows computed in one test run in three images of the test
image sequence. In a similar vein, the average number of iterations of the affine
motion estimation can be interpreted as measure for the accuracy of the translation
estimation, because the affine motion estimation is initialized with the results of the
translation estimation. However, this inference is only valid for test runs in which
the affine motion estimation was performed with the same algorithm.
The first three test runs presented in Table 6.2 provide a comparison of three al-

gorithms for affine motion estimation with intensity equalization. The average trail
length produced by all three algorithms is almost identical. In contrast to this, the
algorithm “gd aff iie” requires less iterations and provides a better computational
efficiency than the other two algorithms. The test runs 3, 4, and 5 illustrate how
increasing the value of δtra_min reduces the number of iterations of the algorithm for
translation estimation. What is more, test run 5 represents the most efficient config-
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uration for the tracking of 400 feature points in Table 6.2. However, the decrease of
the average trail length in test run 5 indicates that the respective parameter setting
starts to affect the success rate of the tracking. The functionality of the parameter
δtra_min is detailed in Subsection 3.3.5.
Compared to test run 3, test run 6 uses larger feature windows for translation

estimation. As a result, the computation times increase considerably. Furthermore,
the average number of iterations of the algorithm for affine motion estimation is
reduced, which suggests that the accuracy of the translation estimation is slightly
better. The average trail length is already very good for test run 3. Therefore, the
margin for its improvement is very small, so that the increased feature window
size has only a negligible impact on the average trail length for the current test
image sequence. In test run 7, we replace the algorithm “gd tra” with the algorithm
“gd tra iie” with integrated intensity compensation. Comparing test run 7 to test
run 3 shows that this replacement also results in longer computation times, higher
accuracy, and a negligible increase of the average trail length. Consequently, the
robustness of the algorithm “gd tra” without intensity compensation is sufficient
to cope with the intensity changes encountered in consecutive images of the test
image sequence.
The remaining test runs evaluate the performance of the block matching algo-

rithm “bm coef”. A comparison of the average trail lengths of the test runs 8 and 9
clearly shows that the mismatch prevention strategy described in Subsection 3.4.3
considerably improves the performance of the block matching algorithm for image
sequences of real-world scenes. Interestingly, the setup of the experiments in the
preceding subsection prevented the detection of this behavior. Compared to the
gradient descent algorithm in test run 4, the block matching algorithm in test run
9 achieves similar results for the average trail length and the accuracy of the fea-
ture positions. However, the block matching algorithm requires less computation
time per image, but more computation time per feature point. As a consequence,
its computational efficiency is better for 20 feature points, but worse for 400 fea-
ture points. The omission of the smoothing of the input images further reduces
the computational overhead per image in test run 10, which represents the most
efficient configuration for the tracking of 20 feature points in Table 6.2. Finally, the
test runs 11 and 12 illustrate the effects of increasing the feature window size and
the search range of the block matching algorithm on the computation times of the
feature point tracking system.

6.1.4 Summary

The experimental evaluation in Subsection 6.1.2 concentrates on the accuracy and
the basin of convergence of the individual motion estimation algorithms. All imple-
mented algorithms achieve subpixel accuracy in the performed experiments. While
the basin of convergence of the block matching algorithms is determined by the size
of the search range, the basin of convergence of the gradient descent algorithms for
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translation estimation can be increased with a hierarchical approach. As the algo-
rithms for affine motion estimation are exclusively used to refine the feature po-
sitions estimated by the algorithms for translation estimation in our feature point
tracking system, their small basin of convergence is not detrimental.
The experiments in Subsection 6.1.3 evaluate the feature point tracking system

with respect to its computational efficiency and its robustness to intensity changes.
The most important results can be summarized as follows:

• The algorithm “gd aff iie” exhibits the best computational efficiency of all al-
gorithms for affine motion estimation with intensity equalization.

• The algorithm “gd tra” without intensity equalization is sufficiently robust to
small intensity changes in consecutive images.

• When the number of tracked feature points is large, the gradient descent algo-
rithm “gd tra” is the most efficient algorithm for translation estimation. How-
ever, due to its low computational overhead per input image, the block match-
ing algorithm “bm coef” takes first place when the number of tracked feature
points is small.

Both the test images and the test image sequence in this section were selected to
facilitate the evaluation of certain aspects of our feature point tracking system. We
complement this evaluation with further experiments using image sequences of
more complex real-world scenes in Section 6.4.

6.2 Structure and Motion Estimation

The experimental evaluation of our work on structure and motion estimation in
this section is based on artificial test data, because this approach allows the gener-
ation of specific configurations of scene geometry and camera motion, as well as
the customization of the associated feature trails. In addition to that, this approach
facilitates the quantitative evaluation of the algorithms. We start this section with a
description of the generation of the test data in Subsection 6.2.1. In the second sub-
section, we use one data set to demonstrate the performance of the POSIT algorithm
with virtual reference point, which has been proposed in Subsection 4.2.2. Subsec-
tion 6.2.3 is dedicated to the systematic experimental evaluation of our structure
and motion estimation system with the generated test data. Moreover, we use three
image sequences of real-world scenes to evaluate our structure and motion estima-
tion system in conjunction with our feature point tracking system in Section 6.4.

6.2.1 Experimental Setup

Our approach for generating the artificial test data for the evaluation of our algo-
rithms can be divided into three steps. First, the scene structure is established by
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Figure 6.18: This figure illustrates three different artificial test scenes. From left to right, the
images show the test scene “circle” with 25 views and 200 feature points, the test scene
“simple” with 25 views and 100 feature points, and the test scene “wobble” with 100 views
and 100 feature points.

generating a specified number of feature positions in the world coordinate system.
Second, the camera motion is defined by generating one camera pose for every im-
age of the (virtual) image sequence. Finally, the feature points are projected into
the sensor coordinate systems defined by the camera poses to generate the feature
trails. In the following, we describe each of these three steps in more detail.

We generate the coordinates of the feature points by randomly sampling a uni-
form distribution in a given interval of every axis of the world coordinate system.
This approach requires the specification of the number Nu of feature points and the
borders of the three intervals. The resulting feature points lie in a cuboid, whose
size and position are determined by the borders of the intervals. By default, we
sample the feature points of our test scenes in a unit cube at the center of the world
coordinate system. In some experiments, we deviate from this default, for example,
to evaluate the effects of a planar scene structure.

For the generation of the camera positions, we use a parametric definition of the
trajectory of the optical center of the camera. Furthermore, we specify the trajec-
tory of one additional point on the optical axis to fix the orientation of the camera.
Technically, we use these two trajectories (and the convention that the x-axis of the
camera coordinate system is perpendicular to the y-axis of the world coordinate
system) to compute the extrinsic camera parameters for every view. This approach
makes it possible to adjust the number M of views, while retaining the basic shape
of the camera trajectory.

The feature trails are generated by projecting the feature points into the sensor co-
ordinate system of every view according to equation (2.7). Furthermore, we apply
the radial distortion defined in (2.8). In all experiments of this section, we simulate

164



6.2 Structure and Motion Estimation

Figure 6.19: The test scene “slalom” is shown with 200 views and 200 feature points.

the digital camera Sony DFW-VL 500 with the help of the intrinsic camera parame-
ters

K =





770 0 320
0 770 240
0 0 1



 , D1 = −0.275 , D2 = 0.320 . (6.1)

In order to make our experiments more realistic, we perturb the computed feature
positions. To this end, we emulate the accuracy of the feature point tracking algo-
rithms by independently adding Gaussian noise with a standard deviation of σinl to
the coordinates of the feature positions. Furthermore, we simulate tracking errors
by adding Gaussian noise with a higher standard deviation of σout to the coordi-
nates of a specified percentage pout of the feature positions. Finally, the created
feature trails are split into independent parts to simulate the loss of feature points
and to limit the length of the feature trails. The probability of a split between any
two consecutive elements of the feature trail is given by ploss . As a consequence,
the actual number N of feature points processed by our structure and motion es-
timation system is larger than the number Nu of unique feature points of the test
scene for ploss > 0. However, the total number MNu of feature positions remains
constant for different values of ploss.
We employ five different test scenes for the experimental evaluation discussed

in this section. By default, the feature points are uniformly distributed in a unit
cube in all five test scenes. Three of these test scenes are illustrated in Figure 6.18.
For the evaluation of the POSIT algorithm in Subsection 6.2.2, we generate different
sets of input data from the test scene “circle”, which features a circular camera tra-
jectory. The remaining test scenes are used for the evaluation of our structure and
motion estimation system in Subsection 6.2.3. In the test scene “simple”, the camera
moves in a straight line that is approximately perpendicular to the optical axis of
the camera. This configuration is particularly well suited for structure and motion
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Figure 6.20: The test scene “spiral” is depicted with 400 views and 200 feature points.

estimation. In contrast to this, the dominance of the forward motion of the camera
in the test scene “wobble” makes an accurate reconstruction of the scene structure
very difficult.

The two remaining test scenes are illustrated in Figure 6.19 and Figure 6.20, re-
spectively. As the basic camera motion of the test scene “slalom” provides a fairly
uniform sampling of viewpoints, similar camera motions are often performed with
hand-held cameras for the generation of image-based models. In contrast to this,
the camera motion of the test scene “spiral” requires the use of a turntable in prac-
tice. We employ this test scene to evaluate the performance of our structure andmo-
tion estimation system for very long image sequences and high feature loss proba-
bilities, i. e., short feature trails.

The parameters σinl and σout specify the amount of noise in the coordinates of
the feature positions in pixels. However, a meaningful analysis of the experimental
results requires that the amount of noise is considered in relation to the dispersion
of the feature points in the test images. In our test scenes, we simulate images with
a resolution of 640× 480 pixels. Furthermore, the feature points are guaranteed to
lie completely inside the image associated with the first view of every test scene.
Figure 6.21 illustrates the positions of all feature points in the first view of the test
scene “circle”. In addition to that, this image visualizes the effects of setting σinl
to 0.5 pixels on the positions of the feature points. We also provide the first image
of the test scene “slalom” in Figure 6.22. In this image, the standard deviation of
the noise in the feature positions equals 2.0 pixels. Finally, Figure 6.23 shows the
first image of the test scene “wobble”. Here, outliers are simulated by strongly
perturbing the coordinates of 20% of the feature positions.
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Figure 6.21: The first image of the test scene “circle” has a resolution of 640× 480 pixels and
contains 200 feature points. The correct feature positions are marked with a box, while the
perturbed feature positions are marked with a cross. The specified values for the perturba-
tion parameters are σinl = 0.5, σout = 0.0, and pout = 0.0.

Figure 6.22: The first image of the test scene “slalom” contains 200 feature points. The per-
turbation parameters are set to σinl = 2.0, σout = 0.0, and pout = 0.0.
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Figure 6.23: The first image of the test scene “wobble” contains 200 feature points. The
perturbation parameters are set to σinl = 1.0, σout = 10.0, and pout = 0.2.

6.2.2 Evaluation of the POSIT Algorithm

The standard POSIT algorithm and our proposed extension, the POSIT algorithm
with virtual reference point, are both described in Subsection 4.2.2. The experi-
mental setup for the comparison of these two algorithms is based on the test scene
“circle” with 100 views and 500 feature points. The algorithms were run with 10000
sets of a specified number N of randomly selected feature points for each of the
100 views, resulting in a total of one million estimations per parameter configu-
ration. For the standard POSIT algorithm, the reference point was also randomly
determined from the set of selected feature points.
The POSIT algorithm estimates the extrinsic camera parameters (R, t) from the

positions of N feature points given both in the world coordinate system and one
image coordinate system. The orientation and the position of the camera can be
derived from the extrinsic camera parameters as

R̃ = RT, t̃ = −RTt . (6.2)

When the ground truth for the camera pose is given by R̂ and t̂, we compute the
absolute translation error of the camera position as

ǫtra = ‖t̂ − t̃‖2 . (6.3)

Furthermore, we define the absolute rotation error ǫrot as the rotation angle encoded
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type N σinl ǫ
〈05〉
tra ǫ

〈50〉
tra ǫ

〈95〉
tra ǫ

〈50〉
rot time

std 10 0.2 0.0013 0.0037 0.0083 0.0838◦ 0.040
std 10 2.0 0.0133 0.0368 0.0828 0.8378◦ 0.041
std 100 0.2 0.0006 0.0019 0.0046 0.0420◦ 0.069
std 100 2.0 0.0061 0.0188 0.0462 0.4199◦ 0.070
vrp 10 0.2 0.0012 0.0032 0.0069 0.0728◦ 0.042
vrp 10 2.0 0.0116 0.0317 0.0694 0.7283◦ 0.042
vrp 100 0.2 0.0003 0.0008 0.0016 0.0189◦ 0.068
vrp 100 2.0 0.0032 0.0083 0.0155 0.1888◦ 0.067

Table 6.3: This table details the results of our experimental evaluation of two variants of the
POSIT algorithm. The standard POSIT algorithm (std) uses one input feature point as the
reference point for the weak perspective projection model, whereas the POSIT algorithm
with virtual reference point (vrp) uses the center of mass of the feature points for this pur-
pose. The second column contains the number of feature points in the input data. The
parameter σinl is described in Subsection 6.2.1. The error measures in columns four to seven
are defined in the text below. The last column of this table specifies the mean computation
time per estimation in milliseconds.

in the rotation matrix

∆R = R̂R̃
T, (6.4)

which represents the difference between the ground truth orientation and the esti-
mated orientation of the camera.

The results of our experimental evaluation are presented in Table 6.3. We mea-

sure the accuracy of the algorithms with the median ǫ
〈50〉
tra of the absolute transla-

tion errors and the median ǫ
〈50〉
rot of the absolute rotation errors. We also indicate

the variation of the measurements with the 5th percentile ǫ
〈05〉
tra and the 95th per-

centile ǫ
〈95〉
tra of the absolute translation errors. The accuracy of both variants of the

POSIT algorithm increases with the number of input feature points and decreases
with the amount of noise perturbing the feature positions. When applied to ten
feature points, our proposed POSIT algorithm with virtual reference point consis-
tently exhibits a higher accuracy than the standard algorithm. As explained in Sub-
section 4.2.2, the influence of the noise in the feature positions on the position of the
virtual reference point decreases with the number of the input feature points. Con-
sequently, the POSIT algorithm with virtual reference point is considerably more
accurate than the standard POSIT algorithm when the input data consists of 100
feature points. Finally, the last column of Table 6.3 shows that the differences in the
computation times of the two variants of the POSIT algorithm are negligible.
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position param. description values reference

X|- - - -|- δseg_vra compute view ray angles -/A Subs. 4.3.2

-|X- - -|- δbun_type optimize LMedS estimation -/B Table 4.2

-|-X- -|- δbun_type optimize single segments -/B Figure 4.16

-|- -X-|- δbun_type optimize merged segments -/B Figure 4.16

-|- - -X|- δbun_type optimize reconstruction -/B Figure 4.16

-|- - - -|X δrob_type specify M-estimator -/C/F/H Subs. 4.3.4

Table 6.4: The configuration code of our structure and motion estimation system corre-
sponds to three user-specified parameters. The computation of the view ray angles and the
applications of our bundle adjustment approach can be deactivated (-) or activated (A/B)
independently. When one of the three supported M-estimators (Cauchy, Fair, Huber) is
specified, it is used in every activated application of our bundle adjustment approach.

6.2.3 Evaluation of the Estimation System

Our structure and motion estimation system is described in detail in Section 4.3. In
particular, the default values of its user-specified parameters are enumerated in Ta-
ble 4.3 in Subsection 4.3.5. In order to simplify the presentation of the experimental
results in this subsection, we use a configuration code to summarize the values of
three important user-specified parameters of our structure and motion estimation
system. The configuration code is explained in Table 6.4.

6.2.3.1 Basic Approach

The output of our structure and motion estimation system consists of feature po-
sitions, which represent the structure of the scene, and extrinsic camera parame-
ters, which represent the camera motion. It is difficult to evaluate the accuracy of
the reconstruction with the feature positions, because a combination of noisy input
data and short feature trails often leads to inevitable outliers. These outliers com-
plicate several aspects of the evaluation, including the necessary alignment of the
reconstruction and the ground truth data. Therefore, we evaluate the accuracy of
our structure and motion estimation system with the extrinsic camera parameters.
First, we have to transform the reconstruction into the world coordinate system of
the ground truth data. The required transformation parameters comprise a rotation,
a translation, and a scale factor. For the estimation of the transformation parame-
ters, we consider the optical centers of the camera in the reconstruction and the
ground truth data. When the reconstructed optical centers form point set A, and
the ground truth optical centers form point set B, corresponding optical centers
simply represent the same view in the reconstruction and the ground truth data.
As a consequence, we are able to estimate the transformation parameters in closed
form with the algorithm described in Subsection 5.4.
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For the evaluation of the accuracy of the reconstructed camera motion, we adopt
the error measures used in [Sch08a]. When the estimated and transformed camera
pose of one view m is given by the rotation matrix R̃m and the translation vector
t̃m, and the ground truth camera pose of this view is given by the rotation matrix
R̂m and the translation vector t̂m, the absolute pairwise translation error of the view
pair (m1,m2) is defined as

ǫapt(m1,m2) = ‖(t̂m1 − t̂m2)− (t̃m1 − t̃m2)‖2 . (6.5)

A normalization of this error measure with the ground truth distance of the two
camera positions yields the relative pairwise translation error

ǫrpt(m1,m2) =
‖(t̂m1 − t̂m2)− (t̃m1 − t̃m2)‖2

‖t̂m1 − t̂m2‖2
. (6.6)

Similarly, the absolute pairwise rotation error ǫapr(m1,m2) is given by the angle of
the rotation matrix

∆Rm1,m2 =
(

R̂m1 R̂
T
m2

) (

R̃m1 R̃
T
m2

)T
. (6.7)

For every reconstruction, we compute the average values of the error measures
with 10000 randomly selected view pairs, which yields the error measures ǭapt, ǭrpt,
and ǭapr. In addition to that, we perform 100 reconstructions for every parameter
configuration with different seeds for the random number generator, which influ-
ences both the generation of the test scenes and the random sampling step of the
LMedS technique. Consequently, we evaluate our structure and motion estima-
tion system with the median of the average relative pairwise translation error, the
median of the average absolute pairwise translation error, and the median of the
average absolute pairwise rotation error. In addition to that, we use the 5th per-
centile and the 95th percentile of the average relative pairwise translation error to
check the variation of the errors.
Our final error measure is the root mean squared back-projection error ǫrbp. It is

computed as the quadratic mean of the back-projection errors of all available feature
points in all available views. The squared back-projection error of a single feature
point is defined in equation (4.45). The root mean squared back-projection error has
some interesting properties. First of all, it can be computed without any ground
truth data. Furthermore, it indicates the amount of noise in the feature positions
when the reconstruction was successful. Finally, this error measure is closely related
to the cost function of our bundle adjustment approach, which is defined in (4.47).
We use it to analyze the performance of the implemented M-estimators.

6.2.3.2 Test Scene Simple

Our first three experiments are concerned with the reconstruction of the test scene
“simple”. This test scene is illustrated in the middle image of Figure 6.18. The tra-
jectory of the camera is a straight line and has a length of two units in all three
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code Nu ǫ
〈50〉
rbp ǭ

〈05〉
rpt ǭ

〈50〉
rpt ǭ

〈95〉
rpt ǭ

〈50〉
apt ǭ

〈50〉
apr time

-|- - - -|- 25 0.86 2.76% 3.48% 4.95% 0.0086 0.3110◦ 213
-|- - - -|- 100 0.76 0.92% 1.09% 1.69% 0.0028 0.1204◦ 315
-|- - - -|- 400 0.76 0.43% 0.50% 1.41% 0.0014 0.0707◦ 728
-|B- - -|- 25 0.76 2.56% 2.89% 3.28% 0.0069 0.2221◦ 253
-|B- - -|- 100 0.71 0.85% 0.96% 1.12% 0.0024 0.0765◦ 469
-|B- - -|- 400 0.71 0.39% 0.44% 0.50% 0.0011 0.0348◦ 1378
-|- - -B|- 25 0.67 1.57% 1.68% 1.81% 0.0040 0.1184◦ 706
-|- - -B|- 100 0.70 0.76% 0.82% 0.90% 0.0019 0.0562◦ 1466
-|- - -B|- 400 0.71 0.39% 0.42% 0.46% 0.0010 0.0286◦ 5052

Table 6.5: The results in this table are based on the test scene “simple” with 100 views and
a varying number Nu of unique feature points. The feature trails were generated with the
parameter values σinl = 0.5, σout = 0.0, pout = 0.0, and ploss = 0.0. The last column of the
table specifies the median value of the computation times of one hundred reconstructions
in milliseconds.

experiments. The purpose of the experiments is to analyze the performance of the
algorithms in our structure andmotion estimation systemwith respect to the recon-
struction of a single segment. Thus, we enforce the creation of a single segment by
increasing the maximum segment length to δfrm_max = 1000 and by disabling the
computation of the view ray angles. It is important to note that the three applica-
tions of our bundle adjustment approach that handle the optimization of the single
segments, the optimization of the merged segments, and the optimization of the
reconstruction perform identical operations when only one segment is created. All
other user-specified parameters that are not part of the configuration code detailed
in Table 6.4 were set to their default values listed in Table 4.3.
The purpose of our first experiment is to analyze the effects of the number of fea-

ture points on the accuracy and the computational efficiency of our structure and
motion estimation system. As detailed in Table 6.5, we evaluate three different con-
figurations of our estimation system. For all three configurations, the accuracy of
the estimated camera poses increases with the number Nu of feature points. When
we compare the configurations to each other, the first configuration, which does not
apply bundle adjustment, exhibits the lowest accuracy. Independently optimizing
the LMedS estimation of the outer motion, the inner motion, and the triangulation
of the feature points moderately increases the accuracy of the reconstruction. The
third configuration, which uses our bundle adjustment approach to optimize all ex-
trinsic camera parameters and all feature positions of the segment at once, achieves
the highest accuracy.
For all experiments in this subsection, the median value of the computation times

of the 100 performed reconstructions is specified in milliseconds in the last column
of the respective table. In Table 6.5, the least accurate configuration exhibits the best
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code M ǫ
〈50〉
rbp ǭ

〈05〉
rpt ǭ

〈50〉
rpt ǭ

〈95〉
rpt ǭ

〈50〉
apt ǭ

〈50〉
apr time

-|- - - -|- 25 0.77 0.60% 0.82% 1.49% 0.0030 0.1307◦ 99
-|- - - -|- 100 0.76 0.92% 1.09% 1.69% 0.0028 0.1204◦ 314
-|- - - -|- 400 0.75 1.26% 1.43% 2.16% 0.0029 0.1211◦ 1182
-|B- - -|- 25 0.69 0.53% 0.66% 0.84% 0.0023 0.0833◦ 142
-|B- - -|- 100 0.71 0.85% 0.96% 1.12% 0.0024 0.0765◦ 472
-|B- - -|- 400 0.71 1.16% 1.26% 1.39% 0.0024 0.0752◦ 1841
-|- - -B|- 25 0.69 0.49% 0.57% 0.67% 0.0019 0.0608◦ 174
-|- - -B|- 100 0.70 0.76% 0.82% 0.90% 0.0019 0.0562◦ 1570
-|- - -B|- 400 0.71 1.03% 1.08% 1.13% 0.0019 0.0554◦ 35547

Table 6.6: The results in this table are based on the test scene “simple” with a varying num-
ber M of views and 100 feature points. The feature trails were generatedwith the parameter
values σinl = 0.5, σout = 0.0, pout = 0.0, and ploss = 0.0. The last column of the table specifies
the median value of the computation times of one hundred reconstructions in milliseconds.

computational efficiency. Expectedly, the optimization of the complete segment
considerably increases the computation times of the third configuration. Neverthe-
less, a computation time of approximately five seconds for a test scene with 100
views and 400 feature points should be sufficient for most applications. It is inter-
esting to note that the computation times increase sublinearly with the number of
feature points for all three configurations.
Unlike the first experiment, our second experiment is performed with a vary-

ing number M of views and a fixed number Nu of feature points. Its results are
presented in Table 6.6. Surprisingly, the average relative pairwise translation error
increases with the number of views for all three configurations. In contrast to this,
the average absolute pairwise translation error remains approximately constant.
The definitions of these error measures in (6.5) and (6.6) show that the increase of
the average relative pairwise translation error has to be caused by the decrease of
the average distance of the camera positions in the view pairs. The average ab-
solute pairwise rotation error slightly decreases with the number of views, which
substantiates the notion that the number of the views only has a negligible effect on
the accuracy of the estimated camera poses. As in the first experiment, the accuracy
achieved by the three configurations increases in the order of their appearance in
Table 6.6.
The computation times of all three configurations of our structure and motion

estimation system are more sensitive to the number of views than to the number of
feature points. Table 6.6 shows that the computation times of the first two config-
urations increase approximately linearly with the number of views. In contrast to
this, the computation times of the third configuration reflect that the computational
complexity of our bundle adjustment approach is governed by the cube of the num-
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code depth ǫ
〈50〉
rbp ǭ

〈05〉
rpt ǭ

〈50〉
rpt ǭ

〈95〉
rpt ǭ

〈50〉
apt ǭ

〈50〉
apr time

-|- - - -|- 0.4 0.77 1.18% 1.60% 2.26% 0.0056 0.2029◦ 109
-|- - - -|- 0.2 0.78 2.28% 3.05% 4.30% 0.0107 0.3490◦ 115
-|- - - -|- 0.0 1.05 11.2% 14.1% 18.8% 0.0468 1.4034◦ 119
-|B- - -|- 0.4 0.69 1.05% 1.26% 1.62% 0.0044 0.1381◦ 184
-|B- - -|- 0.2 0.69 1.53% 1.92% 2.54% 0.0066 0.2046◦ 195
-|B- - -|- 0.0 0.69 2.17% 2.63% 3.67% 0.0090 0.2771◦ 199
-|- - -B|- 0.4 0.69 0.92% 1.16% 1.33% 0.0040 0.1135◦ 185
-|- - -B|- 0.2 0.69 1.46% 1.75% 2.02% 0.0059 0.1673◦ 193
-|- - -B|- 0.0 0.69 2.08% 2.37% 2.87% 0.0080 0.2272◦ 219

Table 6.7: The results in this table are based on the test scene “simple” with 25 views and
100 feature points. The depth of the cuboid containing the feature points was reduced to
the values shown in the second column of the table to simulate different levels of scene
planarity. The feature trails were generatedwith the parameter values σinl = 0.5, σout = 0.0,
pout = 0.0, and ploss = 0.0.

Figure 6.24: The three exemplary reconstructions of the test scene “simple” with 25 views
and 100 feature points correspond to the first three lines of Table 6.7. Consequently, from
left to right, the depth of the cuboid containing the feature points is 0.4 units, 0.2 units, and
0.0 units. In the same order, the reconstructions exhibit average relative pairwise translation
errors of 2.07%, 3.14%, and 13.4%, respectively.

ber of views. As a consequence, when our structure and motion estimation system
is configured to perform the optimization of the single segments or the optimiza-
tion of the merged segments, its computational efficiency strongly depends on the
size of the segments.
In our third experiment, which is based on the test scene “simple” with 25 views

and 100 feature points, we simulate different levels of scene planarity by reducing
the depth of the cuboid containing the feature points. The results of this experiment
are presented in Table 6.7. In addition to that, three exemplary reconstructions,
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which correspond to the first three lines of Table 6.7, are depicted in Figure 6.24.
For all three configurations of our estimation system, the accuracy of the estimated
camera poses decreases when the depth of the scene structure is reduced. In par-
ticular, the average relative pairwise translation error of the first configuration is
very high when the scene structure is planar. As described in Subsection 4.3.4, the
POSIT algorithm fails to refine the camera poses estimated by the three-point algo-
rithm when all feature points lie on a single plane. Consequently, the noise in the
feature positions has a much stronger effect on the estimated camera poses. The
second configuration, which refines the estimated camera poses with our bundle
adjustment approach, does not exhibit this behavior. The computation times of the
third configuration in Table 6.7 benefit from the small number of views in the test
scene. As a result, this configuration provides a highly competitive combination of
accuracy and computational efficiency in the current experiment.

6.2.3.3 Test Scene Slalom

The following three experiments are based on the test scene “slalom”, which is il-
lustrated in Figure 6.19. The trajectory of the camera has a width of five units and
a height of three units. In all three experiments, the generated test scene comprises
200 views and 200 unique feature points. Furthermore, we specify a relatively small
feature loss probability of ploss = 0.01, which leads to the generation of approxi-
mately 600 feature trails with an average length of 67 frames. Our structure and
motion estimation system reconstructs one feature point for every input feature
trail. Consequently, on average, three reconstructed feature points share the same
ground truth position.
The purpose of our first experiment with the test scene “slalom” is to verify the

performance of our key frame selection algorithm, which has been proposed in Sub-
section 4.3.2. To this end, we reconstruct the test scene with two different config-
urations of our structure and motion estimation system. In the first configuration,
we deactivate the computation of the view ray angles, which yields the alternate
key frame selection algorithm described at the end of Subsection 4.3.2. The second
configuration uses our proposed key frame selection algorithm, which considers
the computed view ray angles to improve the quality of the selected key frames.
We evaluate both configurations with different values of the maximum number of
frames in a segment. Furthermore, we deactivate all applications of our bundle ad-
justment approach to highlight the differences between the two key frame selection
algorithms. The results of this experiment are presented in Table 6.8.
For all values of the maximum number δfrm_max of frames in a segment, the com-

puted error measures indicate that the computation of the view ray angles in our
key frame selection algorithm improves the accuracy of the subsequent reconstruc-
tion. This observation is independent of the number of created segments, because
the second configuration creates a smaller average number of segments than the
first configuration for δfrm_max = 32, but a larger average number of segments for
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code δfrm_max ǫ
〈50〉
rbp ǭ

〈05〉
rpt ǭ

〈50〉
rpt ǭ

〈95〉
rpt ǭ

〈50〉
apr T̄ time

-|- - - -|- 32 3.25 2.84% 5.14% 10.5% 1.9310◦ 14.00 1519
-|- - - -|- 48 2.70 2.09% 4.10% 8.04% 1.6939◦ 9.00 1188
-|- - - -|- 64 2.32 1.74% 3.60% 7.67% 1.3461◦ 7.00 1082
-|- - - -|- 96 3.06 2.62% 4.58% 9.32% 1.6412◦ 5.00 967
-|- - - -|- 128 2.39 1.82% 3.48% 6.53% 1.4086◦ 4.00 894
A|- - - -|- 32 2.33 1.83% 3.43% 5.90% 1.3216◦ 10.02 3519
A|- - - -|- 48 2.35 1.70% 3.27% 6.46% 1.3234◦ 8.21 3751
A|- - - -|- 64 2.21 1.84% 3.16% 5.35% 1.2185◦ 7.86 4025
A|- - - -|- 96 2.05 1.30% 2.75% 6.19% 1.0737◦ 5.38 3354
A|- - - -|- 128 1.98 1.25% 2.44% 4.93% 0.9937◦ 4.01 3079

Table 6.8: The results in this table are based on the test scene “slalom” with 200 views and
200 unique feature points. The generation of the feature trails was performed with the pa-
rameter values σinl = 1.0, σout = 0.0, pout = 0.0, and ploss = 0.01. The second to last column
of the table shows the average number of created segments. The last column specifies the
median value of the computation times in milliseconds.

Figure 6.25: The two exemplary reconstructions of the test scene “slalom” correspond to
the first and the second configuration in Table 6.8. The specified value of the maximum
number of frames in a segment is 96. The average relative pairwise translation errors of the
two reconstructions are 4.70% and 2.64%, respectively. We visualize the created segments
by alternating between the use of light gray pyramids and dark gray pyramids to represent
the views of one segment. The camera trajectory starts at the top of the image in both
reconstructions.

δfrm_max = 64. While the second configuration specifically selects key frames that
facilitate the reconstruction of the corresponding segments, the first configuration
has no means to ensure that the selected key frames are suitable for the subsequent
reconstruction of the created segments. Figure 6.25 illustrates one exemplary seg-
mentation for each configuration. In particular, the camera positions corresponding
to the key frames of the second and the third segment of the first configuration are
very close to each other, which decreases the accuracy of the reconstruction of these
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no. code ǫ
〈50〉
rbp ǭ

〈05〉
rpt ǭ

〈50〉
rpt ǭ

〈95〉
rpt ǭ

〈50〉
apr T̄ time

1 A|- - - -|- 5.18 4.54% 8.18% 15.0% 3.3080◦ 7.88 3872
2 A|B- - -|- 2.99 1.33% 1.91% 3.62% 0.6716◦ 7.88 4751
3 A|-B - -|- 2.88 0.80% 0.93% 1.24% 0.2846◦ 7.88 7547
4 A|- -B -|- 2.81 0.70% 0.75% 0.82% 0.2190◦ 7.88 7593
5 A|B-B -|- 2.81 0.70% 0.75% 0.82% 0.2190◦ 7.88 8310
6 A|- - -B|- 2.81 0.69% 0.74% 0.78% 0.2142◦ 7.88 20224
7 A|- -BB|- 2.81 0.69% 0.74% 0.78% 0.2142◦ 7.88 14397

Table 6.9: The results in this table are based on the test scene “slalom” with 200 views and
200 unique feature points. The generation of the feature trails was performed with the
parameter values σinl = 2.0, σout = 0.0, pout = 0.0, and ploss = 0.01.

segments. The computation of the view ray angles prevents this problem in the
segmentation of the second configuration. The last column of Table 6.8 shows that
the computation of the view ray angles for all eligible key frame pairs considerably
increases the computation time of the reconstruction.
In our second experiment with the test scene “slalom”, we examine the perfor-

mance of our estimation system with respect to the different applications of our
bundle adjustment approach. In addition to that, we evaluate the robustness of our
algorithms to highly inaccurate feature positions by increasing the value of the pa-
rameter σinl to two pixels. The results of this experiment are detailed in Table 6.9.
The high level of noise in the input data strongly affects the accuracy of the first
configuration, which does not rely on bundle adjustment at all. In exchange for
moderately increased computation times, the second configuration provides con-
siderably more accurate reconstructions. When even more computation time is
available, the fourth configuration, which optimizes the merged segments, is a very
good compromise between accuracy and computational efficiency. A comparison
of the fourth and the fifth configuration illustrates that, for the current experimental
setup, the reconstruction of the segments without bundle adjustment is sufficiently
accurate for the successful merging of the segments and the subsequent optimiza-
tion of the merged segments. The optimization of the complete reconstruction in
the sixth configuration yields only a negligible improvement of the accuracy. In-
terestingly, the seventh configuration shows that the additional optimization of the
merged segments reduces the computation time of the the sixth configuration. Ap-
parently, the more accurate initialization reduces the number of time-consuming
iterations of the optimization of the complete reconstruction.
Our final experiment with the test scene “slalom” evaluates the performance of

the implemented M-estimators, which are detailed in Subsection 4.3.4. In this ex-
periment, we activate the optimization of the merged segments with our bundle
adjustment approach. In order to facilitate the comparison of the implemented M-
estimators with the standard cost function of our bundle adjustment approach, we
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code pout ǫ
〈50〉
rbp ǭ

〈05〉
rpt ǭ

〈50〉
rpt ǭ

〈95〉
rpt ǭ

〈50〉
apr T̄ time

A|- -B-|- 0.0 2.81 0.70% 0.75% 0.82% 0.2190◦ 7.88 7562
A|- -B-|- 0.4 9.15 2.27% 2.45% 2.71% 0.7159◦ 7.88 10122
A|- -B-|C 0.0 2.81 0.72% 0.77% 0.84% 0.2243◦ 7.88 9755
A|- -B-|C 0.4 9.26 1.22% 1.32% 1.42% 0.3844◦ 7.88 15238
A|- -B-|F 0.0 2.81 0.72% 0.76% 0.83% 0.2231◦ 7.88 9382
A|- -B-|F 0.4 9.20 1.43% 1.52% 1.68% 0.4459◦ 7.88 12676
A|- -B-|H 0.0 2.82 0.73% 0.78% 0.85% 0.2264◦ 7.88 8628
A|- -B-|H 0.4 9.23 1.24% 1.33% 1.45% 0.3882◦ 7.88 12602

Table 6.10: The results in this table are based on the test scene “slalom” with 200 views and
200 unique feature points. The generation of the feature trails was performed with the
parameter values σinl = 2.0, σout = 10.0, and ploss = 0.01. The value of the parameter pout is
specified in the second column of the table.

first test all configurations without outliers. In addition to that, we evaluate all con-
figurations with input data containing outliers in 40% of the feature positions. The
results of this experiment are listed in Table 6.10. When the input data is free of
strong outliers, the accuracy of all four configurations is almost identical. However,
all three M-estimators increase the computation time of our bundle adjustment ap-
proach. When pout is set to 0.4 to simulate a high level of outliers, the accuracy of the
first configuration decreases considerably. In contrast to this, the M-estimators re-
tain amuch higher level of accuracy. In particular, the Cauchy estimator exhibits the
best accuracy, while the Huber estimator provides a well-balanced compromise be-
tween accuracy and computational efficiency. As the standard cost function of our
bundle adjustment approach minimizes the sum of the squared back-projections
errors of the feature points, it is not surprising that the use of the M-estimators
actually increases the root mean squared back-projection errors.

6.2.3.4 Test Scene Spiral

The following two experiments are based on the test scene “spiral”, which is il-
lustrated in Figure 6.20. The camera trajectory of the test scene has a height of
three units and a diameter of four units. We use this test scene, which comprises
400 views and 200 unique feature points, to simulate scene configurations with a
large number of views and high feature loss rates. The feature loss probability of
ploss = 0.04 in the first experiment leads to the generation of approximately 3400
feature trails with an average length of 24 frames. In the second experiment, we
generate feature trails with ploss = 0.02 and ploss = 0.06, which yields average
feature trail lengths of 44 frames and 16 frames, respectively.
The results of our first experiment with the test scene “spiral” are presented in

Table 6.11. Identical configurations of our structure and motion estimation system
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no. code ǫ
〈50〉
rbp ǭ

〈05〉
rpt ǭ

〈50〉
rpt ǭ

〈95〉
rpt ǭ

〈50〉
apr T̄ time

1 A|- - - -|- 1.97 1.59% 2.43% 3.68% 1.5570◦ 20.77 6768
2 A|B- - -|- 1.51 0.57% 0.72% 1.09% 0.4538◦ 20.77 8193
3 A|-B - -|- 1.44 0.25% 0.35% 0.54% 0.2113◦ 20.77 10144
4 A|- -B -|- 1.39 0.16% 0.17% 0.18% 0.0954◦ 20.77 10684
5 A|B-B -|- 1.39 0.16% 0.17% 0.18% 0.0954◦ 20.77 12021
6 A|- - -B|- 1.39 0.15% 0.16% 0.18% 0.0914◦ 20.77 24017
7 A|- -BB|- 1.39 0.15% 0.16% 0.18% 0.0914◦ 20.77 22403

Table 6.11: The results in this table are based on the test scene “spiral” with 400 views and
200 unique feature points. The generation of the feature trails was performed with the
parameter values σinl = 1.0, σout = 0.0, pout = 0.0, and ploss = 0.04. The last column shows
the median value of the computation times in milliseconds.

code ploss ǫ
〈50〉
rbp ǭ

〈05〉
rpt ǭ

〈50〉
rpt ǭ

〈95〉
rpt ǭ

〈50〉
apr T̄ time

A|- -B -|- 0.02 6.41 0.67% 0.70% 0.74% 0.3949◦ 18.96 12463
A|- -B -|- 0.06 6.24 0.80% 0.88% 1.00% 0.5030◦ 26.51 11719
A|- -B -|C 0.02 6.56 0.18% 0.18% 0.19% 0.1028◦ 18.96 24841
A|- -B -|C 0.06 6.56 0.21% 0.23% 0.25% 0.1299◦ 26.51 25210
A|- -B -|F 0.02 6.50 0.23% 0.24% 0.25% 0.1349◦ 18.96 19668
A|- -B -|F 0.06 6.41 0.28% 0.31% 0.35% 0.1765◦ 26.51 19201
A|- -B -|H 0.02 6.53 0.19% 0.20% 0.21% 0.1109◦ 18.96 21701
A|- -B -|H 0.06 6.47 0.23% 0.25% 0.28% 0.1435◦ 26.51 23625

Table 6.12: The results in this table are based on the test scene “spiral” with 400 views and
200 unique feature points. The generation of the feature trails was performed with the
parameter values σinl = 1.0, σout = 10.0, and pout = 0.2. The value of the parameter ploss is
specified in the second column of the table.

have already been evaluated in an experiment with the test scene “slalom”. The
results of this experiment can be found in Table 6.9. A comparison of the results
of both experiments shows that the relative performance of the configurations with
respect to their accuracy and their computational efficiency is approximately the
same in both experiments. In the current experiment, the reduced noise in the fea-
ture positions of the feature trails results in a higher accuracy of all configurations.
Furthermore, this experiment proves that our structure and motion estimation sys-
tem is perfectly capable of efficiently processing test scenes with a large number of
views and high feature loss rates.
Our second experiment with the test scene “spiral” also corresponds to an exper-

iment with the test scene “slalom”. Both experiments evaluate the performance
of the implemented M-estimators. In the current experiment, we keep the out-
lier probability constant and generate the feature trails with two different feature
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Figure 6.26: The two exemplary reconstructions of the test scene “spiral” correspond to the
second and the fourth line of Table 6.12. The average relative pairwise translation errors of
the two reconstructions are 0.96% and 0.23%, respectively.

loss probabilities instead. The results of the current experiment are specified in Ta-
ble 6.12, whereas the results of the corresponding experiment with the test scene
“slalom” are given in Table 6.10. The relative accuracy of the three M-estimators is
consistent in both experiments. However, in the current experiment, the activation
of any M-estimator roughly doubles the computation time of the standard bundle
adjustment approach. Figure 6.26 contrasts two reconstructions of the test scene
“spiral”, which were optimized with the standard cost function and the Cauchy es-
timator, respectively. Due to the specified feature loss probability of ploss = 0.06,
there are approximately 25 reconstructed feature points for every unique feature
position. Thus, the better accuracy of the Cauchy estimator is visualized by the
much tighter clusters of feature points that share the same ground truth position.

6.2.3.5 Test Scene Wobble

The final two experiments in this subsection are based on the test scene “wobble”,
which is illustrated in Figure 6.18. In this test scene, the camera moves towards
the feature points in a spiraling motion with a length of one unit and a diameter
of 0.2 units. As explained in Subsection 4.1.1, this camera trajectory is disadvanta-
geous to structure and motion estimation in general. Consequently, we use this test
scene with 100 views and 100 unique feature points to evaluate the robustness of
our estimation system to difficult scene configurations. In both experiments, a fea-
ture loss probability of ploss = 0.01 results in the generation of approximately 200
feature trails with an average length of 50 frames. In addition to that, we simulate
a moderate level of strong outliers with pout = 0.1 and σout = 10.0.
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code σinl ǫ
〈50〉
rbp ǭ

〈05〉
rpt ǭ

〈50〉
rpt ǭ

〈95〉
rpt ǭ

〈50〉
apr T̄ time

-|- - - -|- 0.2 4.68 1.04% 1.71% 3.39% 0.2004◦ 4.00 463
-|- - - -|- 0.5 4.98 2.61% 4.66% 7.65% 0.5514◦ 4.00 458
-|- - - -|- 1.0 5.92 6.37% 9.39% 16.7% 1.0788◦ 4.00 459
-|- - - -|- 2.0 8.63 13.1% 18.1% 37.4% 2.0938◦ 4.00 450
A|- - - -|- 0.2 4.66 0.65% 1.21% 3.15% 0.1460◦ 3.97 1605
A|- - - -|- 0.5 4.92 2.04% 4.20% 10.9% 0.4843◦ 4.76 1759
A|- - - -|- 1.0 6.21 5.41% 10.3% 24.6% 1.2052◦ 5.31 1877
A|- - - -|- 2.0 9.67 10.6% 21.9% 50.5% 2.5716◦ 5.86 1855

Table 6.13: The results in this table are based on the test scene “wobble” with 100 views
and 100 unique feature points. The generation of the feature trails was performed with the
parameter values σout = 10.0, pout = 0.1, and ploss = 0.01. The value of the parameter σinl is
specified in the second column of the table. The last column shows the median value of the
computation times in milliseconds.

In our first experimentwith the test scene “wobble”, we examine the performance
of our key frame selection algorithm with respect to the noise level in the coordi-
nates of the feature positions in the feature trails. The results of this experiment are
listed in Table 6.13. The computation of the view ray angles improves the median
error values for σinl = 0.2 and σinl = 0.5, but degrades the median error values for
higher levels of noise. In addition to that, the average relative pairwise translation
error exhibits a higher variation for all levels of noise. As described in Subsec-
tion 4.3.4, the median of the view ray angles is computed with a robust version of
the five point algorithm, which yields up to ten putative solutions of the relative
camera pose. Even though we disambiguate these solutions using an additional
view, which resolves all ambiguities in theory, a combination of strong noise in the
feature positions and adverse scene geometry can lead to the selection of the wrong
solution in practice. When the correct view ray angles of all tentative key frames
are very small, an incorrect reconstruction results in the largest angle, and thus the
highest quality measure, with a very high probability. Consequently, the random
occurrence of a single reconstruction error possibly distorts the results of our key
frame selection algorithm. As the probability of these errors increases with the level
of noise in the feature positions, the average number of the created segments in Ta-
ble 6.13 also increases with the level of noise.
In our second experiment with the test scene “wobble”, we further increase the

difficulty of the reconstruction by reducing the depth of the cuboid that contains the
feature points to 0.1 units. The experimental results in Table 6.14 illustrate that the
quality of the reconstruction is considerably impaired by the reduction of the depth
of the scene structure. When the scene geometry is planar and one camera position
is closer to all feature points than the other camera position, there are two physically
valid solutions to the relative camera pose problem. However, [Seg07] reports that
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code depth ǫ
〈50〉
rbp ǭ

〈05〉
rpt ǭ

〈50〉
rpt ǭ

〈95〉
rpt ǭ

〈50〉
apr T̄ time

-|- - - -|- 1.0 5.92 6.37% 9.39% 16.7% 1.0788◦ 4.00 457
-|- - - -|- 0.1 6.27 32.5% 39.2% 45.7% 4.6264◦ 4.00 483
-|B- - -|C 1.0 4.90 1.82% 2.65% 3.80% 0.3039◦ 4.00 1070
-|B- - -|C 0.1 4.96 9.92% 13.5% 25.6% 1.5878◦ 4.00 1190
-|- -B -|C 1.0 4.81 0.86% 0.96% 1.15% 0.0954◦ 4.00 2208
-|- -B -|C 0.1 4.81 3.36% 3.66% 4.08% 0.3404◦ 4.00 2560
-|- -BB|C 1.0 4.81 0.83% 0.91% 0.98% 0.0895◦ 4.00 5704
-|- -BB|C 0.1 4.81 3.34% 3.60% 3.96% 0.3323◦ 4.00 6004

Table 6.14: The results in this table are based on the test scene “wobble” with 100 views and
100 unique feature points. The depth of the cuboid containing the feature points is shown
in the second column of the table. The feature trails were generated with the parameter
values σinl = 1.0, σout = 10.0, pout = 0.1, and ploss = 0.01.

Figure 6.27: This figure shows three reconstructions of the test scene “wobble”. The left and
the right image of this figure correspond to the second and the sixth line of Table 6.14, re-
spectively. Thus, the reconstruction in the right image is based on the same reconstructed
segments as the one in the left image, but illustrates the effects of the optimization of the
merged segments with our bundle adjustment approach. The middle image depicts an in-
termediate step of the optimization, in which the number of bundle adjustment iterations
was limited to eight. The average relative pairwise translation errors of the three recon-
structions are 30.3%, 10.2%, and 4.06%, respectively. The camera moves towards the feature
points in this test scene.
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the accuracy of the five-point algorithm is already affected when these conditions
are only approximately satisfied. Consequently, even the disambiguation of the
solutions of the five-point algorithm with an additional view is prone to return the
wrong solution when the noise in the feature positions is too high. The second
segment of the reconstruction in the left image of Figure 6.27 is an example for this
problem. The other two images of this figure demonstrate the robustness of our
bundle adjustment approach, which manages to improve the initial reconstruction
significantly.

6.2.4 Summary

The experimental evaluation of our structure and motion estimation system in this
section is based on artificial test scenes. Our approach for generating these test
scenes is detailed in Subsection 6.2.1. One test scene is used to evaluate our pro-
posed extension of the POSIT algorithm in Subsection 6.2.2. Compared to the stan-
dard POSIT algorithm, our POSIT algorithm with virtual reference point exhibits
the same computational efficiency and a considerably higher accuracy. Finally, we
use four test scenes to evaluate the performance of our structure and motion esti-
mation system in Subsection 6.2.3. The following results are especially noteworthy:

• Our key frame selection algorithm improves the accuracy of the reconstruc-
tion, as long as the input data allows a successful estimation of the relative
camera poses with the five-point algorithm.

• Our approach for the merging of the segments works reliably. It was tested
with reconstructions that consist of more than 20 segments.

• The implemented robust estimation techniques enable our estimation system
to successfully cope with outlier percentages of up to 40%.

• Our estimation system allows the independent activation of four different ap-
plications of our bundle adjustment approach. This feature provides the flex-
ibility to adapt the balance between the accuracy and the computational effi-
ciency of our estimation system to specific requirements.

• Activating the bundle adjustment optimization of the merged segments in
combination with the Cauchy estimator results in a very high level of accuracy
and robustness. With this configuration, our estimation system demonstrates
its computational efficiency by performing the reconstructions with median
computation times that equal a computation rate of more than twelve views
per second in all conducted experiments.

We complete the evaluation of our structure andmotion estimation system with the
additional experiments in Section 6.4.
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Figure 6.28: The left image visualizes the point set “bunny”with the help of a filled polygon
mesh. The middle image shows the original version of the point set, while the right image
depicts a subsampled version with 2000 points. For our experiments, we scale the point set
“bunny” to fit into a sphere with a diameter of 100 units.

6.3 Point Set Registration

In this section, we describe the experimental evaluation of our work on point set
registration, which is presented in Chapter 5. In particular, the structure of our
variant of the ICP algorithm is illustrated in Figure 5.3 and the default values of its
user-specified parameters are listed in Table 5.1. The first subsection of this section
contains an explanation of our experimental setup, which covers the input point
sets, the generation of the test data, and the considered error measures. The second
subsection details the experimental evaluation of our variant of the standard ICP
algorithm. In addition to that, we evaluate the implemented extensions for robust
correspondence estimation and integrated scale estimation in Subsection 6.3.3 and
Subsection 6.3.4, respectively.

6.3.1 Experimental Setup

We use two different point sets for the evaluation of the registration algorithms in
this section. Both point sets are scaled to fit into a sphere with a diameter of 100
units. Our first point set is widely known as the “Stanford Bunny”. It is available
from The Stanford 3D Scanning Repository [Sta11]. The generation of this point
set is detailed in [Tur94]. The original version of the point set “bunny” consists of
35947 points. We use randomly subsampled versions of this point set. Two exem-
plary versions of the point set “bunny” are illustrated in the middle image and the
right image of Figure 6.28. The shape of this point set is particularly suitable for
point set registration. Thus, we expect the corresponding experimental results to
demonstrate the upper limit of the performance of the registration algorithms.
Our second point set is illustrated in Figure 6.29. The point set “bench” was re-

constructed from an image sequence of a cluttered work bench with a structure and
motion estimation algorithm. As a consequence, this input point set is representa-
tive of many reconstructions computed with our structure and motion estimation
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Figure 6.29: One image of the image sequence used for the reconstruction of the point set
“bench” is shown on the left. The right image illustrates a subsampled version of the point
set “bench”. This version contains 2000 points. The point set “bench” is also scaled to fit
into a sphere with a diameter of 100 units.

system, which is described in Chapter 4. The original version of this point set con-
sists of 3584 points, but we exclusively use a subsampled version with 2000 points.
Due to the irregular shape of the point set “bench”, we expect the registration of
this point set to be very demanding.
As the evaluated registration algorithms require both a data point set and amodel

point set as input, we use an automated approach for the generation of the artificial
test data from the point sets described in the preceding paragraphs. In the first step
of this approach, the input point set is moved to the origin of the coordinate system
and resized to fit into a sphere with a diameter of 100 units. The resulting point set is
used as the basis for both the data point setA and themodel point set B. The second
step is concerned with the simulation of a partial overlap of the two point sets. To
this end, a specified percentage pcut of the points is deleted from both point sets. In
particular, the outmost points with respect to a random direction are deleted from
the model point set, and the outmost points with respect to the opposite direction
are deleted from the data point set. After the deletion of the points, the relative
percentage of inliers in the data point set is given by

poverlap =
1− 2pcut
1− pcut

. (6.8)

The described approach ensures that no point is deleted in both point sets, as long
as pcut ≤ 0.5. Furthermore, compared to the deletion of randomly selected points,
it results in a considerably more difficult registration problem. This step concludes
the generation of the model point set.
In the third step, we add Gaussian noise to the coordinates of the data point po-

sitions. With a probability of pout, we apply Gaussian noise with a large standard
deviation of σout to simulate strong outliers. For the remaining points, we use a
smaller standard deviation of σinl. The fourth and final step consists of generat-
ing and applying the initial motion to the data point set. To this end, the rotation
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position parameter possible values reference

XX| - | - point set BU (bunny) / BE (bench) Subs. 6.3.1

- |XXX|- δtype - / LFS / LMS (LMedS) / LTS Section 5.3

- | - |X δscale - / S Section 5.4

Table 6.15: The configuration code of the experimental evaluation of our registration algo-
rithms displays the name of the point set, as well as the values of two important user-
specified parameters of our variant of the ICP algorithm. The extensions for robust cor-
respondence estimation are detailed in Section 5.3. They can be activated with the user-
specified parameter δtype. The integrated scale estimation, which is presented in Section 5.4,
can be deactivated (-) or activated (S) with the parameter δscale.

angle θangle, the translation vector length θtrans, and the scale factor θscale have to
be specified. Our automated approach randomly determines a rotation axis and a
translation direction for every test run. The combination of these values yields the
motion parameters (R̂, t̂, ŝ), where ŝ = θscale. We apply the motion parameters to
the data points as follows

âi =
1
ŝ
R̂
T
ai − R̂

T
t̂ , ∀ai ∈ A . (6.9)

As a result, the estimated motion (R̃, t̃, s̃) has to be compared to the ground truth
motion (R̂, ŝt̂, ŝ). This rather intricate approach ensures that the actual translation
of the data point set has a length of θtrans when θscale 6= 1.
We evaluate the estimated motion (R̃, t̃, s̃) with three error measures. When the

corresponding ground truth motion is given by (R̂, ŝt̂, ŝ), the rotation error ǫrer is
defined as the angle of the rotation matrix

∆R = R̂R̃
T. (6.10)

Furthermore, the translation error ǫter is specified as

ǫter = ‖ŝt̂− t̃‖2 . (6.11)

Finally, the scale error ǫser is defined as

ǫser =

{

ŝ/s̃ : ŝ ≥ s̃
s̃/ŝ : ŝ < s̃

, (6.12)

so that ǫser is always greater than or equal to 1.0.
In order to simplify the presentation of the experimental results in the subsequent

subsections, we specify the most important aspects of the experimental setup with
the configuration code detailed in Table 6.15. In addition to that, the experimental
setup is influenced by the parameters σinl, σout, and pout, which specify the amount
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Figure 6.30: The accuracy of two configurations of our variant of the ICP algorithm is illus-
trated with a histogram of the rotation error for two point sets. The results were obtained
by performing 50000 test runs for every configuration.

of noise in the coordinates of the data point positions. Furthermore, the parameter
pcut determines the degree of overlap of the data point set and the model point set.
Finally, the rotation angle θangle, the translation vector length θtrans, and the scale
factor θscale define the initial motion between the two point sets. Unless explicitly
stated otherwise, the size of the input point sets is 2000 points in all experiments of
the following subsections.

6.3.2 Evaluation of the Standard ICP Algorithm

The integrated scale estimation of our variant of the ICP algorithm is not used in
any experiment of this subsection. Consequently, the scale factor of the initial mo-
tion is set to θscale = 1 in these experiments. The values of the remaining parameters
are presented directly in the graphs that illustrate the experimental results. In this
subsection, we determine the accuracy of the algorithm with the help of histograms
of the relevant error measures. Furthermore, we analyze the basin of convergence
of the algorithm with respect to the rotation angle θangle and the translation vector
length θtrans by calculating the percentage of successful registrations.
In our first experiment, we evaluate the accuracy of our registration algorithm

with the point sets “bunny” and “bench”. The results of this experiment are illus-
trated in Figure 6.30 and Figure 6.31. The values of the parameters θangle and θtrans
were selected to ensure that the evaluated algorithm converges to the correct so-
lution. Furthermore, we perturb the coordinates of the data point positions with
Gaussian noise with a standard deviation of σinl = 0.25. In this experiment, we
evaluate the accuracy of our variant of the ICP algorithm both with and without
the LFS extension for robust correspondence estimation. The histograms in both
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Figure 6.31: The accuracy of two configurations of our variant of the ICP algorithm is illus-
tratedwith a histogram of the translation error for two point sets. The results were obtained
by performing 50000 test runs for every configuration.
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Figure 6.32: This graph visualizes the basin of convergence of two configurations of our
variant of the ICP algorithm with respect to the rotation angle of the initial motion for
the point sets “bunny” and “bench”. Every value of the success rate in this graph was
determined by performing 500 test runs.

figures show that the activation of the LFS extension results in a negligible decrease
of the accuracy of the algorithm. In contrast to this, the shape of the input point set
has a more pronounced influence on the achieved accuracy, especially with respect
to the rotation error.

In the next two experiments, we analyze the basin of convergence of our variant
of the ICP algorithm. To this end, we consider the percentage of successful regis-
trations with respect to the rotation angle and the translation vector length of the
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Figure 6.33: This graph visualizes the basin of convergence of two configurations of our
variant of the ICP algorithm with respect to the translation vector length of the initial mo-
tion for the point sets “bunny” and “bench”. Every value of the success rate in this graph
was determined by performing 500 test runs.

initial motion. We identify successful registrations by verifying that the values of
the error measures ǫrer and ǫter both lie below specified thresholds. For the speci-
fication of these thresholds, we take the histograms in Figure 6.30 and Figure 6.31
into account. In order to include all successful registrations, we set the thresholds
to 0.1◦ for the rotation error and to 0.04 for the translation error. With these settings,
we obtain the results presented in Figure 6.32 and Figure 6.33. In both experiments,
the evaluations with the point set “bench” result in a noticeably smaller basin of
convergence. For this point set, the activation of the LFS extension reduces the
basin of convergence even further. In contrast to this, the LFS extensions yields a
larger basin of convergence with respect to the rotation angle of the initial motion
for the point set “bunny”.

6.3.3 Evaluation of Robust Correspondence Estimation

For the evaluation of the implemented extensions for robust correspondence esti-
mation, we simulate outliers and partially overlapping point sets with the parame-
ter values σinl = 0.25, σout = 2.5, pout = 0.1, and pcut = 0.1. Compared to the exper-
iments in the preceding subsection, we also reduce the translation vector length to
θtrans = 7.5. Figure 6.34 shows an exemplary setup with partially overlapping point
sets before and after the registration of the data point set and the model point set.
As a first step, we analyze the accuracy of our variant of the ICP algorithm with

the implemented extensions. The results of the conducted experiment are presented
in Figure 6.35 and Figure 6.36. The accuracy of the LFS extension and the LTS exten-
sion is almost identical. In contrast to this, the LMedS extension is less accurate with
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Figure 6.34: The left image illustrates the initial motion between the data point set, which
is represented by black points, and the model point set for a rotation angle of θangle = 20◦

and a translation vector length of θtrans = 7.5. The data point set was generated with the
parameter values σinl = 0.25, σout = 2.5, pout = 0.1, and pcut = 0.2. The registration of the
data point set and the model point set in the right image was computed with our variant of
the ICP algorithm using the LFS extension.
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Figure 6.35: The accuracy of the implemented extensions for robust correspondence esti-
mation is illustrated with a histogram of the rotation error for the point set “bunny”. The
results were obtained by performing 50000 test runs for every configuration of our variant
of the ICP algorithm.
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Figure 6.36: The accuracy of the implemented extensions for robust correspondence esti-
mation is shown with a histogram of the translation error for the point set “bunny”. The
results were obtained by performing 50000 test runs for every configuration of our variant
of the ICP algorithm.

respect to both the rotation error and the translation error. As in the previous sub-
section, we consider the histograms in both figures to determine the thresholds for
identifying successful registrations in the subsequent experiments. Consequently,
we set the thresholds to 0.2◦ for the rotation error and to 0.08 for the translation
error.

In order to determine suitable values for the exponents θelfs and θelts of the objec-
tive functions of the LFS extension and the LTS extension, we evaluate the basin of
convergence of the extensions for different values of the respective exponent. The
results of the performed experiments are illustrated in Figure 6.37 and Figure 6.38.
The basin of convergence of the LTS extension is similar for all tested values of θelts.
As a consequence, we adopt a default value of θelts = 4, which has already been
proposed in the original work [Che05]. In contrast to this, the basin of convergence
of the LFS extension strongly depends on the value of the exponent θelfs. As the
smallest evaluated value of θelfs = 3 rejects the highest fraction of corresponding
point pairs as outliers, it yields the best basin of convergence with respect to the
parameter pcut in Figure 6.38. For the same reason, this value results in the small-
est basin of convergence with respect to the rotation angle of the initial motion in
Figure 6.37. Our default value of θelfs = 5 balances the performance of the LFS
extension in both experiments.

In the three remaining experiments of this subsection, we compare the basin of
convergence of the three extensions for robust correspondence estimation with re-
spect to different parameters. Figure 6.39 illustrates that the basin of convergence
with respect to the rotation angle of the initial motion is very similar for all three
extensions. The results for the translation vector length of the initial motion in Fig-
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Figure 6.37: This graph visualizes the basin of convergence of our variant of the ICP algo-
rithm with the LFS extension and the LTS extensionwith respect to the rotation angle of the
initial motion. For both extensions, several values of the exponent in the respective objec-
tive function are evaluated. Every value of the success rate in this graph was determined
with 500 test runs.
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Figure 6.38: This graph presents the basin of convergence of our variant of the ICP algo-
rithm with the LFS extension and the LTS extension with respect to the value of the pa-
rameter pcut. For both extensions, several values of the exponent in the respective objective
function are evaluated. Every value of the success rate in this graph was determined with
500 test runs.
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Figure 6.39: This graph illustrates the basin of convergence of the implemented extensions
for robust correspondence estimation with respect to the rotation angle of the initial motion
for the point sets “bunny” and “bench”. Every value of the success rate in this graph was
determined by performing 500 test runs.
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Figure 6.40: This graph depicts the basin of convergence of the implemented extensions for
robust correspondence estimation with respect to the translation vector length of the initial
motion for the point sets “bunny” and “bench”. Every value of the success rate in this graph
was determined by performing 500 test runs.
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Figure 6.41: This graph visualizes the basin of convergence of the implemented extensions
for robust correspondence estimation with respect to the value of the parameter pcut for
the point sets “bunny” and “bench”. Every value of the success rate in this graph was
determined by performing 500 test runs.

ure 6.39 show that the basin of convergence of the LTS extension is smaller than that
of the other extensions for the point set “bench”. However, in both experiments, the
shape of the input point set has a larger influence on the basin of convergence of
our registration algorithm than the choice of the extension for robust correspon-
dence estimation. Finally, Figure 6.41 presents the basin of convergence of the ex-
tensions with respect to the fraction of systematic outliers in the data point set and
the model point set. Evidently, the LMedS extension is least capable of dealing with
large numbers of systematic outliers. For our default values of θelfs and θelfs, the LTS
extensions achieves the largest basin of convergence in this experiment. Again, the
shape of the input point set has a very strong influence on the basin of convergence
of all evaluated extensions.

6.3.4 Evaluation of Integrated Scale Estimation

Our proposed extension for integrated scale estimation is described in detail in Sec-
tion 5.4. We evaluate its accuracy both with and without the LFS extension for
robust correspondence estimation in the first experiment of this subsection. To this
end, we generate the data point set with the parameter values σout = 0.0, pout = 0.0,
and pcut = 0.0 for the configuration without the LFS extension. In contrast to this,
we use the values σout = 2.5, pout = 0.1, and pcut = 0.1 for the configuration with
the LFS extension. The results of this experiment are shown in Figure 6.42. Ex-
pectedly, the accuracy of the estimated scale factor is reduced by the outliers that
are generated for the configuration with the LFS extension. In addition to that, the
results for the point set “bunny” and the point set “bench” deviate by a perceptible
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Figure 6.42: The accuracy of our variant of the ICP algorithm with integrated scale estima-
tion is illustratedwith a histogram of the scale error for the point sets “bunny” and “bench”.
The results were obtained by performing 50000 test runs for every configuration.
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Figure 6.43: This graph visualizes the basin of convergence of our variant of the ICP algo-
rithm with integrated scale estimation with respect to the scale factor of the initial motion
for the point sets “bunny” and “bench”. Every value of the success rate in this graph was
determined by performing 500 test runs.

margin. For the subsequent evaluation of the basin of convergence of the integrated
scale estimation, we determine successful registrations with a threshold of 0.2◦ for
the rotation error, 0.08 for the translation error, and 1.002 for the scale error.

In the experiment illustrated in Figure 6.43, we evaluate the basin of convergence
of our variant of the ICP algorithm with the extension for integrated scale estima-
tion with respect to the scale factor of the initial motion. This experiment uses the
same parameter values for the generation of the data point sets as the preceding
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Figure 6.44: The left image visualizes the initial motion between the data point set, which is
represented by black points, and the model point set for values of θangle = 20◦, θtrans = 7.5,
and θscale = 0.5. The data point set was generated with the parameter values σinl = 0.25,
σout = 2.5, pout = 0.1, and pcut = 0.1. The registration in the right image was computed
with our variant of the ICP algorithm using the LFS extension and the integrated scale
estimation.

Figure 6.45: The left image illustrates the initial motion between the data point set, which is
represented by black points, and the model point set for values of θangle = 20◦, θtrans = 7.5,
and θscale = 2.0. The data point set was generated with the parameter values σinl = 0.25,
σout = 2.5, pout = 0.1, and pcut = 0.1. The registration in the right image was computed
with our variant of the ICP algorithm using the LFS extension and the integrated scale
estimation.
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Figure 6.46: This graph illustrates the effect of the integrated scale estimation on the basin
of convergence of our variant of the ICP algorithm with respect to the rotation angle of the
initial motion for the point sets “bunny” and “bench”. Every value of the success rate in
this graph was determined by performing 500 test runs.

experiment. First of all, the activation of the LFS extension does not result in any
significant change of the basin of convergence. What is more, the graphs in Fig-
ure 6.43 clearly show that the success rate of the registration is very high as long
as the scale factor is below one, which means that the scale of the data point set is
larger than that of the model point set. As the corresponding point pairs are gen-
erated by finding the closest model point for every data point in our variant of the
ICP algorithm, the scale of the data point set is quickly reduced in the first iterations
of the algorithm. This configuration is illustrated in Figure 6.44. In contrast to this,
the success rate rapidly diminishes when the relative scale of the model point set
increases. In this case, it is possible that only a small fraction of the model points is
assigned to the corresponding point pairs, so that the scale of the data point set is
not increased adequately. As a result, the data point set gets stuck inside the model
point set. An example of the described configuration is presented in Figure 6.45.

In the next two experiments, we examine the effect of the scale estimation on the
basin of convergence of our variant of the ICP algorithmwith respect to the rotation
angle and the translation vector length of the initial motion. The results of these ex-
periments are presented in Figure 6.46 and Figure 6.47, respectively. The basin of
convergence of the ICP algorithm with respect to the rotation angle is considerably
reduced by the activation of the scale estimation. However, the activation of the
scale estimation reduces the basin of convergence with respect to the translation
vector length even more dramatically. All data points that are translated beyond
the edge of the model point set result in corresponding point pairs with one of the
points on the edge of the model point set. Consequently, the scale of the data point
set is reduced in the first iteration of the ICP algorithm to reflect the reduced spread
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Figure 6.47: This graph demonstrates the effect of the integrated scale estimation on the
basin of convergence of our variant of the ICP algorithm with respect to the translation
vector length of the initial motion for the point sets “bunny” and “bench”. Every value of
the success rate in this graph was determined by performing 500 test runs.

size 250 1000 4000 16000

code iter time iter time iter time iter time
BU|LFS|S 10.4 2.25 16.0 14.4 24.4 96.3 42.3 936
BU|LFS|- 9.64 1.85 14.9 11.0 23.1 84.4 40.0 824
BU|LMS|- 9.60 1.07 14.9 7.97 22.4 62.7 36.9 615
BU|LTS|- 136 16.9 225 122 343 1001 563 10089

Table 6.16: This table presents the average number of iterations (iter) and the average com-
putation time (time) in milliseconds for four different sizes of the input point set “bunny”.
The initial motion between the data point set and the model point set was specified as
θangle = 20◦, θtrans = 7.5, and θscale = 1.0. The data point set was generated with the param-
eter values σinl = 0.25, σout = 2.5, pout = 0.1, and pcut = 0.0. The results in this table were
averaged over 1000 test runs.

of the model points in the corresponding point pairs. As demonstrated in the pre-
ceding experiment, the basin of convergence of our variant of the ICP algorithm
with respect to the scale factor between the point sets is limited when the scale of
the data point set is smaller than that of the model point set. While the scale esti-
mation reduces the basin of convergence of our variant of the ICP algorithm with
respect to the initial motion between the point sets, rotations of 20◦ and translations
of about 10% of the size of the point sets are still estimated reliably.
In the final experiment of this subsection, we analyze the computational effi-

ciency of the extensions of our variant of the ICP algorithm for different sizes of the
point set “bunny”. Table 6.16 presents both the average number of iterations and
the average computation time of the ICP algorithm for the configurations shown in
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the first column of the table. The extension for integrated scale estimation increases
the required computation time by at most 30% percent. While the LFS extension
requires a complete sorting of the residuals of the corresponding point pairs, the
LMedS extension only has to find the median value of the residuals. As a conse-
quence, the LMedS extension is noticeably faster than the LFS extension. Finally,
due to the repeated invocation of the ICP algorithm for the estimation of the opti-
mum value of the fraction of outliers, the computation time of the LTS extension is
much higher than that of the other extensions for robust correspondence estimation.
Here, the stated numbers of iterations are summed over all required invocations of
the ICP algorithm.

6.3.5 Summary

We rely on artificial test data to evaluate our variant of the ICP algorithm in this
section. The generation of the test data is described in Subsection 6.3.1. In the
next three subsections, we evaluate the accuracy, the basin of convergence, and the
computational efficiency of our variant of the ICP algorithm with and without the
implemented extensions for robust correspondence estimation and integrated scale
estimation. In addition to that, we substantiate our choice for the default values of
the exponents θelfs and θelts of the objective functions of the LFS extension and the
LTS extension. The following results of our evaluation are especially important:

• Both the accuracy and the basin of convergence of our variant of the ICP al-
gorithm strongly depend on the shape of the point sets. In particular, shapes
with smooth surfaces are much better suited for registration than unstructured
point clouds.

• The LMedS extension is the most efficient extension for robust correspondence
estimation. However, it is also least robust to systematic outliers in the data
point set.

• The LTS extension is most robust to systematic outliers, but its computation
times are an order of magnitude longer than those of the other extensions for
robust correspondence estimation.

• The LFS extension has no significant weakness and provides the best overall
performance of the extensions for robust correspondence estimation.

• Our proposed extension for integrated scale estimation works best when the
scale of the data point set is larger than that of the model point set. It also
reduces the basin of convergence of the ICP algorithm with respect to the ro-
tation angle and the translation vector length of the initial motion.

As the ICP algorithm is a locally convergent algorithm, there will always be ap-
plications that require a basin of convergence that lies beyond its capabilities. In
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this case, it is possible to improve the initial alignment of the two point sets with
a suitable pre-alignment algorithm. A short overview of these algorithms is given
in Subsection 5.1.2. The basin of convergence of our variant of the ICP algorithm
can be influenced by interchanging the data point set and the model point set. In
general, the point set with the smaller relative number of outliers should be used
as the data point set. When this information is not available, it is advisable to use
the smaller point set as the data point set. In contrast to this, the additional esti-
mation of the relative scale greatly benefits from choosing the point set with the
larger relative scale as the data point set. Finally, the basin of convergence of our
extension for integrated scale estimation can also be increased by combining it with
other extensions of the ICP algorithm. Some extensions listed in Subsection 5.2.2
exploit additional information in the input data or trade computational efficiency
for a larger basin of convergence.

6.4 Joint Operation

This section is concerned with the experimental evaluation of the joint operation of
our feature point tracking system and our structure and motion estimation system.
In Subsection 6.4.1, we describe the generation of the three test image sequences
with known ground truth data and explain the selected parameter configurations
of our systems. The experimental results for the reconstructions of the three image
sequences are presented separately in the three subsequent subsections. Finally,
Subsection 6.4.5 summarizes the most important results of the experimental evalu-
ation in this section.

6.4.1 Experimental Setup

The experimental evaluation in this section is based on three image sequences,
which were kindly provided by Ingo Scholz. All images were captured with a Sony
DSR-PD100AP DV camera in the PAL format, but the provided images had already
been symmetrically cropped to a resolution of 512× 512 pixels. For every captured
image, the camera pose was measured with an optical tracking system. To this end,
a target with reflective markers was fixed to the camera and tracked by two in-
frared cameras with integrated infrared light sources. Further details on the image
sequences and the generation of the ground truth data for the camera poses can be
found in [Sch08a] and [Vog06].
As we evaluate the accuracy of our algorithms with the help of the available

ground truth data for the camera poses, it is crucial to consider the accuracy of
the ground truth data itself. First, the accuracy of the optical tracking system is
limited. According to its manufacturer, the translation error is notably smaller than
1.0mm, and the rotation error lies below 0.14◦ [Sch08a]. Second, the estimation of
the transformation between the coordinate systems of the tracked target and the
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code algorithm parameters

DEF gd tra + gd aff iie -

STD gd tra + gd aff iie δftr_num = 300 δftr_step = 4 δftr_dist = 10
δtra_min = 1 δtra_pred = ∗ δtra_size = 11

HSP gd tra + gd aff iie δftr_num = 150 δftr_step = 4 δftr_dist = 20
δtra_min = 1 δtra_pred = ∗ δtra_size = 11

Table 6.17: We evaluate our feature point tracking system with the listed parameter con-
figurations. For parameters not specified in this table, we use the default values defined
in Table 3.1. The available motion estimation algorithms are presented in Table 6.1. The
selected motion prediction type δtra_pred is discussed in the text below.

camera requires a hand-eye calibration, which further reduces the accuracy of the
ground truth data. A detailed description of the approach used for performing the
hand-eye calibration can be found in [Vog06].
Furthermore, the measurement of the camera pose with the optical tracking sys-

tem has to be synchronized with the capturing of the images. Our analysis of the
image sequences strongly indicates that a problem with the synchronization of the
camera and the optical tracking system affects the accuracy of the ground truth
data. We provide further details on this problem in Subsection 6.4.4. Finally, as de-
scribed in Subsection 4.1.1, our structure andmotion estimation system requires the
intrinsic camera parameters as input data. Due to the lack of dependable intrinsic
camera parameters for the three provided image sequences, we use the following
approximate intrinsic camera parameters for all experiments in this section

K =





920 0 256
0 920 256
0 0 1



 , D1 = 0.0 , D2 = 0.0 . (6.13)

Although we are not able to quantify the overall accuracy of the ground truth data
exactly, the three provided image sequences represent a unique opportunity to eval-
uate our algorithms with highly realistic input data.
In this section, we evaluate our feature point tracking system with three param-

eter configurations, which are presented in Table 6.17. The motion estimation al-
gorithms of our feature point tracking system are listed in Table 6.1. We apply the
algorithms recommended in Subsection 6.1.4. The first parameter configuration
DEF uses the default parameters of our feature point tracking system, which are
specified in Table 3.1. For the second parameter configuration STD, we change six
parameter values. We increase the number δftr_num of tracked feature points and
the distance δftr_dist between them to improve the spreading of the feature points in
the images. The adjusted values of δftr_step and δtra_min increase the efficiency of our
tracking system without affecting its accuracy. Furthermore, we activate both the
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code configuration parameters

DEF A|- - - -|- -
ST1 A|- - - -|- δlen_min = 10
IB1 A|B- - -|C δlen_min = 10
BA1 A|- -B -|C δlen_min = 10
FB1 A|- -BB|C δlen_min = 10
HS1 -|- -B -|C δlen_min = 10 δout_iter = 64 δinn_iter = 32

δtri_iter = 16 δsca_iter = 32 δbun_iter = 12
ST2 -|- - - -|- δlen_min = 10 θseg_rat = 0.5
IB2 -|B- - -|C δlen_min = 10 θseg_rat = 0.5
BA2 -|- -B -|C δlen_min = 10 θseg_rat = 0.5
HS2 -|- -B -|C δlen_min = 10 θseg_rat = 0.5 δbun_iter = 12

Table 6.18: This table contains the parameter configurations for the evaluation of our struc-
ture and motion estimation system. The default values of all parameters can be found in
Table 4.3. The mapping of the configuration code in the second column to three important
parameters of our estimation system is explained in Table 6.4.

constant position prediction and the constant motion prediction with the parame-
ter δtra_pred to increase the robustness of our tracking system to erratic motions of
the feature points. Finally, we increase the size δtra_size of the feature windows to
improve the basin of convergence of the translation estimation. The parameter con-
figuration HSP is based on the configuration STD, but reduces the number δftr_num
of tracked feature points and increases the distance δftr_dist between them.

The parameter configurations of our structure and motion estimation system are
listed in Table 6.18. The configuration code in the second column of this table is
explained in Table 6.4. Furthermore, the default parameters of our structure and
motion estimation system are specified in Table 4.3. We increase the minimum trail
length δlen_min in all parameter configurations except DEF to prevent the recon-
struction of inaccurate feature positions from very short feature trails. The ability
to reconstruct very short input sequences with the default value of δlen_min = 3
is not required in the experiments in this section. The particular properties of the
test sequence “table” necessitate the increase of θseg_rat, which decreases the aver-
age length of the generated segments. We further discuss this parameter setting in
Subsection 6.4.4. All remaining parameter changes increase the computational effi-
ciency of our estimation system by reducing either the number of LMedS iterations
or the maximum number of iterations of our bundle adjustment approach.

In the subsequent subsections, we analyze the performance of our feature point
tracking system by considering the number of generated feature trails, the average
trail length, and the computation time of the tracking system. Furthermore, the
quality of the estimated feature trails has a strong influence on the reconstruction
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Figure 6.48: From left to right, this figure shows the images 1, 38, 75, 112, and 150 of the test
sequence “glass”.

Figure 6.49: The subimages in this figure have a size of 64 × 64 pixels. They depict the
VAMPIRE logo on the compact disc in the test sequence “glass”. The subimages lie at the
same position in the consecutive images 100, 101, 102, 103, and 104.

of the test sequence. In order to evaluate the quality of the reconstruction, which is
computed by our structure and motion estimation system, we observe the average
relative pairwise translation error ǭrpt and the average absolute pairwise rotation
error ǭapr. Both error measures are described in detail in Subsection 6.2.3. It is im-
portant to note that these two error measures are much better suited for evaluating
the quality of a reconstruction than the back-projection error, which is commonly
used when no ground truth data is available. Finally, we also specify the number T
of created segments and the computation time of the reconstruction for every test
run.

6.4.2 Test Sequence Glass

The test sequence “glass” comprises 150 images with a resolution of 512× 512 pix-
els. Five images of this test sequence are shown in Figure 6.48. In addition to that,
Figure 6.49 depicts five subimages of consecutive images of the test sequence. The
subimages illustrate the moderate level of noise, the occurrence of motion blur, and
the erratic motion of the camera in the test sequence “glass”. These properties make
the successful tracking of feature points more difficult. Furthermore, the captured
scene contains a highly reflective jewel case, as well as a transparent glass vase,
which strongly distorts the objects seen through it. Figure 6.50 illustrates the re-
sults of the feature point tracking. It can clearly be seen that the distortions caused
by the glass vase affect the estimation of the affine motion of the feature windows.
Obviously, the generation of inaccurate or erroneous feature trails also complicates
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Figure 6.50: This figure illustrates the tracked feature points in the images 75 and 150 of the
test sequence “glass”. The feature trails were generated with the parameter configuration
STD of Table 6.18, except for δftr_num = 100, δftr_dist = 25, and δftr_step = 1. We reduced
the number of tracked feature points and increased the distance between them in order to
improve the visibility of the feature windows.

no. fpt trl atl time sam ǭrpt ǭapr T time

1 DEF 1956 15.34 3450 DEF 6.59% 2.79◦ 8 2830
2 STD 1889 21.64 3687 ST1 7.79% 1.66◦ 5 2950
3 STD 1889 21.64 3654 BA1 3.35% 1.45◦ 5 15962
4 STD 1889 21.64 3696 FB1 3.29% 1.51◦ 5 41338
5 HSP 825 22.15 2162 HS1 3.35% 1.41◦ 6 2517

Table 6.19: The results in this table are based on the test sequence “glass”. The parameter
configurations for our feature point tracking system and our structure and motion estima-
tion system are detailed in Table 6.17 and Table 6.18, respectively. The left part of this table
lists the number of generated trails (trl), the average trail length (atl), and the computation
time of the feature point tracking system in milliseconds. The right part contains the av-
erage relative pairwise translation error, the average absolute rotation error, the number of
created segments, and the computation time of our structure and motion estimation system
in milliseconds.

the subsequent reconstruction of the scene with our structure and motion estima-
tion system.
The results of our reconstructions of the test sequence “glass” are presented in Ta-

ble 6.19. Replacing the default configuration DEF of our feature point tracking sys-
tem with the standard configuration STD substantially increases the average trail
length. At the same time, the computational efficiency of the tracking system is
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Figure 6.51: The illustrated reconstruction of the test sequence “glass” corresponds to test
run 3 in Table 6.19, which resulted in an average relative pairwise translation error of 3.35%.
The created segments are visualized by the alternating use of dark gray pyramids and light
gray pyramids to represent the camera poses of one segment.

Figure 6.52: This figure illustrates the quality of the reconstruction of the test sequence
“glass” by superimposing the camera poses of the reconstruction, which are visualized as
bright (green) pyramids, and the camera poses of the ground truth data, which are repre-
sented by dark (red) pyramids. The reconstruction was computed with the configuration
of test run 3 in Table 6.19.

only reduced marginally. The high speed configuration HSP cuts the number of
tracked feature points in half. As a consequence, the computation time of the fea-
ture point tracking is reduced to less than 2.2 seconds, which equals a computation
rate of more than 60 frames per second.

Although the average trail length is considerably increased in the second test
run, the accuracy of the reconstruction improves only with respect to the average
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Figure 6.53: From left to right, this figure contains the images 1, 125, 250, 375, and 500 of the
test sequence “globe”.

Figure 6.54: The two subimages in this figure have a size of 96 × 32 pixels. They belong
to the images 148 and 158 of the test sequence “globe”. The subimages demonstrate the
occurrence of strong motion blur in the test sequence.

relative pairwise rotation error. In test run 3, we activate the optimization of the
merged segments with our bundle adjustment approach, which reduces the rel-
ative pairwise translation error to 3.35%. Even the optimization of the complete
reconstruction in test run 4 is unable to improve this error measure much further.
Considering the unknown accuracy of the ground truth data and the use of approx-
imate intrinsic camera parameters, we conclude that the accuracy of the last three
test runs is close to optimal for the test sequence “glass”. The reconstruction of test
run 3 is illustrated in Figure 6.51. In addition to that, the accuracy of the reconstruc-
tion is visualized with the comparison of the reconstructed camera motion and the
ground truth camera motion in Figure 6.52. When our structure and motion esti-
mation system is tuned for high speed processing with the configuration HS1, the
computation rate of the reconstruction increases to almost 60 frames per second.

6.4.3 Test Sequence Globe

The test sequence “globe” consists of 500 images with a resolution of 512× 512 pix-
els. As the five exemplary images of this test sequence in Figure 6.53 show, a globe is
the only object in the captured scene. The subimages in Figure 6.54 demonstrate the
strong motion blur in some images of the test sequence, which constitutes a difficult
problem for the tracking of the feature points in the test sequence “globe”. In addi-
tion to that, the images in Figure 6.53 illustrate that most visible regions of the globe
enter and leave the field of view several times throughout the image sequence. This
effect, which is caused by the sweeping camera motion, results in relatively short
feature trails. Despite the described problems, the test scene “globe” is well suited
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Figure 6.55: This figure illustrates the tracked feature points in the images 250 and 500 of the
test sequence “globe”. The feature trails were generated with the parameter configuration
STD, except for δftr_num = 100, δftr_dist = 25, and δftr_step = 1.

no. fpt trl atl time sam ǭrpt ǭapr T time

1 DEF 7713 12.97 11772 DEF 5.70% 2.81◦ 29 10344
2 STD 5833 23.93 13071 ST1 4.86% 2.57◦ 20 11718
3 STD 5833 23.93 13092 IB1 3.55% 2.42◦ 20 15872
4 STD 5833 23.93 13098 BA1 3.47% 2.01◦ 20 43955
5 HSP 2885 24.22 8026 HS1 3.50% 2.04◦ 25 10014

Table 6.20: The results presented in this table are based on the test sequence “globe”. The
structure of this table is identical to the structure of Table 6.19.

for feature point tracking, so that the number of erroneous feature trails is compar-
atively small. The tracking of the feature points is visualized in Figure 6.55.
Table 6.20 summarizes the experimental results for the test sequence “globe”.

Although this test sequence is more than three times as long as the test sequence
“glass”, the average length of the estimated feature trails is only slightly larger.
Compared to the default configuration DEF, the standard configuration STD of our
feature point tracking system almost doubles the average trail length. We attribute
this effect to themotion blur in some images of the test sequence, which necessitates
an increase of the size of the feature windows for translation estimation. While the
computation rate of our feature point tracking system exceeds 35 frames per second
for the parameter configuration STD, the high speed configuration HSP further im-
proves the computation rate to more than 60 frames per second.
The low values of the average relative translation errors for all configurations of

our structure and motion estimation system confirm that the test sequence “globe”
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Figure 6.56: This reconstruction of the test sequence “globe” corresponds to test run 4 in
Table 6.20, which yielded an average relative pairwise translation error of 3.47%. The cre-
ated segments are visualized by the alternating use of dark gray pyramids and light gray
pyramids to represent the camera poses of one segment.

Figure 6.57: This figure illustrates the quality of the reconstruction of the test sequence
“globe” by superimposing the camera poses of the reconstruction, which are visualized
as bright (green) pyramids, and the camera poses of the ground truth data, which are rep-
resented by dark (red) pyramids. The reconstruction was computed with the parameter
configuration of test run 4 in Table 6.20.
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Figure 6.58: From left to right, this figure shows the images 1, 200, 310, 440, and 500 of the
test sequence “table”.

Figure 6.59: The first four images of this figure are subimages of the test sequence “table”.
The subimages have a size of 96× 96 pixels and lie at the same position in the images 169,
170, 171, and 172. The rightmost image of this figure shows the complete image 379 of the
test sequence “table”.

is well suited for reconstruction. The best accuracy is achieved with the parameter
configuration BA1, which uses the Cauchy estimator to increase the robustness of
the optimization of the merged segments. The measured computation time of the
corresponding test run is equivalent to a computation rate of more than 11 frames
per second. The reconstruction computed in this test run is presented in Figure 6.56.
In the right image of this figure, the spherical shape of the reconstructed globe is
nicely illustrated. Furthermore, the aligned camera poses of the reconstruction and
the ground truth data in Figure 6.57 demonstrate the very high accuracy of the
reconstruction. The high speed configuration HS1 of test run 5 increases the com-
putation rate of our structure and motion estimation system to nearly 50 frames per
second, while almost retaining the accuracy of the parameter configuration BA1.

6.4.4 Test Sequence Table

Our final test sequence “table” also consists of 500 images with a resolution of 512×
512 pixels. Five images of this test sequence are depicted in Figure 6.58. For several
reasons, the test sequence “table” is the most difficult test sequence in this section.
The four subimages in Figure 6.59 demonstrate that the translation of the scene
objects in the images is very erratic. The combination of the erratic camera motion
with the occurrence of many similar feature windows on the keyboard is prone to
cause a large number of erroneous feature trails. This problem is further aggravated
by the persistent noise and the recurrent motion blur in the images. In addition to
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Figure 6.60: This figure illustrates the tracked feature points in the images 250 and 500 of the
test sequence “table”. The feature trails were generated with the parameter configuration
STD, except for δftr_num = 100, δftr_dist = 25, and δftr_step = 1.

that, the last image in Figure 6.59 illustrates the existence of large homogeneous
regions in the images, which do not contain any suitable feature points. The two
images in Figure 6.60 confirm that no feature points are tracked in the homogeneous
regions.
Due to the specific camera motion, most scene objects remain in the field of view

for a very short time, which leads to exceptionally short feature trails. Our structure
and motion estimation system performs the initial reconstruction of every segment
with feature points that are available in all images of the segment. When a new seg-
ment starts in the last image of Figure 6.59 and the camera moves to the right, it is
very likely that most of the feature points available for the initial reconstruction of
the resulting segment lie on the pen. In order to prevent similar disadvantageous
situations, we increase the value of the parameter θseg_rat, which is explained in
Subsection 4.3.2. As a result, the created segments, whose size is already limited
by the short feature trails, become even smaller and more numerous. Finally, the
first part of the test sequence “table” is dominated by a keyboard, which results in
a mostly planar scene. In combination with the large number of erroneous feature
trails, which are caused by the very similar appearance of the keys on the keyboard,
the computation of the median view ray angles, which is also described in Subsec-
tion 4.3.2, becomes unreliable and has to be deactivated. The described changes of
the parameter values are summarized in Table 6.18.
The results of our experiments with the test sequence “table” are presented in

Table 6.21. As in the preceding experiments, the standard configuration STD of our
feature point tracking system considerably increases the average length of the fea-
ture trails. The computation rate of our feature point tracking system is higher than
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no. fpt trl atl time sam ǭrpt ǭapr T time

1 DEF 8506 11.76 12152 DEF 47.45% 6.26◦ 32 11101
2 STD 6663 18.56 12047 ST2 21.04% 3.40◦ 56 5475
3 STD 6663 18.56 12022 IB2 11.24% 2.05◦ 56 17616
4 STD 6663 18.56 12120 BA2 4.54% 0.96◦ 56 38473
5 HSP 3232 18.39 7355 HS2 6.40% 1.55◦ 54 10413

Table 6.21: The results presented in this table are based on the test sequence “table”. The
structure of this table is identical to the structure of Table 6.19.

Figure 6.61: This reconstruction of the test sequence “table” corresponds to test run 4 in
Table 6.21, which yielded an average relative pairwise translation error of 4.54%. The cre-
ated segments are visualized by the alternating use of dark gray pyramids and light gray
pyramids to represent the camera poses of one segment.

40 frames per second for the standard configuration STD, and improves to more
than 60 frames per second for the high speed configuration HSP. Compared to the
test sequence “globe”, the deactivation of the computation of the median view ray
angles decreases the computation time of our structure and motion estimation sys-
tem for the standard parameter configuration ST2. Despite the substantial increase
of the number of created segments, the computation times for the other parameter
configurations are very similar.
The value of the average relative pairwise translation error for the default con-

figuration in Table 6.21 confirms that the reconstruction of the test sequence “table”
is a very difficult task. The optimization of the merged segments with our bundle
adjustment approach reduces this error from 21.04% for the configuration STD to
a very good value of 4.54% for the configuration BA2. The corresponding recon-
struction is depicted in Figure 6.61. Furthermore, the reconstructed camera poses
can be compared with the ground truth camera poses in Figure 6.62. Taking both
the difficulty of the reconstruction and the achieved computational efficiency into
account, we consider the accuracy of the high speed configuration in test run 5 to
be more than acceptable.
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Figure 6.62: This figure illustrates the quality of the reconstruction of the test sequence “ta-
ble” by superimposing the camera poses of the reconstruction, which are visualized as
bright (green) pyramids, and the camera poses of the ground truth data, which are rep-
resented by dark (red) pyramids. The reconstruction was computed with the parameter
configuration of test run 4 in Table 6.21.

images mft ect gct

169 - 170 22.7 14.1 10.4
170 - 171 11.2 6.9 10.3
171 - 172 21.1 13.0 9.9
172 - 173 10.4 6.6 9.6

Table 6.22: This table provides important measurements for our analysis of the synchro-
nization of the camera and the optical tracking system during the generation of the ground
truth data. The first column of the table contains the indices of the examined images of the
test sequence “table”. The next two columns detail the median translation of all tracked
feature points (mft) in pixels and the camera translation (ect) between the specified images
for the reconstruction of test run 4. The last column presents the camera translation (gct)
obtained from the ground truth data.

As announced in Subsection 6.4.1, we use the test sequence “table” to analyze
the accuracy of the synchronization of the camera and the optical tracking system
during the generation of the ground truth data. To this end, we consider the mo-
tion of the feature points and the motion of the optical center of the camera in the
images 169 through 172, which have already been used to generate the subimages
in Figure 6.59. The median translations of the feature points in Table 6.22 indicate
that there are two different durations for the time intervals between the captur-
ing of two consecutive images. The longer time intervals are apparently twice as
long as the short ones. This observation is supported by the reconstructed cam-
era translation. In contrast to this, the ground truth data provided by the optical
tracking system represents a smooth camera motion. Our analysis suggests that the
reconstructions computed by our structure and motion estimation system are actu-
ally more accurate than the provided ground truth data with respect to the relative
camera positions of adjacent views.
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6.4.5 Summary

The experimental evaluation in this section complements the evaluation of our fea-
ture point tracking system in Section 6.1 and the evaluation of our structure and
motion estimation system in Section 6.2. In the first subsection, we describe the
generation of the test image sequences and the corresponding ground truth data.
Each one of the three subsequent subsections details the experimental results of the
evaluation of the joint operation of our feature point tracking system and our struc-
ture and motion estimation system for one test sequence. We draw the following
conclusions from the conducted experiments:

• Our feature point tracking system is able to cope with very difficult conditions,
including erratic feature motion and strong motion blur.

• For the evaluated parameter configurations, the computation rate of our track-
ing system exceeds 35 frames per second with 300 feature points and 60 frames
per second with 150 feature points.

• In accordance with the evaluation of our structure and motion estimation sys-
tem in Section 6.2, the best overall performance is achieved by activating the
bundle adjustment optimization of the merged segments in combination with
the Cauchy estimator.

In the following, we provide a small set of instructions for processing arbitrary
image sequences with our systems:

• For our feature point tracking system, we recommend the parameter config-
uration STD presented in Table 6.17 as a good starting point. The number
δftr_num of tracked feature points should be adapted to the resolution of the
input images.

• When the quality of the input image sequence is high, it is possible to decrease
the feature window size δtra_size to its default value of seven without affecting
the quality of the generated feature trails.

• The computational efficiency of our tracking system can be improved by re-
ducing the number δftr_num of tracked feature points. In this case, the distance
δftr_dist between the feature points should be increased to ensure that they are
evenly spread over the input images.

• For our structure and motion estimation system, we recommend the versatile
parameter configuration BA1 detailed in Table 6.18.

• When the reconstructed scene is mostly planar, deactivating the computation
of the view ray angles potentially improves the segmentation.
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• The parameter configuration HS1 in Table 6.18 demonstrates our preferred ap-
proach for increasing the computational efficiency of our structure andmotion
estimation system. In combination with the reduced number of 150 tracked
feature points, this parameter configuration increased the computation rate of
our system to approximately 50 frames per second in the conducted experi-
ments.

All in all, the experimental evaluation in this section successfully demonstrated
the outstanding performance of the joint operation of our feature point tracking
system and our structure and motion estimation system.
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Applications

This chapter presents several applications of our work in the area of sparse 3-D re-
construction. As described in Section 1.1, our proposed algorithms for sparse 3-D
reconstruction can be categorized into three main work areas. These work areas,
which comprise feature point tracking, structure and motion estimation, and point
set registration, are detailed in Chapter 3, Chapter 4, and Chapter 5, respectively. In
this chapter, we focus on actual applications of our algorithms in order to demon-
strate their high level of performance and versatility. Thus, we are less concerned
with the large number of potential applications.
Most of the presented applications are related to our feature point tracking sys-

tem, because we started our work in the area of sparse 3-D reconstruction with the
implementation of this system. As a consequence, we had plenty of time to inte-
grate our feature point tracking system into a wide range of different applications.
In contrast to this, our structure and motion estimation system and our extensions
of the ICP algorithm are more recent developments, which considerably deferred
their widespread adoption.
The first section of this chapter is dedicated to applications of our algorithms in

the VAMPIRE project [Sag11]. These applications are either part of the integrated
demonstrator or belong to one of the supplementary demonstrations. There are no
external references for most of these applications. In contrast to this, the applica-
tions presented in Section 7.2 are not directly connected to the VAMPIRE project,
but have been published in the technical literature.

7.1 Applications in the VAMPIRE project

7.1.1 Hybrid Self­Localization

The hybrid self-localization of the augmented reality gear is the most prominent
application of our feature point tracking system in the VAMPIRE project. The re-
quirements of this application have already been detailed in Subsection 3.4.1. In
short, a small number of features have to be tracked at a very high frame rate in
small subwindows of selectable size and position. A predecessor of the hybrid self-
localization approach, which also relies on the combination of optical tracking and
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Figure 7.1: This drawing gives a technical overview of the VAMPIRE augmented reality
gear, which is depicted in Figure 1.1.

an inertial sensor, is described in [Rib02]. The image data for the optical tracking is
captured by the CMOS camera presented in [Mue04].
The augmented reality gear of the VAMPIRE project is depicted in Figure 1.1. Fur-

thermore, Figure 7.1 provides a technical overview of this augmented reality gear.
The CMOS camera and the inertial sensor are both directly connected to the single
board computer, which is responsible for performing the hybrid self-localization.
As the single board computer, which is powered by rechargeable batteries, has con-
siderably less processing speed than a modern workstation, the efficiency of the
applied feature point tracking system is very important. The notebook in Figure 7.1
applies the estimated pose of the helmet to control the user interaction with the
VAMPIRE cognitive vision system.
Our adapted tracking system for high-speed feature point tracking has been pro-

posed in Subsection 3.4.3. The most important change with respect to our standard
feature point tracking system is the substitution of the gradient descent translation
estimation with a block matching algorithm, which enables the adapted tracking
system to work on independently captured subwindows. Exemplary subwindows
are illustrated in Figure 3.16. The performance of the resulting optical tracking sub-
system is shown in Figure 7.2. When complete images are captured, the frame rate
is limited by the pixel clock of the CMOS sensor of the camera and the bandwidth
of the data transfer to the single board computer. In contrast to this, capturing sub-
windows at the predicted positions of the feature points allows much higher frame
rates. Thus, the optical tracking reaches approximately 200 frames per second for
10 tracked feature points and about 100 frames per second for 20 feature points. The
achieved frame rates are especially beneficial for tracking fast head movements of
the user.
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Figure 7.2: This graph plots the frame rate achieved by the optical tracking subsystemof the
hybrid self-localization against the number of tracked feature points. In this experiment,
our high-speed feature point tracking system processed either complete images or inde-
pendently captured subwindows. The underlying measurements were kindly provided by
Gerald Schweighofer of the University of Technology Graz.

Figure 7.3: This figure depicts two exemplary input images of the approach for generating
mosaics. The tracked feature points are visualized as small bright squares. For every feature
point, an additional number identifies the corresponding trail.

7.1.2 Pictorial Scene Representation

In the VAMPIRE cognitive vision system, mosaics are used as a compact and non-
redundant representation of image sequences. In order to avoid parallax artifacts,
which occur when a moving camera records a non-planar scene, the approach de-
scribed in [Gor04] partitions the scene into approximately planar subscenes and
generates one mosaic for every subscene. This approach requires the identification
of a large number of feature point correspondences for the detection of the planar
subscenes and the recovery of the camera motion.
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Figure 7.4: The two images in this figure illustrate the tracking of a moving cup with the
combined object tracking approach. The tracked image region is marked with a large rect-
angle. The feature points are identified by small squares.

In the course of the VAMPIRE project, our standard feature point tracking sys-
tem, which is detailed in Section 3.3, was successfully integrated into the described
approach for generating mosaics. Figure 7.3 depicts two exemplary input images
and visualizes the tracked feature points. In this application, the ability to efficiently
track a large number of feature points was an important asset of our feature point
tracking system. Furthermore, the hierarchical translation estimation described in
Subsection 3.3.5 enabled our tracking system to cope with large feature displace-
ments.

7.1.3 Data­Driven Object Tracking

Object tracking is an important prerequisite for several high-level components of
the VAMPIRE cognitive vision system, like action recognition. Thus, many dif-
ferent algorithms for object tracking were evaluated in the VAMPIRE project. In
particular, data-driven object tracking is concerned with tracking unknown objects,
for which no object model is available. Several different data-driven object tracking
algorithms are compared in [Deu05]. The presented experimental results indicate
that the color histogram based CONDENSATION (conditional density propaga-
tion) approach is especially robust to partial occlusions and appearance changes.
In order to improve the substandard accuracy of this approach with respect to the
estimated 2-D translation, we combined the color histogram based tracking with
our feature point tracking.
The basic task of our feature point tracking system in this application is to se-

lect feature points inside the tracked image region and to independently track the
selected feature points. The final result of the object tracking is determined by a
probabilistic fusion of the distance between the color histograms and the number of
feature points inside the prospective image region with the CONDENSATION ap-
proach. The performed experiments demonstrate that the combined object tracking
approach increases the accuracy of the color histogram based tracking and reduces
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its propensity to confuse similarly colored objects. This property is illustrated in
Figure 7.4, where the combined object tracking approach correctly tracks the rear-
most cup, even though it is partially occluded by the identically colored cup in the
front. As the original CONDENSATION approach requires a computation time of
about 80 milliseconds per input image, the application of our feature point tracking
system increases the computation time of the combined object tracking approach
only slightly.

7.1.4 Model­Based Object Tracking

In contrast to data-driven object tracking, model-based object tracking requires the
generation of an object model and the recognition of the object to be tracked. In
return, the object tracking approach in this subsection allows the estimation of the 6-
D pose of the object. The presented object tracking approach is closely related to the
approach described in [Grä05]. Both approaches use SIFT features to generate a 3-D
object model from a training video sequence. The object tracking is initialized by
automatically matching the SIFT features of the input image and the object model
before estimating the pose of the object with the POSIT algorithm. The presented
object tracking approach independently tracks the feature points at the positions of
the SIFT features with our feature point tracking system. For every input image, the
pose of the object is robustly determinedwith the least median of squares technique
by applying the three-point algorithm in the random sampling phase and refining
the set of inliers with the POSIT algorithm as described in Subsection 4.3.4.
Due to the computational efficiency of the applied algorithms, the presented ob-

ject tracking approach achieves a computation rate of more than 30 frames per sec-
ond. The integrated intensity equalization of our feature point tracking system,
which is detailed in Subsection 3.3.4, increases the robustness of the object tracking
approach to intensity changes. Furthermore, the application of the least median of
squares technique improves its robustness to partial occlusions of the object. As
the presented approach has to perform a 3-D reconstruction for the generation of
the 3-D object model, it would be an ideal application of our structure and motion
estimation system, which is detailed in Section 4.3. Finally, the presented object
tracking approach could benefit from the increased accuracy of our POSIT algo-
rithm with virtual reference point, which has been proposed in Subsection 4.2.2.

7.2 Other Applications

7.2.1 Online Structure and Motion Estimation

A new algorithm for globally convergent structure and motion estimation in real-
time is presented in [Sch08b]. It is mainly intended for mobile augmented reality
applications, working both with and without artificial markers in the scene. As a
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consequence, it is evaluated on a mobile demonstration platform, which is based
on a tablet computer and two calibrated cameras. The proposed structure and mo-
tion estimation algorithm requires the independent identification of feature point
correspondences in the two image sequences captured by the stereo camera setup.
Feature points that relate to the same 3-D point are linked together in a separate
operation afterwards.
The authors of [Sch08b] identify the required feature point correspondences with

our adapted feature point tracking system, which is described in Subsection 3.4.3.
In this application, the most important property of our feature point tracking sys-
tem is its high computational efficiency, because the limited processing speed of
the mobile tablet computer has to suffice for the feature point tracking, the struc-
ture and motion estimation, and the visualization of the augmentation in real-time.
Furthermore, this application requires the estimated feature positions to be very
accurate and as reliable as possible, because the proposed structure and motion
estimation algorithm is not designed to robustly deal with outliers.

7.2.2 Visualization with Image­Based Models

As an alternative to the manual geometric modeling of an object with textured
polygons, image-based rendering techniques promise the automatic generation of
photorealistic models of a real object from an image sequence of this object. [Nie05]
provides a short introduction to light fields, which are a prominent representative
of image-based models. The generation of light fields is an application area for the
algorithms of all three work areas of this thesis, i. e., feature point tracking, structure
and motion estimation, and point set registration. However, although our structure
and motion estimation system is perfectly capable of performing the required re-
construction of the camera motion and the scene structure, it was not completed in
time for a use in the following applications.
The application of our feature point tracking system for the generation of static

and dynamic light fields is described in [Sch05] and, in more detail, in [Sch08a]. As
the captured image sequences typically comprise more than 100 images, this ap-
plication especially benefits from the feature drift prevention approach proposed
in Subsection 3.3.3 and the intensity equalization approach described in Subsec-
tion 3.3.4. Furthermore, our feature point tracking system is also used for the gen-
eration of light fields during endoscopic surgery in [Vog04]. In this application,
the high computational efficiency of our feature point tracking system reduces the
waiting time for the generation of the light field.
The approach for the reconstruction of the light fields in [Sch08a] has two use

cases for the ability of our feature point tracking system to process the input images
in an arbitrary order. The first use case complements the standard chronological
processing of the input images with a second pass through the image sequence in
reverse chronological order, i. e., from the last image to the first. This approach
allows the extension of all feature trails that do not start in the first image of the
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Figure 7.5: This figure illustrates the image quality of three preprocessed fiberscopic images
of a cylindrical bore hole.

image sequence. The second use case, which performs non-sequential tracking,
uses information about the camera poses to process image pairs that correspond to
adjacent camera positions in the 3-D scene. This approach potentially prevents the
problem that the chronological processing of the image sequence generates multiple
feature trails for the same 3-D feature point when the 3-D feature point enters and
leaves the field of view of the camera several times throughout the image sequence.
Our variant of the ICP algorithm with integrated scale estimation is used in

[Sch08a] for evaluating the reconstruction of the camera motion. In particular, the
algorithm is responsible for aligning the optical centers of the cameras in the recon-
struction and the ground truth data in order to estimate the scale factor between the
respective world coordinate systems. Another application of the ICP algorithm is
the fusion of the reconstructed light field and the corresponding computed tomog-
raphy data set in [Vog04]. As this operation requires the estimation of a scale factor
between the two data sets, our variant of the ICP algorithm with integrated scale
estimation is ideally suited for it.

7.2.3 Reconstruction from Fiberscopic Images

The work in [Win05] is concerned with the reconstruction of cylindrical bore holes
from monocular fiberscopic images. The applied fiberscopes contain between 3000
and 50000 fibers, each of which transmits only one intensity value. In the captured
images, these intensity values are represented by circular regions of pixels, which
are surrounded by dark rings due to the physical properties of the glass fibers. As
the resulting honeycomb pattern strongly degrades the image quality, it has to be
eliminated in a preprocessing step. In addition to that, the only discernible tex-
tures in the bore holes are shadows created by the rough surface. Three exemplary
images are depicted in Figure 7.5. Finally, the distortion of the feature windows,
which is caused by the forward motion of the fiberscope into the cylindrical bore
hole, substantially deviates from the affine distortion model used by our feature
point tracking system.
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Despite the high level of difficulty of the described application, the feature trails
generated by our feature point tracking system enabled the reconstruction of the
scene structure in [Win05]. This achievement corroborates the high versatility of
our feature point tracking system. In our opinion, this application involves the
most difficult conditions that our feature point tracking system is able to cope with,
especially with respect to the poor quality of the available feature points and the
strong distortion of the feature windows.
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Chapter 8

Summary and Outlook

8.1 Summary

This work is dedicated to the development, enhancement, and evaluation of algo-
rithms for sparse 3-D reconstruction from image sequences. In this work, we use
the term 3-D reconstruction to denote all aspects of the reconstruction and the pro-
cessing of the scene structure and the camera motion of an input image sequence.
In contrast to approaches that generate or process dense samplings of the scene
structure, like range images, algorithms for sparse 3-D reconstruction represent the
scene structure with a limited number of feature points.
We categorize the algorithms for sparse 3-D reconstruction that are discussed in

this thesis into three main work areas. These three work areas are concerned with
feature point tracking, structure and motion estimation, and point set registration,
respectively. In short, feature point tracking estimates the 2-D motion of distinct
3-D scene elements throughout the image sequence. Structure and motion estima-
tion algorithms use the estimated 2-D feature positions to reconstruct the 3-D scene
structure and the cameramotion. Finally, our point set registration algorithms align
two point sets that represent the same object. Due to our proposed extension for in-
tegrated scale estimation, they can be used to combine the 3-D scene structures of
two independent reconstructions of the same scene. Interestingly, only the feature
point tracking algorithms of our first work area operate directly on the input image
sequences.
The algorithms of our three main work areas share three performance criteria,

which are computational efficiency, accuracy, and robustness. It is important to note
that these performance criteria conflict with each other in all three work areas. In
order to allow the use of the developed algorithms in a wide range of applications,
we attached great importance to their versatility, which is illustrated by their large
number of user-specified parameters. As a consequence, the experimental evalu-
ation of the algorithms forms a very important part of this work, because it is not
only responsible for testing themwith respect to the identified performance criteria,
but also provides valuable information for setting the user-specified parameters to
values that suit prospective applications. In the following, we examine the three
main work areas one after another.
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Our feature point tracking system is designed to be fully data-driven as well as
highly versatile. It is derived from the Kanade-Lucas-Tomasi tracker, which uses
a specialized Gauss-Newton gradient descent optimization algorithm as its motion
estimation algorithm. The standard Kanade-Lucas-Tomasi tracker is very customiz-
able and offers a high level of computational efficiency and accuracy. In addition to
the motion estimation algorithm, it comprises algorithms for feature detection and
outlier rejection.
During feature detection, the quality of the prospective feature windows is com-

puted for every pixel of the input image and stored in an interest image. Our ex-
perimental evaluation of two different quality measures, the Harris detector and
the Tomasi-Kanade detector, revealed only negligible differences with respect to
the performance of the tracking system. After feature detection, the actual feature
positions are selected with the help of the computed interest images. Our proposed
feature selection strategy allows the definition of a minimum distance between the
selected feature points. It also uses a hierarchical search structure to reduce the
computation time of the feature selection.
Compared to the original motion estimation algorithm, the use of the inverse

compositional algorithm considerably increases the computational efficiency of the
motion estimation in our feature point tracking system. Thus, we are able to com-
plement the translation estimation with the estimation of the affine motion for ev-
ery feature window in every frame at low computational cost. As we estimate the
affine motion between the first frame and the current frame, this approach virtually
eliminates the feature drift problem and strongly increases the accuracy of the mo-
tion estimation in long image sequences. In addition to that, we are able to use the
estimated affine distortion matrix for rejecting highly distorted feature windows as
outliers in every frame.
The basin of convergence of the translation estimation approximately equals half

the size of the feature windows. In order to cope with larger feature point dis-
placements, our feature point tracking system performs a hierarchical translation
estimation on a Gaussian image pyramid. This approach increases the basin of
convergence of the translation estimation to approximately 20 pixels for an image
pyramid with four levels and feature windows with a size of 11× 11 pixels. We also
devised a robustified result propagation strategy, which protects our tracking sys-
tem against estimation errors on the higher levels of the image pyramid. In addition
to that, this strategy supports the use of multiple starting positions for the transla-
tion estimation, which are predicted by assuming a constant position or a constant
motion of the feature points. In order to allow the utilization of application-specific
information, our feature point tracking system also accepts externally predicted fea-
ture positions.
One severe shortcoming of the standard Kanade-Lucas-Tomasi tracker is its low

robustness to intensity changes in the input images. Our solution to this problem
is the integration of an affine linear model for intensity equalization into the in-
verse compositional algorithm for motion estimation. Our experiments prove that
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this approach is more efficient than existing approaches that estimate the motion
of the feature points and the intensity equalization in alternation. As the intensity
changes in consecutive images of an image sequence are quite small in most appli-
cations, it is usually sufficient to activate the integrated intensity equalization for
the estimation of the affine motion.
In order to improve the efficiency of our feature point tracking system for small

numbers of feature points, we replaced the gradient descent translation estima-
tion algorithm with a block matching algorithm. This approach greatly reduces
the computational overhead per image, because derivative images only have to be
computed for input images that are used for feature detection. In our experiments,
using the block matching algorithm for tracking 20 feature points reduced the com-
putation time from approximately 4.5 ms per frame to less than 3 ms per frame.
As expected, the gradient descent translation estimation algorithm is more efficient
when a large number of feature points have to be tracked. It requires less than
20 ms per frame for tracking 400 feature points. Even when lost feature points are
replaced in every fourth frame, the computation rate of our feature point tracking
system exceeds 35 frames per second for tracking 300 feature points and 60 frames
per second for tracking 150 feature points.
The versatility of our tracking system is illustrated by the large number of suc-

cessful applications, which use both monocular and stereo image sequences cap-
tured by hand-held, helmet-mounted, and stationary digital cameras, as well as en-
doscopes and fiberscopes. An adapted version of our feature point tracking system
supports the self-localization of the VAMPIRE augmented reality gear. Processing
small subimages, this version tracks ten feature points at a rate of 200 frames per
second on a relatively slow mobile computer.
In the second work area, we designed a versatile structure andmotion estimation

system by combining efficient algorithms for the initial reconstruction of the scene
with several optional applications of an efficient bundle adjustment approach. Fur-
thermore, the robustness of our estimation system to outliers is ensured by the com-
prehensive application of M-estimators and the least median of squares technique.
In addition to the feature trails generated by our feature point tracking system, our
structure and motion estimation system requires the intrinsic camera parameters as
input data.
The basic approach of our structure and motion estimation system for the initial

reconstruction of the scene consists of three distinct steps. First, the input image
sequence is partitioned into segments by our proposed key frame selection algo-
rithm. Its main idea is to consider the median of the sines of the view ray angles
of the feature points in the prospective key frames as a quality measure for the seg-
mentation. Our experiments indicate that this approach improves the accuracy of
the reconstruction, as long as the necessary estimation of the relative camera poses
with the five-point algorithm works reliably.
In the second step, the segments are independently reconstructed with efficient

algorithms like themidpoint triangulation algorithm, the three-point algorithm and
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the POSIT algorithm for absolute camera pose estimation, and the five-point algo-
rithm for relative camera pose estimation. We enhanced the POSIT algorithm to
work with a virtual reference point, which results in a considerably more accurate
absolute camera pose estimation when the number of input feature points is high.
The third step comprises themerging of the reconstructed segments, which requires
the estimation of their relative scale. In all three steps, the robustness of the algo-
rithms to outliers is improved with the least median of squares technique. All in
all, the initial reconstruction exhibits a computation rate of more than 40 frames per
second in our experiments.
In order to improve the accuracy of the initial reconstruction, we added four op-

tional applications of an efficient bundle adjustment approach to our structure and
motion estimation system. Furthermore, we tested the effects of three M-estimators
on the performance of the bundle adjustment approach. Our extensive experi-
mental evaluation indicates that the best overall performance is achieved with the
bundle adjustment optimization of the merged segments in combination with the
Cauchy estimator. Our experiments with the three image sequences of real-world
scenes illustrate the outstanding accuracy of this configuration, which results in a
computation rate of approximately ten frames per second. These experiments also
show that the computational efficiency of this configuration can be dramatically in-
creased by reducing the number of tracked feature points and limiting the number
of iterations of the bundle adjustment. These changes slightly reduce the accuracy
of the reconstruction, but increase the computation rate to 50 frames per second.
Our third work area is concerned with 3-D point set registration. In this work,

we focussed on the ICP algorithm, which is the most popular locally convergent
algorithm for aligning two 3-D point sets. Its basic approach is to determine the set
of corresponding point pairs for the current alignment and to optimally align the
current point pairs in alternation. Our experimental evaluation of the ICP algorithm
showed that both the accuracy and the basin of convergence of the ICP algorithm
strongly depend on the shape of the input point sets.
In addition to the outliers caused by estimation errors during the generation of

the input point sets, point set registration algorithms have to cope with systematic
outliers commonly resulting from partially overlapping point sets. Consequently,
we analyzed and evaluated three different extensions of the ICP algorithm for ro-
bust correspondence estimation. In our experiments, the recently proposed least
fractional squares extension provided the best balance between robustness to out-
liers, basin of convergence, and computational efficiency.
Finally, we presented an extension of the ICP algorithm for the integrated esti-

mation of the relative scale of the two input point sets. Although the estimation of
the additional parameter value reduces the basin of convergence with respect to the
rotation angle and the translation vector length of the initial motion, the accuracy
of the estimated scale is very high. Interestingly, our experiments indicate that the
basin of convergence with respect to the scale factor is much larger when the scale
of the data point set is larger than that of the model point set.
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8.2 Outlook

The computational efficiency of the presented algorithms is an important aspect
in all three work areas of this thesis. In recent years, there has been a paradigm
shift in the computer hardware industry from single-core central processing units
with ever increasing clock rates to multi-core central processing units with mod-
erate clock rates. In addition to that, the field of general-purpose computation on
graphics processing units is starting to offer unprecedented processing speed for a
wide range of scientific applications. However, taking advantage of these devel-
opments requires the parallelization of the implemented algorithms. In this thesis,
both the independent motion estimation of the feature points and the independent
reconstruction of the segments facilitate a parallel implementation. Furthermore,
preliminary experiments with a parallelized version of the nearest neighbor search
in the ICP algorithm yielded promising results for large point sets in our third work
area.
The impressive performance of our purely data-driven feature point tracking sys-

tem does not leave much room for further improvements. The accuracy of the
reconstruction from fiberscopic images in Subsection 7.2.3 could arguably be im-
proved by estimating the perspective distortions of the feature windows. However,
the associated increase in the number of estimated parameters also decreases the
basin of convergence of the motion estimation, especially when our integrated in-
tensity equalization is used. A standard way of enhancing data-driven algorithms
is to take advantage of additional model knowledge. On the one hand, a close
coupling between our feature point tracking system and a structure and motion
estimation algorithm allows the prediction of the feature positions in the input im-
ages. This idea can either be realized by estimating the camera pose after tracking a
small number of feature points in every input image or by applying a two-pass ap-
proach that processes the complete image sequence twice, as proposed in [Sch08a,
pages 58ff.]. On the other hand, in order to improve the detection of outliers, a com-
bination of our feature point tracking system with an object recognition algorithm
could identify groups of feature points that are bound to stay in close proximity to
each other. Furthermore, image understanding algorithms could help to detect and
avoid depth discontinuities, which often lead to erroneous feature trails.
The main building block of our structure and motion estimation system is the

five-point algorithm presented in [Nis04b]. Although it is theoretically capable of
dealing with planar scenes, as long as a third view is used for the disambiguation of
its tentative solutions, our evaluation strongly indicates that inaccurate input data
can lead to the selection of the wrong solution. This behavior calls for further in-
vestigation, because it is especially detrimental to our proposed key frame selection
algorithm. Due to the large number of possible applications of our structure and
motion estimation system, there are many opportunities for further improvements
and adaptations. For example, the elimination of input data from images with lit-
tle camera motion could increase the efficiency of the reconstruction of the scene
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structure. Finally, violations of the basic assumptions of our structure and motion
estimation system, like independently moving objects in the captured scene, of-
ten lead to completely incorrect reconstructions. Although approaches for solving
some of these problems exist in the literature, they lie far outside the scope of this
work. However, the ability to automatically evaluate the quality of the performed
reconstructions could significantly improve the reliability of our structure and mo-
tion estimation system.
In the area of point set registration with the ICP algorithm, we deliberately fo-

cussed our attention on the evaluation of different techniques for robust correspon-
dence estimation and the proposal of our extension for integrated scale estimation.
As a consequence, we explicitly encourage the examination of the interoperability
of the discussed extensions and the large number of other existing extensions in the
context of an actual application. In particular, extensions that increase the basin of
convergence of the ICP algorithm could considerably improve the applicability of
our extension for integrated scale estimation.
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German Translation

A.1 Titel

Effiziente und robuste Algorithmen
zur punktbasierten 3-D Rekonstruktion

aus Bildsequenzen

A.2 Kurzbeschreibung

Die vorliegende Arbeit befasst sich mit Algorithmen zur Rekonstruktion der Struk-
tur der Szene und der Kamerabewegung aus einer Eingabebildsequenz. Insbeson-
dere beschränken wir uns auf Algorithmen zur punktbasierten 3-D Rekonstruktion,
welche die Struktur der Szene mit einer begrenzten Anzahl von Merkmalspunkten
repräsentieren. Unser Hauptaugenmerk liegt dabei auf der Effizienz und der Ro-
bustheit der entwickelten Algorithmen, um den Einsatz der Algorithmen in der
Augmented-Reality-Ausrüstung eines kognitiven Systems zu ermöglichen. Weiter-
hin wird die Vielseitigkeit der entwickelten Algorithmen durch die große Auswahl
an zusätzlichen Anwendungsbereichen, wie zum Beispiel der Objektverfolgung,
der Revisualisierung von Objekten und der Rekonstruktion von Objekten aus fiber-
skopischen Bildern, demonstriert. In dieser Arbeit teilen wir die entwickelten Al-
gorithmen in drei Arbeitsbereiche ein: Punktverfolgung, Schätzung von Struktur
und Bewegung, sowie Registrierung von Punktmengen.
Unser Punktverfolgungssystem basiert auf demKanade-Lucas-Tomasi Punktver-

folger. Wir stellen mehrere Verbesserungen vor, die seine Effizienz und Robustheit
erhöhen, wie zum Beispiel eine effiziente hierarchische Auswahlstrategie für die
Merkmalspunkte, eine neue Strategie zur Weitergabe der Schätzergebnisse bei der
hierarchischen Translationsschätzung, und die effiziente Integration eines affin lin-
earen Modells zum Ausgleich von Helligkeitsschwankungen. Unsere Experimente
beweisen die Robustheit des entwickelten Systems gegenüber starken Helligkeits-
schwankungen und schwerer Bewegungsunschärfe. Gleichzeitig erreicht das Sys-
tem beim Verfolgen von 150 Merkmalspunkten eine Verarbeitungsgeschwindigkeit
von 60 Bildern pro Sekunde. Außerdem präsentieren wir ein speziell angepasstes

229



Appendix A German Translation

Hochgeschwindigkeits-Punktverfolgungssystem für die Selbstlokalisierung einer
Augmented-Reality-Ausrüstung. Dieses System verfolgt auf einem relativ lang-
samen tragbaren Rechner zehnMerkmalspunkte mit einer Verarbeitungsgeschwin-
digkeit von 200 Bildern pro Sekunde.
Zusätzlich zu den ermittelten 2-D Positionen derMerkmalspunkte benötigt unser

vorgestelltes System zur Schätzung von Struktur und Bewegung die intrinsischen
Kameraparameter als Eingabedaten. Das System erreicht seine große Vielseitigkeit
durch die Kombination mehrerer effizienter Algorithmen, welche eine erste Rekon-
struktion der Szene durchführen, mit einem Bündelausgleichsverfahren zur Op-
timierung der so erhaltenen Ergebnisse. Seine Robustheit gegenüber Ausreißern
wird durch die umfassende Anwendung des “Least Median of Squares”-Ansatzes
und den Einsatz von M-Estimatoren sichergestellt. In diesem Arbeitsbereich schla-
gen wir sowohl die Erweiterung des POSIT Algorithmus mit einem virtuellen Re-
ferenzpunkt als auch einen neuen Algorithmus zur Auswahl von Schlüsselbildern
vor. In unseren Experimenten bewältigt das vorgeschlagene System Eingabedaten
mit einem Ausreißeranteil von bis zu 40%. Dabei ist es auch in der Lage, eine Ver-
arbeitungsgeschwindigkeit von 50 Bildern pro Sekunde zu erreichen.
Unsere Arbeit auf dem Gebiet der Registrierung von Punktmengen basiert auf

dem lokal konvergenten ICP Algorithmus. Wir vergleichen drei unterschiedliche
Ansätze zur Erhöhung der Robustheit dieses Algorithmus gegenüber Ausreißern.
Unsere Experimente zeigen, dass der “Least Fractional Squares”-Ansatz das beste
Gesamtergebnis liefert. Weiterhin schlagen wir eine Erweiterung zur integrierten
Schätzung des Skalierungsfaktors zwischen zwei Punktmengen vor. Wenn sich die
initiale Bewegung zwischen den beiden Punktmengen innerhalb des Konvergenz-
radius des ICP Algorithmus befindet, erlaubt diese Erweiterung eine genaue Regis-
trierung zweier unterschiedlich skalierter Punktmengen.
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