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Utilization of external motion tracking devices is an emerging
technology in head motion correction for MRI. However,
cross-calibration between the reference frames of the exter-
nal tracking device and the MRI scanner can be tedious and
remains a challenge in practical applications. In this study, we
present two hybrid methods, both of which combine prospec-
tive, optical-based motion correction with retrospective en-
tropy-based autofocusing to remove residual motion artifacts.
Our results revealed that in the presence of cross-calibration
errors between the optical tracking device and the MR scan-
ner, application of retrospective correction on prospectively
corrected data significantly improves image quality. As a
result of this hybrid prospective and retrospective motion cor-
rection approach, the requirement for a high-quality calibra-
tion scan can be significantly relaxed, even to the extent that
it is possible to perform external prospective motion tracking
without any prior cross-calibration step if a crude approxima-
tion of cross-calibration matrix exists. Moreover, the motion
tracking system, which is used to reduce the dimensionality
of the autofocusing problem, benefits the retrospective
approach at the same time. Magn Reson Med 67:1237–1251,
2012. VC 2011 Wiley Periodicals, Inc.

Key words: motion correction; optical motion correction;
prospective motion correction; retrospective motion correction;
entropy; autofocusing

Correction of involuntary patient motion is a critical, yet
still unsolved problem in MRI. Artifacts caused by
patient motion can result in impaired or nondiagnostic
image quality that warrant rescanning or limit diagnostic
confidence. Particularly, for certain patient populations,
such as children, elderly, or people with specific medi-
cal conditions (i.e., Parkinson’s disease, stroke), it is key
to incorporate motion correction methods to increase the
reliability of the imaging data.

Among other prospective motion compensation meth-
ods (1–3), optical systems have been used very success-
fully to track head motion and then compensate for

involuntary pose changes of these patients by adapting
the scan-plane orientation (4–9). Recent optical
approaches used either a monovision (8–10) or stereovi-
sion setup (4–7) and cameras were placed either outside
(4–6,8) or inside (7,9,10) the scanner bore. Either way,
the current pose information derived from the optical
pose tracker is immediately sent back to the radio fre-
quency and gradient controller of the scanner. Conse-
quently, the scanning slice or slab remains ‘‘locked’’ to
the anatomy under examination even if the patient is
moving. As the ‘‘external’’ optical pose tracking operates
independent from the MR data acquisition process, it
does not penalize MR scan performance and the rate of
possible adaptations to pose changes is theoretically
determined by frame rate of the pose tracker.

The general advantages of prospective correction sys-

tems are: (1) the ability to correct for motion with mini-

mal or no changes to the pulse sequence (i.e., no naviga-

tor echoes or customized trajectories), and thus

providing pulse sequence design flexibility; (2) data con-

sistency (no undersampling in k-space or no change in

effective directional encoding of flow or diffusion; Refs.

11,12); and (3) the ability to avoid spin-history effects

and hence provide better signal stability. Apart from pro-

spective-only or retrospective-only systems, combined

approaches that use both have also been proposed to

remove residual errors on the data after prospective cor-

rection (13,14).

Motion correction systems that use external tracking
devices for pose detection require a cross-calibration pro-
cedure prior to the start of the scan. For the remainder of
this article, this calibration procedure is also called the
‘‘scanner–camera cross-calibration.’’ The cross-calibration
is required to determine the geometric relation between
the reference frames of the MR scanner and the external
tracking device. That way, the positional changes
detected by the external device can be converted into
positional adjustments of the MRI scan volume.

Although our 60s cross-calibration has proven very
reliable (9,10), we will show that errors in scanner–
camera cross-calibration can lead to erroneous pose
adjustments and image artifacts. Thus, having a fallback
mechanism in the event of suboptimal cross-calibration
due to involuntary patient motion during the calibration
scan, subtle changes of the setup between the cross-cali-
bration procedure and the patient scan, or in the extreme
case when no cross-calibration is performed will there-
fore be of considerable relevance for prospective motion
correction techniques.

In this study, we propose a joint prospective and
retrospective method to perform rigid head motion cor-
rection. Specifically, we will introduce two retrospective
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methods that use entropy-based autofocusing (15,16)
following a prospectively motion-corrected data acquisi-
tion to compensate for inaccurate scanner–camera cross-
calibration. Ultimately, we will also demonstrate the
potential for performing prospective optical motion
correction without the need for cross-calibration if an
approximate cross-calibration matrix, such as from a pre-
vious MR scan or from an off-line calibration, exists.

MATERIALS AND METHODS

Optical Prospective Motion Correction

The optical tracking system used for this study is shown
in Fig. 1 and has been described in detail earlier (9).
This system used a single camera (Fig. 1b) which was
mounted on the head coil and a self-encoded checker-
board marker (Fig. 1c,d), which in turn was attached rig-
idly to the patient’s forehead via an adhesive tape to
track head motion (10). The checkerboard pattern was
detected automatically by a real-time processing software
interfaced to the tracking camera, and the relative pose
changes were sent back to the scanner in real-time to
update gradients, radiofrequency, and readout phase to
adapt the MR scan volume for pose changes. The latency
of the system varied between 60 and 150 ms depending
on external factors such as the view of the marker, light-
ing conditions, etc. To make up for this delay, k-space

lines were reacquired when the detected motion was
above 1� rotation or 1 mm translation. For the 3D acqui-
sition used in this study, �50 k-space lines were reac-
quired to be on the safe side. Rigid body motion was
assumed throughout.

Mathematical Description of
Prospective Motion Correction

For successful motion correction, the position of the scan
plane needs to remain fixed relative to the anatomy. Thus,
given the positional change of the marker as detected by
the camera, one needs to find the geometry update that
needs to be applied to the scanner. As described in Refs.
6,9, the geometry update that needs to be applied to the
scanner is given by the following expression:

Ts0!si ¼ Tc!s0Tm0!cTc!mi
Ts0!c: ½1�

Here, T is a 4 � 4 transformation matrix that includes
rotation and translation and Ta!b represents the transfor-
mation from coordinate frame a to b. c represents the
camera position, m0 initial marker position, mi repre-
sents marker position at time i, s0 represents initial MR
scan-plane coordinate frame and si represents MR scan-
plane coordinate frame at time i. Tm0!c and Tc!mi

were
determined using computer vision theory as described in
Refs. 10,17. In this method, first, the quads of the

FIG. 1. System setup. An MR-compatible camera was mounted on the head coil inside the scanner bore (a,d). The camera (b) took
images of a self-encoded marker (c) that was attached to the patient’s forehead. These images were processed by an external laptop
where (1) the squares on the marker were segmented out; (2) the pose of the marker was estimated; and (3) the six parameters (i.e.,

three rotations and three translations) to update the scanner geometry were sent to the scanner radiofrequency and gradient hardware
controller. This allowed the scan plane to follow the subject’s head in real-time. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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checkerboard pattern were detected (Fig. 1c). Then, the
2D barcodes in each quad were identified, which
allowed to establish a one-to-one correspondence
between the detected quads in the camera image and the
quads in the geometrical model of the marker. Finally,
these correspondences were exploited to determine the
3D pose of the marker using a pinhole camera model
(17). Tc!s0

is called the scanner–camera cross-calibration
matrix and it was obtained using a calibration scan.

To perform camera–scanner cross-calibration (i.e.,
determination of Tc!s0

), a marker was used that is detect-
able by both the MR scanner and the camera. Moreover,
the exact position of the MR-detectable part was known
relative to the optically detectable part of the marker.
Thus, the position and orientation of the camera relative
to the MR scanner reference frame could be determined
by imaging the MR-visible and optically visible compo-
nents of the marker simultaneously. Such a hybrid
marker was manufactured by adding an MR-detectable
component to the self-encoded pattern shown in Fig. 1b.
Cylindrical wells were drilled at the bottom of the
marker and filled with 5% agar solution and tightly
sealed afterward (Fig. 8e).

The MR pulse sequence used for the cross-calibration
scan was an axial fast gradient-recalled echo sequence
with the following parameters: repetition time/echo time
¼ 8.4/2.9 ms, 128 � 128 � 48 resolution, field-of-view ¼
12 cm, slice thickness ¼ 1 mm, number of averages ¼ 2,
readout bandwidth ¼ 7 kHz, scan time ¼ 52 s. The scan
parameters were chosen so that potential susceptibility
artifacts are negligibly small.

After the calibration scan was completed, the images
were transferred to the external processing laptop. Here,
the agar-filled wells were segmented out and ordered
using a semiautomatic segmentation algorithm, and the
centroids of the holes were determined in MATLAB
(The MathWorks, Inc., Natick, MA). Specifically, the
three axes defining the marker geometry were extracted
by establishing the one-to-one correspondence between
the detected centroids and the known grid pattern. The
large number of grid points (i.e., 6 � 4 ¼ 24) provided
increased robustness for estimation of the position and
orientation of the marker in the scanner, i.e., Tm0!s0

,
over straightforward segmentation. The position and ori-
entation of the optically detectable part of the marker
with respect to the camera was also determined using
computer vision theory as described above. This step
gave Tc!m0

. By combining these two matrices, the rela-
tive position and orientation of the camera with respect
to the scanner can be written as:

Tc!s0 ¼ Tm0!s0Tc!m0
: ½2�

Retrospective Entropy-Based Autofocusing

MR motion correction using entropy criterion was first
described by Atkinson et al. (15,16). The entropy of an
image is given by:

E ¼ �
Xnr

r¼1

Ir
Itotal

ln
Ir

Itotal

� �
; ½3�

where r is the image pixel index, nr is the number of
pixels in the image, Ir is the magnitude of image inten-
sity. Itotal is the total image energy and is given by:

Itotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXnr

r¼1

I2r

vuut : ½4�

If the total image energy given by Eq. 4 is distributed
uniformly over all pixels such that every pixel has the
same greyscale value, the image entropy will be maxi-
mum and can be expressed by Emax ¼ 1

2

ffiffiffiffiffi
nr

p
lnðnrÞ. On

the other extreme, if all the image energy is concentrated
on one pixel, the entropy will be minimum, i.e., Emin ¼
0. For images containing small structures, such as the
brain, motion causes blurring and aliasing (i.e., ghost-
ing), which will, in turn, spread the image energy from
one pixel to multiple pixels. This will increase image en-
tropy as described above. Thus, minimum entropy will
imply less motion artifacts. This is the basic idea that is
used in entropy-based autofocusing for retrospective
motion correction. Instead of requiring additional naviga-
tor data or data redundancy (e.g., self-navigated motion
correction; Ref. 18), entropy-based auto-correction uses
the image data itself to remove motion artifacts. This
makes entropy the natural choice of cost function for our
application. Atkinson et al. (16) suggested that assuming
arbitrary (rigid body) motion between each k-space line,
the motion parameters (relative to a reference k-space
line) that minimize the image entropy can be determined
using an iterative algorithm.

One disadvantage of motion correction using entropy
approach is that, as arbitrary motion is allowed between
each k-space line, the number of unknowns is very large.
As an example, for a 3D MR acquisition with 192 � 192
� 96 resolution, the number of motion parameters (three
rotations and three translations) would be (192 � 96 � 1)
� 6. As the dimensionality of this minimization problem
is impractical, most entropy-based autofocusing algo-
rithms use a multiresolution approach. That is, they
divide k-space into segments (15,16,19) to yield a more
manageable dimensionality. Moreover, the application of
entropy-based motion correction is also limited to 2D
because in 3D acquisitions, the number of phase encod-
ing steps is much higher than in 2D and motion can
occur between each phase encoding. In this study, the
tracking data from the optical system is used to reduce
the dimensionality of the problem. This allows autofo-
cusing to be applied even to 3D sequences.

Combined Optical Prospective and Entropy-Based
Retrospective Motion Correction

In this section, a method that uses the combination of
prospective motion correction and retrospective entropy-
based autofocusing will be described. Specifically, two
methods will be introduced: (1) ‘‘segmentation-based’’
autofocusing and (2) ‘‘cross-calibration matrix’’-based
autofocusing. Both of these retrospective methods were
applied on prospectively corrected data to remove resid-
ual errors, i.e., for both methods, optical tracking and
real-time scan-plane adaption was turned on.
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Segmentation-Based Autofocusing—Method 1

The flowchart for segmented autofocusing is shown in
Fig. 2. First, the position of the head during the acquisi-
tion of each k-space line was measured using the optical

tracking system. This was made possible by the reacqui-

sition strategy used by our system, which guaranteed

that for each k-space line, an accurate and up-to-date

pose estimate was available. Thereafter, lines acquired at

FIG. 2. Segmentation-based autofocusing algorithm. The motion information obtained from the motion tracking system is shown in

black (upper part of the figure). Due to errors in cross-calibration, this tracking information is not 100% accurate, and residual error
remains on the k-space data, which is shown with a dotted line. To eliminate this residual error, first, the k-space data was divided into

segments using the tracking information provided by the optical system. Inside these segments, the patient position was assumed to
be the same. Next, only the motion between the segments was determined using iterative entropy-based autofocusing algorithm. [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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similar head positions were grouped together to form k-

space segments. Inside these segments, the range of

detected motion was not greater than a specified thresh-

old so that within a segment, the head position and ori-

entation can be approximated to be constant. Thus,

instead of trying to find the motion between each k-

space line, only the motion between these k-space seg-

ments was determined, reducing the dimensionality of

the problem. This method relies on two assumptions:

1. Even if the pose estimation of the tracking device is
inaccurate, similar head positions will result in simi-
lar pose estimates, and vice versa. As, for each camera
image, there is a unique set of six pose parameters
(i.e., three rotations and three translations), this
assumption is satisfied unless the inaccuracy in pose
estimation is highly nonlinear, which is highly
unlikely if the optical hardware is of adequate quality.

2. The motion is grossly corrected by the optical
adaptive motion correction system so that the resid-
ual motion remaining on the data is considerably
lower than the actual subject motion. This means
that the use of the optical tracking system does not
create additional motion artifacts. This assumption
can be satisfied in practical situations if the camera
is mounted on similar locations on the head coil
and intrinsic camera calibration is accurate.

After segmentation, the six motion parameters (i.e.,
three rotations and three translations) in each segment
were determined using an iterative Nelder–Mead
simplex method (20). At each iteration, the motion
parameters were applied to the corresponding segments
by rotating and applying a linear phase to the k-space
lines. Then, gridding was performed on the 3D k-space
data using postdensity compensation (21) and a Kaiser–
Bessel kernel (22), and the gridded data was Fourier trans-
formed into image space. Next, the image entropy was
determined, and the motion parameters were updated for
the next iteration (Fig. 2). The MATLAB function fmin-
search, which contains an implementation of Nelder–
Mead simplex method, was used for optimization.

Cross-Calibration Matrix-Based Autofocusing—Method 2

The flowchart explaining cross-calibration matrix-based
autofocusing is shown in Fig. 3. As opposed to segmen-
tation-based autofocusing, this method did not divide
the k-space into segments within which the head pose
was constant. Instead, each k-space line was assumed to
have been acquired at a different head position. How-
ever, it was also assumed that any residual motion on
the k-space data was caused entirely by the inaccuracies
in the scanner–camera cross-calibration matrix (Eq. 2).
As explained below, with this assumption, the residual
motion corresponding to each k-space line (acquired at
time i) could be determined using the motion detected
by the optical system (Tsi!s0

) and the actual cross-cali-
bration matrix (Tc!s0

(cor)). The former was already known,
and the latter remained to be determined using iterative
optimization. Thus, the number of unknowns to be deter-
mined was six. In conclusion, for this method, the aim

was to determine the true cross-calibration matrix that
resulted in the image with the lowest entropy.

For the mathematical description of this method, the
reader is referred to Eq. 1. Here, one assumes that the
cross-calibration matrix Tc!s0

is inaccurate, which can
be described by:

TðcorÞ
c!s0

¼ TðcorÞTc!s0 ; ½5�

where Tc!s0
(cor) is the corrected cross-calibration matrix and

T(cor) is the correction matrix. Then, from Eq. 1:

TðcorÞ
s0!si

¼ TðcorÞTs0!siT
ðcorÞ�1

: ½6�

As part of the motion is already corrected prospec-
tively, the residual motion that still needs to be corrected
for is given by:

T
ðresÞ
i ¼ TðcorÞ

s0!si
Tsi!s0 : ½7�

Combining Eqs. 6 and 7, one gets:

T
ðresÞ
i ¼ TðcorÞTs0!siT

ðcorÞ�1

Tsi!s0 ½8�

In Eq. 8, Ti
(res) is different for each time point, which

also means that it is different for each line in k-space.
Ti
(res) is the update applied to the k-space data for each

iteration of the entropy-based autofocusing. In our case,
Ts0!si

and Tsi!s0
were already known, and T(cor) was

determined using iterative optimization. Again, the itera-
tive optimization was carried out using the fminsearch
function in MATLAB that uses the Nelder–Mead simplex
algorithm.

Data Processing and 3D Gridding

Retrospective correction was performed on a high per-
formance server equipped with two IntelV

R

XeonVR CPUs
(X5570@2.93 GHz, Quad core with hyperthreading, based
on the Intel’s Nehalem microarchitecture) and 24GB of
memory. Nearly all of the postprocessing time was domi-
nated by 3D gridding. Gridding was performed using 16
parallel threads with open multiprocessing (OpenMP)
library. The gridding code was written in Cþþ and inter-
faced into MATLAB.

In Vivo Experiments

All experiments were performed on a 1.5 T whole-body
clinical MR scanner (GE Signa, 15.M4, GE Healthcare,
Milwaukee, WI) using either the quadrature head coil
(GE Healthcare) or the eight-channel head array coil (In
Vivo Corp., Orlando, FL) for signal reception and the
built-in quadrature body coil for signal transmission.
Table 1 shows a summary of all the in vivo experi-
ments performed for this study. Two types of axial 3D
spoiled gradient echo acquisitions were used with dif-
ferent resolutions: (1) repetition time/echo time ¼ 9.5/
4.1 ms, flip angle a ¼ 30�, acquisition matrix ¼ 192 �
192 � 96, slice thickness ¼ 1.5 mm, field-of-view ¼
240 mm, readout bandwidth ¼ 615 kHz and (2) repeti-
tion time/echo time ¼12.0/5.2 ms, flip angle a ¼ 30�,
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acquisition matrix ¼ 256 � 256 � 192, slice thickness
¼ 1 mm, field-of-view ¼ 260 mm, readout bandwidth ¼
615 kHz. For both acquisitions, a nonselective radiofre-
quency pulse was used and the readout was in the A/P
direction. Faster and slower phase encoding were in
the S/I and R/L directions, respectively. First, scanner–
camera cross-calibration was performed on a volunteer
(9). However, no data acquisition was done on this sub-
ject. Then, six healthy subjects (ages 27–39 years) were
scanned by intentionally using the previously obtained
cross-calibration data without running any further
cross-calibration procedures. For these subjects, the
camera position was adjusted for optimum field-of-view
as required by the different head shapes and marker
placements for these subjects. Three types of motion
were tested: (1) multiple in-plane rotations around the
S/I axis of the subject (i.e., shaking); (2) multiple

through-plane rotations around the R/L axis of the sub-
ject (i.e., nodding); and (3) mixed shaking and nodding.
Each motion experiment was repeated with and without
prospective motion correction to yield two datasets.
The prospectively corrected dataset was reconstructed
using three different methods, which eventually
gave four reconstructed volumes per motion experi-
ment: (1) prospective correction off, regular fast Fourier
transform-based reconstruction; (2) prospective correc-
tion on, regular fast Fourier transform-based reconstruc-
tion; (3) prospective correction on, reconstruction with
segmentation-based autofocusing (method 1) with a bin-
ning threshold of 3� for rotation and 3 mm for transla-
tion; and (4) prospective correction on, reconstruction
with cross-calibration matrix-based autofocusing
(method 2). For each subject, a scan with no intended
motion was also acquired for comparison.

FIG. 3. Cross-calibration matrix-based autofocusing algorithm. In this method, the residual error on the k-space data was assumed to
originate from the inaccuracies in the scanner–camera cross-calibration matrix. Thus, the residual motion between each k-space line

was a function of the difference between the used and corrected cross-calibration matrices. So, in this method, the cross-calibration
matrix was optimized to find the image with minimum entropy. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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For the third subject, scanner–camera cross-calibration
was also performed at the end of the scan to compare the
true, prospective, and retrospective transformation of the
scan plane. The true transformation refers to the actual
(i.e., gold standard) transformation of the scan plane to
accurately correct for the head motion. True transforma-
tion was determined using the correct cross-calibration
scan. The prospective transformation refers to the
‘‘wrong’’ transformation that was applied during prospec-
tive motion correction. The retrospective transformation
was obtained from the results of retrospective autofocus-
ing. If retrospective correction works well, we expect the
true and retrospective transformations to be similar.

Quality Metric

The most significant effect of motion is blurring and loss
of edge structures due to misregistration and ghosting.
Thus, to quantify the amount of motion artifacts remain-
ing in the images, we used the ‘‘average edge strength’’
(AES) metric defined as:

AESðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r E I

ðzÞ
r

� �
Gx I

ðzÞ
r

� �h i2
þ Gy I

ðzÞ
r

� �h i2� �s
P

r E I
ðzÞ
r

� � ½9�

Here, IðzÞr is the 2D image greyscale value at pixel loca-
tion r and slice z. Gx and Gy represent convolution of
the operand, the image IðzÞr , with the x- and y-edge detec-
tion kernels [�1 �1 �1; 0 0 0; 1 1 1] and [�1 0 1; �1 0
1; �1 0 1] to get the greyscale edge images Gx(I

ðzÞ
r ) and

Gy(I
ðzÞ
r ). E(IðzÞr ) is a binary image that specifies the loca-

tions of the edges in slice z and was obtained using the
Canny edge detector (23). Thus, the numerator in Eq. 9
defines the ‘‘total edge energy,’’ and the denominator is
the ‘‘number of edge pixels’’ in the image. To eliminate
the nonmotion-related artifacts at the most superior and
inferior slices, AES(z) was calculated for the middle 40
slices only. AES was calculated for all datasets with dif-
ferent motion types (no motion, shaking, nodding, shak-
ing, and nodding) and different correction strategies (no
correction, prospective correction, prospective, and retro-
spective autofocusing). Thereafter, the AES(z) values
were normalized by the corresponding slice at the ‘‘no
motion’’ dataset, which was deemed to be the gold stand-
ard. Then, for each dataset, the mean and standard devi-
ation of AES(z) over the slice index z was tabulated.

RESULTS

Figures 4, 5, 6, and 8 show the result of in vivo experi-
ments for subjects 1, 2, and 6. Figures 4 and 5 corre-
spond to results from subject 1, Fig. 6 from subject 2,
and Fig. 8 from subject 6. Table 1 summarizes the
experiments performed for all the subjects. The quality
metric (i.e., AES) values obtained from the four recon-
structed volumes for each experiment are also reported
in Table 1. When prospective motion correction was not
running, the images showed significant motion artifacts
(Figs. 4b, 5b, 6b, and 8b). These artifacts were partly cor-
rected when prospective motion correction was turned

on (Figs. 4c, 5c, 6c, and 8c). The images after prospective
correction still showed some artifacts because the cross-
calibration matrix used for these subjects were from a
different scan (Figs. 4c, 5c, 6c, and 8c). For these experi-
ments, retrospective autofocusing using method 2
improved the image quality significantly (Figs. 4f, 5f, 6f,
and 8d). This was also shown by the higher AES values
obtained with the combined approach using method 2 in
Table 1. For subject 1, method 1 as well as method 2
worked (Figs. 4e and 5e) whereas for subjects 2 and 6, the
quality of the image reconstructed using method 2 was
significantly better than the one reconstructed with
method 1 (Fig. 6e). In general, it was observed that the
convergence of method 2 was more robust and faster com-
pared to that of method 1. Table 1 shows that the com-
bined iterative approach using method 1 did not converge
to yield adequate image quality in seven of the 11 cases
(marked with asterisk [*] in Table 1) whereas method 2
improved the image quality in all of the 11 cases.

Figure 7 shows the true, prospective, and retrospective
rotations and translations for the experiment shown in
Fig. 6 (subject 2). The retrospective motion refers to the
motion pattern obtained after retrospective correction
using cross-calibration matrix-based autofocusing.

Figure 8e–h show a reformatted slice of the recon-
structed volumes in Fig. 8a–d in which the agar droplets
are visible and demonstrate that the retrospective correc-
tion provides better segmentation of the agar droplets in
the marker. This experiment shows that the retrospective
correction can be used to improve the cross-calibration
scan itself.

Processing Times

For 192 � 192 � 96 resolution, computation time per
iteration was around 35 s. Figure 9 shows the value of
the cost function (i.e., entropy) as a function of the itera-
tion number. Figure 9a shows the iterations for the
experiment given in Fig. 4, and Fig. 9b shows the itera-
tions for the experiment given in Fig. 6. For both cases,
the convergence of method 2 was faster than that of
method 1. For the case with shaking motion, both algo-
rithms yielded adequate image quality in 200 iterations
(Fig. 9a and Table 1, subject 1). However, for the case
with mixed shaking and nodding motion, it was
observed that method 1 did converge to yield an
adequate image quality in 200 iterations (Fig. 9b and
Table 1, subject 2). This was due to the high number of
segments and, thus, the high number of unknowns (Fig.
6d). The total computation time was around 2 h for the
entire 3D volume and 200 iterations.

DISCUSSION

In this study, monovision-based prospective motion cor-
rection was combined with retrospective entropy-based
autofocusing to remove residual motion-related errors in
the images. For the in vivo experiments, the residual
errors were caused by the inaccurate cross-calibration
between the scanner and camera reference frames. Thus,
prospective correction left behind residual artifacts
in the images (Figs. 4c, 5c, 6c, and 8c). To simulate
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cross-calibration errors, the initial cross-calibration scan
was skipped and cross-calibration information was used
from a different subject. The cross-calibration matrix was
different between different subjects because the camera
position needed to be adjusted to account for different
head shapes of the subjects. In general, retrospective cor-
rection using cross-calibration matrix-based autofocusing
(method 2) performed better compared to segmentation-
based autofocusing (method 1). This was shown in Table
1 where the AES values for method 2 were higher in
general compared to the AES values for method 1 and
the number of failures for method 1 (7/11) was higher

compared to that of method 2 (0/11). This had two rea-
sons. First, for all cases in Table 1, the number of
unknowns to be determined was larger for method 1
(¼(#segments � 1) � 6) compared to method 2 (¼6). An
increase in the number of unknowns decreases the speed
of convergence and robustness of the optimization algo-
rithm and makes it more probable for the iteration to get
stuck in local minima. Despite increasing the maximum
allowed number of iterations would potentially increase
the image quality for method 1, this was not applied in
this study due to the impractical reconstruction times for
very high number of iterations. Second, for method 1, it

FIG. 4. Results of in vivo experiments in the presence of shaking motion (around the S/I axis of the subject) throughout the scan for

subject 1. Without correction, the reconstructed image shows motion-related blurring (b). After prospective correction, residual artifacts
remained due to the inaccurate cross-calibration between camera and scanner references frames (c). Retrospective correction using ei-
ther method 1—segmented autofocusing (e) or method 2—cross-calibration matrix-based autofocusing (f) improved the image quality.

For method 1, the k-space segments in which the head position was approximately the same are shown in (d). RO corresponds to the
readout axis, and PE1 and PE2 correspond to fast and slow phase encoding axes, respectively. The rotations (g) and translations (h)
performed by the volunteer are also shown. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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was assumed that there is negligible motion within the
segments. However, depending on the error in cross-cali-
bration and the segmentation threshold chosen, this
assumption may not always be satisfied. In this case, the
residual motion within the segments can be significant
enough to effect the iterations in the optimization
algorithm. For this study, this segmentation threshold

(3� rotation, 3 mm translation) was empirically deter-
mined. Note that this threshold was applied to the track-
ing data from the camera; the actual range of motion
between k-space lines inside the same segment was
much less than this threshold as the data was prospec-
tively corrected up to a certain degree. However, the
degree to which motion was prospectively corrected still

FIG. 5. Results of in vivo experiments in the presence of nodding motion (around the R/L axis of the subject) throughout the scan for
subject 1. Without correction, the reconstructed image showed motion-related blurring (b). After prospective correction, residual artifacts
remain due to the inaccurate cross-calibration between camera and scanner reference frames (c). Retrospective correction using either

method 1—segmented autofocusing (e) or method 2—cross-calibration matrix-based autofocusing (f) improved the image quality. For
method 1, the k-space segments in which the head position was approximately the same are shown in (d). RO corresponds to the read-

out axis, and PE1 and PE2 correspond to fast and slow phase encoding axes, respectively. The rotations (g) and translations (h) per-
formed by the volunteer are also shown. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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depended on the error in the cross-calibration, which
could affect the convergence of method 1. Apart from
the robustness of optimization discussed above, the
selection of this threshold depends on many other fac-
tors (maximum artifact level to be tolerated, acquisition
resolution, etc.) and will be the focus of future studies.

It was also shown for subject 2 that the motion esti-
mates obtained after retrospective autofocusing (using
method 2) were very similar to the actual motion pattern
that was obtained with the true cross-calibration matrix,
demonstrating the accuracy of retrospective correction
(Fig. 7).

FIG. 6. Results of in vivo experiments in the presence of shaking and nodding motion throughout the scan for subject 2. Without cor-
rection, the reconstructed image shows motion- related blurring (b). After prospective correction, residual artifacts remain due to the
inaccurate cross-calibration between camera and scanner reference frames (c). Retrospective correction using method 2—cross-cali-

bration matrix-based autofocusing (f) improved the image quality. However, due to the large number of unknowns caused by the compli-
cated motion pattern, method 1-segmentation-based autofocusing did not yield good image quality (e). For method 1, the k-space
segments in which the head position was approximately the same are shown in (d). RO corresponds to the readout axis, and PE1 and

PE2 correspond to fast and slow phase encoding axes, respectively. Some of the estimated locations can fall onto the border separating
two segments, which explains the color pattern observed on segment 3. The rotations (g) and translations (h) performed by the volun-

teer are also shown. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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In general, method 2 can be expected to be more
robust and faster compared to method 1 due to the
smaller number of unknowns of method 2 and due to

the residual motion within segments for method 1. How-
ever, it must be noted that method 2 assumes that the
residual error in the k-space data is caused only by the

FIG. 8. Results of a high-resolution (256 � 256 � 192) in-vivo experiment in the presence of shaking motion throughout the scan for subject
6. The resolution in this scan is similar to what would be used for a cross-calibration scan. a–d: An axial slice. e,f: An oblique slice that goes
through the agar droplets. The noncorrected image showed motion artifacts and the agar droplets were not identifiable in (b) and (f). After pro-

spective correction, the artifacts remained because the true cross-calibration between the camera and the scanner was unknown (c,g). After
retrospective correction using method 2, the agar droplets were distinguishable, and could be used to perform the cross-calibration (d,h).

FIG. 7. Motion plots comparing the true, prospective, and retrospective motion parameters. The true motion was calculated using the
true cross-calibration matrix. The retrospective motion was determined after retrospective correction using cross-calibration matrix-

based autofocusing. It can be seen that the retrospective motion is very similar to the true motion. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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miscalibration of the system. That is, any inaccuracy com-
ing from the inaccuracies in the pose detection cannot be
accounted for. On the other hand, method 1 divides the
k-space into segments and corrects for any arbitrary resid-
ual motion between these segments. Thus, this method
can potentially correct for errors originating from any
imperfection in the system, including both inaccurate
cross-calibration and optical pose detection errors.

One of the disadvantages of applying retrospective
autofocusing to 3D data is the long postprocessing times.
It was shown that, using 200 iterations, the processing
times were around 2 h for this dataset. As most of the
postprocessing is dominated by the 3D gridding algo-
rithm, we believe it is possible to speed up each iteration
using more efficient algorithms, or even graphical proc-
essing units (24).

We demonstrated the application of our hybrid
approach to perform optical prospective motion correc-
tion when the geometric relation between the ‘‘camera
reference frame’’ and the ‘‘MR scanner reference frame’’
(i.e. cross-calibration) is on error. In general, for our
motion correction experiments, which are done in a con-
trolled setting, the cross-calibration is determined with
high enough accuracy to yield adequate image quality
(9,10). However, in a clinical setting, cross-calibration
can be on error due to unintended cross-calibration
errors. On the other hand, it can be desirable to skip
cross-calibration step entirely and use a pre-determined
approximate cross-calibration matrix to assure patient
convenience with very little scan overhead. To increase
robustness of prospective motion correction and mitigate
cross-calibration error, the aim of this study was to com-
bine prospective optical motion correction with retro-
spective autofocusing. The hybrid approach described in
this study has three important applications:

1. Retrospective autofocusing can be used as a fallback
mechanism in case the scanner reference frame and

camera reference frame was miscalibrated. Miscalibra-
tion might happen due to distortions in the calibration
scan that can be caused by gradient nonlinearities or
inaccuracies of patient table positioning.

2. Retrospective autofocusing can be used to perform
prospective correction without a cross-calibration
phase. In this case, an ‘‘approximate’’ cross-calibra-
tion can be used for all exams and the residual errors
can be corrected retrospectively. This was the case
for the in vivo experiments in this study. Given that
the cross-calibration and prospective motion correc-
tion is accurate up to a certain degree, the spin his-
tory effects can be expected to be negligible. A
certain degree of accuracy is still expected from the
prospective correction to minimize undersampling
artifacts and spin history effects in slice selective
acquisitions. If the camera is placed approximately at
the same location for different exams, this can read-
ily be satisfied in most situations.

3. Retrospective autofocusing can be used to correct
for motion artifacts in the calibration scan itself.
This was demonstrated in Fig. 8 where a high-
resolution scan was performed to extract the agar
droplets attached to the marker. The subject was
instructed to perform head shaking to simulate a
case where there is patient motion during the
calibration scan. In this experiment, without pro-
spective correction, the agar droplets were unidenti-
fiable (Fig. 8f). With prospective correction, the
image quality was still inadequate because the true
cross-calibration was unknown (Fig. 8g). After retro-
spective correction, the agar droplets were clearly
distinguishable (Fig 8h).

An important property of the segmentation-based auto-
focusing (i.e., method 1) is that, for a subject lying still
during the examination, the whole k-space data will be
populated inside a single segment (Fig. 2). This would

FIG. 9. The value of the cost function (i.e., entropy) as a function of the iteration number. a: The iterations for the experiment given in
Fig. 4 (subject 1) and (b) Fig. 6 (subject 2) are shown. For the case with multiple in-plane rotations, the convergence of method 2 was

faster than method 1 (a) due to the lower number of unknowns. For the case with more complicated motion where the subject per-
formed both shaking and nodding, it was observed that the segmentation-based autofocusing did not converge during 200 iterations to
yield adequate image quality (b). This was due to the high number of segments, and thus, the high number of unknowns (Fig. 6d). How-

ever, cross-calibration matrix-based autofocusing had a fast convergence rate in this case. Given 200 iterations, the total computation
time was around 2 h. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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mean that the initial image would be maintained. Like-
wise, for the cross-calibration matrix-based autofocusing
(method 2), if the detected motion Tsi!s0

is unity, regard-
less of the value of the correction term T(cor), the motion
update to be applied to the k-space data (Ti

(res)) will also
be unity (Eq. 8). This implies that for a ‘‘good’’ data in
which there is no patient motion, the image quality
would not be degraded by the application of retrospec-
tive correction.

An important requirement for the proposed method is
that the residual error on the data does not cause signifi-
cant undersampling artifacts and spin history effects (for
2D slice-selective acquisitions). This requires that the
cross-calibration matrix is accurate up to a certain degree,
which can be ensured by performing an offline calibration
using a phantom. A good estimate for the initial cross-cal-
ibration matrix is also needed to ensure that, for method
1, the residual motion within each segment is not large.
Having a good estimate of cross-calibration allows for cor-
rection of stronger head motions. On the other hand, if
the residual error on the data can be kept low enough, the
retrospective correction proposed in this manuscript can
even be applied to 2D slice-selective sequences. However,
applicability of the hybrid approach to 2D sequences
requires further investigation.

Previously, hybrid approaches that use both prospec-
tive and retrospective correction have been proposed. In
these combined approaches, retrospective correction was
used to remove residual error on the prospectively cor-
rected data, allowing one to benefit from the advantages
of both schemes. In one such approach, a Kalman filter
was used successively to remove the noise on the track-
ing data coming from a stereovision tracking system
(14). The corrected tracking data was then used to realign
k-space lines to enhance image quality. In another appli-
cation, motion-induced B0-inhomogeneity changes were
corrected retrospectively based on the susceptibility dis-
tribution of the object (13). Compared to the first
approach, which improves the precision of the system,
our method was aimed at improving the accuracy of track-
ing. In general, precision can be improved using a
smoothing filter (e.g., Kalman filter), which is a method
common to most systems. However, to improve accuracy,
the underlying mechanisms that cause the inaccuracies
have to be determined and modeled properly. This was
the common point between the method described here
and in Ref. 13, where susceptibility model of the object
was used to reduce geometric distortions.

One possible improvement to our method can be
achieved by altering the optimization routine. In this
study, we used the simplex algorithm, which was imple-
mented by the fminsearch function in MATLAB, which
had poor convergence on seven of the 11 cases for
method 1 (for method 2, the convergence of simplex
method was robust for all our experiments). We also
tried method 1 with the fminunc function in MATLAB
that uses the BFGS Quasi-Newton method on subjects 2
and 6 with, but no improvement in convergence was
observed. It is also possible to fine-tune the simplex opti-
mization algorithm by changing the initial guess, initial
simplex scale, and the tolerance of the cost function or
the unknown variables. Alternative optimization routines

or fine-tuning of the current optimization routine was
not thoroughly investigated in this study and provides
room for possible improvement.

Another important aspect of the proposed method is
the choice of cost function. In this study, entropy was
chosen as the cost function due to its autocorrection
capabilities without requiring data redundancy. Entropy
has been used successfully to remove blurring and ghost-
ing in motion-corrupted images (15) and for ghost correc-
tion in echo-planar imaging (25). However, other options
for the cost function, such as ghost energy, should not be
overlooked.

One challenge that remains is the correction of altered
effective coil sensitivity as a result of motion. This correc-
tion can be especially important for our iterative optimiza-
tion as inaccurate coil sensitivity information can alter
the convergence of iterative optimization. Correction for
coil sensitivities can be performed using the method
described in Ref. 11 but was not applied in this study.

It is worth noting that, for both methods 1 and 2, the
existence of the optical tracking system reduces the
dimensionality of the 3D retrospective autofocusing
problem, making autofocusing applicable to a 3D acquisi-
tion. For method 1, the dimensionality of the autofocus-
ing problem is reduced to (#segments � 1) � 6 whereas
for method 2, it is reduced to 6. Without the motion
tracking system, the dimensionality would be (#k-space
lines � 1) � 6, which would be impractical to solve.

CONCLUSIONS

Optical prospective motion correction was combined
with retrospective autofocusing to establish a robust rigid
head motion correction method. Retrospective autofocus-
ing was used to remove residual errors in the prospec-
tively corrected image that arose from inaccurate
scanner–camera cross-calibration. Prospective correction
reduced the number of unknowns to be solved for via
retrospective autofocusing, making retrospective autofo-
cusing feasible for 3D imaging. In the case when cross-
calibration errors were introduced to the system, image
quality was improved after retrospective correction for in
vivo experiments.
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