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Abstract. To manage respiratory motion in image-guided interventions
a novel sparse-to-dense registration approach is presented. We apply
an emerging laser-based active triangulation (AT) sensor that delivers
sparse but highly accurate 3-D measurements in real-time. These sparse
position measurements are registered with a dense reference surface ex-
tracted from planning data. Thereby a dense displacement field is recon-
structed which describes the 4-D deformation of the complete patient
body surface and recovers a multi-dimensional respiratory signal for ap-
plication in respiratory motion management. The method is validated
on real data from an AT prototype and synthetic data sampled from
dense surface scans acquired with a structured light scanner. In a study
on 16 subjects, the proposed algorithm achieved a mean reconstruction
accuracy of ±0.22 mm w.r.t. ground truth data.

1 Introduction

Respiration-synchronized image-guided radiation therapy (IGRT) techniques aim
at tracking the tumor location and reposition the beam dynamically. To reduce
additional radiation exposure, recent hybrid tumor-tracking techniques combine
episodic radiographic imaging with continuous monitoring of external breathing
surrogates based on the premise that the internal tumor position can be accu-
rately predicted from external motion. The underlying correlation model can be
established from a series of simultaneously acquired external-internal position
measurements [1] or 4-D CT planning data [2]. Clinically available solutions for
hybrid tumor-tracking [1, 3] measure external motion using a single or a few
passive markers on the patient’s chest as a low-dimensional surrogate. Thus,
these techniques are incapable of depicting the full complexity of respiratory
motion, they involve extensive patient preparation, and require reproducible



marker placement with a substantial impact on model accuracy. Modern IGRT
solutions that allow to monitor the motion of the complete external patient sur-
face help to reduce correlation model uncertainties. In particular, range imaging
(RI) technologies can acquire a dense 3-D surface model of the patient [4–6].
Based on the estimation of a dense displacement field representing the deforma-
tion of the instantaneous torso surface w.r.t. a reference surface (either from RI
or planning CT data), a highly accurate correlation model can be established [7,
8]. The deformation estimation from dense surface scans for application in RT
has been investigated recently [8, 9]. Available RI-based IGRT solutions are ca-
pable of delivering dense surface information in a marker-less manner but focus
on patient positioning, do not support dense sampling in real-time [4, 5] or at
the cost of a limited field of view [6], often imply high costs in terms of hardware
and are subject to measurement uncertainties due to the sampling principles
e.g. active stereo [6] or swept lasers [4, 5]. The temporal resolution of these so-
lutions may be insufficient to characterize respiratory motion. In this paper, we
propose a marker-less system based on a non-moving active laser triangulation
(AT) sensor that delivers sparse but accurate measurements in real-time (30 Hz).
Using prior patient shape knowledge from planning data, a variational model is
proposed to recover a dense and accurate displacement field and to reconstruct
a complete and reliable patient surface model at the instantaneous respiration
phase. Estimating the dense deformation is combined with recovering a sparse
displacement field from AT measurements to planning data, thus the approach
is closely related to the field of inverse-consistent registration [10, 11]. The varia-
tional model is discretized using Finite Elements, the optimization is guided by
a step-size controlled gradient flow to guarantee fast and smooth relaxation.

2 Method

In this section, we derive the variational model for the reconstruction of a dense
displacement field from sparse measurements. Given is a reference shape G ⊂ R3

extracted from planning data and the instantaneous body surfaceM represented
by a sparse sampling Y . For instance, let us assume that the AT sensor acquires
a set of n measurements Y = {y1, . . . , yn}, yi ∈ R3, arranged in a grid-like struc-
ture (Fig. 1). We assume that G is given as a graph, i. e. there is a domain Ω ⊂ R2

usually associated with the plane of the patient table and a function g : Ω → R
such that G =

{
(ζ, g(ζ)) ∈ R3 : ζ ∈ Ω

}
. Due to respiration, the intra-fractional

sampling Y is not aligned with G. Now, the goal is to estimate the unknown,
non-rigid, dense deformation φ of G with Y ⊂ φ(G). For this purpose, in a joint
manner, we estimate φ together with an inverse deformation ψ matching Y and
G in the sense that ψ(Y ) ⊂ G. When registering Y onto G we solely deal with a
sparse displacement field (ψ(yi))i=1,...,n on the n positions measured by the AT
sensor. A geometric sketch of the registration configuration is depicted in Fig. 1.
Estimating ψ allows us to establish a correspondence between the AT measure-
ments and the reference patient surface, whereas the dense deformation φ enables
the reconstruction of the complete instantaneous patient surface. We represent



Fig. 1. Geometric configuration for reconstructing the dense deformation φ with
φ(ζ, g(ζ)) = (ζ, g(ζ)) + u(ζ) from sparse sampling data Y = {y1, . . . , yn} and the ap-
proximate sparse inverse ψ with ψ(yi) = yi + wi (for a better visibility G and Y have
been pulled apart). Furthermore, the projection P onto G and the orthogonal projection
Q from the graph G onto the parameter domain Ω are sketched.

ψ by a vector of displacements W = {w1, . . . , wn} with ψ(yi) = yi+wi . Further-
more, the deformation φ is represented by a displacement u : Ω → R3 defined
on the parameter domain Ω of the graph G with φ(ζ, g(ζ)) = (ζ, g(ζ)) + u(ζ) .
To quantify the matching of ψ(Y ) onto G let us assume that the signed distance
function d with respect to G is precomputed in a sufficiently large neighborhood
in R3. We set d(x) := ±dist(x,G), where the sign is positive outside the body,
i. e. above the graph, and negative inside. Then ∇d(x) is the outward pointing
normal on G and |∇d(x)| = 1. Based on this signed distance map d we can define
the projection P (x) := x− d(x)∇d(x) of a point x ∈ R3 in a neighborhood of G
onto the closest point on G and compute the mismatch of ψ(Y ) and G pointwise
via |P (ψ(yi)) − ψ(yi)| = |d(yi + wi)|. Let us emphasize that we do not expect
ψ to be equal to the projection P . Indeed, the computational results discussed
below underline that it is the prior in the deformation φ which leads to general
matching correspondences for a minimizer of our variational approach.

2.1 Definition of the Registration Energy

Now, we define a functional E on dense displacement fields u and sparse vectors
of displacements W such that a minimizer represents a suitable matching of the
planning data and AT measurements:

E [u,W ] := Ematch[W ] + κ Econ[u,W ] + λ Ereg[u] (1)

where κ and λ are nonnegative constants controlling the contributions of the
individual terms. Ematch denotes a term measuring closeness of ψ(Y ) to G. The
consistency functional Econ is responsible for establishing the relation between
both displacement fields. Finally, Ereg ensures a regularization of the dense dis-
placement u. The detailed definitions of these functionals are as follows.

Matching Energy. In order to measure closeness of ψ(Y ) to G, we use the
pointwise mismatch measure discussed above and define

Ematch[W ] :=
1

2n

n∑
i=1

|d(yi + wi)|2 . (2)



Consistency Energy. For a known instantaneous deformation φ of the patient
surface G and an exact deformation correspondence ψ(Y ) ⊂ G of the AT mea-
surement Y the identity φ(ψ(Y )) = Y holds. But for an arbitrary deformation
ψ described by some vector of displacements W in general ψ(Y ) 6⊂ G. To relate
φ and ψ in this case we have to incorporate the projection P because φ is only
defined on G. In fact, to ensure that (φ ◦ P ◦ψ)(W ) ≈W for a minimizer of the
total energy we introduce the consistency energy

Econ[u,W ] :=
1

2n

n∑
i=1

|P (yi + wi) + u(QP (yi + wi))− yi|2 , (3)

where Q ∈ R2×3 denotes the orthographic projection matrix with Q(ζ, g(ζ)) = ζ.
Here, we have used that φ(P (ψ(yi))) = P (yi + wi) + u(QP (yi + wi)) . Indeed,
this definition of the consistency energy allows us to compute a dense smooth
displacement of the patient planning surface even though only a sparse set of
measurements is available.

Prior for the Displacement. To ensure smoothness of the deformation φ on
G we incorporate a thin plate spline type regularization of the corresponding
displacement u [12] and define

Ereg[u] :=
1

2

∫
Ω

|4u|2 dx , (4)

where 4u = (4u1,4u2,4u3) and thus |4u|2 =
∑3
k=1(4uk)2. Indeed, since

our input data Y only implicitly provide information for φ on a sparse set, a
first order regularizer is inadequate to ensure sufficient regularity for the defor-
mation. Let us emphasize that (discrete) smoothness of the approximate inverse
deformation ψ is implicitly controlled by the regularization of φ.

2.2 Numerical Optimization

To minimize the functional E (Eq. 1), we apply a Finite Element approximation
and optimize the functional using a gradient descent scheme. In particular, after
an appropriate scaling of G we choose Ω = [0, 1]2 and consider a piecewise bi-
linear, continuous Finite Element approximation on a uniform rectangular mesh
covering Ω. In the experiments we used a 129×129 grid. Furthermore, the signed
distance function d is precomputed using a fast marching method on a uniform
rectangular 3-D grid covering the unit cube [0, 1]3 and stored on the nodes of
this grid. In the algorithm d and ∇d are evaluated using trilinear interpolation
of nodal values. For the gradient descent, derivatives of the energy have to be
computed numerically. The derivatives of Ematch and Econ w.r.t. wj are given as:

∂wj
Ematch[W ] =

1

n
d(yj + wj)∇d(yj + wj)

∂wj
Econ[u,W ] =

1

n
(P (yj + wj) + u(QP (yj + wj))− yj)T

(DP (yj + wj) +∇u(QP (yj + wj))QDP (yj + wj))
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Fig. 2. Validation on real AT data. Estimation of φp transforming G intoMp, from AT
sampling data Yp. For the glyph visualization of φp on G, |u(ζ)| is color coded [mm].

where DP denotes the Jacobian of the projection P . The variations of Econ and
Ereg w.r.t. u in a direction ϑ : Ω → R3 are given by:

〈∂uEcon[u,W ], ϑ〉 =
1

n

n∑
i=1

(P (yi + wi) + u(QP (yi + wi))− yi)ϑ(QP (yi + wi))

〈∂uEreg[u], ϑ〉 =

3∑
k=1

∫
Ω

4uk4ϑk dx

The evaluation of DP involves the Hessian D2d(x) of the distance function.
One can either compute D2d(x) based on second order finite differences or - as
actually implemented here - replace the projection direction in P by the already
computed direction from the last update. Furthermore, the Laplacian of a Finite
Element function is evaluated by the discrete Finite Element Laplacian. In the
gradient descent scheme we stop iterating as soon as the energy decay is smaller
than a threshold value ε, ε = 10−4 proved to be sufficient to achieve the accuracy
reported below. For the first frame of the respiratory motion we initialize u = 0
and wj = P (yj) − yj leading to approx. 60 gradient descent steps on average.
For all subsequent frames we take u from the previous step and wj = P (yj)− yj
as initial data resulting in approx. 45 descent steps on average.

3 Experiments and Results

Experimental Setup. For validation of the method, we have used an eye-safe
AT prototype that acquires a sparse grid of 11×10 accurate 3-D sampling lines in
real-time (30 Hz), using two perpendicular laser line pattern projection systems
and a 1024×768 px resolution CCD chip [13]. Within the measurement volume,
the mean AT measurement uncertainty is σ = 0.39 mm. The evaluation dataset
is composed of 32 datasets from 16 subjects, each performing abdominal and
thoracic breathing, respectively. Per subject, we synchronously acquired both
real AT data and surface data using a moderately accurate but rather dense
structured light (SL) system with a resolution of 320×240 px. Both sensors were
mounted at a height of 1.2 m above the patient table, at a viewing angle of 30◦.
AT and SL data were aligned using calibration. From each dataset, we extracted
sparse AT measurements Yp and dense SL meshes Mp for 8 phases within one
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Fig. 3. Estimation of φp transforming G into Mp from realistic AT sampling data Yp,
for thoracic (top row) and abdominal respiration (bottom row). p = 4 represents the
respiration state of fully inhale, roughly. For the glyph visualization of φ on G, |u(ζ)|
is color coded [mm]. Please note that the color coding differs by a factor of 10.

Fig. 4. Glyph visualization of φ2 to φ8 on G for an abdominal respiration cycle.

respiration cycle, the index p denotes the phase. In the experiments below, the
subject’s body surface at full expirationM1 is considered as the given planning
data G. The model parameters were empirically set to κ = 8 · 10−1, λ = 4 · 10−8.
Validation on Real AT Data. Results for the reconstruction of φp for phase p
on real AT data are given in Fig. 2. A quantitative evaluation on real AT and
aligned SL data was unfeasible, as the SL camera exhibited local sampling ar-
tifacts due to the underlying measurement principle and interferences between
the laser grid (AT) and speckle pattern projections (SL) of the synchronously
used modalities, which cause local deviations in the scale of several millimeters.
Quantitative Evaluation on Realistic AT Data. For quantitative evalua-
tion, we developed a simulator for the generation of realistic AT sampling data
from dense SL surfaces. For this purpose, the noise characteristics of our AT
sensor prototype were measured in an optics lab and used to augment the syn-
thetic sampling, providing realistic AT data. We considered the reconstruction
of the displacement field φp from realistic AT data Yp, p = {2, . . . , 8}, sam-
pled from Mp. An evaluation is given in Fig. 3 and the displacements for a full
respiration cycle are shown in Fig. 4. The accuracy of the deformation estima-
tion is assessed by the absolute error |dist(φp(G),Mp)| in Fig. 5 representing the
mismatch between the transformed reference surface and the ground truth sur-
face. To discard boundary effects, the evaluation is performed within the central
surface of interest covering the torso. Over all subjects and phases, the mean
reconstruction error was 0.22 mm w.r.t. ground truth dense SL data. This indi-
cates that the method can reliably recover the dense displacement field from a



Fig. 5. Box plots of |dist(φp(G),Mp)| for realistic AT sampling data from 16 subjects,
for abdominal (top row) and thoracic (bottom row) respiration. Given are plots for
different phases of the respiration cycle (left), w.r.t. the respiration amplitude (center),
and for the individual subjects (right). The reconstruction error scales approximately
linearly with the respiration amplitude observing a peak at the respiration state of fully
inhale (phase 4/5). The whiskers indicate that >99% of the residual error is <1 mm.

sparse sampling of the instantaneous patient state using prior shape knowledge.
Performance. With our proof of concept implementation, a single gradient de-
scent step on a single core of a Xeon X5550 2.67GHz CPU takes ≈ 60 ms. Over
all subjects, we achieved total runtimes of 2.6±0.7 s, thus significantly outper-
forming related work on dense-to-dense surface registration [8] with runtimes in
the scale of minutes (25 iterations, 11.9 s per iteration on comparable CPU and
for a surface mesh with a comparable number of vertices).

4 Conclusions and Outlook

In this paper, a variational approach to marker-less reconstruction of dense non-
rigid 4-D surface motion fields from sparse but accurate AT sampling data has
been introduced. The algorithm can precisely reconstruct the dense respiratory
displacement field using prior shape knowledge from planning data. The implica-
tions for RT motion management are manifold. The motion fields can be used as
multi-dimensional respiration surrogates, as input for accurate external-internal
motion correlation models, and to reconstruct the body shape for patient posi-
tioning. Beyond its application in RT, the approach holds potential for motion-
compensated tomographic reconstruction and image-guided interventions.
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