Towards Improving Solar Irradiance Forecasts with Methods from Computer Vision

David Bernecker Christian Riess, Elli Angelopoulou, Joachim Hornegger August 28, 2012 Pattern Recognition Lab (CS 5)

TECHNISCHE FAKULTÄT

Importance of Renewable Energy

Development in recent years

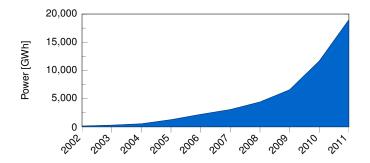


Figure : Power production by photovoltaics in Germany¹

¹Arbeitsgruppe Erneuerbare Energien-Statistik (BMU). Zeitreihen zur Entwicklung der erneuerbaren Energien in Deutschland. 2012.

Focus on Photovoltaics

Integration into power grid

Photovoltaics power production influenced by local weather

- · Local: area of power plant
- Timespan: < 10 min

Ensure stable supply by forecasting irradiance

Existing solutions:

Forecast method	Forecast time	Spatial resolution
Numerical weather models	> 6 <i>h</i>	3 km $ imes$ 3 km
Analysis of satellite images	30 <i>min</i> — 6h	1 <i>km</i> × 1 <i>km</i>

Complementary Approach

Short-term predictions

Problem

Existing methods lack spatial and temporal resolution.

Using ground-based cameras

- 1. Monitor the sky
- 2. Register & predict cloud motion
- 3. Predict irradiance

Sample Video

Main Challenges

Motion Registration – Dynamics of Cloud Movement

- · Formation, dissipation and merging of clouds
- Strong deformations

Motion Prediction

- Motion is governed by fluid mechanics
- High computational complexity for exact solution

Our Approach

- Non-rigid registration for motion registration
- Comparison of three methods
- Forecasts for up to 5 minutes

Motion Registration

Block matching²

Divide image into squares

Search for similar square in next image using cross-correlation

Mean of all displacements used in further steps:

Assumes rigid motion!

¹C. Chow et al. "Intra-hour Forecasting with a Total Sky Imager at the UC San Diego Solar Energy Testbed". In: Solar Energy 85.11 (Nov. 2011), pp. 2881–2893.

August 28, 2012 | David Bernecker | Pattern Recognition Lab (CS 5) | Towards Improving Solar Irradiance Forecasts

Motion Registration

Non-rigid registration

Notation

- T, R Template and Reference image
- $d^{(n)}$ Deformation field (after iteration *n*)

Thirion's Demons³

- Based on optical flow equation
- Deformation calculated iteratively

$$\mathbf{d}^{n}(\mathbf{x}) = \mathbf{d}^{n-1}(\mathbf{x}) - \frac{\left(T(\mathbf{x} + \mathbf{d}^{n-1}(\mathbf{x})) - R(\mathbf{x})\right)\nabla R(\mathbf{x})}{\|\nabla R\| + \left(T(\mathbf{x} + \mathbf{d}^{n-1}(\mathbf{x})) - R(\mathbf{x})\right)}$$

• Gaussian smoothing of **d**ⁿ (i. e. diffusion regularisation)

³J.-P. Thirion. "Image Matching as a Diffusion Process: An Analogy with Maxwell's Demons". In: *Medical Image Analysis* 2.3 (Sept. 1998), pp. 243–260.

Motion Registration

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT

Non-rigid registration

Variational approach

• Energy functional minimisation

$$\mathcal{F}[\mathbf{d}] = \mathcal{E}[\mathbf{T}, \mathbf{R}, \mathbf{d}] + \alpha \mathcal{S}[\mathbf{d}]$$

- E: Sum of squared differences
- S: Curvature regularisation⁴

$$\mathcal{S}_{\textit{curv}}[\mathbf{d}] = \int_{\Omega} |\Delta \mathbf{d}(\mathbf{x})|^2 d\mathbf{x}$$

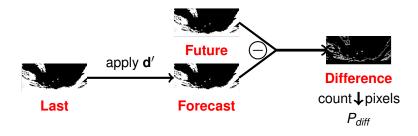
• Affine transformations preferred $(\Delta(\mathbf{Rx} + \mathbf{a}) = \mathbf{0})$

⁴Bernd Fischer and Jan Modersitzki. "Curvature Based Image Registration". In: Journal of Mathematical Imaging and Vision 18 (2003), pp. 81–85.

Prediction

1. Multiply current displacement field **d** with $f = \frac{t_{fc}}{20 s}$

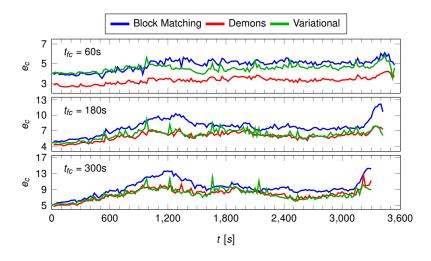
$$\mathbf{d}' = f \cdot \mathbf{d}$$


2. Warp sky image by d'

Evaluation

No ground truth flow fields available!

Compare segmented sky images


Count pixelwise differences

$$e_c = rac{P_{diff}}{P_{contour}}$$

Results

Preliminary

Non-rigid approaches outperform baseline method!

Conclusion

Challenges – Motion Registration & Prediction

- Large displacements
- Strong deformations
- Errors governed by forecast method

Current Achievements

- Two non-rigid registration methods applied for motion registration
- Non-rigid methods outperform state of the art method
- Forecasts possible for up to 5 minutes

Thank you for your attention!

TECHNISCHE FAKULTÄT