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Summary: Objective. One aspect of voice and speech evaluation after laryngeal cancer is acoustic analysis. Percep-
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tual evaluation by expert raters is a standard in the clinical environment for global criteria such as overall quality or
intelligibility. So far, automatic approaches evaluate acoustic properties of pathologic voices based on voiced/unvoiced
distinction and fundamental frequency analysis of sustained vowels. Because of the high amount of noisy components
and the increasing aperiodicity of highly pathologic voices, a fully automatic analysis of fundamental frequency is dif-
ficult. We introduce a purely data-driven system for the acoustic analysis of pathologic voices based on recordings of
a standard text.
Methods. Short-time segments of the speech signal are analyzed in the spectral domain, and speaker models based on
this information are built. These speaker models act as a clustered representation of the acoustic properties of a person’s
voice and are thus characteristic for speakers with different kinds and degrees of pathologic conditions. The system is
evaluated on two different data sets with speakers reading standardized texts. One data set contains 77 speakers after
laryngeal cancer treated with partial removal of the larynx. The other data set contains 54 totally laryngectomized pa-
tients, equipped with a Provox shunt valve. Each speaker was rated by five expert listeners regarding three different
criteria: strain, voice quality, and speech intelligibility.
Results/Conclusion. We show correlations for each data set with r and r� 0.8 between the automatic system and
the mean value of the five raters. The interrater correlation of one rater to the mean value of the remaining raters is in the
same range. We thus assume that for selected evaluation criteria, the system can serve as a validated objective support
for acoustic voice and speech analysis.
Key Words: Laryngeal cancer–Total laryngectomy–Provox shunt valve–Voice quality–Intelligibility–Perceptual
evaluation–Acoustic analysis.
INTRODUCTION

Laryngeal cancer affects the naturalness of a person’s voice and
has a major impact on the communication skills of affected per-
sons.1 In the United States, 34% of all workers have voice-
dependent occupations.2 In urban areas, the percentage is more
than 87.5%. The prevalence of communication disorders in gen-
eral is 5–10%. Persons affectedwith severe speech disabilities are
more often found to be unemployed or in a lower economic class
than peoplewith hearing loss or other disabilities. Thus, voice and
communication disorders have a major impact on the economy.3

The economic effect is amplified by the influence on the patients’
quality of life,4–7 social, and psychosocial effects of voice and
speech disorders.8,9 Therefore, the rehabilitation of patients
with communication disorders is of high clinical and economical
interest.

To improve the voice quality and achieve intelligible and ac-
ceptable speech, reconstructive surgery followed by therapy is
performed. The evaluation of voice and articulation capabilities
after laryngeal rehabilitation has to be based on subjective and
objectivemethods.10 They are used to monitor the process of re-
habilitation over a longer temporal context beginning with sur-
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gery or compare the impact of different treatments or speech
enhancement. Subjective methods involve, for instance, ques-
tionnaires about voice-related quality of life11 and perceptive
voice evaluation by speech therapists. Objective methods are
based on physical measures, such as frequency analysis or aero-
dynamic measures. This article focuses on acoustic measures of
connected speech because voice and speech parameters are cru-
cial for the ability to communicate.

In clinical routine, different voice and speech criteria are
used for perceptive evaluation based on connected words or
sentences.12 Perceptual analysis by speech therapists or naive
listeners is still widely used for almost all types of voice disor-
ders.13–15 However, individual perception may be biased. Aver-
aging over many subjective judgments from different listeners
stabilizes the result but is time consuming and not suitable in
clinical practice. Additional problems arise from differences
in the intra- and interrater correlations as a result of varying
test conditions,16,17 differences in the individual experience,
and varying personal conditions of one rater18,19 or speaker
characteristics, such as gender.20

In this study, two data sets of speech samples recorded after
laryngeal cancer were used. The first set consists of patients
who underwent partial laryngectomy (PL) that allowed the pres-
ervation of at least one vocal fold. The second set comprises pa-
tients with tracheoesophageal (TE) substitute voices after total
laryngectomy. Total removal of the larynx has to be performed
in 20–40% of all cases of laryngeal or hypopharyngeal cancer.21

The state-of-the-art voice rehabilitation in these patients is the
insertion of shunt valves.22 During exhalation, the valve redi-
rects the airstream into the upper part of the esophagus.
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TABLE 1.

Statistics of the Two Data Sets Used in This Work

Name Type No. of Speakers

Minimum

Age (y)

Maximum

Age (y)

Mean

Age (y)

Standard Deviation

of Age

TE Tracheoesophageal 54 44 84 62.2 10.1

PL Partial laryngectomy 77 34 83 60.7 9.7
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Vibrating tissue of the surrounding pharyngoesophageal seg-
ment modulates the flowing airstream and creates the TE
voice.23 This results in lower voice quality, higher strain, and de-
creased intelligibility.24

The acoustic variables of pathologic speech differ from the
speech of healthy persons.24–28 Most work on automatic evalu-
ation of voice aspects focuses on the fundamental frequency
(F0) and related features, for example, jitter, shimmer, and
length or number of voiced segments, computed on sustained
vowels. A reliable automatic F0 extraction is crucial in this
case. Voices affected by laryngeal cancer are often aperiodic
and contain a high percentage of noise components.29 F0 ex-
traction algorithms often cannot process highly pathologic voi-
ces properly,30 whichmakes them unsuitable for fully automatic
evaluation systems. Speech properties, such as intelligibility,
could not be rated by these approaches because of the missing
identification of speech units, such as words or sentences.

We introduce an automatic system based on the evaluation of
read speech that can partially solve this problem. The system
performs acoustic short-time analysis of a readout text and pre-
dicts different voice and speech criteria based on regression.We
evaluated the performance of the system on TE and PL speakers
with different clinically relevant evaluation criteria, that is,
strain, voice quality, and intelligibility.
MATERIALS AND METHODS

Speakers

The statistics of the two different data sets are summarized in
Table 1. The speakers of the TE data set were provided with
FIGURE 1. A. Training of the UBM with healthy speakers using the EM

Adaptation of the UBM to data of a pathologic speaker: The speaker model o

(blue). The distances between corresponding clusters represent the evaluatio

interpretation of the references to color in this figure legend, the reader is re
a Provox shunt valve (Atos Medical, H€orby, Sweden).31 Laryn-
gectomy was performed at least 1 year before recording.
Patients with a recurring tumor growth or metastasis were
excluded from this study. The speakers of the PL data set had
already undergone PL and were recorded on average 2.4 years
after surgery.

Stimuli

Each patient was recorded while reading the German version of
‘‘The North Wind and the Sun.’’32 The text is standardized and
phonetically rich, which allows as many different phones as
possible to be captured. The recordings were performed with
PEAKS,33 a recording and speech analysis tool developed at our
working group, and a DNT Call4U headset (DNT, Dietzenbach,
Germany) with an attached analog-to-digital converter. Pulse
code modulation with a sampling frequency of 16 kHz and
16-bit amplitude resolution was used. The mean duration of
the TE speakers’ reading of the text was 74 seconds, whereas
the PL speakers took approximately 66 seconds to read the text.

Perceptual evaluation

Five speech experts, with at least 5 years experience, partici-
pated in the perceptual evaluation experiments. Three different
holistic impressions, that is, evaluations regarding the whole ut-
terances, were rated: voice quality, strain, and intelligibility.
Voice quality was measured regarding a 10-cm visual analog
scale in which the label for a very good voice was at the left
end of the scale at position 0.0 cm. Vocal effort and intelligibil-
ity were rated on five-point Likert-based34 scales; the scales of
algorithm: The clusters of healthy speakers act as reference (blue). B.

f a pathologic speaker (red) differs from that of the reference speakers

n difference between the pathologic speaker and healthy speakers. (For

ferred to the web version of this article.)



FIGURE 2. Composition of the GMM-based supervector by concat-

enation of the mean vectors. The supervector concept is an appropriate

representation to reduce dimensionality. In this example, the acoustic

feature dimension is two and the number of Gaussian densities is

six. The final supervector then has a dimension of 12.

Tobias Bocklet, et al Automatic Intelligibility Assessment by Acoustic Modeling 3
these criteria were reciprocal. A ‘‘very high’’ intelligibility rat-
ing referring to a better voice was converted to ‘‘1’’ for compu-
tation purposes. A ‘‘very high’’ strain was converted to ‘‘1’’ as
well. Each rater used the same type of headset (Plantronics
.Audio 650 with built-in analog-to-digital converter; Plan-
tronics, Santa Cruz, CA) for listening. In this way, similar eval-
uation conditions, which were independent of the computer
hardware used, could be achieved. The raters of the two data
sets differed, which does not allow a direct comparison of the
two patient groups in terms of perceptual evaluations. However,
this work focuses on an introduction of a completely automatic
voice and speech assessment technique and its comparison with
perceptual evaluations of human expert listeners. Hence, the
system was applied to data of different raters, different data
sets, and different voice and speech evaluation criteria to test
its ability to measure the degree of voice disorders in patients
after laryngeal cancer.
Automatic acoustic modeling

The automatic voice and speech assessment system is based on
statistical speaker modeling of the persons’ acoustic space. It
assumes that the acoustics of pathologic speakers differ from
FIGURE 3. Principle of the SVR system. The training sequence is shaded i

quence, a speakermodel (GMM) is created for every training speaker usingMA

sequence, a GMM for test speaker T is created. The supervector of this speak

criterion of speaker T. (For interpretation of the references to color in this figu
the acoustics of reference speakers without any pathology.
The degree of pathology can be measured as distances in the
acoustic space between the pathologic speaker model and a ref-
erence speaker model. Speakers with a higher degree of pathol-
ogy have a higher distance to the reference speakers than
speakers with a lower degree of pathology.

First, a computational representation of the speech signal
must be found. This is a sequence of feature vectors that char-
acterize the speech signal within a short time window. Mel-
frequency cepstrum coefficients (MFCCs), feature vectors
that are well known in the field of automatic speech and music
processing,35 are used within this work. To compare speakers
and their acoustics, modeling from the utterances (with variable
length) to speaker-dependent models (with fixed length) must
be performed. This is achieved by an unsupervised clustering
that projects the MFCCs of speakers to speaker models. These
speaker models are statistic representations of the clusters
within the acoustic space in terms of Gaussian distributions.
These speaker models are then correlated with the different
voice and speech evaluation criteria, and prediction models
for each of the criteria are trained using support vector
regressions (SVR).36

Feature extraction: the acoustic space. MFCCs are the
standard features in the field of automatic speech processing.
These features are based on the frequency perception of humans
and perform a frequency analysis of the speech signal. Transfor-
mation of the speech signal into the spectral domain is per-
formed by a discrete Fourier transform. The speech signal is
decomposed into a series of short stationary segments by a win-
dow with a size of 20 milliseconds to account for the typical
phoneme duration. The power spectrum is computed afterward.
To reduce the number of frequency bands, triangular filters
based on the mel scale are used to create 25 spectral coeffi-
cients. These coefficients are logarithmic with respect to the
loudness perception of the human ear. The cepstral coefficients
are computed by an inverse discrete cosine transform of the mel
n yellow, and the actual voice testing is shaded in red. In the training se-

P. The supervectors are extracted, and a regression is trained. In the testing

er is used within the trained regression to evaluate one voice or speech

re legend, the reader is referred to the web version of this article.)



TABLE 2.

Interrater Correlation of One Rater to theMean Value of the Four Remaining Raters for All Rating Criteria on the TEData Set

Criterion

Rater 1 Rater 2 Rater 3 Rater 4 Rater 5 Mean

r r r r r r r r r r r r

Strain 0.71 0.71 0.80 0.81 0.84 0.85 0.84 0.85 0.73 0.75 0.78 0.79

Voice quality 0.87 0.87 0.87 0.86 0.84 0.83 0.87 0.86 0.80 0.80 0.85 0.84

Intelligibility 0.82 0.83 0.85 0.83 0.81 0.80 0.80 0.80 0.77 0.76 0.81 0.80

The last two columns contain the mean value of the correlations for the single raters.
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spectrum coefficients. This step decorrelates the coefficients.
The final feature vector is then formed by an extraction of the
first 12 coefficients and their first- and second-order derivatives.
In this way, a feature vector with dimension D¼ 36 is created.

Speaker modeling. The acoustic features span an acoustic
space that is characteristic for a speaker. Similar acoustic fea-
tures build clusters in the acoustic space. Each cluster represents
a different phonetic unit, that is, one particular form of a pho-
neme. It is defined by a Gaussian distribution in the form of

PðcjmÞ ¼ 1

ð2pÞD=2jSjð1=2Þ
e�ð1=2Þðc�mÞTS�1ðc�mÞ

where m denotes the mean vector of the Gaussian density and S
denotes the covariance. The sum of all acoustic clusters forms
a speaker model and can be written as a weighted mixture of
the Gaussian densities

PðcjlÞ ¼
XM

i¼1

uipiðcjmi;SiÞ

M denotes the number of clusters, that is, Gaussian densities. ui

denotes the weights for each density i, i¼ 1, ., M. To create
these speaker models, a single speaker-independent Gaussian
Mixture Model (GMM) is trained on data of healthy speakers,
the so-called Universal Background Model (UBM). This model
acts as a referencemodel of speech uttered by normal nonpatho-
logic voices (Figure 1A). The Gaussian distributions of this
model are trained in an unsupervised iterative manner by the
Expectation-Maximization algorithm37 in five iterations. The
number of Gaussian densities has to be specified beforehand.

The actual speaker model is derived by adapting the param-
eters of the UBM using the speech of a pathologic speaker by
TABLE 3.

Interrater Correlation of One Rater to theMeanValue of the Four

Criterion

Rater 1 Rater 2 Rater

r r r r r

Strain 0.80 0.81 0.69 0.69 0.85

Voice quality 0.85 0.86 0.81 0.82 0.88

Intelligibility 0.82 0.82 0.76 0.76 0.79

The last two columns contain the mean value of the correlations for the single ra
a kind of Bayesian adaptation, the maximum a posteriori
(MAP) adaptation.38 MAP adapts the density parameters of
the UBM to the acoustic feature vectors (MFCCs) of a specific
pathologic speaker in a single iteration step. The basic idea in
the adaptation approach is to derive the model of the pathologic
speaker by updating the well-trained parameters in the UBM
(Figure 1B). This results in a speaker-specific GMM with the
parameters (ui, mi, Si, i¼ 1, ., M). To reduce the dimension-
ality of the speaker model and find a computationally more ef-
fective representation, only the mean vectors mi are used to
represent a speaker. This is achieved by a straightforward con-
catenation of theMmean vectors mi, i¼ 1,.,M, which results
in a so-called GMM-based supervector. The extraction se-
quence of the GMM-based supervectors is depicted in Figure 2.

Regression system for voice and speech parameters.

The prediction system is then trained on the GMM-based super-
vectors created. The system models the interrelation of the
GMM-based supervectors and the voice and speech evaluation
scores of the human experts. This interrelation can be described
by a regression in which one set of variables—the GMM-based
supervector—is correlated with another variable, for example,
the intelligibility rating of human experts. In the case of a linear
regression, this pair of variables is modeled linearly by an affine
function. Rather than linear regression, SVR is used for predic-
tion. It depends on a subset of all the data pairs. The cost func-
tion for building the model ignores any training data close to the
model prediction. For objectivity reasons, the arithmetic means
of the perceptual evaluations across all raters are used as
‘‘ground truth’’ for the automatic system. Each evaluation crite-
rion, that is, strain, voice quality, and intelligibility, is described
by a different regression. The other parts of the system remain
unchanged. The system performs the evaluation in real time.
The result is available immediately after recording (Figure 3).
Remaining Raters for All Rating Criteria on the PL Data Set

3 Rater 4 Rater 5 Mean

r r r r r r r

0.85 0.86 0.86 0.84 0.85 0.81 0.81

0.89 0.91 0.90 0.87 0.85 0.86 0.86

0.79 0.86 0.86 0.82 0.84 0.81 0.81

ters.



TABLE 4.

Human-Machine Correlation of the Automatic System

and theMean Value of All Raters for the Different Criteria

on the TE Data Set

Criterion r r

Strain 0.81 0.80

Voice quality 0.86 0.88

Intelligibility 0.83 0.85

FIGURE 4. Strain evaluations: perceptual versus automatic scores

(TE; r¼ 0.81; r¼ 0.80). The x-axis refers to the perceptual evalua-

tions (mean value of five raters), and the y-axis denotes the scores of

the automatic system. The dotted line denotes the linear regression

line between perceptual and automatic evaluations.
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Statistics

A language and environment for statistical computation called
R39 was used for statistical analyses. Pearson’s (r) and Spear-
man’s (r) correlation coefficients were used to measure the in-
terrelation between different measures. For the comparison of
perceptual evaluations, the scores of one rater were compared
with the mean value of the four remaining raters. The correla-
tion between the automatic system and the perceptual evalua-
tions was calculated with respect to the average perceptual
score of the five raters. Significance tests indicated whether
the evaluations of the automatic system and the perceptual eval-
uations of the expert listeners were notably different.
RESULTS

Perceptual evaluations

Tables 2 and 3 show the interrater correlation for all rating cri-
teria on the TE and PL data set, respectively. Each rater was
compared with the mean value of the remaining raters. None
of the differences between the rater correlations were signifi-
cant (P > 0.1).

Automatic acoustic modeling

The correlations between the automatic system and the average
perceptual analysis on the TE and PL groups are summarized in
Tables 4 and 5, respectively. Figures 4–6 show the correlation
for each criterion in detail for TE speakers; Figures 7–9 present
it for the PL speakers.

Experiments in this study did not show significant differ-
ences at P < 0.05 when different numbers of Gaussian densities
were used for speaker modeling. For this reason, all results are
reported for speaker models with 256 Gaussian densities.
DISCUSSION

An automatic method for acoustic speaker modeling was ap-
plied to three voice- and speech-related evaluation criteria:
TABLE 5.

Human-Machine Correlation of the Automatic System

and theMean Value of All Raters for the Different Criteria

on the PL Data Set

Criterion r r

Strain 0.80 0.79

Voice quality 0.84 0.84

Intelligibility 0.82 0.82
strain, voice quality, and intelligibility. The system has been
evaluated on two different data sets of speakers after laryngeal
cancer. The ground truth for the automatic evaluations was the
perceptual evaluations by expert listeners. Perceptual evalua-
tions of different raters are never completely consistent; raters
always deviate to a certain degree. This holds for intra- and in-
terrater consistency. Nevertheless, perceptual evaluations are
still a widely used standard technique for voice and speech eval-
uations. To compensate for the differences in evaluations, the
arithmetic mean value of the five expert raters was used. The
problem of intrarater variability does not apply for automatic
evaluation systems because one specific recording always
achieves the same result when evaluated several times.

We intentionally did not use Cronbach’s a40 or Cohen’s k41

for interrater agreement measurement because a and k are de-
fined for integer values only. The arithmetic mean of the raters’
scores and the real-valued automatic measures, however, are
continuous values. To allow a fair comparison between the
FIGURE 5. Voice quality evaluations: perceptual versus automatic

scores (TE; r¼ 0.86; r¼ 0.88). The x-axis refers to the perceptual eval-

uations (mean value of five raters), and the y-axis denotes the scores of

the automatic system. The dotted line denotes the linear regression line

between perceptual and automatic evaluations.



FIGURE 6. Intelligibility evaluations: perceptual versus automatic

scores (TE; r¼ 0.83; r¼ 0.85). The x-axis refers to the perceptual eval-

uations (mean value of five raters), and the y-axis denotes the scores of

the automatic system. The dotted line denotes the linear regression line

between perceptual and automatic evaluations.

FIGURE 8. Voice quality evaluations: perceptual versus automatic

scores (PL; r¼ 0.84; r¼ 0.84). The x-axis refers to the perceptual eval-

uations (mean value of five raters), and the y-axis denotes the scores of

the automatic system. The dotted line denotes the linear regression line

between perceptual and automatic evaluations.
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agreement of the human expert raters and the automatic system,
Pearson’s and Spearman’s correlation coefficients were calcu-
lated between one rater and the mean value of the four remain-
ing raters. The interrater results in Tables 2 and 3 show high
average correlations (r, r� 0.78) for the different evaluation
criteria on the two data sets. However, there is some divergence
for some specific raters. Note that the perceptual evaluations
were performed by speech experts of the same department.
Studies focusing on perceptual evaluations show even higher
interrater variabilities.13,42,43 In a clinical environment, this is
a problem when only one expert’s opinion can be obtained.
Measuring the progress of a therapy over a longer temporal con-
text requires evaluation of the same expert listener, which is not
always possible.

For both data sets, the correlation between the automatic
system and the perceptual evaluations is r, r� 0.79 (Tables 4
and 5). These correlations are in the same range as the expert
ratings; the differences are not significant. The usability of
FIGURE 7. Strain evaluations: perceptual versus automatic scores

(PL; r¼ 0.80; r¼ 0.79). The x-axis refers to the perceptual evaluations

(mean value of five raters), and the y-axis denotes the scores of the

automatic system. The dotted line denotes the linear regression line

between perceptual and automatic evaluations.
the system has been shown by high correlations for different
data sets, different raters, and different evaluation criteria.
This holds for vocal parameters, such as voice quality and vocal
effort, and for speech parameters, such as intelligibility.
The proposed system evaluates a speaker by a statistical

model based on short-time acoustic analysis. If the acoustic fac-
tors of influence, for example, background noise, type of micro-
phone, or spoken text, are kept constant for each recording, the
degrees of freedom of the speaker models are reduced to the
identity of the speaker and his/her voice and speech character-
istics. In the training of the system’s regression component, the
system learns which parameters to rely on for evaluation. The
speaker-dependent factors of the speaker model are excluded
implicitly in the training step of the regression component.
The system evaluates a spoken text rather than sustained

vowels. Automatic evaluations on sustained vowels often focus
on an analysis of the F0 and its variations in time and amplitude
(jitter and shimmer). The problems regarding a robust F0
FIGURE 9. Intelligibility evaluations: perceptual versus automatic

scores (PL; r¼ 0.82; r¼ 0.82). The x-axis refers to the perceptual eval-

uations (mean value of five raters), and the y-axis denotes the scores of

the automatic system. The dotted line denotes the linear regression line

between perceptual and automatic evaluations.
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extraction for highly pathologic voices30 do not apply with the
proposed system. The fact that the speaker models contain
acoustic information without temporal order basically implies
that the temporal information is not taken into account for the
evaluations. The system rather focuses on different phonetic
subclasses represented by the Gaussian densities. This makes
the system robust against reading errors and allows a more de-
tailed automatic analysis of different phonemes. Future work
will focus on this aspect.
CONCLUSION

This article introduced a novel automatic system for evaluations
of acoustic parameters of connected speech, which are one of
the aspects for voice and speech evaluation. The results of the
analysis are available immediately after the speech recording
has been obtained. The method is not biased by varying intra-
rater correlations and always produces the same evaluation
score for identical recordings. Further applications, such as in-
teractive training tools for home use for affected persons, are
also possible with an adequate graphical user interface. The ap-
proach is not intended to replace perceptual evaluations. In-
stead, it can be used in clinical practice as objective support
for therapy outcome assessment and therapy control. It can
act as a second objective opinion for acoustic analysis when
multiple listeners are not available or too expensive. This saves
time and money, and the speech therapists can spend more time
on interacting with the patients.
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