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Abstract—Fluoroscopic overlay images rendered from pre- performed in electrophysiology (EP) labs usually equipped
operative volumetric data can provide additional anatomical with modern C-arm X-ray systems. These devices often pro-
details to guide physicians during catheter ablation procedures vide 3-D tomographic imaging to facilitate inter-procealur

for treatment of atrial fibrillation (AFib). As these overlay . . . .
images are often compromised by cardiac and respiratory motion, 3-D soft-tissue imagingl[6],[[7],[18],[]9]. Electro-anatéen

motion compensation methods are needed to keep the overlaymapping systems are also available to visualize the cathete
images in sync with the fluoroscopic images. So far, theseposition in 3-D within a registered 3-D data skt [10],1[11],
approaches have either required simultaneous biplane imaging [12], [13]. While they promise to save X-ray dose, they add
for 3-D motion compensation, or in case of monoplane X-ray eftort and cost to the procedure. In addition, mapping sgste

imaging, provided only a limited 2-D functionality. To overcome irtual lit t d thev d t all for inst
the downsides of the previously suggested methods, we propose g are virtual reality systems, an €y do not allow for instan

approach that facilitates a full 3-D motion compensation even if confirmation of catheter positions under real-time X-ray. |
only monoplane X-ray images are available. To this end, we use some instances, they may even be off with respect to the
a training phase that employs a biplane sequence to establish underlying anatomy [14].

a patient specific motion model. Afterwards, a constrained Augmented fluoroscopy, overlaying 2-D renderings obtained

model-based 2-D/3-D registration method is used to track a .
circumferential mapping catheter. This device is commonly used from either CT, MR, or C-arm CT 3-D data sets onto

for AFib catheter ablation procedures. Based on the experiments live fluoroscopic images, can facilitate more precise real-
on real patient data, we found that our constrained monoplane time catheter navigation and also reduce X-ray daése [15],
2-D/3-D registration outperformed the unconstrained counter@rt  [16], [17]. Unfortunately, catheter navigation under aeged
and yielded an average 2-D tracking error of 0.6 mm and f,5r05copy is compromised by cardiac and respiratory motio

an average 3-D tracking error of 1.6 mm. The unconstrained A first h to tackle thi bl b idi ti
2-D/3-D registration technique yielded a similar 2-D performance, Irst approach 1o tackie this probiem by providing a motion

but the 3-D tracking error increased to 3.2 mm mostly due COmpensated overlay was proposedlin [18]J [19]. It involved
to wrongly estimated 3-D motion components in X-ray view tracking of commonly used circumferential mapping (CFM)
direction. Compared to the conventional 2-D monoplane method, catheters. As atrial fibrillation therapy takes place in the
the proposed method provides a more seamless workflow by \;sinity of the circumferential mapping catheter, traakiof

removing the need for catheter model re-initialization otherwise thi thet b dt liabl t th fi
required when the C-arm view orientation changes. In addition, IS catheter can be assumed to refiably capture the motion o

the proposed method can be straightforwardly combined with the the relevant treatment region if the device has been firmly
previously introduced biplane motion compensation technique to positioned. Fortunately, we can count on the physicians to
obtain a good trade-off between accuracy and radiation dose provide a stable wall contact, as it is in their best inter@sh-

reduction. erwise complete isolation of the pulmonary veins (PVs) may
Index Terms—2-D/3-D Registration, Ablation, Atrial Fibrilla-  fail due to undetected residual PV-atrial electrical catioas.
tion, Electrophysiology, Motion Compensation Our previously proposed method involved a 3-D model of the
catheter and applied an unconstrained 2-D/3-D registratio
I. INTRODUCTION approach to align the catheter model to biplane fluoroscopy

images. An initial registration is performed manually t@al
e 3-D data to 2-D fluoroscopy with contrast injection show-

the target organ. Once the 3-D overlay moves in sync with

Sincg the first treatment approaches ysing radio-frequeq fluoroscopic images, catheters can be guided to anasdmi
Eblanons by Ha;staguterret et ?IEI[t_Z], th|s mt?th?d has n(c)j"gtructures otherwise not visible under fluoroscopy with enor
thecome ?r.ll accepted trea rgertwh Otp lont,)lmt_par icular, dwhaa@ ‘confidence. Another approach to register a pre-operatitee da

erapy fails [[3], [4], [3]. Catheter ablation proceduree at0 biplane fluoroscopy had been proposed before [20]. We
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TRIAL fibrillation (AFib) is the most common arrhyth-
mia. It leads to an increased stroke risk for patients [1;
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the live fluoroscopic images to be in sync with the cardiac and
respiratory motion, observed by localizing the 2-D mapping
catheter.

In EP labs equipped with biplane C-arm systems, often only
one image plane is used at a time to reduce the radiation
exposure to the patient. In this case, the methods suggested
in [18] is not applicable. The 2-D method described[inl [21] is
not ideal either, as it requires re-initialization of thethegter
model if the C-arm projection geometry changes during the
intervention. Even though model re-initialization is not a
very time consuming step, it does interrupt the workflow. o )
To overcome the shortcomings of both methods, we propdeg 1+ A sketch of the 3-D elliptical catheter model generali
to apply constrained 2-D/3-D registration to perform motio

compensation. Our approach is based on a 3-D catheter moﬂ% first is the main axis of the observed motion field, and

:nt? af.i:.nesm?]if: psaélfnt-sgcetcggc 3r?8t'§2ﬂ:1(t)gflr:%%rgle?;gu.r:the second is perpendicular to the viewing direction and the
ining phase. up . qUIERin motion axis. In the last section, we discuss our results
only a single biplane X-ray image and follows the metho nd consider future directions

explained in [[18], [[18]. A similar approach for coronary
interventions had been proposed lin][22]. The training phase
estimates the motion of the CFM catheter at the PV using a
biplane sequence in which the mapping catheter is trackedn this section, we summarize the 3-D catheter model
using an unconstrained 2-D/3-D registration. The principgeneration from two views using manually selected points as
motion axis is determined from the trajectory establishédput. This method was proposed in[19]. The method requires
during the tracking training phase. This axis is consideredat points are set on the catheter displayed in a singlerxpl

a patient-specific motion model. Since the main axis of théray acquisition. Beyond that, this method does not put any
motion by itself is not sufficient to provide a good searchestrictions on the operator, i.e., no special parts of gibater
space for a constrained registration, another axis is medtie need to be selected. Put differently, 2-D poipts, pg € R?
decided use a vector perpendicular to the viewing direcimh are selected on the elliptically-shaped part of the cathete
the main axis, because the search region for the constraieadh image plane. The two image planes are denoted by
registration can then be reduced to a 2-D search space,esparand B. Two-dimensional ellipse€C,,Cg € R3*3 in the

by the principal axis and a vector parallel to the image planienage planes are then fitted to these points using the aigorit
This allows us to not only track motion that is parallel to then [23]. If the 2-D point were on a perfect ellipse, the magsc
image plane, but also to capture some depth information witfould satisfy the following equations

respect to the pre-acquired motion model. Our constrained oy~

approach can be simply stated as dimension reduction of the PACapa = 0 @)
search space from 3-D to 2-D. psCeps = 0 )

The main contribution of our paper is the estimation of \?vith the 2-D pointsp,, andpg in homogeneous coordinates as

patient-specific motion model for the circumferential miagp ~r’* — (p%,1) andp — (p%, 1). For ellipse fitting, at least six

catheter positioned at the pulmonary vein considered fBf . R
ablation tc?obtain pulmonary Sein isola’%;on (PVI). The nooti points are required. The method in]23] performs ellipsinfit

model is used to generate a 2-D search space which is umeg least-squares sense if more than six points are pravided
g P i constraint is used to ensure that the solutions@yr and

for a constralr_1ed Z'D/.3'D motion compensation. . Cg are elliptical [24], [23]. After the ellipses in the image
The paper is organized as follows. In the first section, th? . . ot .
3-D catheter model set-up required for motion compensati [fnes are fitted, ellipse reconstrucnon_m 3-D is perfaime
using the method proposed [n]25]. To this end, two 3-D cones

is briefly summarized. This catheter model is used for t Qs € R4 are computed using the projection matrices
model-based 2-D/3-D registration, with the catheter modg*’ +5 3% P g broJ
A, Pp € R°*%, The cones are spanned from the cameras

representing the 3-D information. The second section fegus ptical centers to the ellipses on the image planes, se@Fig.

on the image processing techniques and catheter segmenta . T :

. I tails on C-arm projection geometry are given[in! [26]. Two
A distance transform of the catheter segmentation is us&?nes are comouted as quadrics b

as cost function. At the same time, it is the basis for thé P q y
registration step. Thereafter, the patient-specific nmotiedel Qar = P}QC APA (3)

is pre_sented. _Thls model_ is estlm_ated during a tra|n|n_g @has Qs = PLCyPs. (4)

in which the circumferential mapping catheter is trackeidgs

biplane X-ray imaging. The training is performed on a biglanThe quadricsQa,Qp € R*** are of rank 3. Every in-
sequence to obtain the main motion axis. In the fourth sectidersection of a plane with one of the cones yields a valid
the constrained 2-D/3-D registration based on the moti@olution of an ellipse in 3-D when projected onto the respect
model is introduced. Thanks to the estimated motion modéhage plane. Given two cones, there are two possible sokitio

motion compensation can be constrained to two dimensioy. calculating the two intersecting planes of the two 3-D
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II. 3-D ELLIPTICAL CATHETER MODEL
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cones[[25]. Intersecting the 3-D cones with the two 3-D plan®etween catheter and background are selected by the AdaBoos
yields two possible solutions. The more circular solutioalgorithm [28] and integrated into a classifier. The idea is
of the two ellipses in 3-D is assumed to be the corrett combine several weak classifiers, which only have to be
one [19], given the assumption that the pulmonary veisdightly better than chance, to form a strong classifier.hia t
are tubularly shaped and that the circumferential mappisgnplest case, a weak classifier amounts to a single feature
catheter is attached to the PV firmly. The 3-D model iand threshold. During training, weak classifiers are requiat
denoted asn; = (m; .., m;,, m; ., 1)T € R*in homogeneous evaluated on samples of a training set where the catheter has
coordinates with; € [1, N] and N is the number of model been annotated. The classifier minimizing the classifioatio
points. During our experiments, we found th&t = 50 is error is added to a linear combination of weak classifierd unt
sufficient to achieve good results. Increasing the number the overall error is below the desired threshold. After each
model points did not lead to improved results. This step seeiteration, the importance of individual samples is re-vinagl
to be performed only once. For a sketch of the reconstructitm put more emphasis on misclassified samples for the next
process, see Fifl 1. evaluation. A concise description is given [n][29].
Instead of single features and thresholds, we use classifica
I11. | MAGE PROCESSING tion and regression trees (CARTS) [31] as weak classifiers. A

Once the 3-D model of the catheter has been generated, o%@RT LS a Zmall trr]ee (r)]f TZ(ed Siz‘_e’ az i"l.Jitratfd in @(b)
monoplane fluoroscopic imaging is needed for the remaini% e?c node, at r?_i 0 E\S.;C_)Clzte wit a}_eatuﬂre Pt‘)‘*_]:t't'o
tasks of motion estimation and compensation. Comparecétof e Teature space. Through this decomposition, flexibisty

i d and objects with complex feature distributicens c
monoplane method i [21]]27], the newly proposed methgd“®as®
does not require manual re-initialization of the cathetedet ¢ handled. The value at the leaf represents the resporise of t

when C-arm angulation changes, minimizing user intertatcti%lass'f'.er an_lt_jhlndmatis elt??_r cath?ter (podsn;:/e) or glmd" d .
during interventions. negative). The number of five splits (and thus six leaves) in

a CART was found to perform best in our experiments. When
) using a smaller number, the discriminative power of the tree
A. Catheter Segmentation may be too small, which in turn requires a large number of
In order to segment the catheter in the fluoroscopic imagéiges for each stage. On the other hand, when using a larger
we first crop the input image with024 x 1024 pixels to a number of splits, the tree may over fit to the training data,
region-of-interest (ROI) with400 x 400 pixels around the limiting its applicability to the unseen test data.
projected center of the catheter model. The ROI size of Several strong classifiers, each consisting of weighted com
400 x 400 was chosen to make sure that we can always find thanations of CARTS, are organized into a cascadé [30] with
circumferential mapping catheter in all of our images. Jsinstages, see Fifl. 2{c). At each stage of the cascade, a sample
a different ROI size, or to be more specific, a higher sear@h either rejected or passed on to the next stage. Only if the
range would affect the runtime only. In the first frame, theample is accepted at the final stage, it is assumed to belong
position is known from the initialization step, and in alleth to the object. Since many background pixels can be rejected
subsequent frames, the tracking result from the previamdr at an early stage and since their number is large compared
is used. to the number of catheter pixels, this approaches reduees th
The catheter segmentation method needs to be reliable andhputational cost when applying the cascade for catheter
fast to allow motion estimation and compensation at the érarsegmentation. During training, the focus is on maintaining
rate of the EP procedure, which typically ranges between 1h@h true positive rate while successively reducing thedal
10 frames per second. We have decided on a combinatjwsitive rate, either by adding more weak classifiers to gesta
of Haar-like features and a cascade of boosted classifiavs by adding an entirely new stage. We aim at a true positive
AdaBoost [28] is generally regarded as one of the best offate of at least 99.5 % and a false positive rate of not more
the-shelf classifierd [29], and in combination with Ha&eli than 50 % per stage. A high true positive rate is required as
features has proven extremely successful, for exampleen th positive sample has to pass all the way down the cascade
field of real-time face detection [30]. Haar-like featured-c and must be accepted also by the last stage. When proceeding
culate various patterns of intensity differences. Somé&ufea from stage to stage, a true positive rate of 0.995 per stage
detect edges, whereas others focus on line-like strucands results in an overall true positive rate @b95" for N stages.
are useful for detecting thin objects such as the catheter.case of N = 4 stages, the expected true positive rate of
Examples of feature prototypes are given in [fig.]2(a). Actuthe whole cascade is about 98 %. For smaller true positive
features are generated by shifting and scaling the progéstypates, the overall rate of the cascade would quickly decline
within a predefined window. Thereby, contextual informatioBy setting the false positive rate to 0.5 per stage, we demand
around the center pixel is considered, which is important that each stage of the cascade halves the remaining number
differentiate between the catheter and background stegtu of false positives. In case oV = 4 stages, the expected
Haar-like features can be calculated efficiently througbgral overall false positive rate i8.5" = 6.25 % With a higher
images [[30]. false positive rate, more stages would be required to aehiev
Even for moderate window sizes, the number of generatad overall low false positive rate, whereas for a lower rate
features is large, about 40,000 for th& x 15 pixel window per stage, less stages but a more powerful strong classgfier p
we have chosen. The most suitable features for discrimmigatistage would have to be trained. A gold-standard segmentatio
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(a) Feature Types (b) Classification and Regression Tree (CART) (c) Cascade

Fig. 2. Feature types and classifier structure for cathetgmsntation: (a) Several Haar filter examples used for feautection; (b) Example of
classification and regression tree (CART) with five featuoelest, ..., 05 and six leavesyy, ..., aq; (c) Classifier cascade consisting bf stages with
strong classifiers, ... & x. Each strong classifigf; consists of a linear combination of weak classifiers, here TAR

of the catheter was used for training. A. Motion-Model Generation

The motion model is set up using a biplane 2-D/3-D
B. Image Post-Processing registration of the previously generated 3-D catheter rhode

Different types of circumferential mapping catheters mal biplane fluoroscopic images acquired during a training
be used for EP ablation purpose. They can differ in th@age. The images are processed as before, which leads to
number of electrodes as well as the thickness of the cathetBf distance transformed images for planelAr A ;, and for
To ensure that our method can deal with a wide varieBl@ne B,InT g, respectively, at time. We allow for a full
of catheters, we perform some post-processing on the s 9D search of the catheter model to get_ the best flt_ of the
mentation output from the learning-based catheter classificatheter model to each 2-D fluoroscopic image. In this case,
First, the catheter segmentation results are smoothed byn@ transformation matrix is written as

median filter. In our experiments, a kernel size ofx 5 10 0 7,
yielded the best results. Second, the smoothed segmentatio 01 0 r
is thinned using the method iA [32], so that the thickness of T.W=¢ 01 r ®)
the catheter no longer needs to be taken into consideration 000 1

in the following registration step. Third, in order to olstea
smooth representation of the circumferential mappingeatath with the translation parameters= (r, r,,7.)" and the index
for subsequent efficient registration, the distance tansf u for ‘unconstrained’. The cost function can be formulated as
for the skeletonized image is calculatéd|[33]. The distance R .
transform of an image calculates for every background pixel ~ * = @rgmin XZ: Iptas (Pa- Tu(r) -myy)
the distance to the c!osest object pixel. The resulting 'E:Tiag + Iprpy(Pp-T,(r) my,) (6)
denoted adpr. The image processing steps are summarized
in Fig.[3. with the projection matrices for image plane R4, and plane
B, P, as well as the 3-D catheter modeh,; ;, at time¢.

IV. PATIENT-SPECIFICMOTION COMPENSATION Optimization was performed using a multi-scale grid search

In the following section, we present our method for thgpproach [34]. The search space was sub-sampled and the

i : e . . region around the smallest cost function was used for a small
generation of a patient specific motion model. A short biplan

sequence is used to generate 3-D samples of the position ofgﬁarch grid. The projection matrix used during the training

) . . ; . . phase tracking is not required to be one of the projection
circumferential mapping catheter recorded during a tngini : . .
L . . . ._matrices used for model generation, i.e., the C-arm can be

phase. The principal axis derived from the sample positions . . .
; Lo . . oved in between catheter model generation and the training
is taken as main direction of PV motion. The motion mode . .

; . . . phase. The same holds for the actual motion compensation.
should be acquired in the same state (heart rate in sinus N .

. . . . iven the parameteis found by the nearest-neighbor search,
rhythm, arrhythmia) that will be present during the applima the catheter model can be updatedni,,; € R* b
of the motion model. In the next step, we apply a constrained” P il y
mode!-based 2-D/$-D registration to track the circumféegn . Vi:m g = Ty(F)  my,. 7
mapping catheter in 3-D using monoplane fluoroscopy. To this
end, the motion model estimated during the training phaBairing the training phase, the same transformafipsii) can
limits the allowed motion to two directions. The first motiorbe applied to the 3-D volumetric data set that is used for Bnag
is parallel to the principal motion axis. The second alloweaverlay. This way, a 3-D motion compensation can be shown
motion direction is parallel to the image plane, because tHering the training phase.
underlying motion vector is designed to be perpendicular to The patient specific motion model is calculated from the
the principal axis and the viewing direction. circumferential mapping catheter positions. To this e, t
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(b)

(d) (e) ®

Fig. 3. Image processing on a fluoroscopic image. (a) The adifioroscopic input image. (b) Cropped image around the regfenterest. (c) Segmentation
using a boosted classifier cascade. (d) Median filtered segti@nresult. (e) Skeletonized image. (f) Distance tramséa imagelp .
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0.7 T T T T T T T T T T T T T T T T T
— —e— Constrained — —e— Constrained
E 0.6 —e— Unconstrained E 6F —e— Unconstrained
£ 05F ~ £ 51 il
8 8
5 041 q 0 4r q
2 2
g 03 7 2 3 J
S S
o o
= 02 E =2 E
[a) o
& 0.1F 1 &> 1F 1
ol . . . . . . . . . . . . . ol . . . . . . . . . . . . .
40 43 46 49 52 56 58 61 64 67 70 73 76 79 40 43 46 49 52 55 58 61 64 67 70 73 76 79
Frame No. Frame No.
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Fig. 4. (a) 2-D tracking error of the constrained and unaaiséd approach for each frame of sequence # 19. (b) 3-D traakiror of the constrained and
unconstrained approach for the same sequence.

catheter model for every time step is reduced to the centerasfd the principal motion vector. This results in a 2-D search
the model by plane for the catheter model to be semi-parallel to the image
m, = 1 Zm“' ®) plane. The cost function is_ the distance tre}nsfdm of_the .
N - post-processed segmentation result. By using the mairomoti
vector, the 2-D search space also allows some depth esiimati
from a single X-ray view. A motion analysis of the left atrium
performed by Ector et all [35], revealed that the dominant
motion is in anterior-posterior and superior-inferioredition.
They found that the degree of rotation is much less, and they
attributed it to the deformation of the left atrium. Phyaits
position their C-arms in standard viewing positions, ulgual
B. Motion Compensation by Model-Constrained Registratiognly angulations in left-anterior-oblique (LAO), postar
In this section, motion compensation by model-constrainédterior (PA), or right-anterior-oblique (RAO) directicare
registration is introduced. The assumption for our apgtoagsed. Angulations towards cranial or caudal directions-are
is that only monoplane fluoroscopic imaging is availableét least to the knowledge of the authors - not common for
Our proposed constraint is the reduction of the 3-D searE procedures. If image acquisition is performed with the C-
space to a 2-D search space, by introducing a second feas#i® in an LAO, PA, or RAO position, most of the motion is
motion vector that is perpendicular to the viewing directiocaptured, as the motion of the left atrium is parallel to the

The principal axis for the catheter cent&rs is calculated by
a principal component analysis, representing the mainanoti
vector v, € R? with [|v,,||s = 1. For the motion model,
only the principal axis is considered, as tracking inaccieéis
during the training phase might produce outliers.
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Constrained vs. Unconstrained Registration — 2-D Error With and Without Motion Compensation
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Fig. 5. (a) Comparison of the 2-D tracking accuracy of the traised and unconstrained 2-D/3-D registration. (b) 3-Borefor constrained motion
compensation versus no motion compensation. (c) 3-D motion awsatien error obtained for constrained 2-D/3-D registrath comparison to unconstrained
2-D/3-D registration. (d) Comparison of motion compensatietween the constrained monoplane 2-D/3-D approach and penbi approach.

image plane. by 2-D forward projection of the 3-D model based on the
To carry out our constrained 2-D/3-D registration, we dénown projection geometry. This way, we can achieve a 3-D
termine the viewing directiorv, € R3 with ||v,|ls = 1 of motion compensation for monoplane fluoroscopic images.
the optical axis from the last row of the projection matrix
P < R*** [36]. The second vector required to estimate th&

second search direction, which is perpendicular to the ingw ) i )
direction and the main motion axis, is given by The results of the constrained registration are compared to

an unconstrained method that uses full 3-D translation as a
motion model. To this end, an unconstrained registration to
Any point on that plane can be represented by a line&onoplane fluoroscopy is performed. In this case, [Eq. 6 is
combination of these two vectoss, andv,,. This translation adapted to the monoplane case by rewriting it as

can be rewritten in matrix notation as R .
I = arg min > Ipr(P-Tu(r) mi,). (13)
K2

. Motion Compensation by Unconstrained Registration

Vp = Vi X V. 9

1 0 0 Avpe+ tme
T\, p) = 0 10 Avpy + prvm,y (10) Motion compensation is then performed usifido update the
8 8 é AUy, 2 —;/“)mfz catheter model as in EQl 7 and applying the same transforma-

tion to the 3-D data set used to generate the overlay images.
with v, = (vp7m,vp7y,vp,z)T andv,, = (vmx,vmyy,vmvz)T

and the index: for ‘constrained’. The objective function for V. EVALUATION AND RESULTS
the constrained registration is then defined using the riista
transformed image for image plane Apt o, Or plane B,
Ipt B- Inthe remainder of this section, the indicksindB are
omitted, andP stands either foil?, or Pp. The same holds
for Int:. The cost function for the constrained registratio
can then be stated as

In this section, we evaluate the performance of our proposed
motion-model constrained 2-D/3-D registration algoritfon
motion compensation and present the results. The tracking
accuracy of the constrained and unconstrained methods were
calculated by comparison to a gold-standard segmentation.
. For evaluation, 13 clinical biplane sequences were availab

At fiy = argrglinZIDT,t (P-T.(A\p)-m;,). (11) The fluoroscopic sequences were acquired during standard
M electrophysiology procedures. The circumferential magpi
Optimization was performed using a nearest-neighbor bearcatheter was placed at the ostium of the pulmonary vein durin
as for the training phasE[34]. Given the paramefersi;, the image acquisition. The catheter is usually firmly placed to
catheter model can be updatedrtg ;1 € R* by ensure a good wall contact. A suboptimal wall contact may
Vi miper = To(Ap i) - my (12) lead to un_detected _residual PV-atrial eIectripa_I conpesti
Pl c\Ats [t bt and potentially to an incomplete pulmonary vein isolatione
The same transformatid]ic(ﬂt, fi¢) is then applied to the 3-D gold-standard segmentation was available for each segquenc
volumetric data set that is used to compute the image overiag., the catheter was segmented by one expert observer in
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Motion Error in Viewing Direction
— T

— T T T T T T
[ Constrained
[ Error in Viewing Direction

each frame of the whole sequence. Our data was taken frc
six different patients at one clinical site. All X-ray sequees
were recorded on an AXIOM Artis dBC biplane C-arm systen
(Siemens AG, Healthcare Sector, Forchheim, Germany). Tt
training of the classifier was performed on a two-fold cros:
validation, i.e., the biplane sequence considered fouetian
was excluded from the training data set. For each sequence 00 0
3-D model was generated as described in Béc. Il. Afterward 12545 6T B e 1718192021 2225242525
the constrained method was evaluated by using each image @
plane of the biplane sequences independently. The franees us
for the generation of the motion model were excluded fron 12 Motian Compensafion Error in Viewing Direction _
evaluation. For the unconstrained approach, the same $rarr ol
were used for evaluation to arrive at comparable resulte. Tt
constrained method used a training phase of 50 % of the s
guence. The shortest sequence available comprised 10dram
and the longest 117. Individual sequences for training ef th
motion model were not available. To evaluate the influenc
of the number of frames used during the training phase, w L1213 14
took the three longest sequences available, consistingof 7
95 and 117 frames, respectively. The training phases far thi ®)
evaluation were chosen to comprise 5, 10, 20, 30, and A@. 6. Visualization of the motion compensation error in \ilggvdirection.
frames, respectively. The results are shown in Eig. 7. A 2@ TheT motion compensation error along the viewing _directtﬂnthe
. . . nstrained method. (b) The same graph for the unconstraindtbche
tracking error was obtained by calculating the average 28
distance of the projected catheter model to the gold-standa
segmentation. The comparison of the 2-D tracking accuracy 3
of both methods is shown in Fi§. 5(a). The unconstrained
method achieved an average 2-D tracking error of 0.574nm
0.31 mm. The performance of the constrained method did not
differ much and yielded a 2-D tracking error of 0.55 mm
0.34 mm. The frames of the training phase were not included.
Since the motion estimation and compensation is performed
in 3-D, and for each case we have biplane sequences to derive
the ground truth position in 3-D, a 3-D error can be estimated
as well. To this end, the tip of the circumferential mapping 0 5 10 2 20 40
catheter was manually localized in 3-D by triangulatiomiro tengih of Training Phase
two views. This can only be used E_lS an estlmatlpn for_tl'lk?g. 7. Mean 3-D tracking errot- standard deviation calculated over three
actual 3-D error. An accurate evaluation would require dhigsequences with 79, 95, and 117 frames versus different frambens used
resolution 3-D data set for each time instant. Such datadiging the training phase.
unfortunately not available. The 3-D trajectories of théheter
tip were taken as the gold-standard for the observed 3-D
motion. For the 26 tested sequences, the observed motfidnis question is especially interesting, as only one previo
was 4.5 mm+ 2.4 mm. The constrained motion compenframe is considered when tracking the current frame. In
sation approach yielded a 3-D tracking error of 1.58 mim particular, the tracking result of the previous frame isduse
0.95 mm. The unconstrained approach performed consigerafdr cropping the region-of-interest in the current framea#t
worse with an average 3-D error of 3.21 min 1.62 mm. from that, all frames are treated independently. For exampl
Even though the constrained motion compensation meththe 2-D tracking error for sequence # 19 is given in Fig.]4(a).
performed well, the gold-standard biplane method[in [37] Both the unconstrained and the constrained approach &chiev
still superior regarding the 3-D accuracy (0.7 mnD.4 mm). comparable results with the constrained method vyielding a
However, its better accuracy comes at the cost of increasdigihtly higher 2-D error. Specifically, in this particulae-
X-ray dose. A comparison of our constrained approach agdence the 2-D tracking error was 0.36 mim0.12 mm for
the biplane approach is given in Fig. §(d). In addition, the constrained method and 0.26 mm 0.09 mm for the
comparison of several motion compensation methods uiiiziunconstrained approach, respectively. The constraingdade
2-D/3-D registration is given in Tablglll. This includes thejielded a 3-D tracking error of 1.24 mm: 0.64 mm, in
proposed constrained method, the unconstrained methodcasiparison to the 3-D tracking error of 2.83 mm1.34 mm
well as the previously introduced reference biplane methofbr the unconstrained method. Both methods did not suffer
in [37] and [19]. from drifting issues, suggesting that our model-based 2-/
As drift is an often discussed issue when evaluating trackimegistration using a pre-generated 3-D catheter modebissto
methods, we also considered the tracking error over timeith respect to sporadic tracking errors. To further evidua
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Fig. 9. 2-D tracking error versus the number of stages in tlosteal classifier Fig. 10. Computational time of the catheter segmentation set®inumber
cascade. of stages in the boosted classifier cascade.

how robust our method behaves against catheter model errgon E5440 with 2.83 GHz.
the longest available sequence was chosen and the respectiv
3-D model was disturbed by Gaussian noise. Afterwards,
tracking was performed and evaluated. The results are shown
in Fig.[8. The initialization of the catheter model used for motion

The error along the viewing direction was also computedompensation is required only once. The 2-D/3-D registra-
Since this direction is excluded in the search space for thien incorporates the projection matrix, so no model re-
constrained method, the error along the viewing directi@s winitialization is required if the viewing direction of a Gra is
the largest among all directions, averaging at 1.03 mim changed. Although, model re-initialization is usually tiote
0.94 mm. However, the unconstrained method also had dsnsuming, it does interrupt the workflow because manual
largest error along the viewing direction with an average afteraction involving the user is required. In fact, whileet
2.99 mm+ 0.43 mm, see Fif. 6(b). This confirms that estimatatheter model can be calculated in less than 55 ms on our
ing object depth from monoplane fluoroscopy is a challengii®C platform, user feedback needed for model initialization
task as, e.g., pointed out ih_[38]. It also confirms that thearries the risk that things are slowed down consideratiie. T
constrained approach is a reasonable choice for trackingqa@uracy of the model generation has already been evaluated
mapping catheter put in place firmly at a pulmonary veim [19]. To further investigate the effect of catheter model
ostium. errors, one sequence was tested with noisy input models.

The proposed method uses a boosted classifier cascdsl@ussian noise with zero mean was used to disturb the
To evaluate how many stages in the cascade are neededniodel in 3-D. The results are shown in F[d. 8. It took a
achieving good motion compensation results, an experimestandard deviation of more than 3.0 mm to trigger tracking
using the constrained method was performed. The resulslures. And even then, they occurred in one image plane
are shown in Fig[19. With an increasing number of stagesnly demonstrating that a good view on an inaccurate cathete
the tracking accuracy improved. Using less than three stageodel may be able to work around this problem - only up to
yielded unsuccessful tracking results on our data set. vdlecoa certain degree of noise, of course. During our experiments
ing to our results and considering the fact that by using toee found that a catheter model consisting of 50 points yitlde
many stages, we run the risk of overfitting the model to thgood results. Increasing the number of model points further
noise in the training data, we propose to dsstages in the did not provide an increase tracking accuracy. Such a aathet
cascade. All results shown in this paper were obtained usimgpdel along with a disturbed catheter model is shown in
4 stages. Fig.[12.

The number of stages used in the cascade could also b&he 2-D tracking error of our proposed method is in the
addressed by looking at the time required to estimate thame range as that for the 2-D reference methad [21], [27]. Bu
motion for one frame. Fast and accurate methods are desiiestead of performing only a 2-D/2-D registration, we nolyre
for interventional applications. We measured the time in noh a constrained 2-D/3-D registration involving a 3-D céghe
for each frame and calculated the average, the minimum amddel as well as a motion model. The advantage of utilizing
the maximum. The results of the computational time versas3-D catheter model is that catheter model re-initialoati
the number of stages are given in Fig] 10. An example fean be avoided when the C-arm angulation changes during
segmentation results depending on the number of stages uedintervention. Nevertheless, a sole 2-D approach may be
for classification is shown in Fig—l1. Besides the runtimihe only option when only a monoplane fluoroscopic system
of the classification, the runtime of all components of ous available, because the reconstruction of the 3-D cathete
presented algorithm are also of interest. They are statedniwdel requires at least two views in the same cardiac cycle
Table[l. Our time measurements were performed on an Inteid breathing phase. The computation of the motion model

VI. DIscussION ANDCONCLUSIONS
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2-D Tracking Error by Noisy Catheter Model
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Fig. 11. Segmentation results for different number of castafiee segmentation results shown here are smoothed by a métian(d) Cropped image
used for segmentation. (b) Segmentation result with one staglee cascade. (c) Segmentation with two stages. (d) Segtizentaith three stages. (e)

Segmentation with four stages.

TABLE |
RUNTIME OF ALGORITHM COMPONENTS
[ Runtime ]

Components Runtime in [ms]
Segmentation ~ 42 ms
Median <1ms
Skeletonization ~ 47 ms
Distance Transform <1ms
Constrained Registratiol ~ 17 ms

Effect of Noise on Catheter Model

30

25+

20+

154

104

Fig. 14. Comparison between a catheter model with and withoisen The
noisy catheter model was disturbed by Gaussian noise with mean and a

standard deviation of 3.0 mm.

—@— without Noise
—@— with Noise (0 = 3.0)

m >_50 o

TABLE Il

COMPARISON BETWEEN SEVERAL METHODS ON MOTION COMPENSATIONSING 2-D/3-D

REGISTRATION

Method Comparison ]

Constrained | Unconstrained 371 [19]

Monoplane Monoplane Biplane | Biplane
2-D Error: 0.6 mm 0.6 mm 0.8 mm | 1.0 mm
3-D Error: 1.6 mm 3.2 mm 0.7 mm | 0.8 mm

- if available - using a short biplane sequence. This sequenc
might already be sufficient to set up our proposed motion
model. As four pulmonary veins are to be ablated during
the procedure, it might be necessary to train four individua
motion models, i.e., one for each of the PVs. Evaluating the
3-D tracking error with respect to number of frames used
during the training phase, we conclude that our method is
insensitive to the length of the training phase, as shown in
Fig.[. Even though a short sequence might be sufficient to
estimate the principle direction of the motion, a full breag
cycle should be used for best results. For example, if the
patient is consciously sedated, the physician could ask the
patient perform a deep inhale and exhale during the training
sequence for the motion model. Using general anesthega, th
might not be required.

Our proposed method is able to achieve a 3-D accuracy
of about 1.6 mm. Unfortunately, there is hardly a statement
by a physician about the amount of error that is clinically

requires a training phase. We used 50 % of the availaldeceptable. For cardiac applications though, 2 mm seems to
biplane sequence to compute the principal motion axis. be an accepted threshold [39]. Nevertheless, to reduce-he 3
clinical practice, this could be included into the workflodt. error, one could employ simultaneous biplane imaging which
the beginning of each AFib ablation procedure, the signals@mes at the cost of a higher dose for patient and the medical
the PVs are documented and the correct position of the circustaff [37]. As physicians are used to 2-D projection images
ferential mapping catheter is verified by contrast injecttmd and the 2-D error is lower, it is an open question whether a



PUBLISHED IN:IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 31, NO. 4, PAGES: 870 -88, APRIL 2012 10

(@) (b)

Fig. 12. A comparison showing the difference whether or notienotompensation is applied on the fluoroscopic overlay. (a¢ ®ame of sequence 17
without motion compensation. (b) The same frame of sequence th7mdgtion compensation.

(@) (b)

Fig. 13. Visual inspection of the motion compensation methajl.gne motion compensated frame of one sequence with 3-D ovedayg contrast
injection close to one pulmonary vein. (b) The same frame wittioe: 3-D overlay.

3-D error of 2 mm can be accepted or not. It seems as ifvisible because the size of the overlay would only change
clinical evaluation of the proposed method would have to tstightly. Nevertheless, 3-D motion errors in X-ray viewing
performed in order to evaluate the clinically required aacy. direction are a major contributing factor why the uncoriagd
L ) ) method yields significantly worse results, see Fig.]5(c)r Ou
The limitation of our method is mainly related to the fach o564 method does not need an explicit depth-estimation
that motion along the viewing direction cannot be taken mtg[ep thanks to the motion-model. If there is a significant

account because it is difficul; to esti_mate depth infornmatiq,, jiion in X-ray view direction, then it will be captured byeth
_rellably from mor_10p|ane projection |mage|§[38|]:|[4(_)]. U_anain motion axis. The distance transform provides the main
ing an unconstrained approach, the 3-D error remains h'gnput for the cost function. As long as only one circumfei@nt

especially along the viewing direction, see Fid. 6. Depth, ning catheter appears in the image, there is only one
correction could be performed by analyzing the width of thgia) ohtimum for the cost function. Using our multi-scale

object. But this requires a perfect segmentation of theetath giy search approach, we did not run into local optima. Some
from the fluoroscopy views, which is difficult for low-doset hege occur around the region of the correct position. If

X-ray Images. In addition, we WO_UId alsc_) net_’-:d t(_) know th|”?'1ultiple elliptical shaped catheters were used, more local
exact dimensions of the catheter in 3-D, i.e., its diamenel a

X ) ) X ~optima would appear and our optimization strategy could run
thickness. Any noise or inaccuracy in the 2-D segmentanq)rﬁ

S i 0 one of these. This restricts our method to cases using
or the 3-D model would significantly deteriorate the accyrag single circumferential mapping catheter. Fortunateg t

of depth estimation. Even if the depth information could bﬁ1ajority of AFib cases belong to this category. A visualizat
accurately estimated, the effect would probably not be very
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Cost Function 0.55 mm. Since we do not need to record the ECG signal,
a stand-alone version of our motion-compensated fluorgscop
system is more straightforward. A comparison of different
methods to perform motion compensation is given'in [49].
Our method is purely image driven. Considering the
catheters available during AFib ablation procedures, thilg o
other possible catheter candidate to perform motion compen
sation with is the catheter in the coronary sinus (CS), as
proposed in[[46]. Our proposed method could be extended
to learn the motion difference between the circumferential
mapping and the CS catheter. The same idea could be applied
to using the diaphragm for motion compensation. Our current
implementation for motion estimation relies on the assuonpt
" 4 -4 that the circumferential mapping catheter is firmly placéd a
the PV where ablation takes place. If the mapping catheter
Fig. 15. The values of the cost function for one frame in a smetharound floated around freely within the left atrium, we would not get
the optimum. The global optimum is at= 1.0 mm andA = —0.5mm. 3 reliable motion estimate with our current method. In such a
case, we would need to introduce an additional motion aigalys
stage to detect the free motion.
of the cost function is given in Fig. 15. Apart from a filter-based approach, no other learning-based
Other 2-D/3-D registration approachés|[41].1[42] have nefethods have been tried yet. It has been shown that learning-
been tried yet. Since we are dealing with a very small strectubased methods can be superior to filter-based methods [37].
they are difficult to apply. Although the method in [43]. [44]Here, the filter-based approa¢h[19] yielded a 2-D tracking e
is similar to our approach in spirit, it involves a direct igg&a  ror of 1.0 mm and a 3-D tracking error of 0.8 mm, respectively.
to-image similarity measure which we find more difficult taysing a learning-based method, the errors were reduced to
evaluate than our current approach. 0.8 mm in 2-D and to 0.7 mm in 3-I0 [87]. To further improve
One gold standard database comprising 938 frames whs accuracy, other methods such as probabilistic boosting
available for training. The training on a larger databaseldo trees [50] or random forest§ [51] for catheter segmentation
further improve the segmentation results. The more trginirould be considered. For a higher efficiency, a differenteske
samples we have, the more likely we are to capture mosttohization method other than the thinning algorithm [inl [32]
the subtle differences. This is particularly importantifiiclt ~ should be considered, as this method is currently the bottle
cases where contrast may be low. This can happen whetk of our approach regarding computational efficienayc&i
treating heavy patients, e.g., due to scatter radiatioB]. [4the goal of motion compensation for AFib ablation procedure
Our data set comprised biplane fluoroscopic images of six to work within an interventional setup, near real-time
patients. We encountered two different types of circuniféa¢  performance is desirable. In this context, real-time isrdgd
mapping catheters. One type was used in 11 biplane sequenasshe frame rate that is used for image acquisition durieg th
and a second type was used in two more sequences. intervention. AFib ablation procedures are lengthy proces,
Other methods for image-based respiratory motion compeand fluoroscopy times often accumulate to more than 30
sation in electro-physiology procedures have been praposainutes. This is why physicians try to reduce dose, e.g.,
as well [46], [47]. The first method uses a different cathetéry lowering the acquisition frame rates. For example, some
and the second involves a pre-operative data set. The me@mters use frame rates as low as 1 frame per second (fps).
shortcoming of these methods is that they do not estima&emore typical frame rate is 3 fps. Frame rates exceeding 15
the motion at the site of ablation directly. Therefore, thefps are highly unusual. One reason for the long fluoroscopy
require either a patient-specific model built beforehand, tmes is the complexity encountered when trying to isolate
a heuristic prior to infer the motion at the site of ablatiothe pulmonary veins. We hope to shorten the procedure time
from the motion estimates. Since the motion estimates appbs offering better navigation based on fluoroscopy overlay
to be joint estimates of heart and breathing motion, thmages, but further clinical studies are needed to confiim th
two motion components need to be separated for respiratéty of now, there are some some published results indicating
motion correction. When the motion is estimated in 2-D, réhat X-ray based navigation can at least shorten procedure
initialization is required whenever when the C-arm positiotime, e.g., when compared to the CARTO electromagnetic
changes. Our proposed method, on the other hand, is capturasking system[[52].
the relevant motion right at the site of ablation and takes A comparison between an overlay with and without motion
it into account real-time. Since our approach uses a 3ddmpensation is presented in Fig] 12. In Eid. 13, a fluordscop
catheter model, re-initialization after repositioning t8-arm image with a motion-compensated 3-D overlay is compared
can be avoided. For comparison, non-image-based methtmlghe original X-ray frame using a contrast injection. In a
for motion compensation involving electro-anatomic mapgpi clinical setup, a physician working on a biplane system is
systems provide a 3-D mean tracking error of 0.7 mm [48kely to use the two X-ray image planes in an alternating
which is comparable to our mean 2-D tracking error ofvay. For such a clinical use case, our newly proposed method

Cost Value
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provides a significant advantage over the previously intced
methods [[18], [[377], [[10], [[27], [[21] in terms of accuracy
and practicality. Furthermore, a combination of the preplos

constrained method and the previous biplane reference ap-
proach in [37] might provide a seamless workflow and high
degree of flexibility to the physicians. For example, during,

regular procedures, the constrained method could be usad. |
higher accuracy is required, physicians can switch to ahipl

fluoroscopy and the method ih [37] may start automatical[yll

from the initial position provided by the constrained metho
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