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Abstract—Fluoroscopic overlay images rendered from pre-
operative volumetric data can provide additional anatomical
details to guide physicians during catheter ablation procedures
for treatment of atrial fibrillation (AFib). As these overlay
images are often compromised by cardiac and respiratory motion,
motion compensation methods are needed to keep the overlay
images in sync with the fluoroscopic images. So far, these
approaches have either required simultaneous biplane imaging
for 3-D motion compensation, or in case of monoplane X-ray
imaging, provided only a limited 2-D functionality. To overcome
the downsides of the previously suggested methods, we propose an
approach that facilitates a full 3-D motion compensation even if
only monoplane X-ray images are available. To this end, we use
a training phase that employs a biplane sequence to establish
a patient specific motion model. Afterwards, a constrained
model-based 2-D/3-D registration method is used to track a
circumferential mapping catheter. This device is commonly used
for AFib catheter ablation procedures. Based on the experiments
on real patient data, we found that our constrained monoplane
2-D/3-D registration outperformed the unconstrained counterpart
and yielded an average 2-D tracking error of 0.6 mm and
an average 3-D tracking error of 1.6 mm. The unconstrained
2-D/3-D registration technique yielded a similar 2-D performance,
but the 3-D tracking error increased to 3.2 mm mostly due
to wrongly estimated 3-D motion components in X-ray view
direction. Compared to the conventional 2-D monoplane method,
the proposed method provides a more seamless workflow by
removing the need for catheter model re-initialization otherwise
required when the C-arm view orientation changes. In addition,
the proposed method can be straightforwardly combined with the
previously introduced biplane motion compensation technique to
obtain a good trade-off between accuracy and radiation dose
reduction.

Index Terms—2-D/3-D Registration, Ablation, Atrial Fibrilla-
tion, Electrophysiology, Motion Compensation

I. I NTRODUCTION

A TRIAL fibrillation (AFib) is the most common arrhyth-
mia. It leads to an increased stroke risk for patients [1].

Since the first treatment approaches using radio-frequency
ablations by Häıssaguerre et al. [2], this method has now
become an accepted treatment option, in particular, when drug
therapy fails [3], [4], [5]. Catheter ablation procedures are
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Krankenhaus Barmherzige Brüder, Regensburg, Germany.
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performed in electrophysiology (EP) labs usually equipped
with modern C-arm X-ray systems. These devices often pro-
vide 3-D tomographic imaging to facilitate inter-procedural
3-D soft-tissue imaging [6], [7], [8], [9]. Electro-anatomic
mapping systems are also available to visualize the catheter
position in 3-D within a registered 3-D data set [10], [11],
[12], [13]. While they promise to save X-ray dose, they add
effort and cost to the procedure. In addition, mapping systems
are virtual reality systems, and they do not allow for instant
confirmation of catheter positions under real-time X-ray. In
some instances, they may even be off with respect to the
underlying anatomy [14].

Augmented fluoroscopy, overlaying 2-D renderings obtained
from either CT, MR, or C-arm CT 3-D data sets onto
live fluoroscopic images, can facilitate more precise real-
time catheter navigation and also reduce X-ray dose [15],
[16], [17]. Unfortunately, catheter navigation under augmented
fluoroscopy is compromised by cardiac and respiratory motion.
A first approach to tackle this problem by providing a motion
compensated overlay was proposed in [18], [19]. It involved
tracking of commonly used circumferential mapping (CFM)
catheters. As atrial fibrillation therapy takes place in the
vicinity of the circumferential mapping catheter, tracking of
this catheter can be assumed to reliably capture the motion of
the relevant treatment region if the device has been firmly
positioned. Fortunately, we can count on the physicians to
provide a stable wall contact, as it is in their best interest. Oth-
erwise complete isolation of the pulmonary veins (PVs) may
fail due to undetected residual PV-atrial electrical connections.
Our previously proposed method involved a 3-D model of the
catheter and applied an unconstrained 2-D/3-D registration
approach to align the catheter model to biplane fluoroscopy
images. An initial registration is performed manually to align
the 3-D data to 2-D fluoroscopy with contrast injection show-
ing the target organ. Once the 3-D overlay moves in sync with
live fluoroscopic images, catheters can be guided to anatomical
structures otherwise not visible under fluoroscopy with more
confidence. Another approach to register a pre-operative data
to biplane fluoroscopy had been proposed before [20]. We
extended this approach to AFib ablation procedures where the
catheter used for registration is not placed in a single vessel.
Furthermore, we use the catheter to perform an automatic
registration over time to perform motion compensation.

A yet different approach for monoplane fluoroscopic imag-
ing was introduced in [21]. There, the catheter was tracked
only in 2-D and the overlay image was moved accordingly, i.e.,
the projection of the pre-operative 3-D data set was shiftedon
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the live fluoroscopic images to be in sync with the cardiac and
respiratory motion, observed by localizing the 2-D mapping
catheter.

In EP labs equipped with biplane C-arm systems, often only
one image plane is used at a time to reduce the radiation
exposure to the patient. In this case, the methods suggested
in [18] is not applicable. The 2-D method described in [21] is
not ideal either, as it requires re-initialization of the catheter
model if the C-arm projection geometry changes during the
intervention. Even though model re-initialization is not a
very time consuming step, it does interrupt the workflow.
To overcome the shortcomings of both methods, we propose
to apply constrained 2-D/3-D registration to perform motion
compensation. Our approach is based on a 3-D catheter model
and an estimated patient-specific motion model learned during
a training phase. Set-up of the 3-D catheter model requires
only a single biplane X-ray image and follows the method
explained in [18], [19]. A similar approach for coronary
interventions had been proposed in [22]. The training phase
estimates the motion of the CFM catheter at the PV using a
biplane sequence in which the mapping catheter is tracked
using an unconstrained 2-D/3-D registration. The principal
motion axis is determined from the trajectory established
during the tracking training phase. This axis is considered
a patient-specific motion model. Since the main axis of the
motion by itself is not sufficient to provide a good search
space for a constrained registration, another axis is needed. We
decided use a vector perpendicular to the viewing directionand
the main axis, because the search region for the constrained
registration can then be reduced to a 2-D search space, spanned
by the principal axis and a vector parallel to the image plane.
This allows us to not only track motion that is parallel to the
image plane, but also to capture some depth information with
respect to the pre-acquired motion model. Our constrained
approach can be simply stated as dimension reduction of the
search space from 3-D to 2-D.

The main contribution of our paper is the estimation of a
patient-specific motion model for the circumferential mapping
catheter positioned at the pulmonary vein considered for
ablation to obtain pulmonary vein isolation (PVI). The motion
model is used to generate a 2-D search space which is used
for a constrained 2-D/3-D motion compensation.

The paper is organized as follows. In the first section, the
3-D catheter model set-up required for motion compensation
is briefly summarized. This catheter model is used for the
model-based 2-D/3-D registration, with the catheter model
representing the 3-D information. The second section focuses
on the image processing techniques and catheter segmentation.
A distance transform of the catheter segmentation is used
as cost function. At the same time, it is the basis for the
registration step. Thereafter, the patient-specific motion model
is presented. This model is estimated during a training phase
in which the circumferential mapping catheter is tracked using
biplane X-ray imaging. The training is performed on a biplane
sequence to obtain the main motion axis. In the fourth section,
the constrained 2-D/3-D registration based on the motion
model is introduced. Thanks to the estimated motion model,
motion compensation can be constrained to two dimensions.

Fig. 1. A sketch of the 3-D elliptical catheter model generation.

The first is the main axis of the observed motion field, and
the second is perpendicular to the viewing direction and the
main motion axis. In the last section, we discuss our results
and consider future directions.

II. 3-D ELLIPTICAL CATHETER MODEL

In this section, we summarize the 3-D catheter model
generation from two views using manually selected points as
input. This method was proposed in [19]. The method requires
that points are set on the catheter displayed in a single biplane
X-ray acquisition. Beyond that, this method does not put any
restrictions on the operator, i.e., no special parts of the catheter
need to be selected. Put differently, 2-D pointspA,pB ∈ R

2

are selected on the elliptically-shaped part of the catheter in
each image plane. The two image planes are denoted byA
and B. Two-dimensional ellipsesCA,CB ∈ R

3×3 in the
image planes are then fitted to these points using the algorithm
in [23]. If the 2-D point were on a perfect ellipse, the matrices
would satisfy the following equations

p̃T
ACAp̃A = 0 (1)

p̃T
BCBp̃B = 0 (2)

with the 2-D pointspA andpB in homogeneous coordinates as
p̃A = (pT

A, 1) andp̃B = (pT
B, 1). For ellipse fitting, at least six

points are required. The method in [23] performs ellipse fitting
in a least-squares sense if more than six points are provided.
A constraint is used to ensure that the solutions forCA and
CB are elliptical [24], [23]. After the ellipses in the image
planes are fitted, ellipse reconstruction in 3-D is performed
using the method proposed in [25]. To this end, two 3-D cones
QA,QB ∈ R

4×4 are computed using the projection matrices
PA,PB ∈ R

3×4. The cones are spanned from the cameras
optical centers to the ellipses on the image planes, see Fig.1.
Details on C-arm projection geometry are given in [26]. Two
cones are computed as quadrics by

QA = PT
ACAPA (3)

QB = PT
BCBPB. (4)

The quadricsQA,QB ∈ R
4×4 are of rank 3. Every in-

tersection of a plane with one of the cones yields a valid
solution of an ellipse in 3-D when projected onto the respective
image plane. Given two cones, there are two possible solutions
by calculating the two intersecting planes of the two 3-D
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cones [25]. Intersecting the 3-D cones with the two 3-D planes
yields two possible solutions. The more circular solution
of the two ellipses in 3-D is assumed to be the correct
one [19], given the assumption that the pulmonary veins
are tubularly shaped and that the circumferential mapping
catheter is attached to the PV firmly. The 3-D model is
denoted asmi = (mi,x,mi,y,mi,z, 1)T ∈ R

4 in homogeneous
coordinates withi ∈ [1, N ] and N is the number of model
points. During our experiments, we found thatN = 50 is
sufficient to achieve good results. Increasing the number of
model points did not lead to improved results. This step needs
to be performed only once. For a sketch of the reconstruction
process, see Fig. 1.

III. I MAGE PROCESSING

Once the 3-D model of the catheter has been generated, only
monoplane fluoroscopic imaging is needed for the remaining
tasks of motion estimation and compensation. Compared to the
monoplane method in [21], [27], the newly proposed method
does not require manual re-initialization of the catheter model
when C-arm angulation changes, minimizing user interaction
during interventions.

A. Catheter Segmentation

In order to segment the catheter in the fluoroscopic images,
we first crop the input image with1024 × 1024 pixels to a
region-of-interest (ROI) with400 × 400 pixels around the
projected center of the catheter model. The ROI size of
400×400 was chosen to make sure that we can always find the
circumferential mapping catheter in all of our images. Using
a different ROI size, or to be more specific, a higher search
range would affect the runtime only. In the first frame, the
position is known from the initialization step, and in all the
subsequent frames, the tracking result from the previous frame
is used.

The catheter segmentation method needs to be reliable and
fast to allow motion estimation and compensation at the frame
rate of the EP procedure, which typically ranges between 1 to
10 frames per second. We have decided on a combination
of Haar-like features and a cascade of boosted classifiers.
AdaBoost [28] is generally regarded as one of the best off-
the-shelf classifiers [29], and in combination with Haar-like
features has proven extremely successful, for example in the
field of real-time face detection [30]. Haar-like features cal-
culate various patterns of intensity differences. Some features
detect edges, whereas others focus on line-like structuresand
are useful for detecting thin objects such as the catheter.
Examples of feature prototypes are given in Fig. 2(a). Actual
features are generated by shifting and scaling the prototypes
within a predefined window. Thereby, contextual information
around the center pixel is considered, which is important to
differentiate between the catheter and background structures.
Haar-like features can be calculated efficiently through integral
images [30].

Even for moderate window sizes, the number of generated
features is large, about 40,000 for the15 × 15 pixel window
we have chosen. The most suitable features for discriminating

between catheter and background are selected by the AdaBoost
algorithm [28] and integrated into a classifier. The idea is
to combine several weak classifiers, which only have to be
slightly better than chance, to form a strong classifier. In the
simplest case, a weak classifier amounts to a single feature
and threshold. During training, weak classifiers are repeatedly
evaluated on samples of a training set where the catheter has
been annotated. The classifier minimizing the classification
error is added to a linear combination of weak classifiers until
the overall error is below the desired threshold. After each
iteration, the importance of individual samples is re-weighted
to put more emphasis on misclassified samples for the next
evaluation. A concise description is given in [29].

Instead of single features and thresholds, we use classifica-
tion and regression trees (CARTs) [31] as weak classifiers. A
CART is a small tree of fixed size, as illustrated in Fig. 2(b).
At each node, a threshold associated with a feature partitions
the feature space. Through this decomposition, flexibilityis
increased and objects with complex feature distributions can
be handled. The value at the leaf represents the response of the
classifier and indicates either catheter (positive) or background
(negative). The number of five splits (and thus six leaves) in
a CART was found to perform best in our experiments. When
using a smaller number, the discriminative power of the tree
may be too small, which in turn requires a large number of
trees for each stage. On the other hand, when using a larger
number of splits, the tree may over fit to the training data,
limiting its applicability to the unseen test data.

Several strong classifiers, each consisting of weighted com-
binations of CARTs, are organized into a cascade [30] withN

stages, see Fig. 2(c). At each stage of the cascade, a sample
is either rejected or passed on to the next stage. Only if the
sample is accepted at the final stage, it is assumed to belong
to the object. Since many background pixels can be rejected
at an early stage and since their number is large compared
to the number of catheter pixels, this approaches reduces the
computational cost when applying the cascade for catheter
segmentation. During training, the focus is on maintaininga
high true positive rate while successively reducing the false
positive rate, either by adding more weak classifiers to a stage
or by adding an entirely new stage. We aim at a true positive
rate of at least 99.5 % and a false positive rate of not more
than 50 % per stage. A high true positive rate is required as
a positive sample has to pass all the way down the cascade
and must be accepted also by the last stage. When proceeding
from stage to stage, a true positive rate of 0.995 per stage
results in an overall true positive rate of0.995N for N stages.
In case ofN = 4 stages, the expected true positive rate of
the whole cascade is about 98 %. For smaller true positive
rates, the overall rate of the cascade would quickly decline.
By setting the false positive rate to 0.5 per stage, we demand
that each stage of the cascade halves the remaining number
of false positives. In case ofN = 4 stages, the expected
overall false positive rate is0.5N = 6.25 % With a higher
false positive rate, more stages would be required to achieve
an overall low false positive rate, whereas for a lower rate
per stage, less stages but a more powerful strong classifier per
stage would have to be trained. A gold-standard segmentation
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(a) Feature Types (b) Classification and Regression Tree (CART) (c) Cascade

Fig. 2. Feature types and classifier structure for catheter segmentation: (a) Several Haar filter examples used for featureextraction; (b) Example of
classification and regression tree (CART) with five feature nodesθ1, . . . , θ5 and six leavesα1, . . . , α6; (c) Classifier cascade consisting ofN stages with
strong classifiersξ1, . . . ξN . Each strong classifierξi consists of a linear combination of weak classifiers, here CARTs.

of the catheter was used for training.

B. Image Post-Processing

Different types of circumferential mapping catheters may
be used for EP ablation purpose. They can differ in the
number of electrodes as well as the thickness of the catheter.
To ensure that our method can deal with a wide variety
of catheters, we perform some post-processing on the seg-
mentation output from the learning-based catheter classifier.
First, the catheter segmentation results are smoothed by a
median filter. In our experiments, a kernel size of5 × 5
yielded the best results. Second, the smoothed segmentation
is thinned using the method in [32], so that the thickness of
the catheter no longer needs to be taken into consideration
in the following registration step. Third, in order to obtain a
smooth representation of the circumferential mapping catheter
for subsequent efficient registration, the distance transform
for the skeletonized image is calculated [33]. The distance
transform of an image calculates for every background pixel
the distance to the closest object pixel. The resulting image is
denoted asIDT. The image processing steps are summarized
in Fig. 3.

IV. PATIENT-SPECIFICMOTION COMPENSATION

In the following section, we present our method for the
generation of a patient specific motion model. A short biplane
sequence is used to generate 3-D samples of the position of the
circumferential mapping catheter recorded during a training
phase. The principal axis derived from the sample positions
is taken as main direction of PV motion. The motion model
should be acquired in the same state (heart rate in sinus
rhythm, arrhythmia) that will be present during the application
of the motion model. In the next step, we apply a constrained
model-based 2-D/3-D registration to track the circumferential
mapping catheter in 3-D using monoplane fluoroscopy. To this
end, the motion model estimated during the training phase
limits the allowed motion to two directions. The first motion
is parallel to the principal motion axis. The second allowed
motion direction is parallel to the image plane, because the
underlying motion vector is designed to be perpendicular to
the principal axis and the viewing direction.

A. Motion-Model Generation

The motion model is set up using a biplane 2-D/3-D
registration of the previously generated 3-D catheter model
to biplane fluoroscopic images acquired during a training
phase. The images are processed as before, which leads to
the distance transformed images for plane A,IDT,A,t, and for
plane B,IDT,B,t, respectively, at timet. We allow for a full
3-D search of the catheter model to get the best fit of the
catheter model to each 2-D fluoroscopic image. In this case,
the transformation matrix is written as

Tu(r) =




1 0 0 rx

0 1 0 ry

0 0 1 rz

0 0 0 1


 (5)

with the translation parametersr = (rx, ry, rz)
T and the index

u for ‘unconstrained’. The cost function can be formulated as

r̂ = arg min
r

∑
i

IDT,A,t (PA · Tu(r) · mi,t)

+ IDT,B,t (PB · Tu(r) · mi,t) (6)

with the projection matrices for image plane A,PA, and plane
B, PB , as well as the 3-D catheter model,mi,t, at time t.
Optimization was performed using a multi-scale grid search
approach [34]. The search space was sub-sampled and the
region around the smallest cost function was used for a smaller
search grid. The projection matrix used during the training
phase tracking is not required to be one of the projection
matrices used for model generation, i.e., the C-arm can be
moved in between catheter model generation and the training
phase. The same holds for the actual motion compensation.
Given the parameterŝr found by the nearest-neighbor search,
the catheter model can be updated tomi,t+1 ∈ R

4 by

∀i : mi,t+1 = Tu(r̂) · mi,t. (7)

During the training phase, the same transformationTu(r̂) can
be applied to the 3-D volumetric data set that is used for image
overlay. This way, a 3-D motion compensation can be shown
during the training phase.

The patient specific motion model is calculated from the
circumferential mapping catheter positions. To this end, the
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Image processing on a fluoroscopic image. (a) The original fluoroscopic input image. (b) Cropped image around the region-of-interest. (c) Segmentation
using a boosted classifier cascade. (d) Median filtered segmentation result. (e) Skeletonized image. (f) Distance transformed imageIDT.
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Fig. 4. (a) 2-D tracking error of the constrained and unconstrained approach for each frame of sequence # 19. (b) 3-D tracking error of the constrained and
unconstrained approach for the same sequence.

catheter model for every time step is reduced to the center of
the model by

mt =
1

N

∑

i

mi,t. (8)

The principal axis for the catheter centersmt is calculated by
a principal component analysis, representing the main motion
vector vm ∈ R

3 with ||vm||2 = 1. For the motion model,
only the principal axis is considered, as tracking inaccuracies
during the training phase might produce outliers.

B. Motion Compensation by Model-Constrained Registration

In this section, motion compensation by model-constrained
registration is introduced. The assumption for our approach
is that only monoplane fluoroscopic imaging is available.
Our proposed constraint is the reduction of the 3-D search
space to a 2-D search space, by introducing a second feasible
motion vector that is perpendicular to the viewing direction

and the principal motion vector. This results in a 2-D search
plane for the catheter model to be semi-parallel to the image
plane. The cost function is the distance transformIDT of the
post-processed segmentation result. By using the main motion
vector, the 2-D search space also allows some depth estimation
from a single X-ray view. A motion analysis of the left atrium,
performed by Ector et al. [35], revealed that the dominant
motion is in anterior-posterior and superior-inferior direction.
They found that the degree of rotation is much less, and they
attributed it to the deformation of the left atrium. Physicians
position their C-arms in standard viewing positions, usually
only angulations in left-anterior-oblique (LAO), posterior-
anterior (PA), or right-anterior-oblique (RAO) directionare
used. Angulations towards cranial or caudal directions are-
at least to the knowledge of the authors - not common for
EP procedures. If image acquisition is performed with the C-
arm in an LAO, PA, or RAO position, most of the motion is
captured, as the motion of the left atrium is parallel to the
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Fig. 5. (a) Comparison of the 2-D tracking accuracy of the constrained and unconstrained 2-D/3-D registration. (b) 3-D error for constrained motion
compensation versus no motion compensation. (c) 3-D motion compensation error obtained for constrained 2-D/3-D registration in comparison to unconstrained
2-D/3-D registration. (d) Comparison of motion compensation between the constrained monoplane 2-D/3-D approach and the biplane approach.

image plane.
To carry out our constrained 2-D/3-D registration, we de-

termine the viewing directionvv ∈ R
3 with ||vv||2 = 1 of

the optical axis from the last row of the projection matrix
P ∈ R

3×4 [36]. The second vector required to estimate the
second search direction, which is perpendicular to the viewing
direction and the main motion axis, is given by

vp = vm × vv. (9)

Any point on that plane can be represented by a linear
combination of these two vectorsvp andvm. This translation
can be rewritten in matrix notation as

Tc(λ, µ) =




1 0 0 λvp,x + µvm,x

0 1 0 λvp,y + µvm,y

0 0 1 λvp,z + µvm,z

0 0 0 1


 (10)

with vp = (vp,x, vp,y, vp,z)
T and vm = (vm,x, vm,y, vm,z)

T

and the indexc for ‘constrained’. The objective function for
the constrained registration is then defined using the distance
transformed image for image plane A,IDT,A, or plane B,
IDT,B. In the remainder of this section, the indicesA andB are
omitted, andP stands either forP A or P B. The same holds
for IDT,t. The cost function for the constrained registration
can then be stated as

λ̂t, µ̂t = arg min
λ,µ

∑

i

IDT,t (P · T c(λ, µ) · mi,t) . (11)

Optimization was performed using a nearest-neighbor search,
as for the training phase [34]. Given the parametersλ̂t, µ̂t, the
catheter model can be updated tomi,t+1 ∈ R

4 by

∀i : mi,t+1 = Tc(λ̂t, µ̂t) · mi,t. (12)

The same transformationTc(λ̂t, µ̂t) is then applied to the 3-D
volumetric data set that is used to compute the image overlay

by 2-D forward projection of the 3-D model based on the
known projection geometry. This way, we can achieve a 3-D
motion compensation for monoplane fluoroscopic images.

C. Motion Compensation by Unconstrained Registration

The results of the constrained registration are compared to
an unconstrained method that uses full 3-D translation as a
motion model. To this end, an unconstrained registration to
monoplane fluoroscopy is performed. In this case, Eq. 6 is
adapted to the monoplane case by rewriting it as

r̂′ = arg min
r

∑
i

IDT,t (P · Tu(r) · mi,t) . (13)

Motion compensation is then performed usingr̂′ to update the
catheter model as in Eq. 7 and applying the same transforma-
tion to the 3-D data set used to generate the overlay images.

V. EVALUATION AND RESULTS

In this section, we evaluate the performance of our proposed
motion-model constrained 2-D/3-D registration algorithmfor
motion compensation and present the results. The tracking
accuracy of the constrained and unconstrained methods were
calculated by comparison to a gold-standard segmentation.
For evaluation, 13 clinical biplane sequences were available.
The fluoroscopic sequences were acquired during standard
electrophysiology procedures. The circumferential mapping
catheter was placed at the ostium of the pulmonary vein during
image acquisition. The catheter is usually firmly placed to
ensure a good wall contact. A suboptimal wall contact may
lead to undetected residual PV-atrial electrical connections,
and potentially to an incomplete pulmonary vein isolation.One
gold-standard segmentation was available for each sequence,
i.e., the catheter was segmented by one expert observer in
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each frame of the whole sequence. Our data was taken from
six different patients at one clinical site. All X-ray sequences
were recorded on an AXIOM Artis dBC biplane C-arm system
(Siemens AG, Healthcare Sector, Forchheim, Germany). The
training of the classifier was performed on a two-fold cross
validation, i.e., the biplane sequence considered for evaluation
was excluded from the training data set. For each sequence, a
3-D model was generated as described in Sec. II. Afterwards,
the constrained method was evaluated by using each image
plane of the biplane sequences independently. The frames used
for the generation of the motion model were excluded from
evaluation. For the unconstrained approach, the same frames
were used for evaluation to arrive at comparable results. The
constrained method used a training phase of 50 % of the se-
quence. The shortest sequence available comprised 10 frames,
and the longest 117. Individual sequences for training of the
motion model were not available. To evaluate the influence
of the number of frames used during the training phase, we
took the three longest sequences available, consisting of 79,
95 and 117 frames, respectively. The training phases for this
evaluation were chosen to comprise 5, 10, 20, 30, and 40
frames, respectively. The results are shown in Fig. 7. A 2-D
tracking error was obtained by calculating the average 2-D
distance of the projected catheter model to the gold-standard
segmentation. The comparison of the 2-D tracking accuracy
of both methods is shown in Fig. 5(a). The unconstrained
method achieved an average 2-D tracking error of 0.57 mm±
0.31 mm. The performance of the constrained method did not
differ much and yielded a 2-D tracking error of 0.55 mm±
0.34 mm. The frames of the training phase were not included.

Since the motion estimation and compensation is performed
in 3-D, and for each case we have biplane sequences to derive
the ground truth position in 3-D, a 3-D error can be estimated
as well. To this end, the tip of the circumferential mapping
catheter was manually localized in 3-D by triangulation from
two views. This can only be used as an estimation for the
actual 3-D error. An accurate evaluation would require a high-
resolution 3-D data set for each time instant. Such data is
unfortunately not available. The 3-D trajectories of the catheter
tip were taken as the gold-standard for the observed 3-D
motion. For the 26 tested sequences, the observed motion
was 4.5 mm± 2.4 mm. The constrained motion compen-
sation approach yielded a 3-D tracking error of 1.58 mm±
0.95 mm. The unconstrained approach performed considerably
worse with an average 3-D error of 3.21 mm± 1.62 mm.
Even though the constrained motion compensation method
performed well, the gold-standard biplane method in [37] is
still superior regarding the 3-D accuracy (0.7 mm± 0.4 mm).
However, its better accuracy comes at the cost of increased
X-ray dose. A comparison of our constrained approach and
the biplane approach is given in Fig. 5(d). In addition, a
comparison of several motion compensation methods utilizing
2-D/3-D registration is given in Table II. This includes the
proposed constrained method, the unconstrained method, as
well as the previously introduced reference biplane methods
in [37] and [19].

As drift is an often discussed issue when evaluating tracking
methods, we also considered the tracking error over time.
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Fig. 6. Visualization of the motion compensation error in viewing direction.
(a) The motion compensation error along the viewing directionof the
constrained method. (b) The same graph for the unconstrained method.
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Fig. 7. Mean 3-D tracking error± standard deviation calculated over three
sequences with 79, 95, and 117 frames versus different frame numbers used
during the training phase.

This question is especially interesting, as only one previous
frame is considered when tracking the current frame. In
particular, the tracking result of the previous frame is used
for cropping the region-of-interest in the current frame. Apart
from that, all frames are treated independently. For example,
the 2-D tracking error for sequence # 19 is given in Fig. 4(a).
Both the unconstrained and the constrained approach achieved
comparable results with the constrained method yielding a
slightly higher 2-D error. Specifically, in this particularse-
quence the 2-D tracking error was 0.36 mm± 0.12 mm for
the constrained method and 0.26 mm± 0.09 mm for the
unconstrained approach, respectively. The constrained method
yielded a 3-D tracking error of 1.24 mm± 0.64 mm, in
comparison to the 3-D tracking error of 2.83 mm± 1.34 mm
for the unconstrained method. Both methods did not suffer
from drifting issues, suggesting that our model-based 2-D/3-D
registration using a pre-generated 3-D catheter model is robust
with respect to sporadic tracking errors. To further evaluate
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Fig. 9. 2-D tracking error versus the number of stages in the boosted classifier
cascade.

how robust our method behaves against catheter model errors,
the longest available sequence was chosen and the respective
3-D model was disturbed by Gaussian noise. Afterwards,
tracking was performed and evaluated. The results are shown
in Fig. 8.

The error along the viewing direction was also computed.
Since this direction is excluded in the search space for the
constrained method, the error along the viewing direction was
the largest among all directions, averaging at 1.03 mm±
0.94 mm. However, the unconstrained method also had its
largest error along the viewing direction with an average of
2.99 mm± 0.43 mm, see Fig. 6(b). This confirms that estimat-
ing object depth from monoplane fluoroscopy is a challenging
task as, e.g., pointed out in [38]. It also confirms that the
constrained approach is a reasonable choice for tracking a
mapping catheter put in place firmly at a pulmonary vein
ostium.

The proposed method uses a boosted classifier cascade.
To evaluate how many stages in the cascade are needed for
achieving good motion compensation results, an experiment
using the constrained method was performed. The results
are shown in Fig. 9. With an increasing number of stages,
the tracking accuracy improved. Using less than three stages
yielded unsuccessful tracking results on our data set. Accord-
ing to our results and considering the fact that by using too
many stages, we run the risk of overfitting the model to the
noise in the training data, we propose to use4 stages in the
cascade. All results shown in this paper were obtained using
4 stages.

The number of stages used in the cascade could also be
addressed by looking at the time required to estimate the
motion for one frame. Fast and accurate methods are desired
for interventional applications. We measured the time in ms
for each frame and calculated the average, the minimum and
the maximum. The results of the computational time versus
the number of stages are given in Fig. 10. An example for
segmentation results depending on the number of stages used
for classification is shown in Fig. 11. Besides the runtime
of the classification, the runtime of all components of our
presented algorithm are also of interest. They are stated in
Table I. Our time measurements were performed on an Intel
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Fig. 10. Computational time of the catheter segmentation versus the number
of stages in the boosted classifier cascade.

Xeon E5440 with 2.83 GHz.

VI. D ISCUSSION ANDCONCLUSIONS

The initialization of the catheter model used for motion
compensation is required only once. The 2-D/3-D registra-
tion incorporates the projection matrix, so no model re-
initialization is required if the viewing direction of a C-arm is
changed. Although, model re-initialization is usually nottime
consuming, it does interrupt the workflow because manual
interaction involving the user is required. In fact, while the
catheter model can be calculated in less than 55 ms on our
PC platform, user feedback needed for model initialization
carries the risk that things are slowed down considerably. The
accuracy of the model generation has already been evaluated
in [19]. To further investigate the effect of catheter model
errors, one sequence was tested with noisy input models.
Gaussian noise with zero mean was used to disturb the
model in 3-D. The results are shown in Fig. 8. It took a
standard deviation of more than 3.0 mm to trigger tracking
failures. And even then, they occurred in one image plane
only demonstrating that a good view on an inaccurate catheter
model may be able to work around this problem - only up to
a certain degree of noise, of course. During our experiments,
we found that a catheter model consisting of 50 points yielded
good results. Increasing the number of model points further
did not provide an increase tracking accuracy. Such a catheter
model along with a disturbed catheter model is shown in
Fig. 14.

The 2-D tracking error of our proposed method is in the
same range as that for the 2-D reference method [21], [27]. But
instead of performing only a 2-D/2-D registration, we now rely
on a constrained 2-D/3-D registration involving a 3-D catheter
model as well as a motion model. The advantage of utilizing
a 3-D catheter model is that catheter model re-initialization
can be avoided when the C-arm angulation changes during
the intervention. Nevertheless, a sole 2-D approach may be
the only option when only a monoplane fluoroscopic system
is available, because the reconstruction of the 3-D catheter
model requires at least two views in the same cardiac cycle
and breathing phase. The computation of the motion model
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Fig. 8. Tracking error with respect to a noise catheter model.(a) 2-D tracking error. (b) 3-D tracking error.

(a) (b) (c) (d) (e)

Fig. 11. Segmentation results for different number of cascades. The segmentation results shown here are smoothed by a median filter. (a) Cropped image
used for segmentation. (b) Segmentation result with one stagein the cascade. (c) Segmentation with two stages. (d) Segmentation with three stages. (e)
Segmentation with four stages.

TABLE I
RUNTIME OF ALGORITHM COMPONENTS

Runtime

Components Runtime in [ms]
Segmentation ∼ 42 ms
Median < 1 ms
Skeletonization ∼ 47 ms
Distance Transform < 1 ms
Constrained Registration ∼ 17 ms

TABLE II
COMPARISON BETWEEN SEVERAL METHODS ON MOTION COMPENSATION USING 2-D/3-D

REGISTRATION

Method Comparison

Constrained Unconstrained [37] [19]
Monoplane Monoplane Biplane Biplane

2-D Error: 0.6 mm 0.6 mm 0.8 mm 1.0 mm
3-D Error: 1.6 mm 3.2 mm 0.7 mm 0.8 mm
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Fig. 14. Comparison between a catheter model with and without noise. The
noisy catheter model was disturbed by Gaussian noise with zero mean and a
standard deviation of 3.0 mm.

requires a training phase. We used 50 % of the available
biplane sequence to compute the principal motion axis. In
clinical practice, this could be included into the workflow.At
the beginning of each AFib ablation procedure, the signals at
the PVs are documented and the correct position of the circum-
ferential mapping catheter is verified by contrast injection and

- if available - using a short biplane sequence. This sequence
might already be sufficient to set up our proposed motion
model. As four pulmonary veins are to be ablated during
the procedure, it might be necessary to train four individual
motion models, i.e., one for each of the PVs. Evaluating the
3-D tracking error with respect to number of frames used
during the training phase, we conclude that our method is
insensitive to the length of the training phase, as shown in
Fig. 7. Even though a short sequence might be sufficient to
estimate the principle direction of the motion, a full breathing
cycle should be used for best results. For example, if the
patient is consciously sedated, the physician could ask the
patient perform a deep inhale and exhale during the training
sequence for the motion model. Using general anesthesia, this
might not be required.

Our proposed method is able to achieve a 3-D accuracy
of about 1.6 mm. Unfortunately, there is hardly a statement
by a physician about the amount of error that is clinically
acceptable. For cardiac applications though, 2 mm seems to
be an accepted threshold [39]. Nevertheless, to reduce the 3-D
error, one could employ simultaneous biplane imaging which
comes at the cost of a higher dose for patient and the medical
staff [37]. As physicians are used to 2-D projection images
and the 2-D error is lower, it is an open question whether a
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(a) (b)

Fig. 12. A comparison showing the difference whether or not motion compensation is applied on the fluoroscopic overlay. (a) One frame of sequence 17
without motion compensation. (b) The same frame of sequence 17 with motion compensation.

(a) (b)

Fig. 13. Visual inspection of the motion compensation method. (a) One motion compensated frame of one sequence with 3-D overlayduring contrast
injection close to one pulmonary vein. (b) The same frame without the 3-D overlay.

3-D error of 2 mm can be accepted or not. It seems as if a
clinical evaluation of the proposed method would have to be
performed in order to evaluate the clinically required accuracy.

The limitation of our method is mainly related to the fact
that motion along the viewing direction cannot be taken into
account because it is difficult to estimate depth information
reliably from monoplane projection images [38], [40]. Us-
ing an unconstrained approach, the 3-D error remains high,
especially along the viewing direction, see Fig. 6. Depth
correction could be performed by analyzing the width of the
object. But this requires a perfect segmentation of the catheter
from the fluoroscopy views, which is difficult for low-dose
X-ray images. In addition, we would also need to know the
exact dimensions of the catheter in 3-D, i.e., its diameter and
thickness. Any noise or inaccuracy in the 2-D segmentation
or the 3-D model would significantly deteriorate the accuracy
of depth estimation. Even if the depth information could be
accurately estimated, the effect would probably not be very

visible because the size of the overlay would only change
slightly. Nevertheless, 3-D motion errors in X-ray viewing
direction are a major contributing factor why the unconstrained
method yields significantly worse results, see Fig. 5(c). Our
proposed method does not need an explicit depth-estimation
step thanks to the motion-model. If there is a significant
motion in X-ray view direction, then it will be captured by the
main motion axis. The distance transform provides the main
input for the cost function. As long as only one circumferential
mapping catheter appears in the image, there is only one
global optimum for the cost function. Using our multi-scale
grid-search approach, we did not run into local optima. Some
of these occur around the region of the correct position. If
multiple elliptical shaped catheters were used, more local
optima would appear and our optimization strategy could run
into one of these. This restricts our method to cases using
a single circumferential mapping catheter. Fortunately, the
majority of AFib cases belong to this category. A visualization
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Fig. 15. The values of the cost function for one frame in a small area around
the optimum. The global optimum is atµ = 1.0 mm andλ = −0.5 mm.

of the cost function is given in Fig. 15.
Other 2-D/3-D registration approaches [41], [42] have not

been tried yet. Since we are dealing with a very small structure,
they are difficult to apply. Although the method in [43], [44]
is similar to our approach in spirit, it involves a direct image-
to-image similarity measure which we find more difficult to
evaluate than our current approach.

One gold standard database comprising 938 frames was
available for training. The training on a larger database would
further improve the segmentation results. The more training
samples we have, the more likely we are to capture most of
the subtle differences. This is particularly important in difficult
cases where contrast may be low. This can happen when
treating heavy patients, e.g., due to scatter radiation. [45].
Our data set comprised biplane fluoroscopic images of six
patients. We encountered two different types of circumferential
mapping catheters. One type was used in 11 biplane sequences,
and a second type was used in two more sequences.

Other methods for image-based respiratory motion compen-
sation in electro-physiology procedures have been proposed
as well [46], [47]. The first method uses a different catheter
and the second involves a pre-operative data set. The main
shortcoming of these methods is that they do not estimate
the motion at the site of ablation directly. Therefore, they
require either a patient-specific model built beforehand, or
a heuristic prior to infer the motion at the site of ablation
from the motion estimates. Since the motion estimates appear
to be joint estimates of heart and breathing motion, the
two motion components need to be separated for respiratory
motion correction. When the motion is estimated in 2-D, re-
initialization is required whenever when the C-arm position
changes. Our proposed method, on the other hand, is captures
the relevant motion right at the site of ablation and takes
it into account real-time. Since our approach uses a 3-D
catheter model, re-initialization after repositioning the C-arm
can be avoided. For comparison, non-image-based methods
for motion compensation involving electro-anatomic mapping
systems provide a 3-D mean tracking error of 0.7 mm [48]
which is comparable to our mean 2-D tracking error of

0.55 mm. Since we do not need to record the ECG signal,
a stand-alone version of our motion-compensated fluoroscopy
system is more straightforward. A comparison of different
methods to perform motion compensation is given in [49].

Our method is purely image driven. Considering the
catheters available during AFib ablation procedures, the only
other possible catheter candidate to perform motion compen-
sation with is the catheter in the coronary sinus (CS), as
proposed in [46]. Our proposed method could be extended
to learn the motion difference between the circumferential
mapping and the CS catheter. The same idea could be applied
to using the diaphragm for motion compensation. Our current
implementation for motion estimation relies on the assumption
that the circumferential mapping catheter is firmly placed at
the PV where ablation takes place. If the mapping catheter
floated around freely within the left atrium, we would not get
a reliable motion estimate with our current method. In such a
case, we would need to introduce an additional motion analysis
stage to detect the free motion.

Apart from a filter-based approach, no other learning-based
methods have been tried yet. It has been shown that learning-
based methods can be superior to filter-based methods [37].
Here, the filter-based approach [19] yielded a 2-D tracking er-
ror of 1.0 mm and a 3-D tracking error of 0.8 mm, respectively.
Using a learning-based method, the errors were reduced to
0.8 mm in 2-D and to 0.7 mm in 3-D [37]. To further improve
the accuracy, other methods such as probabilistic boosting
trees [50] or random forests [51] for catheter segmentation
could be considered. For a higher efficiency, a different skele-
tonization method other than the thinning algorithm in [32]
should be considered, as this method is currently the bottle-
neck of our approach regarding computational efficiency. Since
the goal of motion compensation for AFib ablation procedures
is to work within an interventional setup, near real-time
performance is desirable. In this context, real-time is regarded
as the frame rate that is used for image acquisition during the
intervention. AFib ablation procedures are lengthy procedures,
and fluoroscopy times often accumulate to more than 30
minutes. This is why physicians try to reduce dose, e.g.,
by lowering the acquisition frame rates. For example, some
centers use frame rates as low as 1 frame per second (fps).
A more typical frame rate is 3 fps. Frame rates exceeding 15
fps are highly unusual. One reason for the long fluoroscopy
times is the complexity encountered when trying to isolate
the pulmonary veins. We hope to shorten the procedure time
by offering better navigation based on fluoroscopy overlay
images, but further clinical studies are needed to confirm this.
As of now, there are some some published results indicating
that X-ray based navigation can at least shorten procedure
time, e.g., when compared to the CARTO electromagnetic
tracking system [52].

A comparison between an overlay with and without motion
compensation is presented in Fig. 12. In Fig. 13, a fluoroscopic
image with a motion-compensated 3-D overlay is compared
to the original X-ray frame using a contrast injection. In a
clinical setup, a physician working on a biplane system is
likely to use the two X-ray image planes in an alternating
way. For such a clinical use case, our newly proposed method
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provides a significant advantage over the previously introduced
methods [18], [37], [19], [27], [21] in terms of accuracy
and practicality. Furthermore, a combination of the proposed
constrained method and the previous biplane reference ap-
proach in [37] might provide a seamless workflow and high
degree of flexibility to the physicians. For example, during
regular procedures, the constrained method could be used. If a
higher accuracy is required, physicians can switch to a biplane
fluoroscopy and the method in [37] may start automatically
from the initial position provided by the constrained method.
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