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ABSTRACT

Registration methods frequently rely on prior information in

order to generate anatomical meaningful transformations bet-

ween medical scans. In this paper, we propose a novel inten-

sity based non-rigid registration framework, which is guided

by landmarks and a regularizer based on Principle Component

Analysis (PCA). Unlike existing methods in this domain, the

computational complexity of our approach reduces with the

number of landmarks. Furthermore, our PCA is invariant to

translations. The additional regularizer is based on the out-

come of this PCA. We register a skull CT scan to MR scans

aquired by a MR/PET hybrid scanner. This aligned CT scan

can then be used to gain an attenuation map for PET recon-

struction. As a result we have a Dice coefficient for bone areas

at 0.71 and a Dice coefficient for bone and soft issue areas at

0.97.

Index Terms— non-rigid registration, landmarks, regula-

rizer based on PCA

1. INTRODUCTION

The registration of medical scans often relies on prior in-

formation to produce anatomical meaningful transformations

[1]. Techniques, such as [2, 3] constrain the registration to

a manifold. To capture anatomical meaningful deformations,

the manifold is generally trained on a large set of scans. In this

paper, we develop a non-rigid registration algorithm based on

technology only requiring small data sets for training.

Our registration approach is guided by landmarks as well

as PCA on deformation fields. Non-rigid landmark based me-

thods, such as Fischer et al. [4], use the Lagrange multipliers

to integrate the landmarks into the energy function capturing

the registration problem. Hereby each Lagrange multiplier ex-

pands the dimensionality. This is inconsistent to the intuitive

idea that landmarks should simplify the registration. We ins-

tead propose to fixate the deformation maps at those locations

treating the correspondences as Dirichlet boundary conditi-

ons. Thus, the computational burden reduces with an increa-

sing number of landmarks.

The deformation of the remaining image space is then de-

fined by the minimum of an energy functional consisting of

an image similarity term and two regularizers. The first re-

gularizer enforces the smoothness of the deformation field,

the second regularizer is based on the outcome of a PCA on

the deformation maps. Compared to manifold learning techni-

ques, PCA based non-rigid registration methods, such as [5],

require less training samples as PCA is based on the assump-

tion that the distribution of the deformation fields is Gaussi-

an. We thus do not constrain the resulting deformation to the

space defined by the PCA model, such as in [5], but instead

only use the PCA model to guide the registration. We further-

more reduce the variation to be captured by PCA by defining

a model that is invariant to translations.

We use our algorithm to register a skull CT scan to MR

scans which were acquired by a MR/PET hybrid scanner.

MR/PET hybrid scanners can help to detect tumors in an ear-

ly stage and give information about the activity of the tumor,

improve the treatment of patients in radiation therapy or assist

medicines in differential diagnostics. Unlike for PET/CT hy-

brid scanners, where the attenuation map is constructed from

the CT scan, the MR scan from a MR/PET hybrid scanner

cannot be directly used for attenuation correction of PET due

to the image inhomogeneity in MR scans. The skull CT scan

is the average of various CT scans which we will call an atlas

CT. The registration process of the atlas CT to the MR scan

is the focus of our application.

2. METHODS

We now construct a non-rigid registration algorithm to map

each voxel x ∈ ΩM of the image domain ΩM ⊂ R
d of the

moving image M to a voxel x−u(x) ∈ ΩF in the image do-

main ΩF ⊂ R
d of the fixed image F with the transformation

u(·). We compute the optimal mapping u∗ by solving

u∗ := argminu D(F,M,u) + α · R(u) + β · P(u) (1)
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where D(·) is the image matching term, R(·) the regularizer

enforcing smoothness on u, P(·) is the regularizer based on

our PCA and α, β ∈ R are weighting factors.

2.1. Landmarks

To follow the intuitive idea mentioned in the introduction, our

framework now efficiently embeds the landmarks into the re-

gistration framework by treating the landmarks as Dirichlet

boundary conditions and determining u∗ for the remaining

image domain. In other words, let ΩL ⊂ ΩM be the set of

landmarks in the moving image and uL(x) be the correspon-

ding deformation mapping landmark x ∈ ΩL to its correspon-

ding landmark in ΩF . We then solve (1) for ΩM \ ΩL using

the constraint that u∗(x) = uL(x) for x ∈ ΩL. As we cut

off the landmarks, the remaining image domain has no lon-

ger rectangular shape. As consequence, the respective matri-

ces are asymmetric now. We address this problem in Section

2.3 where we specify the implementation of our registration

framework.

2.2. Regularization based on PCA

The definition of P(·) is based on our PCA of deformation

fields which identifies the major modes of variation within

a sampling set. Let U be a Hilbertspace. A functional PCA

decomposition finds mutually orthogonal modes vi of normal

length that optimize

v∗
i (x) := argmaxvi

EPCA(vi)

= argmaxvi

m∑
j=1

〈wj −w,vi〉2 (2)

with w(x) := 1
m

∑m
i=1 wi(x), wi are the m sampling func-

tions, i.e. the deformation maps of the training set, and

〈x, y〉 := xT y is the inner product induced by the Hil-

bertspace U . Accordingly, the values of P(u) relate to the

residual of u with respect to the PCA space:

P(u) :=

∣∣∣∣∣
∣∣∣∣∣u−

(
w +

m∑
i=1

vi〈v∗
i ,u−w〉

)∣∣∣∣∣
∣∣∣∣∣
U

(3)

where || · ||U is the L2-Norm.

In the remainder of this Section, we determine the ma-

jor axis vi fulfilling (2) by incorporating the constraint by a

Langrangian multiplier ensuring the normal length.

v∗
i = argmaxvi

m∑
j=1

〈wj −w,vi〉2 − λi(〈vi,vi〉 − 1) (4)

From this, we calculate the Gâteaux derivative dEPCA(vi;η)
at vi in the direction η ∈ U to determine the extremal points

what results in〈
η,

m∑
j=1

(wj −w)〈wj −w,vi〉
〉

= 〈η, λivi(x)〉 (5)

For details of the calculation of the Gâteaux derivative, see

[6].

Due to the inconsistence of rigid registration, we want to

make our model robust to translations of rigid alignment. The-

refore d constant global rigid translation functions tj with

tj(x) = (0, . . . , 0, 1︸︷︷︸
j-th entry

, 0, . . . , 0)T ∈ R
d j = 1, . . . , d

(6)

are introduced. Our translation invariant sampling functions

w̃i are now defined as :

w̃i(x) = wi(x)−
d∑

j=1

tj(x)〈tj ,wi〉 i = 1, . . . , n (7)

These new sampling functions w̃i are orthogonal to tj . We

recompute w and v∗
i from (2) by replacing wi with w̃i. The

modes v∗
k are orthogonal to tj as each v∗

k is a linear combi-

nation of w̃i. This means, that tj are orthonormal to our PCA

basis and we can augment this basis with the additional modes

v∗
m+j = tj . Hence, P(u) is translation invariant.

We also generate a translation invariant PCA model based

on the derivatives of the deformations. The first derivative of

a deformation is already translation invariant and the Lapla-

cian Δu of a deformation field is invariant to global affine

transformations. This Laplacian is the basis for the curvature

PCA model. The mean w and the Eigenmodes vi are com-

puted on the Laplacian of sampling functions Δw by similar

proceeding as described above with

PΔ(u) =

∣∣∣∣∣
∣∣∣∣∣Δu(x)−

(
Δw +

m∑
i=1

vi(x)〈vi,Δu−Δw〉
)∣∣∣∣∣
∣∣∣∣∣
2

U
(8)

The registration in Section 3 is performed using P or PΔ as

additional regularizer of (1).

2.3. Numerical Solution

Similar to [4], we determine the solution to (1) by solving

∇u (D(F,M,u) + αR(u) + βP(u)) = 0 (9)

where ∇u is the gradient with respect to u. We solve this

equation on a discrete image grid where u is a vector captu-

ring the displacement of each voxel in ΩM . Furthermore, we

now assume without loss of generality that w(x) = 0:

∇uP(u) = 2

(
u−

m∑
i=1

vi〈vi,u〉
)

− 2w̃. (10)

By simplifying R(u) to an inner product uTAu, the above

equation simplifies to

∇uD(F,M,u) + αAu+ β∇uP(u) = 0 (11)
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In practice, we will solve this problem with the semi-implicit

gradient descent which updates u according to solving the

linear equation system

(I + s·α ·A) · u(i+1) =

u(i)s · ∇u

(
D(F,M,u(i)) + βP(u(i))

)
(12)

with u(i) being the mapping at the i-th iteration, I is the iden-

tity matrix and s is the step size. For more details see [6].

We determine the initial mapping via A ·u(0) = y, where

y is a zero vector except for the entries corresponding to

landmarks. There it has the values uL. Thus u(0) correct-

ly aligns the landmarks between the scans and fulfills the

smoothness constraints but ignores the image information.

Alternatively, we fix u(i+1) at the landmarks and update

u(i+1) at all other voxels in the image domain. We do so by

simply setting the rows associated with landmarks in A and

∇u

(D(F,M,u(i)) + P(u(i))
)

to zero. Now, (I + s · α ·A)
is asymmetric. We could either resymmetrize the matrices

or apply methods not requiring symmetry like the stabilized

bi-conjugate gradient method. The second kind of solution is

employed in our experiments. The approach thus can guaran-

tee proper alignment in the vicinity of the landmarks but is a

little bit slower than updating the entire deformation field.

We outlined our numerical solution for the semi-implicit

gradient descent (12) as it is easier and more clearly to il-

lustrate the integration of Dirichlet boundary conditions into

this scheme. Due to former analysis of optimization schemes,

we implemented for our experiments the Newton scheme af-

ter Broyden, Fletcher, Goldfarb and Shanno [7]. The iteration

step via Newton holds

u(i+1) =u(i)s
(
HD(F,M,u(i)) + αA+ βHP

)−1(
∇uD(F,M,u(i) + αAu(i) + βHPu(i)

)
(13)

where HD(F,M,u(i)) is the Hessian of D(F,M,u(i)) and

HP is the Hessian of P . To avoid solving the large and den-

sely filled Hessian H , we employ an approximation based on

Sherman-Morrison-Woodbury [8]. We make use of mutual

information [9] as distance measure D in conjunction with

the curvature regularizer R [10].

3. EXPERIMENTS

We perform two different types of experiments. First we con-

sider images of a PET/CT scanner and compare different kind

of registration methods. Then we apply out body scans of a

MR/PET hybrid scanner and align an atlas CT to the MR scan.

3.1. Influence of landmarks on a PET/CT registration

To illustrate the influence of landmarks, we visually compare

the outcome of different registration approaches to align a CT

(a) (b)

(c) (d)

Fig. 1. (a) CT, (b) PET/CT rigid, (c) PET/CT non-rigid, (d)

PET/CT non-rigid with landmarks

to the corresponding PET scan (Fig. 1). There were 7 land-

marks specified: the superior and inferior renal capsules of the

kidneys (4 landmarks), the lower tip of the liver (1 landmark)

and the diaphragm (2 landmarks). Although the non-rigid re-

gistration shown in picture (c) is not state-of-the-art, we just

want to illustrate the influence of landmarks as only non-rigid

registration with landmarks (d) does match the CT scan with

the PET scan as expected.

3.2. Atlas registration in a MR/PET application scenario

As the MR scan cannot be directly used for attenuation cor-

rection, an atlas CT is registered to a MR scan enabling atte-

nuation correction of PET scans acquired in MR/PET hybrid

scanners. The quality of this CT-MR registration is the focus

of our experiment. We have 34 skull CT scans of 34 different

patients and all in all 25 T1 weighted and 17 T2 weighted

MR scans of those patients. For efficiency reasons we down-

sample the data to an isotropic resolution of 1.95mm and a

volume size of 128 × 128 × 71 to keep computational time

down. Non-anatomical structures, such as the table, are mas-

ked and ignored. To determine the quality of the registered

atlas CT, the CT scan of each patient is used as groundtruth

employing the following four measures: the Root Mean Squa-

re Error in Hounsfield unit (HU) (RMSE), the Mean Absolute

Error in HU (MAE), the Dice coefficient of thresholded bone

areas (thresholded at 600HU) (BDICE) and the Dice coeffi-

cient of thresholded bone and soft issue areas (thresholded at

-200HU) (STDICE).
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As the employed Newton scheme [7] is a Quasi-Newton

scheme, the inverse of the Hessian has to be calculated. This

is either done exactly or with the approximation [8] as men-

tioned in Section 2.3. We compare the accuracy of our algo-

rithm with respect to 5 different implementations : without

PCA regularization (standard), with PCA regularization P(·)
on the deformation map (PCA exact) as well as PCA regula-

rization on the curvature PΔ(·) (curv PCA exact), and finally

both PCA implementations with approximated Hessian (PCA

approx and curv PCA approx). The algorithms with additio-

nal PCA regularization were employed with several number

of eigenmodes m to test their impact. In Table 1 the results

are listed for m = 10. Our results were fairly insensitive for

m > 10. The average E and standard deviation σ is summa-

rized in Fig. 2.

Results for the T1 weighted images

RMSE MAE BDICE STDICE

E σ E σ E σ E σ

standard 177 5.63 76 4.36 0.67 0.33 0.97 0.07

PCA approx 169 5.85 74 4.39 0.69 0.34 0.97 0.075

PCA exact 168 5.76 74 4.32 0.69 0.33 0.97 0.075

curv PCA approx 169 5.85 75 4.38 0.69 0.34 0.97 0.074

curv PCA exact 170 5.86 75 4.39 0.69 0.34 0.97 0.074

Results for the T2 weighted images

RMSE MAE BDICE STDICE

E σ E σ E σ E σ

standard 189 7.72 79 5.14 0.67 0.33 0.97 0.11

PCA approx 168 4.58 73 3.46 0.71 0.28 0.97 0.086

PCA exact 168 4.64 73 3.47 0.71 0.28 0.97 0.086

curv PCA approx 168 4.57 73 3.45 0.71 0.28 0.97 0.086

curv PCA exact 168 4.59 73 3.46 0.71 0.28 0.97 0.087

Fig. 2. Table of Results

All in all, PCA regularized implementations compared to the

standard implementation clearly enhance the results. For ex-

ample, the Dice coefficient for bone areas for the PCA ap-

proximate for T1 weighted images is 0,69, i.e. that the first

10 eigenmodes cover 69% of the bone areas. The correspon-

ding Dice coefficient for bone and soft issue areas is 0.97,

so the content of the remaining eigenmodes is irrelevant. As

we achieve the coverage for bone and soft issue areas of 97%

even with the approximate algorithm, we keep the computa-

tional work low by increasing simultaneously the robustness

of the registration.

4. CONCLUSION

In this paper we have proposed a novel method how to inte-

grate prior information to a non-rigid registration. The algo-

rithm is guided by landmarks and the outcome of a PCA on

deformation maps. Unlike previous approaches, we reduced

the computational complexity with our method treating the

landmarks as Dirichlet boundary conditions. In addition, we

developed PCA model based regularizers that are invariant to

global translations. By this means, we demonstrated on the

one hand the great impact of non-rigid registration with land-

marks and on the other hand we illustrated that our additional

PCA regularizers help to increase the robustness of an atlas

registration.
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