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ABSTRACT

The log-chromaticity space (LCS) is a color space with excellent
illumination-invariant properties. When converting RGB colors to
LCS, there exist four different options for choosing the normalizing
channel. For classification applications, we analyze the impact of
the normalizer on the distribution of colors in LCS. Based on syn-
thetic and real image data we show that the geometric mean does
not introduce a bias to the color clusters and always results in an
intermediate clustering performance. However, data-specific selec-
tion of the normalizing channel can further improve the results. For
instance, for skin classification we show that using the blue chan-
nel as denominator results in a recognition improvement of about
25.9% compared to the red channel (worst result).In comparison to
the geometric mean and the green channel, the two most popular
denominators, the performance increase is 12.9% and 2.9%.

Index Terms— Color, log-chromaticity space, classification

1. INTRODUCTION

Color information is a popular cue in many computer vision applica-
tions, like object detection, recognition, image retrieval or tracking.
Compared to shape information, color cues are relatively robust to
changes in scale and orientation. However, using color information
on arbitrary images can be challenging. The appearance of an ob-
ject’s color is affected by different factors, such as illumination, scene
geometry, camera characteristics and scene materials. The use of an
appropriate color space can greatly facilitate the effective employment
of color data.

A color space providing excellent properties for illumination
adaptation is the log-chromaticity space (LCS) [1]. The transforma-
tion of image intensities (ir, ig, ib)T to LCS is obtained by computing
color ratios (e.g. ir

ig
, ib
ig

) and then applying the natural logarithm to
these ratios. Under the assumption of Lambertian reflectance and nar-
row bands, the LCS has two important properties: (a) the LCS colors
of a certain uniform-albedo surface seen under different illumination
colors tend to lie on a straight line in LCS (b) these lines of different
surfaces are parallel to each other.

When converting to LCS, one can choose to use one of the fol-
lowing four normalizing channels for the color ratios: either one
of the RGB channels itself, i.e. ic where c ∈ {r, g, b}, or their ge-
ometric mean, i.e. (irigib)1/3. When looking at the instances of
LCS in different applications three out of the four options frequently
appear. In color constancy and intrinsic image computation methods
the red channel [2], the green channel ig [1], as well as the geometric
mean [3] have been used. In shadow removal and segmentation the
green channel [4] and the geometric mean [5] are popular. In tracking,
algorithms using the green channel [6] and geometric mean [7] have
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Fig. 1. The projection of an RGB cube to the four LCSs.

been developed. Image stitching preferred the use of the green chan-
nel [8]. The geometric mean was employed for object detection [9].
Very recently, the green channel was used for illumination invariant
road segmentation [10] and skin color classification [11].

Despite the popularity of LCS there has been so far no systematic
evaluation of the impact of the denominator on the color distributions
in LCS. We aim to address this issue and provide an analysis of
the influence of the normalizing channel. We focus our analysis on
classification. Based on metrics describing the clustering of classes
in LCS we argue about the influence of the normalizing channel.
Evaluations on synthetic and real data demonstrate its impact.

2. THEORY OF LOG-CHROMATICITY SPACE (LCS)

The log-chromaticity space (LCS) is a physics-based color space
with excellent illumination-invariant properties [1]. Based on a RGB
triplet i = (ir, ig, ib)

T the respective log-chromaticity value σ =

(σx, σy)
T is computed as follows:

σ = (σx, σy)
T =

(
ln

(
ix
id

)
, ln

(
iy
id

))T
, (1)

with x, y, d ∈ {r, g, b} and x 6= y 6= d. For example, if one uses
the green channel ig as denominator, the LCS values become σ =



(ln(ir/ig), ln(ib/ig))
T . The division of the RGB values by a single

channel id corresponds to a projection of the RGB data on the plane
where id = 1. Hence, the denominator has a high impact on the
clustering of the data in LCS and, therefore, also strongly influences
the classification results.

To not favor a color channel one can instead divide by the geo-
metric mean of the three RGB color channels [3]:

ρc = ln

(
ic

(
∏
k∈{r,g,b} ik)

1/3

)
. (2)

This transformation results in a projection of the color points on a
plane, which contains the point (0, 0, 0)T and is orthogonal to the
vector (1, 1, 1)T . By applying a 2D coordinate system transformation
LCS values σ = (σx, σy)

T are obtained (see [3]). The geometric-
mean denominator still preserves the good properties with respect to
illumination invariance.

In the remainder of the paper we refer to lcsR when the red
channel ir is used (lcsG and lcsB are similar notations). When the
geometric mean is taken as the denominator, we denote it as lcsM.

Fig. 1 illustrates the distribution of RGB color values in the four
different LCSs. The data was generated by uniformly sampling the
RGB cube (see Sec. 4.1). As the division of two intensity channels
eliminates brightness variations, two colors having the same chroma
and different intensities are projected on the same position in LCS.
In all four spaces achromatic colors are transformed to σ = (0, 0)T .
The color distributions already reveal that the proper selection of the
denominator has a high impact on classification. In the next sections
we will analyze this effect theoretically and experimentally.

3. CLUSTER ANALYSIS IN LCS

Many different measures have been developed for quantifying the
distribution and clustering of data points [12]. For good classification
results data points within a class should be similar to each other, while
being distinct from data of other classes. We decided to chose the
following metrics for within-class and between-class variance.

For a set C = {C1, C2, . . . , CNC} of Nc classes Ci, with Ci =
{σ1, σ2, . . . σNi}, we define the within-class variance Sw as

Sw =
1

NC

∑
Ci∈C

1

Ni

∑
σk∈Ci

(σk − µi)T (σk − µi). (3)

The vector µi = (µx,i, µy,i)
T is the mean of the respective class Ci.

The number of data points in a class Ci is denoted as Ni.
The between-class variance Sb is defined as

Sb =
1

NC

∑
Ci∈C

(µi − µ)T (µi − µ) (4)

where µ = (µx, µy)
T is the mean vector of all the data points. To

obtain good classification results the goal is to transform the data
to a color space where the within-class variance is small and the
between-class variance is large. Hence, the between-to-within-ratio
S = Sb/Sw should be as large as possible. We analyze this variance
ratio S to derive rules for the proper choice of the normalizing channel
id for certain classification tasks.

Besides the between-to-within-ratio describing the compactness
of the data, we also quantify the shape and the spread of an individual
cluster. The determinant md of the covariance matrix

∑
lcs of the

LCS values of a cluster,

md = det(
∑
lcs

) = λ1 λ2, (5)

corresponds to the product of the matrix’s eigenvalues λ1 and λ2. md

is proportional to the area of the covariance ellipses and, therefore,
covers the spread of a cluster. The eccentricity me of a cluster with

me =

√
1− λ2

λ1
. (6)

denotes how elongated a cluster is. A spherical distribution (i.e.
λ1 = λ2), would result in me = 0.

An analysis of Sb and Sw shows the influence of the normalizing
channel. The within-class variance Sw of Eq. 3 can be transformed to

Sw =
1

NC

∑
Ci∈C

var(σx,i) + var(σy,i)

=
1

NC

∑
Ci∈C

var(log(ix)) + var(log(iy)) + 2var(log(id))

− 2cov(log(ix), log(id))− 2cov(log(iy), log(id)). (7)

The variance of log(id) is weighted twice as much as the other chan-
nels. Thus, the RGB channel with the smallest variance of the loga-
rithm should be the normalizing channel. However, the magnitude
of Sw also depends on the covariances cov(log(ix), log(id)) and
cov(log(iy), log(id)). If a cluster exhibits a very large covariance
between two channels, it might be beneficial to chose the remaining
channel as denominator – the large covariance then does not occur in
the calculation. A large negative covariance, however, is favorable.

The between-class variance Sb in Eq. 4 can be expanded to

Sb =
1

NC

∑
Ci∈C

(µx,i − µx)2 + (µy,i − µy)2

=
1

NC

∑
Ci∈C

µ2
x,i + µ2

y,i + µ2
x + µ2

y − 2µx,iµx − 2µy,iµy.

(8)

A large Sb is obtained when the distance of all class means to the
global mean is large. In LCS the magnitude of the absolute mean
value of a coordinate, e.g. of σx = log(ix/id), is dependent on the
logarithm and the ratio: when the ration ix/id is much larger or lower
than 1, then the absolute mean value will be large. It is difficult to
predict the LCS with the largest Sb in advance.

The analysis of the between-class and within-class variance does
not offer any guidance on the best between-to-within-ratio. The
between-class variance depends manly on the class-specific and
global means in LCS. The within-class variance is based on the
variance and covariances of the logarithmic RGB values.

4. EXPERIMENTAL ANALYSIS

Experiments on synthetic data further clarify the clustering analysis
presented in Sec. 3. The evaluation on real data illustrates how these
conclusions generalize to classification problems on real images.

4.1. Synthetic Data

The synthetic data was generated by uniformly sampling the RGB
cube with intensities ic ∈ [0, 1] and a step size τ = 0.1 (see Fig. 2(a)).
To not introduce a bias to the data by handling the division by zero,
colors, where at least one channel was zero, were excluded. The set
of RGB colors was evenly divided into three clusters (Cr ,Cg and Cb)
corresponding to the reddish, greenish and bluish colors.
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Fig. 2. Results on synthetic data with clusters of equal sizes. The distributions of the three clusters differ, depending on the normalizing
channel. The covariance ellipses illustrate the spread of the clusters.

Fig. 2 illustrates the distribution of the three clusters of equal sizes
in the four different LCSs. The covariance ellipses, centered at the
mean of each cluster, illustrate the spread and the shape of the clusters.
It is clearly visible that the single channel denominators introduce a
bias to the shape of the distributions. This observation is supported
by the eccentricity measure (see Tab. 2), as there, for instance, the
reddish cluster Cr only has a circular shape (me close to zero) when
the red channel ir is taken as denominator. The remaining two
clusters have an elongated shape. This bias, which is introduced in
lcsR, lcsG and lcsB, is not present at lcsM. Using the geometric mean
as denominator results in three clusters having the same eccentricity
me. Although the single channel denominators introduce a bias in
the shape of the clusters, the spread of the clusters in those spaces is
the same (i.e. same md across lcsR, lcsG and lcsB). In the lcsM space
the spread is also the same across the different clusters, but compared
to the other spaces the spread of the data points is lower and, hence,
more compact (i.e. lower md). Due to this compactness of lcsM,
the between-to-within ratio S is not affected (see Tab. 1). It is the
same for all LCSs. Hence, in uniformly distributed color channels
the denominator does not influence between-to-within variance but
has a strong impact on the shape of the clusters.

We also generated synthetic data where the distributions in the
three clusters are not equal. Fig. 3(a) shows an example, where the
size of the red cluster Cr is reduced by removing those color points
closer to Cg and Cb (i.e. data having a yellowish or magenta chroma).
In other sets, the same reduction was done for the both other clusters
ore two of the three clusters were reduced. The results for the reduced
Cr are shown in Tab. 1 and Fig. 3. If the size of the reddish cluster is
reduced, the ratio S is higher, when the green or the blue channels are
chosen as denominator. The red channel as normalizer results in the
lowest S. The clustering performance of lcsM is between the best (i.e.
lcsG and lcsB) and the worst (i.e. lcsR) results. These observations
are consistent across all our synthetic data sets.

One can conclude that the lcsM has the advantage of not intro-
ducing a bias in the color distributions. Furthermore, the clustering
performance of lcsM has always been between the best and the worst
results. Hence, for classification we suggest the use of lcsM when
one requires a quick solution. However, when prior knowledge on
the distributions of color is available, then one of the other LCSs may
lead to a better result. Due to the high amount of dependencies in the
between-to-within ratio it is difficult to predict the best color space by
analyzing the means and variances of the RGB channels.

4.2. Real data – Skin Classification

Our analysis of the normalizing channel can lead to a more effective
LCS. Consider, for example, the application of skin classification,
where based on the respective LCS values a color pixel is classified
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Fig. 3. Results on synthetic data with a reduced reddish cluster Cr .
The distributions of the clusters are illustrated for lcsR.

uniform clusters reduced Cr
S Sb Sw S Sb Sw

lcsR 0.93 0.98 1.05 1.20 1.22 1.01
lcsG 0.93 0.98 1.05 1.28 1.10 0.86
lcsB 0.93 0.98 1.05 1.28 1.10 0.86
lcsM 0.93 0.49 0.53 1.25 0.57 0.46

Table 1. Clustering metrics S, Sb and Sw for the uniform clusters
and data with reduced red cluster Cr .

as skin ωs or non-skin ωn.
As the manner in which a decision is taken varies for different

classifiers, the between-to-within ration S as defined in Sec. 3 does
not generalize well to all of them. The performance of the different
LCSs was evaluated using the false-positive rate (FPR), the true-
positive rate (TPR) and, if possible, the ROC curves [13]. We used
the Jones and Rehg [14] database (8 960 non-skin and 4 659 skin
images). One half of the data was used for training, the other half
for testing. The images are arbitrary web images and, hence, are
gamma corrected. Although the theory of LCS is provided for linear
intensities, the consideration of gamma is beyond the scope of this
paper.

Nearest Mean Classification. A color value is classified as ωs, if it
is closer to the trained mean value of the skin cluster than to the mean
of the non-skin cluster. The results of the classification are shown
in Fig. 3. The lcsR leads to the best skin classification performance,
while the worst rates (besides RGB) are achieved by lcsB. Using
the geometric mean as denominator results in a performance lying
between the both.

Probabilistic Approach. To evaluate the classification perfor-
mance using the different LCSs in combination with a probabilistic
approach, we evaluated the method by Jones and Rehg [14]. A LCS



me(Cr) me(Cg) me(Cb) md(Cr) md(Cg) md(Cb)
lcsR 0.061 0.924 0.924 0.158 0.158 0.158
lcsG 0.924 0.061 0.924 0.158 0.158 0.158
lcsB 0.924 0.924 0.061 0.158 0.158 0.158
lcsM 0.816 0.816 0.816 0.053 0.053 0.053

Table 2. Measures for the shape and spread of the clusters, when the
clusters are uniform (see Fig. 2).

lcsR lcsG lcsB lcsM RGB
TPR 0.766 0.762 0.730 0.754 0.730
FPR 0.229 0.230 0.238 0.231 0.358

Table 3. Results of skin detection using nearest mean classification.

color σ is assigned to the skin class ωs, if

P (σ | ωs)/P (σ | ωn) ≤ θ. (9)

If the ratio of the conditional probabilities is lower than a threshold θ,
the color is assigned to the non-skin class ωn. To apply the method,
color histograms are required. For the LCSs we used σ{x,y} ∈
[−5, 5] with 1000 bins in each dimension. For RGB 32 bins were
used, as recommended in [14].

The ROC curves in Fig. 4 reveal the significant impact of the
normalizing channel on the classification performance. Using the blue
channel ib as denominator results in a recognition performance 25.9%
better compared to the red channel (worst recognition performance)
for a false-positive rate of 10%. The green channel, a popular choice
as normalizing channel, results in a intermediate curve. The geometric
mean performs slightly worse than lcsB. Nevertheless, for a false-
positive rate of 10%, the true-positive rate of lcsB is about 2.9% better
than lcsM.

Comparing the results of the nearest mean classifier with the
probabilistic approach, the ranking of the four LCSs differs. The LcsB,
for instance, results depending on the approach in the best and worst
recognition performance. In our experiments, the geometric mean
always achieved good results, however, always was outperformed by
another single-intensity denominator.

5. CONCLUSIONS

We provide an analysis of the impact of the normalizing channel on
the color distributions in LCS. The lcsM has the advantage of not
introducing a bias in the color distributions. In our evaluation on
synthetic data its clustering performance has always been between
the best and the worst results. For skin classification the lcsM led
to good results, but was always outperformed by another single-
intensity denominator. Hence, for classification we suggest the use
of lcsM when one requires a quick solution. However, the use of
one of the three other normalizing channels may lead to a better
result. Compared to the most popular LCSs, i.e. lcsM and lcsG, we
could improve the skin classification performance by about 2.9% and
12.9%, respectively, by taking the blue channel as denominator.
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