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Abstract

Glaucoma is an optic neuropathy affecting the entire visual system. The world-
wide prevalence of glaucoma is estimated to be 60.5 million people. The visual disor-
der caused by glaucoma can reach complete blindness if untreated. Various treatment
approaches exist that can largely prevent the visual disability and limit the vision
loss due to glaucoma if the disease is diagnosed in its early phases. Nevertheless,
the slow progression of the disease along with the lack of clear symptoms results
in the late identification of glaucoma. Moreover, the pathophysiology of glaucoma,
and its biological foundation and factors are not yet fully determined or understood.
Therefore, novel directions are essential for improving the diagnostic flow and the
understanding of the glaucoma mechanism.

Most of the glaucoma diagnostic methods analyze the eye with a main focus on the
retina, despite the transsynaptic nature of the fiber degeneration caused by glaucoma.
Thus, they ignore a significant part of the visual system represented by the visual
pathway in the brain. The advances in neuroimaging, especially diffusion tensor
imaging (DTI), enable the identification and characterization of white matter fibers.
It has been reported that glaucoma affects different parts of the visual system. Optic
nerve and optic radiation were shown to have abnormalities measured by DTI-derived
parameters in the presence of glaucoma. These outcomes suggest the significance of
visual pathway analysis in the diagnosis.

In this work, we propose visual pathway analysis using DTI in glaucoma diag-
nosis to complement the existing retina-based techniques. A system is proposed to
automatically identify the optic radiation on the DTI-images. The segmentation al-
gorithm is applied to healthy and glaucoma subjects and showed high accuracy in
segmenting such a complicated fiber structure. The automation eliminates the ne-
cessity of medical experts’ intervention and facilitates studies with large number of
subjects. This algorithm was incorporated in a framework for the determination of
the local changes of the optic radiation due to glaucoma using DTI. The framework
can aid further studies and understanding of the pathophysiology of glaucoma. More-
over, the framework is applied to normal and glaucoma groups to provide localization
maps of the glaucoma effect on the optic radiation. Finally, we propose a system that
extracts different aspects of the visual pathway fibers from the diffusion tensor images
for detecting and discriminating different glaucoma entities. The classification results
indicate the superior performance of the system compared to many state of the art
retina-based glaucoma detection systems.

The proposed approach utilizes visual pathway analysis rather than the conven-
tional eye analysis which presents a new trend in glaucoma diagnosis. Analyzing
the entire visual system could provide significant information that can improve the
glaucoma examination flow and treatment.





Zusammenfassung

Glaukomerkrankungen sind eine Optikusneuropathie, die das gesamte visuelle
System beeinflusst. Die weltweite Prävalenz des Glaukoms wird auf 60,5 Millionen
Menschen geschätzt. Unbehandelt kann die durch ein Glaukom verursachte visuelle
Beeinträchtigung bis zu völliger Blindheit führen. Eine Erkennung der Krankheit
im Frühstadium kann dies verhindern. Glaukomerkrankungen werden jedoch meist
zu spät identifiziert, da die Erkrankung langsam fortschreitet und kaum eindeutige
Symptome aufweist. Darüber hinaus sind die Pathophysiologie des Glaukoms und
seine biologischen Grundlagen und Faktoren bisher noch nicht vollständig ermit-
telt und verstanden. Deshalb müssen neue Wege in der Forschung und Diagnostik
eingeschlagen werden, um das Verständnis der zugrunde liegenden Mechanismen und
letztendlich die Behandlung zu verbessern.

Der Großteil der aktuell eingesetzten Methoden zur Glaukomdiagnose analysiert
schwerpunktmäßig die Netzhaut des Auges, trotz der transsynaptischen Natur der
Faserdegeneration, die ein Glaukom verursacht. Diese Ansätze ignorieren einen erheb-
lichen Teil des visuellen Systems, nämlich die Sehbahn im Gehirn. Die Fortschritte in
der Bildgebung, insbesondere des Diffusion Tensor Imaging (DTI), ermöglichen die
Identifizierung und Charakterisierung von Fasern der weißen Gehirnsubstanz. Unter-
suchungen haben ergeben, dass eine Glaukomerkrankung sich auf verschiedene Teile
des visuellen Systems auswirkt. Parameter, die aus dem DTI abgeleitet wurden,
zeigten bei Glaukompatienten Abweichungen für den Sehnerv und die Sehstrahlung.
Dies ist ein starker Indikator für die diagnostische Relevanz der Sehbahnanalyse.

In dieser Arbeit werden Methoden zur Analyse der Sehbahn mittels DTI vorge-
stellt, mit denen bestehende netzhautbasierte Techniken zur Glaukomuntersuchung
ergänzt werden können. Ein System zur automatischen Identifizierung der Sehstrah-
lung auf Basis des DTI wird präsentiert. Die Segmentierung wurde auf gesunde
Personen und Glaukompatienten angewendet und zeigt eine hohe Genauigkeit bei
der Segmentierung dieser komplizierten Faserstruktur. Die Automatisierung elim-
iniert die Notwendigkeit, medizinische Gutachten von Experten erstellen zu lassen
und erleichtert Studien mit einer großen Anzahl von Patienten. Dieser Algorith-
mus ist die Grundlage eines Frameworks für die Bestimmung durch Glaukom verur-
sachter lokaler Veränderungen der Sehstrahlung mittles DTI. Das Framework kann
für weitere Studien und das Verständnis der Pathophysiologie des Glaukoms genutzt
werden. Darüber hinaus wurde das Framework auf Gesunde und Glaukompatienten
angewendet, um eine Kartographierung des Glaukomeffekts in der Sehstrahlung zu
ermöglichen. Schließlich wird ein System zur Erkennung und Unterscheidung ver-
schiedener Glaukomformen vorgeschlagen, das auf einer DTI-Analyse der Sehbahn-
Fasern basiert. Die Klassifikationsergebnisse zeigen die hohe Genauigkeit des Systems
im Vergleich zu vielen aktuellen netzhautbasierten Glaukom-Erkennungsystemen.

Der vorgeschlagene Ansatz nutzt die Sehbahn-Analyse, die einen neuen Trend in
der Glaukom-Diagnose darstellt, anstelle der üblichen Augenanalyse. Eine Analyse
des gesamten visuellen Systems kann wichtige Informationen ergeben, die den Ablauf
der Glaukomuntersuchung und die Behandlung verbessern.
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Chapter 1

Overview

1.1 Motivation

Glaucoma is an optic neuropathy accompanied by visual disorder. The progression
of glaucoma results in visual impairment that can reach complete vision loss if un-
treated. It is the second leading cause of blindness in the world affecting more than
60 million people with 8.4 million people suffering from bilateral blindness [Quig 06].
The glaucomatous vision loss is irreversible. Nevertheless, if glaucoma is detected in
an early stage, its progression can be delayed or stopped. Different clinical methods
are present to assist the diagnosis. However, the complex nature of the glaucoma
disease and the necessity for early diagnosis methods impose the exploration of new
directions that can be integrated in the diagnostic flow to improve the screening and
the identification of the disease and in turn assist the treatment.

The mechanism of glaucoma remains an area of research with no definite un-
derstanding. However, morphological damage along the visual pathway and the
functional assessment are used to identify the presence of the disease. Glaucoma
is accompanied by gradual loss of the retinal ganglion cells and their axons leading to
a thinning of the retinal nerve fibers comprising the optic nerve [Fech 94]. Different
imaging modalities currently exist that provide structural information and images to
characterize the previously mentioned changes. Fundus imaging cameras, Heidelberg
retina tomograph (HRT), and optical coherence tomography (OCT) are examples of
the currently available modalities that produce valuable information about the retina.
Other techniques test the visual function of the eye such as the frequency doubling
technology (FDT).

The common factor between all the aforementioned techniques is that they all fo-
cus on the eye, especially the retina region, which is mainly responsible for acquiring
the visual information. This neglects the growing evidence that glaucoma is likely a
systemic disease that generally affects the entire visual system. The human visual
system contains cerebral white matter fibers and gray matter centers that transmit
and process the visual information, respectively [Wich 04, Remi 04]. In experimen-
tal glaucoma, the degeneration has been shown to be transsynaptic. i.e., atrophy
is transmitted from diseased neurons to healthy nerve cells through synaptic con-
nections [Gupt 07]. The neuronal degeneration of glaucoma was shown to extend to
different parts of the visual pathway spreading to the intracranial optic nerve, the

1



2 Chapter 1. Overview

lateral geniculate nucleus and the visual cortex [Gupt 06]. The integrity of the white
matter fibers of the optic nerve and the optic radiation is reported to be globally de-
creased assessed by parameters derived from the diffusion tensors [Hui 07, Gara 09].
Moreover, the optic radiation showed localized structural changes using morphome-
try analysis in the presence of glaucoma [Hern 11]. These findings indicate that there
is a great potential in diagnosing glaucoma using visual pathway analysis.

Diffusion tensor imaging (DTI) opened a new dimension in the field of neuroimag-
ing [Mori 99, Le B 01] enabling the reconstruction of the brain white matter structure
non-invasively and in-vivo [Bass 02, Nuci 07]. It allows building an atlas of white
matter fibers [Mori 08]. Moreover, DTI received a lot of attention due to its clinical
applications [Dong 04] such as acute stroke detection as well as the demonstrated sen-
sitivity of diffusion tensor-derived parameters to different neuropathologies including
Alzheimer’s disease and multiple sclerosis [Mose 90, Henr 03, Chen 09].

DTI is utilized in this work to characterize and identify the optic radiation as
a part of the visual pathway. The complexity and the limited spatial resolution of
the DTI data, the limitation of the diffusion tensor model, and the interpersonal
variability of the brain fiber structure are among the challenges in the analysis of
the fibers. Additionally, the identification and analysis of the optic radiation which
has a complicated fiber structure with highly variable course is a serious challenge.
Therefore, all the aforementioned issues need to be handled carefully when processing
the DTI-data.

1.2 Contributions

This work extends the current state of the art in glaucoma detection and analysis
from conventional eye examinations to visual pathway analysis. The general aim
is to investigate the significance of the visual pathway analysis for giving insight
into the disease and for detecting its different entities. To accomplish this goal, a
set of tools are proposed in order to identify and analyze the visual pathway in the
presence of glaucoma. The sensitivity of the DTI-derived parameters in detecting the
abnormalities in the visual pathway fibers due to glaucoma is studied. The ability of
the DTI-derived parameters, sensitive to the underlying fiber structure, to diagnose
different forms of glaucoma is examined as well. The scientific contributions of this
work are

1. Optic Radiation Segmentation: The developed optic radiation segmenta-
tion algorithm based on DTI-data is a fully automated fiber bundle identifi-
cation algorithm. The automation of the system is utilizing the physiological
and anatomical information to produce a robust initial estimation of the op-
tic radiation. This estimation initializes a statistical level set framework. The
level set formulation by Lenglet et al. [Leng 06] is extended to work with the
Log-Euclidean framework. This maintained the simplicity and low computa-
tional cost of the calculations while avoiding the drawbacks of the Euclidean
framework when dealing with the diffusion tensor space. The optic radiation
is segmented by the surface evolution of the level set function. Moreover, the
system is applicable to normal subjects and glaucoma patients with similar per-
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formance [El R 09, El R 11a] regardless of the previously reported abnormalities
in the optic radiation due to glaucoma. The purpose of this algorithm is to aid
glaucoma studies by avoiding the user intervention while maintaining accurate
segmentation of such a complex fiber structure as the optic radiation.

2. A framework for voxel-based morphometry analysis of the optic radi-

ation: The aim of this work is to establish a framework for the determination
of the local changes of the optic radiation due to glaucoma using DTI. The pro-
posed system utilizes the previous automated algorithm to produce an efficient
identification of the optic radiation. Segmented optic radiations are transformed
to a unified space using shape-based non-rigid registration. The maps of the dif-
fusion tensor-derived parameters from different subjects can be compared in the
unified space. This allows for statistical voxel-wise analysis to produce signifi-
cant abnormality maps. This framework is capable of capturing the significant
local changes of the optic radiation due to glaucoma [El R 11b] and facilitates
further studies and understanding of the pathophysiology of glaucoma.

3. Voxel-based morphometry analysis of the optic radiation in glaucoma:

The proposed framework is applied to a group of glaucoma patients and a con-
trol group. The groups are age matched in order to eliminate the age effect
on the analysis. Diffusion related parameters (axial, radial, and mean diffusivi-
ties) and an anisotropy index (fractional anisotropy) are studied. The analysis
showed significant regional changes indicating different localized fiber abnor-
malities as demonstrated in [El R 11b]. The preliminary analysis suggests that
the glaucomatous optic radiation may suffer from localized white matter de-
generation. To the best of our knowledge, this is the first attempt to localize
the glaucoma effect on the visual pathway using DTI.

4. Glaucoma classification based on visual pathway analysis: We propose
a system based on DTI analysis of the visual pathway fibers in the optic ra-
diation for detecting and discriminating different glaucoma entities. The optic
radiation is identified semi-automatically based on our developed algorithm.
DTI provides information about the fiber orientation and a set of derived pa-
rameters describing the degree of diffusion anisotropy and diffusivity. Features
for each DTI derived measure are extracted from a specified region of interest
on the optic radiation. The features are statistical features as well as texture
features. These features are ranked according to their classification weights
recursively and the top ranked features are used for classification. The sys-
tem is applied on three age-matched subjects’ categories containing healthy,
primary open angle glaucoma (POAG), and normal tension glaucoma (NTG)
subjects. The classification results indicate the high performance of the system
compared to retina-based glaucoma detection systems. Moreover, it showed
that using only the DTI modality and visual pathway analysis, it is possible to
differentiate healthy subjects from different types of glaucoma patients. In ad-
dition, sub-classes of glaucoma can also be identified. The proposed approach
utilizes visual pathway analysis rather than the conventional eye analysis which
presents a new trend in glaucoma detection. An early version of the system with
only histogram features and one glaucoma class was presented in [El R 11c].
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The author contributed partially to the following medical studies

5. Clustering of glaucoma subjects: In [Mich 12c], glaucoma and normal
groups were clustered taking into consideration the effects of age and the pres-
ence of microangiopathy. DTI-parameters and retinal nerve fiber layer thickness
were used to determine the subjects’ groups. The clustering analysis identified
four different clusters showing an increased sensitivity of the DTI-parameters
to advanced age glaucoma patients. This indicated the degeneration of white
matter fibers in the optic radiation associated with the damage in the retinal
nerve fiber. However, the results showed the inability to detect optic radiation
impairment in the middle-aged group.

6. Correlation of the integrity of the optic radiation to glaucoma indices:

The correlation between DTI-measures and indices describing the severity of
glaucoma was investigated in [Mich 12a, Enge 12b]. The optic radiation was
delineated using the aforementioned segmentation algorithm. DTI-parameters
related to the integrity and demyelination degree of the fibers are extracted
from the optic radiations. A correlation analysis was performed between these
parameters and morphological, functional assessment indices of glaucoma. The
results showed significant correlation between glaucoma severity and the optic
radiation damage measured by DTI. This work is extended to include POAG
and NTG groups [Mich 12b]. Fibers bundles of the visual pathway in addition
to the optic radiation were also examined using degradation of the fractional
anisotropy as an indicator of compromised fibers. This was accomplished by
selecting regions of interest on the orbital and intracranial parts of the optic
nerve, the optic chiasm, the lateral geniculate nucleus, and the optic radia-
tion [Enge 12a].

1.3 Organization of the Thesis

The thesis is divided into two main parts. The first part (Chapters 2 and 3) contains
the information related to the medical problem and the used imaging modality. The
medical background of the glaucoma disease is described in Chapter 2. In Chapter
3, the basic principles of DTI are detailed. The background part is structured as
follows:

• Chapter 2: The anatomical and functional aspects of the human visual system
are necessary to understand the effect of different pathologies on the system and,
therefore, are detailed in this chapter. The human visual system is divided into
two major parts which are the eye, and the intracerebral pathway containg
the white matter fibers and the gray matter centers in the cortex. Then, the
mechanism of the glaucoma disease as well as the recent findings in glaucoma
diagnosis is introduced. This includes the different glaucoma types and the
effect of glaucoma on the visual system. The chapter concludes with an overview
of the state of the art in glaucoma diagnostic systems. These systems are
based on different imaging modalities that are briefly described indicating the
capabilities of each of them and their application.
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• Chapter 3: Diffusion weighted imaging is the basis of the DTI. Its physical
principles and acquisition are presented. The construction of the diffusion ten-
sor model from the diffusion weighted images is introduced. Valuable measures
are derived from the diffusion tensor providing information regarding the fiber
orientation and aspects of the underlying fiber structure. These measures are
used in this work. Therefore, they are categorized and demonstrated. The uti-
lization of the DTI-data to reconstruct the white matter fiber microstructure of
the brain has followed many paths. Some of these approaches are highlighted
in this chapter. This is followed by the introduction of the clinical applications
of the DTI modality that attracted a great attention during the last decades.

After the background part, novel methods are proposed to advance the research
of glaucoma using visual pathway analysis in the second part of the thesis (Chapters
4-6). The developed systems and algorithms focus on the processing of the optic
radiation, a large fiber bundle in the visual pathway. A fully automated system for
segmenting the optic radiation is proposed in Chapter 4. In Chapter 5, we propose a
framework for providing localization maps of the glaucoma caused fiber disorder on
the optic radiation. Chapter 6 examines the ability of DTI to discriminate healthy
controls from glaucoma patients.

• Chapter 4: The chapter starts with a short introduction to the problem being
considered and an overview to the proposed segmentation algorithm. Then,
the various stages of the segmentation algorithm are detailed. The limitations
of the Euclidean calculus in processing the diffusion tensor data and the pro-
posed alternatives in the literature are reviewed. An automatic initialization
of the optic radiation is suggested and is the input of a statistical level set
framework. The mathematical formulation of extending the used statistical
level set framework for DTI image segmentation to incorporate Log-Euclidean
calculus is given. The algorithm is tested on normal and glaucoma subjects
to demonstrate its ability to delineate the optic radiation in normal as well as
pathological cases. The segmentation errors and the performance are analyzed
in the discussion section.

• Chapter 5: The problem is defined in the introduction section showing the chal-
lenges and the current state of the art. The system is outlined in the methods
and the utilized approach for morphometry analysis is described. The system
is configured to operate on a specified region of interest. This is a crucial step
as it requires manual intervention and so it is explained and tested. A registra-
tion is incorporated to transform all the subjects’ images to a unified domain.
This step is evaluated in order to judge the performance of the framework. The
framework is primarily applied to show the regional differences between normal
and glaucoma groups. These preliminarily maps and their interpretation in ad-
dition to the framework analysis are provided in the results and the discussion
sections.

• Chapter 6: After an introduction, a classification system is presented. The con-
ventional pipeline for the classification system is shown. This includes feature
extraction, feature selection, and classification. The DTI derived features are
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categorized according to their statistical order. Then, the importance of the
features to the classification task is determined by applying a feature ranking
algorithm. The classification is performed on different types of glaucoma and
the evaluation of the system is demonstrated in the results section. Finally, the
results and potential of the system are discussed.

• Chapter 7: The contributions of this work to the progress of the scientific
research in the fields of glaucoma, visual pathway analysis, and DTI processing
is summarized in this chapter. The conclusions are drawn from the presented
novel approaches in form of methods and systems in addition to their application
to the glaucoma disease.

• Chapter 8: In this chapter, the future extension of the glaucoma diagnosis and
the potential provided by brain imaging in general and DTI in particular are
discussed.



Chapter 2

Glaucoma

2.1 Introduction

The human visual system is responsible for acquiring and processing the visual in-
formation. Many diseases affect the visual system causing visual impairments that
can reach blindness. Glaucoma is among the visual system diseases and is the second
most common cause of blindness in the world with 8.4 million people and affecting
60.5 million people in 2010 [Quig 06]. The number of people with glaucoma and the
number of glaucoma caused bilateral blindness are estimated to increase to 79.6 mil-
lions and 11.2 millions by 2020, respectively [Quig 06]. These estimations are based
only on the two most common forms of glaucoma which are open angle glaucoma
(OAG) and angle closure glaucoma (ACG). Other types of glaucoma exist leading to
additional visual disorders and vision loss. In addition, glaucoma is a multifactorial
disease having a complicated mechanism with many unresolved issues. The vision
loss due to glaucoma is usually undetected in its early stages. The reasons for this are
primarily the gradual loss of vision and the absence of clear symptoms. Glaucoma is
considered in this work for the application of the developed systems. In this chapter,
we introduce the necessary background required to understand the glaucoma disease
and the motivation behind incorporating visual pathway information in the diagnosis
of glaucoma. The anatomy and the function of the various parts of the human visual
system are first explained. The glaucoma effect on the entire visual system indicating
the recent findings in glaucoma pathophysiology is reviewed. This includes as well the
different forms of glaucoma. Furthermore, the state of the art in glaucoma diagnosis
systems are discussed with a main focus on the systems based on imaging modalities
of the retina.

2.2 The Human Visual System

The human vision involves the processes of the outer world image acquisition, pro-
cessing, and reception. The image acquisition is performed by the sensory part of the
visual system, the eye. The eye focuses and projects the image in its visual field on
the retina, the component in the eye responsible for the photoreception. The areas
of vision that are captured by the eye are called the visual field. The visual field is
usually divided into the left and right hemifields based on their relative position to

7
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Figure 2.1: The human visual pathway. The visual system consists of the eye, the
brain white matter fibers, and gray matter tissues.

the point where the eye is focused. The combined visual field from both eyes has a
binocular shape and contains an intersection region seen by both eyes and two monoc-
ular regions seen individually by each eye. Each hemifield is further partitioned into
nasal and temporal fields. The right hemifield is projected on the temporal half of
the left eye’s retina and the nasal half of the right eye’s retina while the left hemifield
is projected on the temporal half of the right eye’s retina and the nasal half of the left
eye’s retina. The picture formed on the retina is neuronally decoded and transmitted
to the brain through the optic nerve. The white matter fibers that carry the visual
information in addition to the gray matter cortical centers that process this informa-
tion constitute the visual pathway residing in the brain. The anatomy of the visual
system with its two major components, the eye and the visual pathway, is essen-
tial to understand the glaucomatous insult. Further details on the function and the
anatomy of the visual system can be found in [McCa 82, Nolt 02, Goeb 03, Mart 08].
The structure of the human visual system is illustrated in Figure 2.1.



2.2. The Human Visual System 9

2.2.1 The Eye

The eye is the interface of the visual system to the outer world. It has a spherical
shape. The sensory component of the eye is the retina. The function of the rest
of the eye is to provide means of nutrition and protection as well as mechanisms to
acquire and focus the image on the retina. The structure of the eyeball is shown in
Figure 2.2. The outer tissue of the eye is called the sclera. The sclera is a white,
opaque, and dense fibrous tissue that contributes to the eye protection. In contrast to
the opaque sclera, the anterior of the eye surrounding tissue is transparent allowing
light transmission into the eye. This anterior tissue is referred to as the cornea and
like the sclera has no vessels. The amount of light passing into the eye varies according
to the strength of the illumination of the scene. This is controlled by the pupil, a
circular opening in a diaphragm posterior to the lens known as the iris. In low light
conditions, the pupil broadens to increase the amount of light entering the eye and
it contracts in bright illumination conditions to reduce the light reaching the retina.
The accurate projection of the picture on the retina is obtained by adapting the focus
of the lens (accommodation). Similar to the tissues in the path of the light, the lens
is transparent and avascular in addition to being elastic. The flexibility of the lens is
an important aspect that allows the control of the lens refractive power by adjusting
the curvature the biconvex lens. A set of ligaments, zounle fibers, attached to the
lens are utilized by the ciliary muscle to adjust the focus of the lens. For example in
case of a near object adaptation, the zounle fibers are relaxed by the contraction of
the ciliary muscle causing the lens to bend forward and focus on the object nearby.

The ciliary muscle is part of the ciliary body which along with the iris and the
choroid form the uvea. The uvea is anterior to the sclera/cornea tissue and contains
a dense network of blood vessels. The choroid mainly provides nutrition for the
retina. The space between the retina and the lens is occupied with a gelatin-like
substance that consists mainly of water, vitreous. The light passes through the
transparent vitreous before it reaches the retina. A compartment exists between
the iris and the lens called the posterior chamber. The anterior chamber occupies
the space between the cornea and the iris. Both chambers are filled with a thick
fluid known as the aqueous humor. In addition to supplying the avascular tissues
of the eye with nutrition, the aqueous humor plays an important role in preserving
the intraocular blood pressure (IOP). Elevation of the IOP is usually correlated with
widely spread common types of glaucoma. Therefore, we will describe briefly in the
following paragraph the production, circulation, and drainage of the aqueous humor.

Aqueous Humor: The ciliary body forms the aqueous humor into the posterior
chamber based on a number of interfering factors including blood flow, transcapillary
exchange. The balance between the production and drainage of the aqueous humor
through the extraocular venous capillaries maintains the IOP. Disturbance in the
IOP affects the blood flow and consequently the production of the aqueous humor.
It flows by hydrostatic pressure through the pupil into the anterior chamber. It is
discharged into the venous drainage system of the eye via the trabecular meshwork
in the iridocorneal angle [McCa 82]. The vertex of the iridocorneal angle is at the
location where the iris meets the cornea. The aqueous humor supplies some of the
eye structures which are not connected to the blood exchange network such as the
lens, the cornea, and the iris with nutrients.
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Figure 2.2: Structure of the eye showing the various layers comprising the eye-
ball. (public domain)

http://en.wikipedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg
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The Retina: Anatomically, the retina consists of five main layers [Goeb 03]. As
shown in Figure 2.3 These layers are: (1) outer nuclear layer, (2) outer plexiform
layer, (3) inner nuclear layer, (4) inner plexiform layer, (5) ganglion cell layer. The
layers are ordered according to their relative position to the center of the eye sphere
from the farthest to the nearest. The retina is the innermost part of the eye. The
cell bodies of the photoreceptors reside in the outermost layer of the retina, the
outer nuclear layer, meaning the light rays have to go through all the retinal layers
before they are being absorbed. Excess light which has penetrated the retina is
absorbed by the retinal pigment epithelium posterior to the aforementioned retinal
layers preventing light reflections within the eye. The rods and the cones are the two
primary types of photoreceptors cells. They transduce the light intensities into neural
impulses. There are 120 million rods and 6 million cones [Goeb 03]. In daylight, the
rods are almost saturated and do not provide any visual information while the three
types of cones (with maximum sensitivity at the red, green, blue wavelengths in the
spectrum) are stimulated and are able to resolve color information. On the contrary,
rods are responsible for dim light vision. Thus, the ability to distinguish between
different colors in night (scotopic) vision is lost because of the general insensitivity
of rods to colors and the unstimulated cones [Butl 93]. A spot in the retina with an
exceptional higher cones density is the fovea. Furthermore, no retinal layers or vessels
are on the way of the incident light on the fovea. Thus, the sharpest vision occurs in
the center of the visual field due to the special structure of the fovea. The neuronal
impulses are transmitted through the synaptic outer plexiform layer to the bipolar and
horizontal cells found in the inner nuclear layer. The inner plexiform layer contains
synapses that carry the visual information further to the ganglion cells. The visual
information arriving at the ganglion cell layer is largely compressed by the different
retinal processes. This is evident from the approximately one million neurons in the
ganglion cells down from more than 100 million photoreceptors [Nolt 02]. Magnocells
(M cells) in the ganglion cell layer are specific for the rods and parvocells (P cells)
receives the inputs from the cones [Mart 08]. The axons of the ganglion cells constitute
the retinal nerve fiber layer which exits the eye as the optic nerve through the optic
disc delivering the neuronal signals to the brain. A main object in the optic disc
(also known as optic nerve head (ONH)) is the lamina cribrosa, a net-like structure.
The holes in the net of the lamina cribrosa allow the retinal ganglion cells’ (RGCs)
axons to leave the eye boundary and the central vessels (artery and vein) for blood
exchange to communicate with the intraocular blood capillaries. The lamina cribrosa
isolates interior of the eye from the its exterior, having different pressure, playing an
important role in maintaining the ocular pressure [Jona 03]. The neural part of the
optic disc is called the rim while the remainder containing the vascular part has a
cup-shaped structure and, therefore, is named the optic cup. The cup is located at
the center of the ONH.

2.2.2 The Visual Pathway

The extension of visual system in the brain is referred to as the visual pathway and
demonstrated in Figure 2.1. The visual pathway connects the retina to the primary
visual cortex transversing the whole brain. The visual pathway consists of five white
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Figure 2.3: The different layers of the retina. From 20th U.S. edition of Gray’s
Anatomy of the Human Body, 1918 (public domain)

matter components: (1) Optic nerve, (2) optic chiasm, (3) optic tract, (4) lateral
geniculate nucleus (LGN), and (5) optic radiation. These bundles transport the visual
information to gray matter regions, the primary visual cortex, for processing. Further
details on the visual pathway components are given in the following paragraphs.

The Optic Nerve : The one million axons of the retinal nerve fiber layer pen-
etrate the eye boundaries and start the visual pathway in the human brain as the
optic nerve. In the brain, myelin sheaths cover the axons. The optic nerve from each
eye has ipsilateral (from the same side) and contralateral (from the opposite side)
visual field components. These elements are captured by the nasal and the temporal
retina halves.

The Optic Chiasm and the Optic Tract : The optic nerve parts correspond-
ing to the temporal retina halves remain in their arising brain hemisphere. The fibers,
originating from the nasal retina halves, cross their hemispheres at the optic chiasm.
The merge of the nasal fibers arriving from the opposite hemisphere and the tempo-
ral fibers from the same hemisphere constitutes the optic tract. This means that the
contralateral visual hemifield information (right/left hemifield) is regrouped in the
opposite cerebral hemisphere (left/right hemisphere), after passing through the optic
chiasm.

The Lateral Geniculate Nucleus : The optic tract fibers pass around the
midbrain [Jage 05] and project into the LGN. The LGN is a six layered nucleus. The
layers are numbered from the most inferior (1) to the most superior layer (6). After
the merge of the contralateral visual field fibers, the LGN manage to discriminate

http://en.wikipedia.org/wiki/File:Gray881.png
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the inputs from each eye. This is achieved by dedicating three layers exclusively
for a single eye and the other three layers for the other eye. These six layers are
categorized according to the type of their ganglion cells origin (M or P cells) into: (a)
magnocellular (layers 1 and 2), (b) parvocellular (layers 3 to 6) [Nolt 02]. Additionally
koniocellular layers are located in the LGN where other cell types (bistratified cells)
in the RGCs-layer project to the LGN [Lee 10].

The Optic Radiation: The LGN acts as a relay delivering the visual information
to the visual cortex through the optic radiation also known as the geniculocalcarine
tract. The optic radiation is a densely packed fiber bundle with a large number of
myelinated axons. It is the largest bundle in the human visual pathway. It represents
the magnocellular and the parvocellular projections to the occipital cortex [Goeb 03].
The optic radiation follows a rather complicated course with three main paths. The
first course is followed by half of the optic radiation fibers going shortly in the anterior
direction before they bend forming the Meyer’s loop and running posteriorly to the
cortex. The rest of the optic radiation fibers follow a direct posterior path to the
cortex. The third optic radiation bundle moves laterally before turning posteriorly as
well [Wich 04, Hofe 10]. However, the anterior-posterior orientation is the general and
common course of the optic radiation. Near the distal end of the optic radiation, it
fans out resulting in many small branches to reach the distributed visual processing
centers.

The Visual Cortex: The fibers representing the right visual hemifield are linked
to the primary visual cortex in the left cerebral hemisphere and vice versa. The
primary visual cortex resides deeply in the calcarine sulcus and contains the gray
matter centers that are responsible for processing the visual information and scene
reconstruction. Moreover, it is thought to be the gate for performing the perception
of the acquired scene such as objects identification, movements, etc. The superior
visual field is linked to the lower bank of the calcarine sulcus while the inferior part
of the visual field is linked to the higher bank of the calcarine sulcus. The central
field captured by the fovea is mapped to a relatively large region in the posterior part
cortex reflecting the more obtained information and resolution in this field.

2.3 The Glaucoma Disease

Glaucoma is a collection of optic neuropathies. It is a chronic disease that has var-
ious forms. Open angle glaucoma is the most common form of glaucoma. It is
differentiated from ACG by the appearance of the iridocorneal angle. In the OAG,
the iridocorneal angle is open having a normal form. On the other hand, the iri-
docorneal angle is closed in ACG. Glaucoma is further divided into primary and
secondary. Primary glaucoma is characterized by the absence of additional ocu-
lar/systemic impairments. Regardless of the common features between primary and
secondary glaucoma, secondary glaucoma might proceed differently. In addition, sec-
ondary glaucoma is accompanied by ocular/systemic diseases which could lead to the
initiation of glaucoma.

The number of glaucoma patients due to the two most widely spread types of
glaucoma which are OAG and ACG adds up to 60.5 million people in 2010. POAG
percentage is 74% (44.7 millions) while ACG causes the remaining 26% (15.7) glau-
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Figure 2.4: The distribution of open angle glaucoma (OAG) and angle closure glau-
coma (ACG) in the year 2010 and 2020 according to the estimation in [Quig 06]. The
number of people with bilateral blindness is shown for the total and the individual
glaucoma types.

comatous damage. The glaucomatous bilateral blindness is estimated to be 8.4 with
4.5 and 3.9 million people by POAG and ACG respectively. The epidemiology of
glaucoma is expected to rise significantly in 2020 to 79.6 million people among them
are 11.2 million blind people. POAG contributes with 5.9 million vision loss cases
(from 58.6 millions) and the ACG share is increased to 5.3 vision loss cases (from 21
millions). The glaucoma distribution numbers are based on the work by Quigley and
Broman [Quig 06] and is illustrated in Figure 2.4.

The various entities of glaucoma have common characteristics that are used to
identify the presence of the disease. The death of the RGCs and their axons, defects
in the visual field, excavation of the optic disc, and optic nerve degeneration. IOP
is a highly relevant feature of glaucoma. However, 50% of the people diagnosed
with POAG do not have ocular hypertension [Somm 91]. Moreover, another type of
OAG is the NTG where the IOP of the patients are always in the normal range.
Nevertheless, reducing the IOP level has shown to delay or stop the progression of
glaucoma even in NTG [Heij 02]. Despite the attempts aiming to provide a precise
definition of glaucoma like the case definition in [Fost 02], the mechanisms of glaucoma
are not completely understood and there are many challenges ahead of the scientific
community to understand the pathology of glaucoma. Furthermore, it is argued
that, due to the complex nature of glaucoma, all the aforementioned characteristics
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do not provide a clear identification for glaucoma and still patients could be wrongly
diagnosed with glaucoma or glaucoma could go undetected [Kroe 03].

2.3.1 Angle Closure Glaucoma

Angle closure glaucoma is a result of anatomical disorders that lead to obstructing
the drainage flow of the aqueous humor through the trabecular meshwork. These
disorders could be originally in the relative or absolute sizes of the anterior segment
elements [Ritc 95]. The most common form of ACG is the pupillary block where the
iridocorneal angle is narrowed or closed pressured by the iris anterior movement due
to the accumulation of the aqueous humor in the anterior chamber [Ritc 99]. This
increases the IOP either gradually or rapidly causing escalation of the glaucomatous
damage. Family history, age, sex, and refractive errors are among the risk factors for
ACG [Cong 92].

2.3.2 Open Angle Glaucoma

Several risk factors are suggested for OAG such as advanced age, family history, and
ocular hypertension as well as a set of factors for predicting the glaucoma develop-
ment [Cole 08]. Additional factors are race, thin corneal center, myopia [Dran 01].
Despite the normal appearance of the iridocorneal angle in POAG, the cycle of the
aqueous humor is disturbed elevating the IOP. IOP is a prominent risk factor for
OAG but it is not a characteristic feature of OAG as NTG patients do not experience
any abnormal IOP. The IOP level of 21 mmHg is considered as the threshold between
POAG and NTG. OAG patients with IOP greater than 21 mmHg are regarded as
POAG while those having IOP less than 21 mmHg are diagnosed with NTG [Shie 08].

The glaucomatous optic neuropathy is accompanied by cupping of the ONH. The
loss of the RGCs and axons in the retina progresses to the ONH reducing the thickness
of the neuroretinal rim. In addition, the deterioration of the ONH connective tissues
leads to a gradual posterior motion of the lamina cribrosa increasing the depth and
the size the optic disc cup [Down 11]. The visual field defects in OAG are initiated
in the mid peripheral field followed by a development in the peripheral and central
fields [Quig 99].

The mechanisms of RGCs dysfunction and the optic nerve degeneration have
been investigated in many studies. The pathophysiology behind ganglion cells death
is attributed to different mechanisms. A class of these mechanisms is related to the
ocular hypertension. The increase of the IOP reduces the axonal transport preventing
the RGCs from receiving the neurotrophic factors, essential for the survival and
functionality of neurons [Kwon 09]. In addition, the RGCs’ axons are suggested to
die due to the shortage of the blood perfusion to the optic nerve affecting the retinal
vascular nutrition [Fech 94]. Other pathological procedures are thought to be involved
in the glaucoma injury. Further information about the various pathogenesis involved
in the OAG insult can be found in [Fech 94, Quig 99, Kueh 05, Kwon 09].

The glaucoma injury can not be generally reversed. However, many medical ap-
proaches exist for slowing or avoiding the development of glaucoma. Most of the
glaucoma therapy strategies target the prevention of neuronal death. This is called
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neuroprotection. The most common form of neuroprotection is the reduction of the
IOP. The ocular pressure can be lowered by regulating the aqueous humor circula-
tion. This can be performed surgically by providing an alternative drainage path or
expanding the existing path for the aqueous humor. Other medical techniques aim
to reduce the production of the aqueous humor by the ciliary body or to increment
the drainage [Alwa 98]. Additional therapies with anti-glaucoma drugs, surgical, and
laser methods are utilized for glaucoma treatment [Wein 04].

2.3.3 Glaucoma and the Visual Pathway

The functional and morphological disorders due to glaucoma at the eye level have been
extensively studied. However, the pathogenesis of glaucoma indicates the potential of
extending the impairment to the rest of the visual system [Gupt 07]. In experimental
glaucoma on primates, the specific pathological features could be artificially initiated.
An Example of such techniques is using laser to elevate the IOP. Yücel et al. induced
glaucoma in monkeys by increasing the IOP leading to the degeneration of the RGCs
and investigated the effect on the LGN and the visual cortex [Yuce 03]. They traced
the projections corresponding to the M and P cells to the LGN in addition to the
koniocellular layers and spotted transneuronal degeneration at the LGN. This showed
that the atrophy is transmitted from diseased RGCs to healthy nerve cells in the visual
pathway at the LGN through synaptic connections (i.e., transsynaptic degeneration).
Moreover, the damage in the LGN due to elevated IOP occurred prior to any observed
optic nerve fiber loss. The visual cortex was shown to be regionally affected as well.
These results were supported by the study performed on a human case demonstrating
spread atrophy along the visual pathway. This includes the intracranial optic nerve,
lateral geniculate nucleus and visual cortex [Gupt 06].

The rapid development of neuroimaging techniques during the last decades al-
lowed the identification of the human visual system in-vivo and non-invasively. This
was utilized in recent studies examining glaucoma. The optic radiation was exam-
ined in glaucoma patients and the neuronal density was reported to be decreased
causing size attenuation compared to normal subjects [Enge 11]. Furthermore, mor-
phometry analysis using magnetic resonance imaging (MRI) aimed to detect volume
changes on the visual pathway in glaucoma. The results of this analysis showed
localized decreased volume differences along the visual pathway including the optic
radiation [Hern 11]. A study produced glaucoma artificially in rats and found cor-
relation between parameters indicating the cerebral optic nerve fibers disorder and
glaucoma [Hui 07]. Garaci et al. evaluated the integrity of the white matter fibers
and axonal structure of the optic nerve and the optic radiation in the presence of
glaucoma. The fibers were compromised and the degree of degeneration in the optic
nerve was found to be in correlation to the glaucoma severity [Gara 09].

2.4 Glaucoma Diagnosis

The glaucoma clinical examination has a wide variety of modalities that contribute to
the identification of the disease. This variation of modalities arises from the complex
nature of the glaucoma pathology where no single modality can provide a definite
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decision. For example measuring the IOP as a major risk factor for glaucoma is not
sufficient because its increase could be due to other diseases. The examination relies
on evaluating the major glaucoma features which are the visual function and the
optic disc appearance. In addition, ocular hypertension is an important indicator of
the likelihood of having glaucoma and a determining factor for its progression path.

Optic Nerve Head: Instruments are developed for imaging the eye with a main
focus on the retina. Fundus cameras take photographs of the interior surface of the
eye detailing the vessel tree and the optic disc among other structure. Fundus images
can be used to detect the excavation of the optic disc and the reduction of the rim
area which are significant signs of glaucoma. One of the most important parameters
for glaucoma diagnosis is the cup to disc ratio. Two example fundus images of normal
and glaucoma subjects are shown in Figure 2.5. The rim thinning can be observed for
the glaucoma case in Figure 2.5b. Despite that fundus images are two-dimensional
images, acquiring stereo images can provide three-dimensional information [Naka 07].

Heidelberg retina tomograph (Heidelberg Engineering, Heidelberg, Germany) uti-
lizes the principals of confocal scanning laser ophthalmoscopy to provide information
about the topography of the retina surface. The topography is obtained by imag-
ing sections of the retina which are used to reconstruct a three-dimensional view of
the ONH. This allows for better representation and quantification of the optic disc.
Glaucoma relevant variables are extracted using HRT such as horizontal and vertical
cup-to-disc ratio, volume of cup and rim, and average RNFL thickness. The HRT-
parameters were shown to be sensitive for glaucoma diagnosis [Ferr 08]. In Figure 2.6
an HRT acquisitions of normal and glaucoma subjects are demonstrated. Glaucoma-
tous signs can be observed in the glaucoma patient.

Optical coherence tomography relies on measuring an interference pattern from
a reference light following and a light reflected from the retina. The light used can
penetrate the retinal layers providing depth information. The reflected light depends
on the tissue structure and, thus, the components of the retina can be separated using
OCT. Two-dimensional and three-dimensional images of the retina is obtained by
combining depth scans. RNFL is segmented on OCT images as shown in Figure 2.7.
The thickness of the RNFL demonstrated high ability to screen glaucoma in its early
stages [Bowd 01, Nour 04].

Intraocular Pressure: The instrument used for measuring the IOP is called the
tonometer. Different techniques are utilized for tonometry. The main idea behind
applanation tonometry, the most common type of tonometry, is to directly apply a
force to flatten a region on the cornea. The force required is related to the ocular
pressure. This method is relatively accurate and widely integrated in the clinical
flow. A less precise variation of this technique is the non-contact tonometry which
is usually used for screening purposes. In this procedure, the corneal curvature is
reduced by the application of an air pulse and similarly the force is measured. In
addition to identifying ocular hypertension risk, tonometry can be used to evaluate
the glaucoma treatment and its effect on the IOP.

Visual Function: The glaucomatous vision defects are located on the periphery
of the visual field in its early stages. Perimetry is a widely used technique to examine
the visual field. It detects the sensitivity of the eyes to identify light spots on a back-
ground at various positions in the visual field. Standard perimetry detects general
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(a) Normal

(b) Glaucoma

Figure 2.5: Fundus images showing the background of the retina for a healthy subject
(a) and a glaucoma (b) patient. The optic disc region and the vessel tree are clearly
visible in the images. (Source: [Buda 11])
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(a) Normal

(b) Glaucoma

Figure 2.6: Two sample HRT-II images for a healthy subject (a) and a glaucoma
(b) patient. The glaucomatous cupping is present in the optic nerve head. (Source:
Erlangen Nuremberg University Hospital)
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Figure 2.7: An example of a circular optical coherence tomography (OCT) scan
around the optic disc. The retinal nerve fiber layer is segmented and the different
retinal layers are observed. (Source: Erlangen Nuremberg University Hospital)

localized vision impairments but without relating it to the corresponding ganglion
cell group. More advanced methods produce different colors by varying the wave-
length of the utilized light. This is used to excite certain types of RGCs and helps to
specify the damage occurring to the individual RGCs’ classes (e.g. blue objects on a
yellow background for stimulating the koniocellular layers). FDT is another test that
stimulates a subclass of the M cells. FDT was shown to be able to screen early glau-
coma patients and to diagnose moderate and advanced glaucoma by capturing the
functional loss in vision [Cell 00]. Sample et al suggested the incorporation of more
than one functional test to enhance the glaucoma diagnosis [Samp 00]. Moreover,
they pointed out that the structural ONH damage and the functional impairment
due to glaucoma have no definite precedence. i.e., in some glaucoma cases visual
function loss could be detected before optic disc abnormalities and in other cases the
sequence is reversed.

2.5 Conclusion

The glaucomatous impairment progresses slowly due to the underlying mechanisms
delaying the patients’ awareness of the disease. Early glaucoma detection is essential
to limit the irreversible damage to the vision and the visual system. Many issues are
still unresolved for glaucoma. Among these issues are the mechanism of progression
and the functional or structural damage precedence [Hood 07]. In addition, glaucoma
comes in various forms and its pathophysiology is highly complicated.

The availability and development of various eye imaging instruments facilitated
the identification of the glaucomatous structural changes. Vision tests and IOP as-
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sessment help in identifying glaucoma. However, new directions need to be explored
to improve the glaucoma clinical flow and understanding. This could lead to saving
the vision of millions of people by adapting the therapy procedures to the new find-
ings. The pathology of glaucoma is not limited the eye but it extends to the visual
pathway which is evident from many studies. Thus, a direction with a great potential
is the analysis of the visual pathway.



22 Chapter 2. Glaucoma



Chapter 3

Diffusion Tensor Imaging

3.1 Introduction

Magnetic resonance imaging is a well established technique in the medical exami-
nation routine providing contrast images that distinguish the different tissues. The
physical operating principle of the MRI-scanner is based on the properties of the
water protons (hydrogen nuclei). The human body consists to a large extent of water
molecules. The protons have a net electric charge. Moreover, they rotate inducing a
magnetic field. The orientations of the spins are random. Thus, the average magnetic
field from spins in a region is approximately zero as spins having different directions
cancel each other out. The MRI-scanner utilizes large magnets to align the spins pro-
ducing a measurable net magnetic field. At saturation, the spins are either in phase
or out of phase with the applied magnetic field. An electromagnetic radio frequency
(RF) pulse is used. The frequency of the pulse is equal to the precession frequency
(Larmor frequency) of the protons. Therefore, its energy is absorbed by the spins
elevating them to higher energy states. After the pulse duration, the energy is re-
transmitted in the form of photons. The rate at which the energy is lost depends on
the spin-spin interaction. This can be used to produce relaxation time (T2) weighted
images. MRI-images can also be weighted by the rate at which the strength of the
net magnetic field parallel to the main applied field is restored after the RF-pulse
application (T1-weighting). This reflects the interaction between the spin and the
surrounding medium, the tissues. Proton density images have intensities that are
related to the concentration of protons in the captured region. Many comprehensive
materials exist that describe the foundation of MRI [Tala 91, Lian 00].

The conventional MRI has proven high capabilities in identifying the different
tissues in the brain. Various techniques have been suggested to separate the main
structures in the brain such as the white matter, the gray matter, and the cere-
brospinal fluid [Bala 10]. However, the contrast sensitivity of MRI depends on the
tissue type. Therefore, the contrast alone can not be utilized to parcellate the fiber
bundles within the white matter. A commonly used approach to overcome this prob-
lem and to segment the individual fiber bundles is by incorporating prior anatomical
knowledge [Cabe 11]. This knowledge is usually in the form of a preconstructed la-
beled atlas. The MRI brain images are aligned to the atlas and the labels are assigned
to the registered regions. Despite the effectiveness of this approach, the architecture
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of the white matter can not be fully resolved. This is due to the high complexity of
the cerebral white matter. Taking a closer look at the anatomy of the white matter
reveals that it is divided into fiber bundles. A fiber bundle, alternatively called fiber
tract or fascicles, is a set of fibers grouped together. The white matter fibers are
comprised of axons. The axons are flexible and have cylindrical shapes. The function
of the axons is to transport neuronal signals between the neurons, the primary com-
ponents of the central nervous system that are responsible for information exchange
within the human body. In the white matter, the axons are coated with a layer called
the myelin sheath [Kueh 03]. In order to know how the structure of the white matter
is organized, knowledge is needed about the orientation and the course of the fiber
tracts. This requires more information than the one-dimensional intensity provided
by the conventional MRI.

By altering the MRI acquisition protocol, images weighted with diffusion can be
obtained. A profile describing the molecular displacement within a region can be
measured. The simplest and most clinically used model of this random motion is
the diffusion tensor. The orientation of the fibers in the brain and the properties of
the diffusion process are among the valuable data that are derived from the DTI-
data. This complicated type of data created the opportunity to highly advance the
neuroimaging field. Fiber reconstruction and their impact on the clinical applications
is one of the major achievements made possible only by DTI.

3.2 Diffusion

The physical phenomenon behind DTI is the Brownian motion. The Brownian mo-
tion refers to the random displacement of molecules in a fluid medium discovered by
Robert Brown in 1827. The molecules undergo a random walk due to continuous
collisions from neighboring molecules. This results in a net drift even in a medium
containing a single molecular type (e.g., water) which is called self-diffusion. Depend-
ing on the boundaries surrounding the random movement of particles, the molecules
can have a preferential effective direction. This is called anisotropic diffusion which
occurs within the white matter fibers. The cell membranes and myelin sheaths sur-
rounding the axons act as tubes guiding the drifting particles within the axons. Thus,
they limit the motion in the direction perpendicular to the axons while increasing the
average displacement along the axons resulting in high anisotropy. The diffusion of
water-like molecules can be used to identify the fiber orientation which coincides with
the average shift. So, the microstructure of the brain white matter can be depicted.
In the absence of bounding tissues, the particles can move freely in all directions with
equal probability leading to isotropic diffusion.

The mathematical relation between the particle net displacement vector (R) and
the diffusion time (τ) was formulated by Einstein [Eins 05]. For the isotropic diffusion
case, the equation is given by

Diso =
1

6τ
〈RT ·R〉 (3.1)

where Diso is a scalar constant called the diffusion coefficient, T is the transpose,
and 〈...〉 is the ensemble mean.
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In the anisotropic case, the previous formulation can be extended to reflect the
directionality information. Modeling the probability of a particle at position r0 to
diffuse to position r (R = r − r0) after a time τ by a normal distribution p(r|r0, τ)
leads to Equation 3.2.

p(r|r0, τ) =
1

√

(4πτ)3|D|
e−

(r−r0)T ·D−1·(r−r0)
4τ (3.2)

where |...| is the determinant.
The diffusion tensor is the generalized diffusion coefficient in the anisotropic case

which is the covariance matrix of the process. The general form of the relation in
Equation 3.1 becomes

D =





Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz



 =
1

6τ
〈R ·RT 〉 (3.3)

As seen from the above equation, the diffusion coefficient is represented by a sec-
ond rank tensor to account for the directional dependency of the anisotropic diffusion.

3.3 Diffusion Weighted Imaging (DWI)

The MRI-images can be modulated by the molecular drift of particles. A pulsed-
gradient spin-echo (PGSE) acquisition protocol proposed by Stejskal-Tanner is uti-
lized to produce MRI-images with intensities correlated to the amount of diffusion
along the sensitizing gradient [Stej 65]. Two gradient pulses with the same strength
and opposite directions are inserted in the spin-echo MRI measuring sequences. The
first gradient (g) is applied after the 900 defocusing pulse and before the 1800 refo-
cusing pulse. The reversed gradient pulse with a duration δ follows the refocusing
pulse. The time difference between the application of the two gradient is △ and is
equally divided around the 1800 pulse. If the spins subjected to the applied gradients
are static relative to the gradient direction, the two gradient pulses should ideally
cancel each other out. Thus, the original MRI signal without the diffusion encoding
gradients is not changed. In case of spin shift, the displaced spins will encounter
different gradient strengths in their original position and their location after self-
diffusion. This will introduce a phase shift at this location leading to attenuation of
the measured signal. This signal attenuation is related to the diffusion coefficient by
the following equation known as the Stejskal-Tanner equation [Stej 65]

Sk(r) = S0(r)e
−bĝT

k
·D(r)·ĝk (3.4)

where r is the position at which the signal is measured, k = 1 to N is the index of
the applied gradient gk, ĝk = gk/‖gk‖ is the normalized gradient direction, Sk and S0

are the diffusion weighted signal and the non-diffusion weighted signal, respectively.
D is the diffusion tensor. In case of orientation independent diffusion, D is reduced
to a scalar called the apparent diffusion coefficient (ADC) and the exponential term
becomes e−bD. The scalar b is the diffusion weighting factor and it is proportional
to the squared magnitude of the gradient. Thus, higher gradient strength leads to
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greater signal reduction and in turn more contrast. The time allowed for the molecules
to diffuse before measurement is also proportional to b. Equation 3.5 indicates the
dependencies of b. In order to calculate the diffusion tensor, the MRI-signal in the
absence of the diffusion gradients needs to be measured. This is equivalent to setting
b = 0 in Equation 3.4.

bk = γ2δ2
(

△− δ

3

)

‖gk‖2 (3.5)

where γ is the gyromagnetic ratio relating the external applied magnetic field to
the Larmor frequency and ‖...‖ is the vector norm.

The white matter organization affects the measured diffusion coefficient which
depends on the angle between the diffusion gradients and the fiber tracts. For ex-
ample, if the applied gradient at a certain location is aligned with the orientation of
a coherent fiber bundle, the measured signal reduction and in turn the ADC should
be maximized corresponding to the highly anisotropic diffusion for this gradient pair.
As the angle increases, ADC decreases for this location. This diffusion weighting
procedure could be repeated along many directions to obtain a diffusion profile. This
profile at a voxel is described by the gradient direction and the corresponding ADC.
Examples of diffusion weighted images of a brain slice and the encoding gradients are
demonstrated in Figure 3.1. The acquisition of diffusion weighted images along many
gradients is time consuming. Therefore, other scanning sequences are also used that
reduce the scanning time such as echo planar imaging (EPI) [Bamm 99].

3.4 Modeling the Diffusion Process: The Diffusion

Tensor

The result from the DWI acquisitions is a set of volume images. The individual three
dimensional (3D) images correspond to a scan along a certain diffusion encoding
gradient direction. Each 3D-image is divided into voxels where each voxel corresponds
to a volume in the scanned space. Thus, the measured ADC-value is the average
diffusion coefficient within a specified volume. At the voxel level, the diffusion process
is sampled by the ADC values and the encoding directions pairs. The most common
mathematical formalism for extracting quantitative data from the diffusion process is
the diffusion tensor [Bass 94]. The average displacement within a voxel is modeled by
a Gaussian process (Equation 3.2) with zero mean and represented by the diffusion
tensor. The tensor inherits the properties of the covariance matrix. Thus, it is a
3 × 3 matrix that is symmetric and positive-definite. Due to the symmetry, dual
off-diagonal elements are equal (e.g., Dxy = Dyx). Thus, six parameters need to be
estimated in order to completely describe the Gaussian approximation of the diffusion
process. These are the three diagonal elements and the three upper (or lower) off-
diagonal elements.

The calculation of the six individual elements of the diffusion tensors requires
at least six diffusion weighted images acquired along six non-collinear directions. In
addition, a non-diffusion weighted image is necessary to compute the MRI-signal
reduction. A linear system of equations can be derived from the Stejskal-Tanner
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(a) ĝ = [−1.0 0.0 0.0] (b) ĝ = [0.0 − 1.0 0.0]

(c) ĝ = [−0.48 0.0 0.88] (d) ĝ = [−0.47 − 0.84 − 0.28]

(e) ĝ = [−0.55 − 0.43 − 0.71] (f) ĝ = [−0.11 − 0.27 − 0.96]

Figure 3.1: Examples of diffusion weighted images of the same axial brain slice ac-
quired along six non-collinear diffusion synthesizing gradients
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equation where each gradient application results in a linear equation with regard to
the diffusion tensor elements. Typically more than six DWI-images are obtained and
the linear system becomes the following over-determined system of equations
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...
...

...
...

...
...
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where ĝix, ĝiy, and ĝiz are the x, y, and z components of the normalized ith gradient
direction ĝi, respectively.

The above linear system is in the form of G · Dv = −1
b
S where G is the matrix

containing the gradients, Dv is the vector form of the six components of the diffusion
tensor, and S is the vector containing the ln of the attenutation ratio along the
applied gradients. This equation system has a unique solution in case of equal number
of equations and unknowns (i.e., n = 6). The solution could be simply obtained by
inversing the non-singular G-matrix and multiplying the result by the right hand side.
In case of an over-determined system, least square methods should be incorporated
to obtain the solution. Singular value decomposition (SVD) is utilized in this work
to solve the linear system of equations [Skar 00]. This is performed by calculating
the pseudo-inverse matrix (G†) from the decomposed matrix G. Then, the tensor
elements are estimated by multiplying G† by S-vector divided by -b. The following
equations show the mathematical formulation of the solution procedure

G = U · Σ · V T (3.7)

where U is an n × n matrix and its columns are the eigenvectors of the matrix
G.GT , Σ is an n × 6 diagonal matrix with its diagonal containing the singular values
of the matrix GT .G, and V is an 6 × 6 matrix and its columns are the eigenvectors
of the matrix GT .G.

G† = V · Σ† · UT (3.8)

where Σ† is an 6 × n diagonal matrix. The reciprocals of the diagnonal elements
of ΣT are the diagonal elements of Σ†.

Dv =
−1

b
G† · S (3.9)

The diffusion tensor components are estimated voxelwise. The frame of reference
for the DWI-images and diffusion tensors is the scanner coordinate system. The spec-
tral decomposition of the diffusion tensor can be utilized to determine the local fiber
coordinate system. The local frame of reference at each voxel has three orthonormal
axes. The first axis should ideally coincide with the fiber orientation at this location.
The other two axes lie in the plane perpendicular to the major axis spanning the
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Figure 3.2: The geometrical representation of the diffusion tensor as an ellipsoid. The
spectral components of the diffusion tensor are shown by the three eigenvalues and
eigenvectors.

fiber cross section. The eigenvalue decomposition of the diffusion tensor yields three
eigenvalues and three eigenvectors as shown in Equation 3.10.

D =
[

e1 e2 e3
]

·





λ1 0 0
0 λ2 0
0 0 λ3



 ·
[

e1 e2 e3
]T

(3.10)

where e1, e2 and e3 are the diffusion tensor eigenvectors corresponding to λ1, λ2 and
λ3 which are the diffusion tensor eigenvalues in a descending order.

An ellipsoid is a widely used graphical representation of the diffusion tensor. The
ellipsoid has its center at the voxel position. The three orthogonal main axes of the
ellipsoid have the same directions as the three eigenvectors of the diffusion matrix.
The lengths of these axes are proportional to the square root of their associated
eigenvalues as depicted in Figure 3.2. Additionally, each point on the ellipsoidal
surface has the same probability of molecular displacement.

The eigenvector corresponding to the largest eigenvalue is referred to as the prin-
cipal diffusion direction (PDD). This vector plays an important role in identifying
the fiber structure as it contains the information related to the fiber orientation.
Moreover, it provides an alternative way of visualizing the DTI-data rather than
plotting the 3D-ellipsoids in the 3D-space. The magnitude of the x, y, z-Cartesian
components of the PDD are used as the red, green, and blue colors of an RGB-image,
respectively [Paje 99]. So, the main diffusion direction can be represented in a simple
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Figure 3.3: The degree of diffusion anisotropy ranging from highly anisotropic (linear
tensors) in coherent medium to isotropic (spherical tensors) in fluid medium.

manner. Typically, the direction weighted images are multiplied by an anisotropy
index to reduce the importance of the direction information in near isotropic voxels.
In the color-coded diffusion direction images included in this thesis, the red color
refers to the left-right direction, the green color is the anterior-posterior direction,
and the superior-inferior orientation is represented by the blue color. The images are
weighted by the fractional anisotropy index that will be described in Section 3.5.2.

In highly organized tissue structures, the diffusion tensor has a cigar like shape.
This structure reflects a greater diffusion along the fiber direction and, so, the diffu-
sion ellipsoid elongates with the extreme at λ1 > 0 and λ2 = λ3 = 0. In the absence
of bounding structures, the molecules are free to diffuse in any direction leading to
a diffusion iso-surface with a spherical shape as demonstrated in Figure 3.3. This
corresponds to λ1 = λ2 = λ3 at the perfectly isotropic diffusion case.

Figure 3.4: A principal diffusion direction color coded image of an axial brain slice.
The red, green, and blue colors correspond to the left-right, anterior-posterior, and
superior-inferior directions. The image is weighted with the fractional anisotropy.
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The diffusion tensor model involves an averaging of the diffusion profile per-
formed on a certain volume, the voxel size. This volume typically contains large
number of axons, considering the currently achievable DTI-image resolutions. The
axons within a voxel could be homogenous or heterogeneous depending on the intra-
voxel fiber architecture. For example, if all the fibers within a voxel are belonging
to a coherent fiber bundle, then the fiber orientation should be aligned with the
major axis of the diffusion ellipsoid in this voxel. On the other hand, if a voxel
contains intersecting or branching fibers, the PDD will not reflect the fiber orienta-
tion. These fiber situations are referred to as intravoxel orientational heterogeneity
(IVOH) [Tuch 02]. More complicated models have been suggested to better resolve
the aforementioned problematic situations. Higher order tensors are proposed to
approximate the diffusion profile that ranges from two-tensor to generalized tensor
models [Liu 04, Pele 06, Schu 08]. Fiber orientation density function is an alterna-
tive to the diffusion tensors [Tour 04, Schu 08]. High-angular-resolution diffusion
and Q-ball imaging are different approaches that can resolve intravoxel fiber pop-
ulations [Tuch 02, Tuch 04]. However, the proposed models are complex and require
DWI-images along a large number of synthesizing gradients. This increases the ac-
quisition time in the uncomfortable MRI-scanner significantly and, therefore, the
diffusion tensor remains the most adopted model in the clinical routine.

3.5 Diffusion Tensor Imaging Derived Measures

Diffusion tensor imaging provides rich information describing various aspects of the
diffusion process. In addition, the fiber orientation can generally be identified from
the diagonalization of the diffusion tensor. Indices are derived from the tensors that
are related to the characteristic of the underlying fiber architecture. These indices
have been utilized in medical studies and were shown to correlate to various neu-
rological diseases. In this section, we give an overview of the most commonly used
DTI-measures. Some of these measures will be used in subsequent chapters as glau-
coma abnormality features. We classify them into three main categories: Diffusivity
measures, anisotropy parameters, and coherence indices.

3.5.1 Diffusivity Measures

This class includes parameters that quantify the voxelwise diffusivities. They are cal-
culated from the eigenvalues of the diffusion tensor. Therefore, they are rotationally
invariant. i.e., they are independent from the diffusion tensor ellipsoid orientation in
the space. The mean diffusivity (MD) is the average isotropic part of the diffusion
within a voxel [Bass 96]. It is the mean of the three eigenvalues or equivalently one
third of the trace of the diffusion tensor as indicated by Equation 3.11. It is thought
to be related to the bounding medium and the freedom of the particles to move, which
can be significantly affected in pathological cases such as the presence of lesions.

MD = λ̂ =
tr(D)

3
=

Dxx +Dyy +Dzz

3
=

λ1 + λ2 + λ3

3
(3.11)



32 Chapter 3. Diffusion Tensor Imaging

The axial diffusivity (AD) represents the estimated amount of diffusion along the
fiber direction. The fiber orientation is assumed to be in the direction of the PDD.
Thus, AD is the largest eigenvalue (λ1) as Equation 3.12 shows. In other words, AD
is half the length of the main axis of the diffusion tensor ellipsoid. Higher values of
AD should be expected for coherent fiber bundles. In this case, the molecules are
guided by the fibers which increase the probability of displacement longitudinal to
the fibers.

AD = λ1 (3.12)

The average diffusion normal to the PDD is the radial diffusivity (RD). In Equa-
tion 3.13, RD is computed by averaging λ2 and λ3. This means that RD is the
average of the half lengths of the two minor axes of the ellipsoid. The diffusion
within a fiber cross section is suggested to be limited by the cell membranes among
other restricting objects. This may be reflected in the RD leading to its sensitivity
to fiber degeneration processes caused by various neuronal diseases.

RD =
λ2 + λ3

2
(3.13)

The diffusivity measures can be visualized as grayscale images reducing the com-
plexity of the tensor ellipsoid. The representation in Figure 3.5 shows the areas
with different diffusivities in a brain image with respect to the normalized diffusiv-
ity parameters (MD, AD, and RD) in addition to an anatomical image. Moreover,
manual inspection can be used to compare healthy and diseased subjects indicating
the disease specific regions with changes in the diffusivities.

3.5.2 Anisotropy Parameters

The diffusion captured by DWI ranges from isotropic to anisotropic. This depends
on the medium and the regularity of the fibers. In general, non-isotropic Brownian
motion is a function of direction. The geometry of the diffusion tenor ellipsoid,
more specifically the eccentricity, is an indicator of the deviation degree from the
isotropic diffusion. The parameters in this category are proposed to estimate the
anisotropy at the voxel scale. The anisotropy measures are functions of the lengths
of the axes of the diffusion tensor ellipsoid. The most widely used anisotropy index
is the fractional anisotropy (FA). Equation 3.14 defines the mathematical formula
for the computation of FA using the diffusion tensor eigenvalues [Bass 96]. For a
restriction-free molecular motion, the shape of the diffusion ellipsoid is spherical. This
corresponds to equal eigenvalues and FA is zero. The maximum value of FA is one
which is reached for completely anisotropic diffusion (i.e., λ1 > 0 and λ2 = λ3 = 0).

FA =

√

3

2

√

(

λ1 − λ̂
)2

+
(

λ2 − λ̂
)2

+
(

λ3 − λ̂
)2

√

λ2
1 + λ2

2 + λ2
3

(3.14)

The relative anisotropy (RA) is another parameter for the diffusion anisotropy.
As shown in Equation 3.15, RA is the standard deviation of the eigenvalues (corre-
sponding to the anisotropic part of the diffusion) divided by the trace of the diffusion
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(a) (b)

(c) (d)

Figure 3.5: (a) A non-diffusion weighted MRI axial brain image. Brain images show-
ing the diffusivity maps of the: (b) Mean Diffusivity (MD),(c) Axial Diffusivity (AD),
and (d) Radial Diffusivity (RD).
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tensor, proportional to the average isotropic diffusion [Bass 96]. FA and RA share a
similar nominator and they can be deducted from each other. The range of RA is from
0 (isotropic diffusion) to

√
2 (complete anisotropic diffusion). The anisotropy indices

add other possibilities of DTI-data visualization as illustrated in Figure 3.6. The
coherent white matter tracts have higher anisotropy, which corresponds to brighter
voxels in the FA and RA weighted images.

RA =
√
3

√

(

λ1 − λ̂
)2

+
(

λ2 − λ̂
)2

+
(

λ3 − λ̂
)2

λ1 + λ2 + λ3

(3.15)

The volume of the diffusion tensor ellipsoid is 4πλ1λ2λ3/3. In case of isotropic
diffusion, all the axes are equal and the volume becomes 4πλ̂3/3. The ratio between
the ellipsoid volume to the volume of the average sphere is called the volume ratio
(VR) (Equation 3.16) [Bass 95]. This parameter is also used as an anisotropy measure.
Nevertheless, the scale of VR is reversed in comparison to FA and RA. It has a value
of one for the isotropic case and a value of zero for infinite anisotropy.

V R =
λ1λ2λ3

λ̂3
(3.16)

Indices were developed to distinguish between prolate, oblate, and spherical ten-
sors [West 04]. Prolate tensors (Figure 3.3a) characterize homogeneous regions with
high anisotropy and relatively high certainty of fiber orientation coincidence with the
PDD. The linear anisotropy index (CL) given by Equation 3.17 quantifies the de-
gree of the tensor ellipsoid elongation. Intravoxel crossing and branching fibers result
in reduced average anisotropy and uncertainty of the underlying fiber orientation.
These situations are characterized by oblate tensors (Figure 3.3b). For this type of
tensors, the planar anisotropy index (CP ) is proposed. As seen in Equation 3.18, CP

is a weighted difference between the second and third eigenvalues. A perfect planar
tensor has λ1 = λ2, λ3 = 0 and CP = 1. Finally, near spherical tensors have spher-
ical anisotropy index (CS)-values of approximately one by setting λ1 ≈ λ2 ≈ λ3 in
Equation 3.19.

CL =
λ1 − λ2

3λ̂
(3.17)

CP =
2(λ2 − λ3)

3λ̂
(3.18)

CS =
3λ3

3λ̂
(3.19)

The linear, planar, and spherical anisotropy parameters are used as grayscale
intensities for the acquired images (Figure 3.7). The different types of tensors can
be detected from the images. The three parameters sum to one. An RGB-image
can be generated by weighting each of the three colors with the three parameters.
This facilitates the discrimination of voxels by examining the dominant color. All the
parameters in this category are derived from the eigenvalues. Therefore, they have
the same rotational invariance property as the diffusivity parameters.
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(a) Fractional Anisotropy

(b) Relative Anisotropy

Figure 3.6: Fractional anisotropy and relative anisotropy shown on an axial brain
slice
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(a) Linear Anisotropy (b) Planar Anisotropy

(c) Spherical Anisotropy (d) Color Coded Anisotropy

Figure 3.7: Axial brain images of the (a) linear, (b) planar, and (c) spherical
anisotropy measures corresponding to tensors with prolate, oblate, and spherical
geometry, respectively. An RGB-image representation of the anisotropy parameters
CL (red), CP (green), and CS (blue) weighted by FA is shown in sub-image (d).
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3.5.3 Coherence Indices

The DTI-derived scalars in the previous class are hypothesized to reflect the coher-
ence of the fibers. However, we discriminate these parameters from the coherence
indices. This category utilizes more information than the eigenvalues. This informa-
tion may include the eigenvalues but also additional information is utilized such as
the eigenvectors. Moreover, although the coherence indices are computed voxelwise,
the computation involves a neighborhood around the voxel under consideration. The
coherence index (CI) examines the degree of PDD alignment with its neighboring
voxels [Klin 99]. The angles between the adjacent vectors and the PDD at the exam-
ined voxel are estimated from their dot product. Equation 3.20 identifies the CI in
2D-images where the neighborhood is 3 × 3. This could be extended to 3D-images in
a straightforward manner. If the 8 neighboring voxels belong to a regular fiber bundle
with a dominant orientation, the standard deviation of the PDD in the neighborhood
should be minimal. This leads to a maximum coherence.

CI(i, j) =
1

8

i+1
∑

k=i−1

j+1
∑

l=j−1

e1(i, j) · e1(k, l)− 1 (3.20)

Pierpaoli et al. proposed a more general coherence parameter called the lattice
index (LI) [Pier 96b, Skar 00]. LI uses all the orientational information from the three
eigenvectors. In addition, it weights each vector with the corresponding eigenvalue
providing a more comprehensive measure that uses the complete tensor information.

3.6 Fiber Identification

The direction vectors within the diffusion tensor and their relation to fiber organi-
zation in the brain open new possibilities in the field of neuroanatomy. The fiber
pathways can be identified in the brain space in-vivo which is a unique advantage
exclusive to DTI. The complex data and brain anatomy pose many challenges in cap-
turing the anatomical details of the white matter structure. This encouraged many
researchers to address this problem using different approaches. Therefore, a wide
spectrum of fiber tracking algorithms exists, famously known as tractography. The
methods tested on real DTI-data suffer from the lack of a ground truth which limits
the effectiveness of the validation. Therefore, synthetic DTI-data are generated to test
and compare the different tracking algorithms [Leem 03, Peng 09, Berg 05, Clos 09].
Some of these phantoms attempt to simulate the complex fiber situations. Quantifi-
cation of the errors is also possible. In this section, we review the state of the art
of the algorithms developed for determining the white matter fibers’ pathways. The
tractography methods are classified into streamline tractography, connectivity maps,
and segmentation. Examples from each group are illustrated and the techniques are
briefly described. More details and other algorithms can be found in fiber tracking
reviews [Bass 02, Mori 02, Bamm 03, Zhan 05, Nuci 07].
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3.6.1 Streamline Tractography

The fiber identification in this category follows a straightforward and intuitive ap-
proach. Streamline techniques start with an initial voxel, usually referred to as a seed
point, or a region at which the fiber construction begins. The seed point is placed
by experts on the targeted tract. The main idea is to regard the individual fibers as
integral curves in the space. The general problem can then be stated as [Bass 00]

ds(t)

dt
= m(t) (3.21)

where m is the unit tangent of the integral curve s at location t. In homogenous
tracts, the tangent to the integral path should be parallel to PDD. i.e., m(t) =
e1(s(t)).

One of the earliest attempts to construct the fibers were proposed by Conturo
et al. [Cont 99]. The tracking is performed by following the PDD starting from the
seed point. This is equivalent to an Euler’s integration of the fiber curve. Smaller
integration steps than the acquired DTI-resolution could be used to reduce the ac-
cumulation error. This requires estimating the diffusion tensor at non-grid locations
by interpolation. The process continues until some stopping criteria are satisfied. In
this case, the criterion was a lower limit for the degree of anisotropy as an indication
of arriving at a gray matter tissue. Due to the symmetry of the diffusion tensor,
the diffusion could be either in the direction of the PDD or its opposite. Therefore,
the tracking starts bidirectionally with the PDD reversed if the pathways turns more
than 900. The numerical solution of Equation 3.21 can then be written as

s(t+ 1) = s(t) +△t× e1(s(t)) (3.22)

where △t is the integration step.
A more robust integration method with less accumulation error is the Runge-

Kutta (RK). Higher order variants of RK includes second and fourth order have been
suggested [Bass 00, Tenc 02]. The fourth order RK estimates the next point on the
pathway from the Equation

s(t+ 1) = s(t) +△t×V(t+ 1) (3.23)

where

V(t+ 1) =
k1

6
+

k2

3
+

k3

3
+

k4

6
(3.24)

k1 =
V(t) · e1(s(t))
|V(t) · e1(s(t))|

e1(s(t)) (3.25)

k2 =
V(t) · e1(s(t) +△t/2× k1)

|V(t) · e1(s(t) +△t/2× k1)|
e1(s(t) +△t/2× k1) (3.26)

k3 =
V(t) · e1(s(t) +△t/2× k2)

|V(t) · e1(s(t) +△t/2× k2)|
e1(s(t) +△t/2× k2) (3.27)
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Figure 3.8: Streamline tractography example with the Runge-Kutta implementation
in the ExploreDTI software tool [Leem 09].

k4 =
V(t) · e1(s(t) +△t× k3)

|V(t) · e1(s(t) +△t× k3)|
e1(s(t) +△t× k3) (3.28)

This implementation of the fourth order Runge-Kutta has the advantage that the
angle between neighboring voxels never exceeds 900. So, the solution of the PDD sign
problem is inherently included in the implementation. In addition to the RA, this
method uses a maximum change of curvature to terminate the tracking. An example
of an RK based fiber tracking is shown in Figure 3.8 using the ExploreDTI software
tool [Leem 09].

The diffusion tensor deflection (TEND) tractography is another example of this
class [Laza 03]. This algorithm uses the diffusion tensor to limit the curvature change
and, thus, ensures a smooth fiber construction. By multiplying the tensor with the
incoming vector from the previous step (vin), the result is an output vector (vout)
that is deflected as given by Equation 3.29. The steering of vout will depend on the
geometry of the diffusion tensor. For example, if vin is parallel to the PDD at the
current voxel, vout will be in the same direction as vin. However, in general the
amount of deflection will depend on the tensor anisotropy and the angle between the
PDD and the incoming vector.

vout = D · vin (3.29)

Several streamline fiber tracking methods have been introduced [Bass 02, Bamm 03,
Zhan 05]. Streamline tractography suffers from propagation errors that accumulate
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while traversing the whole tract. Moreover, this category is unable to resolve fiber
crossings or branching as it follows a specific direction. The stopping criteria are
additional challenges, because voxels with IVOH could have reduced anisotropy and
ambiguous fiber orientation.

3.6.2 Connectivity Maps

The aforementioned problems in tractography and the diffusion tensor model [Tour 02]
motivated studies to estimate the uncertainties in the constructed fibers [Behr 03].
The degree of confidence associated with the anatomical connections suggested the
utilization of probabilistic tractography techniques. This type of tractography gener-
ates connectivity maps. In contrast to deterministic fiber tracking where the voxels
are connected in a straightforward manner, connectivity maps give a probability that
two voxels are linked together. A connectivity map generated by the ExploreDTI
tool is shown in Figure 3.9.

Figure 3.9: A connectivity map generated by ExploreDTI starting with a seed region
placed on the corpus callosum. Yellow colors reflect higher degrees of confidence than
red colors. The tracking is performed by a wild bootstrap algorithm [Jone 08].
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The random vector perturbation (RAVE) tractography is based on perturbing the
PDD [Laza 02]. The perturbation is related to the anisotropy of the diffusion tensor.
It is modeled along the ellipsoid’s two minor axes by Gaussian distributions with zero
means. The standard deviation is proportional to λ2/λ1 along e2 and λ3/λ1 along e3.
Tracts are constructed using the perturbed vectors from a common seed point leading
to a group of tracts. The ratio between the number of tracts connecting two points
(or regions) to the total number of tracts is the estimated connection probability.
A non-parametric probabilistic approach uses bootstrap techniques was proposed by
Lazar and Alexander [Laza 05]. From a collection of repeated DTI-measurements,
samples are drawn randomly on a voxelwise basis and the bootstrap intensity value
is their average. The diffusion tensors are extracted for each bootstrap iteration. The
set of DTI-images are utilized to create a distribution of fiber pathways starting from
the same location. The connection probability is calculated in an identical manner
to the RAVE method.

Other algorithms that belong to this class were also suggested [Park 03, Yoru 05,
Jone 08]. This category allows for the intersection and divergence of fibers. However,
a major issue in connectivity maps is that they present probabilities rather than
tracts. To overcome this issue, usually a threshold on the probabilities is set. The
connections above this threshold are considered actual tracts while all other connec-
tions are excluded. This requires a careful selection of the threshold and an expert’s
intervention. Practically, this solves the problem only partially as undesired tracts
remain or desired tracts are removed.

The fast marching tractography (FMT) is based on wave front propagation [Park 02a,
Park 02b]. The wave starts at a seed point and a time is assigned to each voxel in
the brain space. At a certain step, the neighboring voxels of a point in the wave
front are considered. The six voxels with a unit distance are examined excluding the
voxels that have already been part of the wave. The time of wave arrival (T ) to a
candidate voxel is calculated from Equation 3.30. The voxel with minimum arrival
time is added to the wave. The process continues until the whole space is spanned.

T (r) = T (r′) +
|r− r′|
F (r)

(3.30)

where r = [rx, ry, rz] and r′ are the position vectors of the neighboring point and
the closest point to it in the wave, respectively. F (r) is the speed of wave propagation
from r′ to r. For each candidate voxel, the perpendicular direction n̂(r) to the wave
front is defined using Equation 3.31.

n̂(r) =
∇f(r)

‖∇f(r)‖ (3.31)

where ∇f(r) is computed from the 3×3×3 neighborhood around the candidate
point as given by the following equations

∇f(r) =
1
∑

i=−1

1
∑

j=−1

1
∑

k=−1

Ci,j,k(rx − i, ry − j, rz − k) (3.32)



42 Chapter 3. Diffusion Tensor Imaging

Ci,j,k(rx − i, ry − j, rz − k) =

{

i, j, k if (rx − i, ry − j, rz − k) ∈ S(p)

0 if (rx − i, ry − j, rz − k) /∈ S(p)
(3.33)

where S(p) is the set of voxels that are already added to the wave.
The speed function F (r) can be modeled in different ways. Parker et al. [Park 02b]

suggested the formulation in Equation 3.34. The speed at the neighboring point is
the minimum of the speed function at the closest wave point (r′) and the cosine of
the angle between n̂(r) and the PDD at r′. Thus, the speed is maximized if the PDD
is in the direction of the normal to the wave front.

F (r) = min(F (r′), |e1(r′) · n̂(r)|) (3.34)

The fiber trajectories are found by seeking the pathways with maximum speed.
Each point in the image space is considered as a potential termination point of the
tract. The speed is determined from the seed point to each candidate end. FMT
has the advantages of both streamline and connectivity maps. It shares with the
streamlines techniques the ability to provide individual fibers. Furthermore, it allows
for fiber intersection and branching. The average speed along the estimated brain
connections can be used as a confidence measure.

3.6.3 Segmentation

Segmentation is adopted in DTI by grouping the voxels with common similarities to
form a fiber bundle. Many of the commonly used segmentation algorithms have been
extended to DTI. Zhukov et al. used level sets on volumes of scalar DTI-derived
anisotropy and diffusivity measures to identify fiber bundles [Zhuk 03]. Complete
diffusion tensor based distance measures are proposed as similarity criteria for fiber
bundle delineation [Wang 05, Arsi 06, Flet 07]. More details of these measures and
the segmentation will be discussed in Chapter 4. Snakes and livewire frameworks
for segmentation are proposed utilizing the Log-Euclidean distance measure between
diffusion tensors [Hama 06]. This group of algorithms targets fiber bundles having
high regularity.

3.7 Clinical Application

Diffusion weighted imaging is proven to be effective in the early diagnosis and investi-
gation of cerebral diseases such as acute stroke [Mose 90, Lans 00] and abscesses [Cart 04].
Diffusion tensor derived parameters such as the degree of anisotropy and the diffu-
sivity parameters are used to evaluate certain neural pathologies and were found
to be sensitive to white matter abnormalities. Axonal degeneration evaluated by
diffusion tensor derived parameters were evident in the temporal lobe for mild cog-
nitive impairment and Alzheimer disease patients [Huan 07, Chen 09]. In relapsing-
remitting multiple sclerosis, reduced anisotropy accompanied by increased isotropic
apparent diffusion were observed correlating to the signature of Wallerian degenera-
tion [Henr 03]. The process of normal human brain maturation and aging affecting
the structure of myelin were monitored using DTI [Sala 05, Hupp 01].
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3.8 Conclusion

Diffusion tensor imaging provides a valuable set of information describing the fiber
microstructure. The Brownian motion of the water-like molecules is used to modulate
the MRI-signal resulting in diffusion weighted images. The nature of the diffusion
depends on the structure where it is measured. Tubular structures guide the diffusion
leading to a more anisotropic diffusion and greater attenuation. Therefore, the fiber
structure can be captured by measurements along different directions. The diffusion
profile within a voxel is approximated by a Gaussian distribution with the diffusion
tensor corresponding to the covariance matrix. The diagonalization of the tensors
gives the main fiber orientation as well as parameters describing the diffusion process
and the fiber structure. Therefore, it was utilized for the identification of different
fiber structures. The rich data ranges from scalars and vectors to the tensors. Var-
ious visualization techniques are proposed. This includes grayscale intensity images
corresponding to the DTI-derived measures, RGB-images illustrating the diffusion
direction or the geometries of the diffusion tensors, complex techniques such as ellip-
soids or glyphs. DTI-derived parameters are used to detect the fiber abnormalities
in the presence of pathologies. Despite the great capabilities offered by DTI, the dif-
fusion tensor faces problems at voxels with multi-fiber orientations. Moreover, voxels
could be comprised of more than one tissue (e.g., white matter and gray matter) and
the averaging process will not lead to the adequate description of the diffusion for
this class of voxels. Thus, additional models of the diffusion process are suggested
that overcome the tensor problems. However, these models are complex and require
increased scanning times and, thus, are not clinically practical. DTI is utilized in this
thesis to identify the visual system.
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Chapter 4

Segmentation of the Optic Radiation

The algorithm and the results presented in this chapter have been published in
A. El-Rafei, J. Hornegger, T. Engelhorn, A. Dörfler, S. Wärntges, and G. Michelson.
”Automatic segmentation of the optic radiation using DTI in glaucoma patients”.
In: Computational Vision and Medical Image Processing - VipIMAGE 2009. In-
ternational Conference VipIMAGE 2009 - II ECCOMAS Thematic Conference on
Computational Vision and Medical Image Processing, Portugal, pp. 293-298, Taylor
and Francis, 2009.
A. El-Rafei, T. Engelhorn, S. Waerntges, A. Doerfler, J. Hornegger, and G. Michelson.
”Automatic segmentation of the optic radiation using DTI in healthy subjects and
patients with glaucoma”. In: Tavares JMRS, Jorge RMN, editors. Computational
Vision and Medical Image Processing, Computational Methods in Applied Sciences,
pp. 1-15, Springer, 2011.

4.1 Introduction

The analysis of the glaucoma effect on the visual pathway requires the identification
of the bundles comprising the pathway. The optic radiation is selected as the traget
of the studies performed in this thesis. The reason is that the optic radiation is the
largest object in the pathway. The other fibers have relatively small sizes and irregular
regions such as the intersection at the optic chiasm. Therefore, the reliability of the
identification is limited and is subject to many factors. In this work, we focus on the
homogenous fiber bundle of the optic radiation, that is described by tensors sharing
common orientation and a degree of similarity. We aim to provide a system for
the automatic identification of the optic radiation in normal subjects and glaucoma
patients. DTI is used to segment the optic radiation, as it is the only imaging modality
that allows the identification of white matter fiber structure non-invasively.

Many algorithms were proposed for the identification of white matter tracts using
DTI as discussed in Chapter 3. The dominant category is streamline tractography
which is based on following the fiber tracts using the main diffusion direction. As
the fiber pathway is integrated during the tracking process, tractography errors are
accumulated. Connectivity maps were suggested to explore the probability of a se-
lected seed point being connected to its surrounding neighborhood which can be the
whole brain. The main disadvantage of connectivity maps is that they do not pro-

45
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vide a straightforward plausible visualization of the results. The split and merge
technique [Bozk 07] attempts to avoid the accumulated errors of tractography by
identifying short tracts. This is done by limiting the tracking process to a certain
number of steps. Then, it provides a degree of membership of the extracted tracts be-
longing to the same fiber. The practicality of the split and merge technique is limited
because it does not describe the complete fiber pathway. Segmentation approaches of
DTI [Zhuk 03, Wang 05, Hama 06] are more suitable for identifying coherent densely
packed bundles of axons. The segmentation avoids the drawbacks from both con-
nectivity maps and tractography such as tracking accumulation errors and the need
to merge the individual tracts to obtain fiber bundles. Furthermore, it relies on the
coherence within the fiber bundle of interest. Therefore, the segmentation approach
is adopted in this work.

Some neuronal diseases such as glaucoma compromise the status of the visual
pathway. The understanding of the pathological mechanisms is essential in order to
provide the appropriate treatment. Therefore, fiber tracking methods aim to par-
cellate the architecture of the cerebral part of the visual system. Staempfli et al.
modified the FMT described in Section 3.6.2 [Stae 06]. Depending on the anisotropy
at the candidate and front voxels, different speed functions were used. This technique
is referred to as advanced fast marching tractography (aFMT). It was shown that the
performance is superior to FMT at locations with IOVH. The aFMT was used to
reconstruct the visual system [Stae 07]. Seed regions were manually placed on the
right and left optic nerve as well as on the optic chiasm. A three-stage probabilistic
approach (ConTrack) was suggested to estimate the most likely connections between
two cerebral regions [Sher 08b]. The user identified two anatomical regions of inter-
ests (ROIs) where he wanted to locate the connecting fibers. The algorithm started
by generating large number of samples linking the two ROIs. The system weighted
each sample fiber in a process called scoring. Finally, the score determined the most
probable tracts. However, an additional user intervention was required to visually
validate the selection. ConTrack was applied to find the fibers of the optic radiation.
The two ROIs were identified on the LGN and the primary visual cortex [Sher 08a].
The optimal DTI configuration leading to accurate optic radiation tracking was in-
vestigated [Stie 11]. Tractography initiated at different seed regions were examined in
this study including the optic chiasm and the occipital lobe. The results were found
to be dependent on the initialization.

Most of the proposed white matter identification algorithms did not address the
problem of algorithm initialization including the aforementioned methods. They rely
on the interaction of medical experts to select the seed points or the region of interest
of the desired fiber tracts in tractography algorithms. In addition, the initialization of
the segmentation engines to include the desired fiber bundle is performed by a human
operator. This is a rather time consuming process and might limit the number of
subjects in clinical studies that involves DTI. Furthermore, inconsistencies between
operators could arise leading to different results. The proposed segmentation sys-
tem utilizes the physiological properties of the optic radiation to produce a robust
initialization of the proposed segmentation system in both healthy and pathological
subjects with glaucoma.
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Figure 4.1: Schematic of the segmentation algorithm. The system identifies the optic
radiation in a segmentation based approach from diffusion tensor data. The diagram
demonstrates the processing steps that comprise the system.

The proposed segmentation system utilizes the complete tensor information in a
statistical level set frame work that takes into account the Riemannian nature of the
tensor space. The algorithm is validated on DTI-images of the subjects indicated
in Section 4.2. It consists of the following steps shown in Figure 4.1: First the
diffusion tensor and related anisotropy measures are calculated from the diffusion
weighted images. The calculated diffusion tensor data is transformed into the Log-
Euclidean framework and interpolated as presented in Section 4.3.1. In Section 4.3.2,
DTI-data is regularized to increase the coherence of the optic radiation fiber bundle
before obtaining an initial estimate of the optic radiation using thresholding and
connectivity analysis. The midbrain is initially identified using a similar analysis to
that of the optic radiation. The system extends the statistical level set framework
for DTI segmentation developed by Lenglet et al. [Leng 06] to be used in conjunction
with the Log-Euclidean dissimilarity distance as detailed in Section 4.3.3. The optic
radiation is obtained by iteratively evolving the level set function. Finally, the output
from the level set framework is adjusted in a post-processing step based on the relative
location of the optic radiation and the midbrain. Sections 4.4 and 4.5 contain the
results and discussion, respectively.

4.2 Materials

Eighteen subjects were examined by ophthalmologists and categorized into two age
matched groups. The first group represented the subjects that were diagnosed with
primary open angle glaucoma and the other group represented the normal subjects.
The glaucoma group contained 9 subjects with a mean±standard deviation age of
66±11.8 years with 7 females and 2 males, while the normal group contained 9 sub-
jects with a mean±standard deviation age of 67.1±8.1 years with 6 females and 3
males. Further ophthalmological and neuroradiological examinations were performed
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and did not provide indications of microangiopathy or irregularly developed optic
radiation.

The subjects were scanned using a 3T-MRI scanner. The diffusion weighted im-
ages were acquired using a single-shot, spin echo, EPI as an imaging sequence with
repetition time (TR) 3400 ms, echo time (TE) 93 ms, field of view (FoV) 230 x 230
mm2, acquisition matrix size of 128 x 128 reconstructed to 256 x 256, seven signal
averages, and partial Fourier acquisition of 60%. The axial slices had a thickness of
5 mm and 1 mm intraslice resolution. Diffusion weighting were applied with a max-
imal b-factor of 1000 s/mm2 along 15 icosahedral directions complemented by one
scan with b = 0. The diffusion tensors were calculated from the measured diffusion
weighted images along with fractional anisotropy, eigenvectors and eigenvalues on a
voxel by voxel basis.

4.3 Methods

The steps of the system are detailed in this section. The input to the system is
the acquired diffusion weighted images. The diffusion tensors are calculated using
singular value decomposition. The diffusion tensor is analyzed using the eigenvalue-
decomposition to determine the PDD. The degree of anisotropy is measured by FA.
Figure 4.1 demonstrates the algorithm application flow to the DWI-images. The
results are segmented optic radiations on DTI-volumes.

4.3.1 Interpolation in the Space of Diffusion Tensors

The diffusion tensors are 3 x 3 symmetric positive definite matrices. The space of
diffusion tensors is a convex subset of the vector space R

(3)2 and does not form a
vector space using a Euclidean metric [Flet 07, Penn 06]. Thus, the decomposition of
the diffusion tensors may result in non-physical negative eigenvalues. Moreover, the
Euclidean framework is not appropriate for dealing with tensors. The swelling effect
is an example where the average of diffusion tensors with the same determinant could
result in a mean tensor with a larger determinant [Coro 06]. Thus, the Riemannian
nature of the tensor space should be taken into account when handling the diffusion
tensors.

Dissimilarity metrics have been proposed to overcome the limitations of the Eu-
clidean framework. An information theoretic measure called the J-divergence is pro-
posed [Wang 05] based on the symmetric Kullback-Leibler divergence between two
Gaussian probability densities. The J-divergence distance between two diffusion ten-
sors are given by Equation 4.1 and is affine-invariant. i.e., the distance between
tensors are independent from affine transformation of the coordinate system.

dJ (D1, D2) =
1

2

√

tr
(

D−1
1 D2 +D−1

2 D1

)

− 2n (4.1)

where n is the size of the diffusion tensors D1 and D2.
Fletcher and Joshi [Flet 07] delt with the space of diffusion tensors as a curved

manifold called Riemannian symmetric space. They derived a Riemannian metric
on the space of diffusion tensors. The proposed metric accounts for the positive
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definiteness constraint. This ensured that the eigenvalues of the diffusion tensors
were positive.

The Log-Euclidean framework proposed by Arsigny et al. [Arsi 06] provides a
Riemannian framework to deal with the diffusion tensors. Using this framework,
the diffusion tensor space of positive semi definite matrices can be transformed into
the space of symmetric matrices, i.e., a vector space. Additionally, all operations
performed on vectors can be used on the vector form of the diffusion tensor in the
Log-Euclidean framework. Despite the similar properties of the Log-Euclidean met-
ric compared to other dissimilarity distances such as the J-divergence distance or
the Riemannian metric by Fletcher and Joshi, the Log-Euclidean framework has a
significantly lower computational cost as it involves vector operations.

The Log-Euclidean distance dLE between tensors D1 and D2 is defined by

dLE (D1, D2) =‖ log (D1)− log (D2) ‖ (4.2)

where log is the matrix logarithm given by

D =
[

e1 e2 e3
]

·





log(λ1) 0 0
0 log(λ2) 0
0 0 log(λ3)



 ·
[

e1 e2 e3
]T

(4.3)

In this thesis, we have used the similarity invariant metric in Equation 4.4.

dLE (D1, D2) =
(

tr
(

[log (D1)− log (D2)]
2))

1
2 (4.4)

The interpolation of the DTI-data is necessary in order to obtain a volumetric
identification of the optic radiation. The interpolation of the tensors using the Eu-
clidean calculus results in the non-physical swelling effect. This effect is also evident
in interpolating two tensors, where it is possible to get an interpolated tensor that has
a larger determinant than the original tensors. Interpolation in the Log-Euclidean
framework avoids the swelling effect at a computationally attractive cost. The diffu-
sion tensor D is interpolated trilinearly at non-grid position r as the Log-Euclidean
weighted sum of N tensors in a neighborhood of the non-grid position r. The weights
(w) are inversely proportional to the spatial distances between the non-grid position
and the locations of the tensors in the neighborhood. The used interpolation formula
is

D (r) = exp













N
∑

i=1

wi (r) log (D (ri))

N
∑

i=1

wi (r)













(4.5)

where exp and log are the matrix exponential and logarithm, respectively. i is the
index of the neighboring voxels.

4.3.2 Initial Estimation of the Optic Radiation and the Mid-

brain

In this step, the optic radiation and the midbrain are initially identified. The diffu-
sion tensor data is regularized by applying Perona-Malik diffusion filtering [Pero 90].
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Perona and Malik proposed an anisotropic filtering technique based on controlling the
heat flow according to the presence of edges. The edges are estimated by the magni-
tude of the image gradient. The heat-diffusivity is non-linearly inversely proportional
to the magnitude of the image gradient, i.e., the flow is limited at large image gra-
dients indicating the presence of an edge with high probability. Conversely, it is in-
creased at small image gradients. The evolution of the image f(x, y, z) : Ω ⊂ R3 → R

is governed by the following diffusion equation

∂f

∂t
= div(ρ(‖∇f‖)∇f) (4.6)

where ρ = e−
‖∇f‖2

k or ρ = 1
1+‖∇f‖2/k

.

The anisotropic filtering is applied componentwise to the transformed Log-Euclidean
vector form of the diffusion tensors. Regularization is performed to reduce the noise
and to increase the coherence inside the fiber bundles while preserving the boundaries
of the fiber bundles.

The initial estimation of the optic radiation is based on the fact that the main
fiber bundle of the optic radiation is dominated by a diffusion in the anterior-posterior
direction. Moreover, the optic radiation is a massive fiber bundle which occupies a
significant part of the brain white matter. This physiological information regarding
the diffusion direction and the size of the optic radiation gives a unique discrimination
of the optic radiation from other fiber bundles.

The image is analyzed on a voxel by voxel basis to create a binary mask repre-
senting the initial optic radiation. The vector corresponding to the main diffusion
direction (PDD) has three components: the anterior-posterior component (AP ), the
left-right component (LR), and the superior-inferior (SI) component. The three com-
ponents at each voxel are compared and the foreground voxels of the binary mask
are selected to have a dominant AP component. The foreground voxels satisfy the
inequalities given by Equation 4.7. i.e., the AP -component is greater than a user
specified factor (APthres) of the sum of the other two components and an FA value
greater than 0.2. The fractional anisotropy threshold is used to ensure the coherence
of the fiber bundle and that the partial volume effects [Alex 01] are avoided. In DTI,
partial volume effects are the result of the limitation of the tensor model in describing
complex fiber situations such as fiber crossing or branching situations within a voxel.
This results in a reduced FA and a misleading tract orientation. The remaining vox-
els that do not satisfy the selection criteria are set as the background of the binary
image.

AP > APthres × (LR + SI) and FA > 0.2 (4.7)

A three dimensional 6-neighborhood connectivity analysis is performed on the
binarized image. Connected objects are determined and the left and right parts of
the optic radiation are initially identified as the largest objects dominated by diffusion
in the anterior-posterior direction. This estimation will be used in the segmentation
step as an initialization of the level set. The estimation of the optic radiation is
demonstrated in Figure 4.2.

The analysis applied to estimate the optic radiation is similarly applied to identify
the midbrain. The analysis takes into account that the midbrain is characterized by
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Figure 4.2: The initial estimation of the optic radiation using thresholding and con-
nectivity analysis in two axial brain images

diffusion in the superior-inferior direction and is located in the neighborhood of the
centers of the axial brain slices. The relative position of the estimated midbrain to
the optic radiation will be used in a later step to refine the segmentation of the optic
radiation. The segmented midbrain is shown in Figure 4.3.

4.3.3 Segmentation Using a Statistical Level Set Framework

The segmentation is performed in two steps. First, the DTI-image is segmented using
a statistical level set framework. The initially estimated optic radiation as described
in Section 4.3.2 is used as the initial surface. Second, the results from the level set
framework are adjusted based on anatomical information regarding the white matter
organization of the midbrain and the optic radiation.

We extend the surface evolution framework developed by Lenglet et al. [Leng 06]
to work with the Log-Euclidean dissimilarity measure given in Equation 4.4. The
diffusion tensor D at voxel r is mapped to the space of 3 × 3 symmetric matrices by
taking its logarithm. Then, it is transformed into a 6-dimensional vector form (B(r))
using the mapping (vec) in Equation 4.8. In this subsection, we present briefly
the mathematical formulation of the level set framework in the case of the Log-
Euclidean framework. For further details see [Leng 06, Arsi 06]. Using the notation
in Equation 4.8, the mean µLE, covariance matrix CovLE and Gaussian distribution
between diffusion tensors PLE (B(ri)) can be defined as

B(r) = vec (log (D(r))) (4.8)

µLE =
1

N

N
∑

i=1

B(ri) (4.9)
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Figure 4.3: Midbrain initial segmentation on a direction color coded image

CovLE =
1

N − 1

N
∑

i=1

(B(ri)− µLE) (B(ri)− µLE)
T (4.10)

PLE (B(ri)) =
1

√

(2π)6|CovLE|

× exp

(

−(B(ri)− µLE)
T Cov−1

LE (B(ri)− µLE)

2

) (4.11)

The spatial gradient of the diffusion tensor in the vector space is given by

|∇B(r)|2 = 1

2

3
∑

k=1

∑

s=±1

tr
(

(B(r)−B(r+ s× ik))

× (B(r)−B(r+ s× ik))
T
)

(4.12)

where ik, k=1, 2 ,3 denotes the canonical basis of R3. s ∈ {1,−1} and denotes the
forward and backward approximations of the gradient.

The idea of the statistical surface evolution is to seek the optimal partitioning
of the tensor image (B in the Log-Euclidean case) by maximizing a posteriori frame
partition probability for the diffusion tensor image with image domain Γ. This is done
in a level set framework, where the image is partitioned into three regions based on a
level set function φ: inside Γin, outside Γout, or on the boundary Γb. The boundary is
defined by the zero-crossings of φ. The probability distributions of the tensors inside
(pin) and outside (pout) regions are modeled by Gaussian distributions of the tensors
in their respective regions using Equation 4.11. The partition probability is given by
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P (B|φ) =
∏

r∈Γin

pin(B(r))
∏

r∈Γout

pout(B(r))
∏

r∈Γb

pb(B(r)) (4.13)

The boundary probability distribution pb is selected to have a value of approxi-
mately one for high gradients of the diffusion tensors (using Equation 4.12 for gradient
calculations) and a value of approximately zero for low gradients as the following re-
lation indicates.

pb (B(r)) ∝ exp (−g (|∇B(r)|)) (4.14)

where g(u) = 1/(1 + u2).

This leads to the energy minimization formulation:

E(φ,µLEin/out
, CovLEin/out

)

= ν

∫

Γ

δ(φ)|∇φ|dx+

∫

Γ

δ(φ)|∇φ|g(|∇B(r)|)dx

−
∫

Γin

log(pin(r))dx−
∫

Γout

log(pout(r))dx

(4.15)

where δ is the Dirac delta function.
The following Euler-Lagrange equation is used to evolve the level set function

∂φ

∂t
= δ(φ)

(

(ν + g(|∇B(r)|)) div
( ∇φ

|∇φ|

)

+
∇φ

|∇φ| · ∇g(|∇B(r)|) + log

(

pin
pout

)

) (4.16)

The level set function in Equation 4.16 is evolved iteratively to obtain the desired
segmentation and the statistics are updated after each iteration.

The output from the level set framework contains the fiber bundle of the optic
radiation and additional bundles connected to it such as traces of the optic tract.
The reason for this is that the optic tract is connected to the optic radiation and
the diffusion direction is also anterior-posterior in the connection area so traces of
the optic tract are segmented as well. The LGN connects the optic radiation to the
optic tract and is located laterally to the midbrain. Therefore, the LGN position
can be used to separate the optic tract from the optic radiation. Based on this
anatomical information, the segmented region is automatically adjusted in order to
confine the segmentation results to the part representing the optic radiation. The
relative position of the segmented optic radiation to the midbrain is used instead
of the relative position to the LGN. The reason for this is that the midbrain is
larger, more reliable to identify and in turn more robust. Moreover, the LGN is
located adjacently lateral to the midbrain. The midbrain is previously identified
in the initialization step. The plane corresponding to the anterior boundary of the
segmented midbrain is selected as the separation level between the optic radiation and
the optic tract. The segmentation results anterior to the selected plane are eliminated
leaving the optic radiation and approximately eliminating the part corresponding to
the optic tract.
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Table 4.1: The segmentation accuracy of the normal subjects and glaucoma patients
Subjects’ Class Number of Subjects Segmentation Accuracy

Mean Standard Deviation
Normal Subjects 9 82.71% 6.43%
Glaucoma Patients 9 82.76% 7.55%

4.4 Results

The segmentation system was applied to the DTI-datasets and the optic radiation in
the two groups was identified. The left side of Figure 4.4 shows the final segmented
optic radiation on non-diffusion weighted axial slices with b = 0 from two sample
subjects. The color coded fractional anisotropy representation of the DTI-data is
demonstrated on the right side of the figure.

The segmentation results were evaluated by comparing them with a manual seg-
mentation of the optic radiation main fiber bundle performed by a physician expe-
rienced in neuroimaging. The accuracy of the segmentation system is calculated as
the percentage of the overlap volume between the automatic segmentation results
and the manual segmentation to the total volume of the manually segmented optic
radiation. The segmentation accuracy is summarized in Table 4.1. The accuracy
of the segmentation is 82.71% for the normal subjects and 82.76% for the glaucoma
group.

4.5 Discussion

The presented algorithm is able to capture the complicated structure of the optic
radiation as evident from the results. Despite the variable course of the optic radi-
ation, the system accuracy is 82.7%. Moreover, the system is fully automated and
operates in the Log-Euclidean space. Employing the Euclidean metric for measuring
the similarity between diffusion tensors ignores the Riemannian nature of the ten-
sor space and does not represent adequately the dissimilarity between tensors. The
Log-Euclidean distance measure avoids the inefficiencies of the Euclidean framework
while maintaining almost the same complexity of calculations. This is due to the abil-
ity to transform the tensors in the Log-Euclidean space into vectors. Therefore, all
computations can be performed using the Euclidean calculus on the mapped vectors.

The analysis of the segmentation errors showed that the errors typically occur in
the region where the optic radiation branches in the proximity of the visual cortex.
Due to the branching of the optic radiation in this region, the incoherence increases
leading to reduced anisotropy and unreliability in determining the fiber orientation
direction. Moreover, the anterior-posterior direction in this region is no longer the
dominating diffusion direction and the dissimilarity between the tensors in the main
fiber bundle and the tensors in this region is relatively high. Another source of errors
is the relatively small coherent fiber bundles intersecting the optic radiation and
sharing the diffusion direction and tensor similarity near the intersection location.
Figure 4.5 shows the mentioned classes of errors on a sample subject as indicated
by arrows. If the overlap is measured only on the central axial slice containing the
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(a)

(b)

Figure 4.4: Segmentation of the optic radiation in two sample subjects shown on
a non-diffusion weighted image (b=0) on the left side. The color coded fractional
anisotropy image is shown on the right side. The main fiber bundle of the optic
radiation and the lateral geniculate nucleus (LGN) of the visual pathway are clearly
identified.
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Figure 4.5: The errors of segmentation of the optic radiation demonstrated on a sam-
ple subject as indicated by arrows. The left image shows the manual optic radiation
segmentation of a medical expert on an axial brain slice.

LGN, the mean accuracy increases to 86.34%. The errors increase in the slices that
are away from the center of the optic radiation due to the limited interslice resolution
and the increased IOVH.

The effect of glaucoma on the visual system specifically the optic nerve and the
optic radiation was investigated in [Gara 09]. The correlation between glaucoma and
diffusion tensor derived parameters such as FA and MD was studied. FA was found
to be significantly lower in the glaucoma group when compared to the normal subjects.
On the other hand, the MD was significantly higher in glaucoma patients than in the
normal subjects. This yields that the diffusion tensors within the optic radiation are
generally affected by the presence of the neurologic pathology of glaucoma. Despite
these findings, the proposed automated segmentation algorithm has approximately
the same accuracy for normal subjects and glaucoma patients. This robustness is
due to the dependence of the system on the physiological and anatomical properties
which are slightly affected by glaucoma.

The selection of the seed region is crucial to a correct fiber tracking. The seed
points should be placed with great attention from an expert in the neuroanatomy
and DTI. Furthermore, the user should ensure that the tracking results started from
the selected region span the entire target fiber. The algorithm could face some prob-
lematic situations trying to connect two areas belonging to the same tract with fiber
heterogeneity in between. Whole brain tractography is an alternative approach where
each voxel in the brain space is considered a seed point. This results in redundancy
and significantly increased runtime. Moreover, it does not eliminate the requirement
of user intervention. An experienced user should locate a region where most of the
individual traced fibers pass through. These fibers are then regarded as the targeted
bundle. Fiber clustering methods utilizes the similarity between neighboring fibers to
group them into bundles [Ding 03, Mobe 05, ODon 06, Zhan 08]. However, this adds
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an additional challenge and potential source of errors, especially when considering
bundles with intersecting or diverging tracts such as the visual system. Relatively
small number of studies attempt to propose algorithm initialization. The initializa-
tion of the presented system leads to a decreased number of system iterations and the
necessity for an experienced operator. It overcomes the mentioned problems reducing
the inter-operator variations.

The high individual variability of the brain fiber structure and the special nature
of DTI-data require great attention when dealing with the segmentation of major
fiber bundles. The diffusion tensor contains information about the diffusion direction
and the degree of diffusion properties. Most tractography methods rely on the PDD
to reconstruct the white matter fibers and do not completely utilize all the data in
the tensors. In addition, the segmentation based on anisotropy measures alone or
only diffusion directions results in a loss of information and inaccuracy in segmenta-
tion. Therefore, the whole tensor is incorporated in the proposed algorithm. In the
following chapters, the segmentation system will be used to facilitate the glaucoma
analysis in the optic radiation region.
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Chapter 5

Voxel Based Morphometry Analysis

of the Optic Radiation in Glaucoma

This chapter contains the work and results previously introduced in the article
A. El-Rafei, T. Engelhorn, S. Waerntges, A. Doerfler, J. Hornegger, and G. Michelson.
”A framework for voxel-based morphometric analysis of the optic radiation using
diffusion tensor imaging in glaucoma”. Magnetic Resonance Imaging, Vol. 29, No. 8,
pp. 1076-1087, 2011.

5.1 Introduction

The high prevalence and damage irreversibility of glaucoma require greater attention
to provide more appropriate therapies. Despite the extensive research on glaucoma
and the valuable findings described in Chapter 2, the causes of glaucoma remain un-
certain and the pathophysiology mechanism is not yet fully understood. Localizing
the glaucoma effect on the visual system could provide more insight into the mecha-
nism and progression of glaucoma. The effect of glaucoma on the optic radiation is
studied through diffusion tensor-derived parameters only globally and it has not been
localized so far. The complexity of diffusion tensor imaging accompanied by inherited
uncertainty and the complicated inter-subject variable structure of the optic radia-
tion make localizing the effect of glaucoma on the optic radiation a difficult task. In
this chapter, we propose a framework that is able to capture the local changes of the
optic radiation due to neuronal diseases. The framework is applied to the glaucoma
disease.

Different approaches exist for tracking the white matter fibers from DTI data,
some of these are summarized in Chapter 3.6. Algorithms were customized to re-
construct the human visual pathway [Stae 07] and to identify parts of it such as
the optic radiation [Sher 08a, El R 11a]. This enables the analysis of the effects
of ophthalmological and systemic neurological diseases on the visual pathway. In
this work, the optic radiation is identified on diffusion tensor images. The diffu-
sion process is sensitive to the underlying fiber structure, and consequently the dif-
fusion tensor-derived parameters are expected to change in cases of white matter
tracts damage due to neurological disorders. Thus, they are commonly utilized to
detect the degradation in the cerebral white matter health when examining patholo-
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gies [Pier 96a, Hors 02, Song 03, Hami 08]. Increased radial diffusivity is hypothesized
to reflect the demyelination degree and this assumption was validated in clinical stud-
ies on mouse brain [Song 03, Song 05]. MD represents the magnitude of the diffusion
within a voxel. FA indicates the degree of deviation from isotropic diffusion at each
voxel. In clinical applications, FA is widely assumed to represent the organization
degree of white matter fibers reflecting white matter integrity. Reduced FA values
could be interpreted as compromised fiber coherence (degree of cellular structure
alignment within a voxel) and possible defects in myelin [Pier 96a, Hors 02, Hami 08].

Analysis of diseases using DTI follows two major approaches. The analysis is
performed between a diseased group and a control group. Histogram analysis repre-
sents the first approach and is based on statistically analyzing the different features
of the histogram of diffusion tensor-derived parameters on a specified region of inter-
est [Vals 05, Nave 07]. Features of the histogram may include mean, median, location
of the peak, etc. This approach gives the global significant differences between the
two examined groups but it lacks the ability to localize these differences. Voxel-based
morphometric analysis examines the local changes of tensor derived-parameters to
produce a map of significant abnormalities in the presence of neurological diseases
such as optic neuritis, amyotrophic lateral sclerosis [Cicc 05, Thiv 07]. Studying hemi-
spheric asymmetry due to aging effect or pathologies such as schizophrenia is another
application of voxel-based analysis [Arde 07, Taka 10b, Taka 10a].

Voxel-based morphometry (VBM) is commonly used in a whole brain analysis for
localizing the abnormalities in the presence of pathologies. Brain images from differ-
ent subjects involved in the study are transformed to a unified coordinate system by
registering them to a template. This allows for inter-subject voxel-wise comparisons
because each location in the unified coordinate system should include corresponding
voxels from all subjects. Due to the complex structure of the brain and the highly
inter-subject brain structure variability, the registration is imperfect and significant
voxels could arise from the misalignment of images. Smoothing is incorporated to re-
duce the inter-subject variability and misalignments by replacing the image intensity
value by a weighted average from neighboring voxels. Smoothing increases the par-
tial volume effects. A previous study showed that the morphometry analysis depends
on the degree of smoothing [Jone 05]. The tract-based spatial statistics (TBSS) ap-
proach is proposed to avoid the mentioned problems of conventional VBM [Smit 06].
This approach is one of the well established and applied techniques in morphometry
analysis using DTI. TBSS operates on FA images in a multi-step method. First,
the FA brain images from different subjects are aligned using non-rigid registration.
Then, the mean of the registered FA images is computed and a skeleton of the white
matter tracts is calculated from it. Finally, the different subjects are projected onto
this alignment invariant tract. The statistical analysis is performed on the voxels of
the skeleton. TBSS does not require smoothing and is completely automated and
thus observer independent. However, TBSS processes FA images which are affected
by white matter degeneration caused by diseases such as glaucoma. The spatial ac-
curacy of the TBSS analysis is limited by the skeleton and therefore does not provide
detailed significant locations. In addition, it compares skeletons of the extremely
variable complete brain white matter structures.
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The proposed framework for the localization of the glaucomatous damage on the
optic radiation is object oriented. It processes the optic radiation rather than the
whole brain. Whole brain analysis is subject to many sources of inaccuracies and
therefore avoided. The framework uses a semi-automated algorithm for identifying
the optic radiation to limit the user intervention and increase the reliability of the
results. In addition, relying on diffusion tensors or related parameters in the calcula-
tion of the similarity in the registration step is not suitable for dealing with glaucoma.
This is because different parameters were shown to be affected by glaucoma and con-
sequently the whole diffusion tensors. Thus, an automated shape-based registration
approach is incorporated to overcome this limitation. The analysis is restricted to the
main fiber bundle of the optic radiation where there is a high degree of shape similar-
ity. This simplifies and facilitates the registration leading to improved inter-subject
alignments.

5.2 Materials

5.2.1 Subjects

The performed case-control study included 23 subjects categorized into control and
glaucoma groups. The control group consisted of 10 subjects (3 males and 7 females
with a mean age of 62.8±13.6 years) while 13 patients (6 males and 7 females with
a mean age of 64.7±11.5 years) diagnosed with primary open angle glaucoma (7 pa-
tients) and normal tension glaucoma (6 patients) constituted the glaucoma group.
Subjects in both groups were randomly selected from the patients in the clinic of the
Department of Ophthalmology at the University Erlangen-Nuremberg. The criteria
for POAG diagnosis were having an IOP > 21 mmHg associated with an open ante-
rior chamber angle, optic disk cupping and visual field defects > 2 dB. Criteria for
diagnosis of normal tension glaucoma were the same as POAG except for an IOP
< 21 mmHg. The subjects in the normal groups did not show any abnormalities
of the glaucoma specific examination results. The acquired MRI and DTI datasets
were utilized for neurological examinations to detect cerebral diseases or irregularly
developed optic radiations.

5.2.2 Magnetic resonance and diffusion tensor imaging

A 3T high-field scanner (Magnetom Tim Trio, Siemens, Erlangen, Germany) was used
to obtain anatomical T1-weighted images using 3D-MPRAGE (3D-Magnetization
Prepared Rapid Gradient Echo) imaging sequence. The strength of the applied gradi-
ent field was up to 45 mT/m (72 mT/m effective). The imaging sequence parameters
were TR = 900 ms, TE = 3 ms, and FoV = 23 × 23 cm2. The acquisition matrix
size = 512 × 256 reconstructed to 512 × 512 with interslice resolution of 1.2 mm.

Diffusion weighted images were acquired along 20 directions using a maximal b-
factor of 1,000 s/mm2. Additional non-diffusion weighted scan was performed with
b = 0. The scanning image sequence protocol was a single-shot, spin echo, EPI with
TR = 3,400 ms, TE = 93 ms, FoV = 23 × 23 cm2, and partial Fourier acquisition
= 60%. The acquisition matrix size was 128 × 128 reconstructed to 256 × 256 and
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Figure 5.1: Schematic of the analysis framework. The system analyzes the diffusion
tensor images of the optic radiation to produce localization maps showing regions
with significant differences between glaucoma and control groups. The schematic il-
lustrates the different steps including optic radiation identification and configuration,
registration, and statistical analysis.

the number of signal averages was 4. The axial intra-slice spatial resolution was 1.8
× 1.8 mm2 with a slice thickness of 5 mm.

5.3 Methods

The schematic of the proposed framework is illustrated in Figure 5.1. The main idea
of the system is to spatially normalize the optic radiations from different subjects to
a unified space. The identification of the optic radiation is performed automatically.
The analysis is confined to the main bundles of the optic radiation. Thus, the inter-
subject variability is reduced to be able to accurately compare the fiber bundles from
different subjects. This is done manually by removing the highly variable fiber struc-
tures and correcting the segmentation errors. The segmented optic radiations from all
subjects are non-rigidly registered to a reference template. After the registration, all
the segmented regions occupy the same space enabling location-based analysis. The
diffusion tensor-derived parameters’ images are transferred to the common space us-
ing the transformation fields obtained from the registration step. Finally, a statistical
analysis is performed to detect the regions which show significant differences between
glaucomatous and normal optic radiation groups. The software used in this work was
mainly developed by the author under the Matlab environment (Mathworks, Inc.,
Natick, MA, USA). In the following subsections, the various steps are described in
detail.
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5.3.1 Automated identification of the optic radiation

The diffusion tensors were calculated from the diffusion weighted images. The brain
images were interpolated by upsampling the diffusion tensors at non-grid locations.
The individual components of the diffusion tensors were trilinearly interpolated in the
Log-Euclidean space [Arsi 06]. The spectral components of the interpolated diffusion
tensors were obtained using eigenvalue decomposition. The decomposition results
included the eigenvalues of the interpolated diffusion tensors which were used to
calculate the diffusivity parameters (AD, RD, and MD) and the anisotropy index
(FA).

The previously developed algorithm for automated segmentation of the optic radi-
ation based on DTI data and introduced in Chapter 4 [El R 11a] was used to identify
the optic radiation. The algorithm is automated and thus eliminates the necessity
for user intervention avoiding inter-user variability. Moreover, the ability of the al-
gorithm to identify the optic radiation in both normal and glaucoma subjects with
high efficiency was demonstrated. Therefore, it is suitable to be incorporated into
the proposed framework and specifically for the glaucoma analysis.

5.3.2 Configuring the optic radiation

In the axial slice that includes the largest part of the LGN and clearly identifies
the intersection between the optic tracts and the optic radiation, there is a high
degree of shape similarity of the optic radiation among normal and glaucoma subjects.
Therefore, it was selected for further analysis. The manual configuration targeted
the minimization of the inter-personal variability by restricting the analysis to the
main fiber bundle of the optic radiation in order to benefit from the shape similarity
between subjects. The results of the segmentation were compared to a white matter
Atlas reconstructed using DTI [Waka 04]. The comparison showed that most of the
errors were over-segmentation errors. The occipital part of corpus callosum medially
proceeding the optic radiation and traces of the optic tracts were included in the
segmentation. Based on the comparison, the segmentation errors were manually
corrected by two DTI experts.

The LGN is a small object relative to the limited spatial resolution of the DTI
data. Thus, its appearance differs among different subjects which results in shape
inconsistency and could lead to inaccuracies in the registration. Therefore, the lateral
geniculate nuclei were excluded from the analysis and manually removed from the
segmentation. The lateral geniculate nuclei can be easily identified by tracing the
optic radiation and locate its intersection with the optic tracts near the anterior end
of the optic radiation. The branching part of the optic radiation to the primary visual
cortex was eliminated from the analysis due to significant inter-subject variability and
measurement uncertainties in this region.

The complex structure of the white matter fibers complicates the configuration
process. Moreover, measurement uncertainties arise from partial volume effects as
well as limitation of the diffusion tensor model in describing complex fiber situations
such as branching or crossing of fibers. The linear, planar, and spherical anisotropy
indices [West 04] can be used to detect local fiber homogeneity and heterogeneity
(Section 3.5.2). To reduce the inter-operator variability and to systematize the con-
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Figure 5.2: The optic radiation on an axial brain slice of two sample subjects after
the manual segmentation. The lateral geniculate nucleus (LGN) and the branching
to the visual cortex were removed.

figuration process, a graphical user interface (GUI) was developed to facilitate the
user interactions. The GUI enables accurate manipulation of the segmentation re-
sults on a variety of DTI-derived measures including FA, MD, CL, and CP images
as well as PDD-color coded images. Thresholding of the mentioned parameters can
be performed to visualize only the voxels above or below a certain parameter value.
This can be used in conjunction with the linear and planar anisotropy indices to
localize branching and intersecting fibers of the optic radiation and facilitate the ma-
nipulation procedure. For example, the branching parts of the optic radiation can be
identified in a systematic way by increasing CL threshold gradually until the branch-
ing fibers are disconnected from the main fiber bundle of the optic radiation. Then
these parts can be manually eliminated. Segmented optic radiation can be visualized
on the anatomical diffusion weighted images for further comparison with the known
anatomy.

5.3.3 Registration

The optic radiations from different subjects were transformed to a unified space of
a reference template. This allowed for voxel-wise comparison and in turn significant
region analysis. The sizes of the segmented optic radiations from different subjects
were calculated and the normal subject with the maximum optic radiation area in the
LGN-slice was selected as the reference subject. A non-rigid registration [Ruec 99]
was incorporated to transform the optic radiations from all the subjects into the
reference optic radiation space. The used non-rigid registration algorithm did not
require any landmarks and was fully automated. The transformation consisted of
two parts representing an affine transform and a free-form deformation (FFD). The
affine transform modeled the global mapping between the subject to be registered and
the reference while the free-form deformation modeled the finer local mapping. In the
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affine transform, 12 degrees of freedom were utilized to account for the translation,
rotation, scaling and shearing. Prior to the FFD calculation, the optimal affine
transformation was estimated by minimizing the sum of squared differences (SSD)
between the binary masks of the optic radiations from the subject to be registered
and the reference subject. In the free-form deformation part, B-splines were used
to describe the image domain. The B-splines were calculated on a mesh of control
points covering the image domain. The deformation of the mesh points deformed the
corresponding B-splines and consequently the shape of the optic radiation. The FFD
transformation was obtained by optimizing the locations of the mesh control points in
order to maximize a cost function that corresponded to the image similarity based on
the SSD between images. The cost function also included a smoothing term to ensure
the smoothness of the free-form transformation. The optimization of the cost function
was performed in a hierarchical approach by decreasing the spacing between the mesh
control points to align coarse to fine structures. The hierarchical optimization along
with the smoothing term in the cost function provided smooth deformation fields
and preserved the topology of the optic radiations. The registration operated on the
binary masks of the segmented optic radiation from different subjects to align them
with the binary mask of the reference optic radiation. The transformation fields
for each subject were stored. Working with binary images made the registration
independent from the diffusion tensors affected by glaucoma and focused on the
shape similarity.

5.3.4 Statistical analysis

The transformation fields obtained from registration were used to transform the dif-
fusion tensor-derived diffusivity parameters (axial, radial, and mean diffusivities) and
FA to the unified space. This enabled voxel-wise comparison between the normal
and glaucoma groups with regard to all examined parameters.

For each of the tensor-derived parameters, each voxel in the reference optic radia-
tion was analyzed using nonparametric Wilcoxon rank sum test. A minimal smooth-
ing was applied to the diffusion tensor indices prior to the statistical analysis using
a 3 × 3 Gaussian filter with a standard deviation of 0.5. The voxels were considered
to show a significant difference with respect to the parameter under investigation if
the p-value (uncorrected for multiple comparisons) was less than 0.05 corresponding
to 95% confidence interval.

5.3.5 Reliability assessment of the inter-operator configura-

tion of the optic radiation

The manual configuration of the automatically segmented optic radiation is operator
dependent. Inter-operator variabilities could arise leading to false significant regions.
Thus, the inter-operator reliability needs to be evaluated. The automatically seg-
mented optic radiation was demonstrated on the GUI created by the authors to two
experts in the visual system neuroanatomy and diffusion tensor imaging. The experts
performed independently the manual configuration of the optic radiation to remove
the branching parts of the optic radiation to the primary visual cortex and to exclude



66Chapter 5. Voxel Based Morphometry Analysis of the Optic Radiation in Glaucoma

the LGN. The directional-color-coded images were used as the basis for the manipu-
lation process with the possibility to examine the other tensor-derived indices maps
or anatomical images. The operators utilized the GUI capabilities to threshold the
anisotropy indices and to monitor the branching regions of the optic radiation for a
systematic approach for the manual manipulation. The final optic radiations identi-
fied by both operators were compared using the percentage of voxel overlap [John 06]
using the following equation:

Overlap(%) =
Vox1 ∩ Vox2

Vox1

× 100 (5.1)

where Vox1 and Vox2 are the processed optic radiations from the first and the
second operators, respectively.

The percentage of voxel overlap along with the intersection to union ratio (IU-
ratio) [John 06] as given by Eq. (5.2) were calculated for each subject and used to
evaluate the reliability between operators.

IUratio(%) =
Vox1 ∩ Vox2

Vox1 ∪ Vox2

× 100 (5.2)

A third alternative metric for assessing the matching between the manipulated op-
tic radiations from the two operators was the modified Hausdorff distance (MHD) [Dubu 94].
The directed modified Hausdorff measure d(A,B) between region A and region B is
the average of the Euclidean distances between each point on the boundary of A to
its nearest neighbor on the boundary of B. The modified Hausdorff distance is the
maximum of the directed distances d(A,B) and d(B,A).

5.3.6 Evaluation of registration accuracy

An important aspect of the proposed framework is the ability of the registration
algorithm to align the optic radiations from different subjects to the reference. The
residuals of the registration were used to represent the degree of misalignment between
the registered subjects and the reference. The overlap, the intersection to union ratio
and the modified Hausdorff distance between the reference and the registered optic
radiations were used as measures of the registration accuracy as well as the post-
registration degree of alignment.

5.4 Results

DTI-brain scans of the subjects were performed. The proposed framework was applied
to the DTI datasets and the significant regions were extracted. Figure 5.3 shows the
reference optic radiation and the regions that indicated significant differences with
respect to the FA, radial, and mean diffusivities.

The FA analysis showed that the glaucoma group had mainly significant voxels
with decreased FA in comparison to the normal group. Moreover, the significant
differences were located in the middle part with regard to anterior-posterior orien-
tation of the optic radiation as shown in Figure 5.4. Radial and mean diffusivities
had localized higher values in the glaucoma group than in the normal subjects. The
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(a) (b)

(c) (d)

Figure 5.3: Optic radiation of the reference subject (a) and the significant optic
radiation voxels based on the analysis of: (b) Fractional anisotropy (FA), (c) Radial
Diffusivity (RD), and (d) Mean Diffusivity (MD) in the presence of glaucoma. The
significant regions are marked and the color code is as follows: Red: control group’s
mean value greater than glaucoma group’s mean value with p-value < 0.05, Yellow:
control group’s mean value greater than glaucoma group’s mean value with 0.05 ≤
p-value < 0.1, Green: control group’s mean value less than glaucoma group’s mean
value with p-value < 0.05, Cyan: control group’s mean value less than glaucoma
group’s mean value with 0.05 ≤ p-value < 0.1.
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Figure 5.4: Concentration of significant regions on the right optic radiation according
to the fractional anisotropy analysis (left) and according to the mean diffusivity
analysis (right). Color code is as follows: Red: control group’s mean value greater
than glaucoma group’s mean value with p-value < 0.05, Yellow: control group’s mean
value greater than glaucoma group’s mean value with 0.05 ≤ p-value < 0.1, Green:
control group’s mean value less than glaucoma group’s mean value with p-value <
0.05, Cyan: control group’s mean value less than glaucoma group’s mean value with
0.05 ≤ p-value < 0.1.

proximal part of the right optic radiation near the Meyer loop contained a concen-
tration of significant voxels with increased radial and mean diffusivities. In addition,
a significant abnormality region could be observed in the posterior part of the left
optic radiation with regard to MD analysis. This region was characterized as well by
increased MD. Figure 5.4 focuses on the optic radiation to show the concentration
of voxels with increased MD values in the proximal part. The effect on the AD was
scattered and no remarkable localization could be detected (not shown).

5.4.1 Inter-operator configuration of the optic radiation reli-

ability results

The overlap, IUratio and the MHD of the two experts processed optic radiations
were calculated for each subject. The mean and the standard deviation (SD) were
calculated for the glaucoma, control groups and all subjects. The results of the
reliability analysis are summarized in Table 5.1. Table 5.1 shows that the mean
overlap in all groups was more than 88%. The correlation between operators as
measured by overlap among all subjects is 93.41% with a standard deviation of 5.62%.
Subvoxel agreement between operators was indicated by a Hausdorff distance of 0.43
mm for all subjects.
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Table 5.1: Reliability analysis of the inter-operator configuration of the optic radiation
Group Overlap(%) IUratio(%) Modif. Hausdorff(mm)

Mean SD Mean SD Mean SD
Glaucoma patients 96.82 2.66 90.22 3.82 0.29 0.13
Normal subjects 88.97 5.38 85.05 5.21 0.61 0.39
All subjects 93.41 5.62 87.98 5.09 0.43 0.31

Table 5.2: Registration accuracy analysis
Group Overlap(%) IUratio(%) Modif. Hausdorff(mm)

Mean SD Mean SD Mean SD
Glaucoma patients 94.69 2.25 89.38 3.95 0.34 0.13
Normal subjects 93.21 1.55 87.36 1.92 0.41 0.07
All subjects 93.85 1.98 88.24 3.07 0.38 0.11

5.4.2 Registration accuracy evaluation results

The registered optic radiations from all subjects were overlaid on the reference optic
radiation. The overlap, IUratio and MHD were calculated for all individual subjects.
Table 5.2 demonstrates the results of the accuracy analysis. The mean residuals
(complement of the overlap) from the registration of all subjects did not exceed 7%.
For the glaucoma and normal groups, the IUratio means were 87.36% and 89.38%,
respectively. A maximum MHD of 0.41 mm for the normal group indicated the
subvoxel degree of alignment achieved.

5.5 Discussion

The presented framework provides localized abnormality maps of the optic radiation
in glaucoma. The application to groups of normal and glaucoma subjects indicates the
potential localization capabilities of the system. Furthermore, the system analyzes
different relevant diffusion tensor parameters characterizing different properties of
the underlying white matter fiber structure of the optic radiation. Thus, regional
structural changes of the underlying white matter in the presence of glaucoma could
be investigated.

Complexity of the white matter architecture of the human visual system and its
variability among subjects complicate the voxel-based analysis. Common VBM ap-
proaches aiming to match the highly variable complete brain fiber structure, such
as the implementation in statistical parametric mapping (SPM) - (Wellcome. De-
partment of Cognitive Neurology, University College. London, London, UK) and
TBSS [Smit 06], face the challenge of large registration residuals and misalignments.
Therefore, whole brain analysis is avoided. Object oriented analysis (e.g., the work
by Xu et al. [Xu 02] to analyze the callosal fibers) concentrating on a single object
reduces the matching complexity from the whole brain to a specified object. The
object oriented approach is adopted in this work with the optic radiation as the ob-
ject to be analyzed. Using tractography to identify the white matter fibers results
in a network of individual fibers which is highly dependent on the user intervention
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for selecting the seed points or regions of interest. Additionally, the reconstructed
fiber tracts may need to be clustered in order to provide fiber bundles. This could
lead to another source of errors and affects the voxel-wise comparison. Therefore, a
segmentation technique is used for the reconstruction of the optic radiation. So, the
optic radiation is represented as a segmented region which facilitates the registration
and reduces the sources of errors.

The validity of the results produced by the framework depends on the accurate
identification of the corresponding optic radiation regions in all subjects, the consis-
tency between operators, and the ability to efficiently align the optic radiations to the
reference. Therefore, the validation of these issues is crucial to the reliability of the
results and to indicate the system efficiency. The optic radiation has a highly com-
plex fiber system [Ture 00, Sinc 04] that makes the identification and isolation of its
fiber structure a difficult task. This problem is mitigated by restricting the analysis
to the main coherent fiber bundle of the optic radiation. The utilized segmentation
algorithm targets the coherent bundle. This is emphasized by the anisotropic filtering
and the initialization of the optic radiation using a FA threshold of 0.3. The FA
threshold primarily aims to avoid the inclusion of voxels with intravoxel fiber orienta-
tional heterogeneity [Tuch 02] and to disconnect the optic radiation from interfering
tracts by the attempt to exclude the voxels representing crossing and branching sit-
uations. Moreover, the manual configuration procedure ensures that corresponding
optic radiation bundles from different subject are to be compared. i.e., the coher-
ent optic radiation bundles following the LGN and projecting to the primary visual
cortex (without the heterogeneous branching tracts) on the LGN-slice.

The optic radiation is automatically determined to eliminate the necessity of user
intervention. The manual configuration of the optic radiation is performed by two
experts in a simple systematic approach. The LGN is clearly located at the ter-
mination region of the optic tract and the beginning of the visual pathway axons
projecting to the visual cortex through the identified optic radiation. The branching
fibers of the optic radiation near the posterior end of the optic radiation are located
in the proximity of the primary visual cortex. The fiber structure in branching and
crossing situations is characterized by reduced anisotropy due to the limitation of the
diffusion tensor model. Thus, increasing the anisotropy threshold gradually and mon-
itoring the branching region can facilitate the systematic elimination of the highly
variable branching bundles. However, the user intervention in this region is limited
because the output from the automated segmentation consists mainly of the coherent
fiber bundle of the optic radiation. Following these approaches in manually configur-
ing the optic radiation, a high degree of consistency between operators is achieved.
Subvoxel inter-operator agreement measured by the modified Hausdorff distance can
be attributed to the minimized intervention of operators in the LGN and near the
posterior end of the optic radiation. This leaves the majority of the optic radiation
unaltered and reduces the average shape deviation.

The robust semi-automated identification of the optic radiation and relying on the
remarkable shape similarity for the registration contribute to the high degree of struc-
ture alignment. An average overlap between reference and registered optic radiation
of greater than 93% is achieved with a subvoxel accuracy of 0.4 mm. Furthermore,
glaucoma has been shown to affect tensor-derived parameters such as FA and MD
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in the optic radiation [Gara 09] which in turn affects the whole tensor. Thus, the
dependence on the tensor or tensor-derived measures in the registration could result
in inconsistency of the analysis among different parameters. This issue is resolved
by depending on the segmented optic radiation shape similarity among subjects with
and without glaucoma. A registration based on shape similarity ensures consistency
when using the obtained transformations to transfer any tensor-derived parameters
to the unified space for voxel-wise comparisons.

The decreased FA values of the glaucoma group indicate that the fiber coherence
and directionality of water self-diffusion are degraded compared to the normal group.
This could be related to an impaired integrity of white matter tracts as suggested by
previous studies [Pier 96a, Hors 02, Hami 08]. The concentration of the significantly
decreased FA voxels in the middle between the anterior and posterior parts of the
optic radiation demonstrates the localized glaucoma effect in that region. The water
diffusion in the direction perpendicular to the PDD is thought to be restricted by the
myelin sheaths and the axonal cell membranes [Beau 02]. This transverse diffusion is
represented by the RD. The process of demyelination in the presence of neurological
pathologies was suggested to be associated with increased RD by Song et al. [Song 03,
Song 05]. The increased radial diffusivity in the glaucoma group concentrated in the
proximal part of the right optic radiation suggests a possible demyelination process
near the Meyer loop. Mean diffusivity represents the average of the water self-diffusion
which is related to the obstacles restricting the diffusion. The locations of significant
increase in MD are similar to the results from the RD analysis on the right optic
radiation. However, an additional major abnormality area can be located in the
posterior part of the left optic radiation.

The localization analysis shows approximately symmetric regions on both the
middle parts of the left and right optic radiation with respect to FA analysis. How-
ever, the abnormalities on the left optic radiation are differently located than the
abnormalities on the right optic radiation regarding the RD and MD analyses. The
asymmetry in the RD and MD results could be attributed to the hemispheric white
matter asymmetry reported previously [Pele 98, Park 04]. Moreover, glaucoma is com-
monly an advanced age disease [Tuck 98]. This is reflected in the selection and age
matching of the subjects in this study. Aging is associated with brain atrophy which
was shown to be asymmetric in both brain hemispheres [Dolc 02, Arde 07]. As a part
of the white matter, the optic radiation could be concerned with the hemispheric
asymmetry. Another factor affecting the symmetry of the results could be the lim-
ited spatial resolution of the DTI modality which makes the asymmetric acquisition
of a complex fiber structure with variable course such as the optic radiation [Hofe 10]
unavoidable.

Recently, the average FA and MD in the optic radiation was reported to be
decreased and increased, respectively in the presence of glaucoma [Gara 09]. The
performed analysis is generally in agreement with these findings and additionally
provides a localization map of the deleterious effect of glaucoma on the optic radiation.

The selection of the slice that represents the optic radiation and the manual post-
processing may influence the results of the analysis. This influence is reduced by
co-registering the DTI images with the anatomical MRI images for the validation
of the segmentation and slice selection. However, the slice selection is done by two
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DTI experts to ensure consistency and reliability of the selection. The small sample
size used in this study restricts a strong conclusive statement about the localization
results of differences in diffusivity and anisotropy parameters between the normal
and glaucoma groups. Potential significant voxels with p-value ≥ 0.05 and < 0.1 are
also shown in Figure 5.3 and Figure 5.4. The significant regions corresponding to a
p-value ≥ 0.05 and < 0.1 are in the neighborhood of the 0.05 p-value analysis regions
as shown in Figure 5.4. Nevertheless, the focus of this work is on the localization
framework.



Chapter 6

Glaucoma Classification Using Visual

Pathway Analysis

The classification using visual pathway analysis concept along with preliminarily
results were published in

A. El-Rafei, T. Engelhorn, S. Waerntges, A. Doerfler, J. Hornegger, and G. Michel-
son. ”Glaucoma Classification Based on Histogram Analysis of Diffusion Tensor Imag-
ing Measures in the Optic Radiation”. In: Real P,Diaz-Pernil D, Molina-Abril H,
Berciano A, Kropatsch W, editors. Computer Analysis of Images and Patterns, Lec-
ture Notes in Computer Science, pp. 529-536, Berlin: Springer, 2011.

6.1 Introduction

The current methods for glaucoma detection target the retina, or more generally the
eye, as indicated in Section 2.4. Images can be obtained that show the structure
of the retina. Analysis is performed on these images to capture the glaucomatous
morphological changes. The information provided by the imaging modalities was the
basis of various systems and algorithms that were developed to screen and detect
glaucoma [Mede 04]. Bock et al. proposed the glaucoma risk index (GRI) for screen-
ing glaucomatous eyes [Bock 10]. The system is based on processing fundus images
and extracting the classification features from the optic disc. Appearance-based fea-
tures of the optic disc were used which included pixel-intensities, Fourier coefficients,
and interpolating spline coefficients. Principal component analysis (PCA) reduced
the number of features to be considered in each features category. Finally, a two-
stage classification setup is utilized. The achieved accuracy with this system was
80% and an area under the Receiver Operating Characteristic (ROC) curve of 0.88.
Heidelberg retina tomograph III provides a glaucoma probability score (GPS) and
Moorfields regression analysis (MRA). The GPS score is the result of a classification
based on the morphological parameters measured by HRT-III. The HRT-III analysis
differentiated between glaucoma and normal subjects with a maximum area under
the ROC curve (AUC) of 0.934 in [Burg 07]. The RNFL thickness in different quad-
rants were investigated for glaucoma diagnosis in [Lu 08]. The highest AUC was 0.92.
In a preliminarily study, it was shown that using OCT parameters and a support
vector machine (SVM) classifier, 0.98 AUC can be achieved for glaucoma class recog-
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nition [Burg 05]. However, the determination of the degree and type of glaucoma can
not be achieved efficiently using a single type of analysis. Furthermore, the screening
and the damage prediction need to be improved, which are essential to the preven-
tative treatment of the disease. The pathological process of glaucoma suggests the
inclusion of the visual pathway information in the examination flow. Therefore, we
propose a classification system for glaucoma that is based on the aspects of the optic
radiation tracts in this chapter.

A system for the classification of different entities of glaucoma is proposed. The
system is based on DTI-derived measures that are related to the status of the white
matter architecture and can, therefore, detect fiber disorders. Moreover, a feature
ranking algorithm is used to investigate the importance of the different DTI-derived
parameters in classifying different entities of glaucoma. Previously, the authors have
investigated the ability of visual pathway analysis to differentiate between healthy
subjects and patients having POAG using only a set of histogram features. The pre-
liminarily results were presented in [El R 11c]. In this chapter, we extend the analysis
to three groups of subjects: Healthy, POAG, and NTG. The aim is to determine the
sensitivity of the different DTI derived parameters in detecting different types of
glaucoma as well as the efficiency and generalization of the system. In addition, the
feature set is enlarged to include various texture features that can be categorized
into three feature sets: Histogram, co-occurrence matrix, and Laws features. This
will lead to a highly improved classification rates which will be shown in the results
section. The classification of glaucoma using visual pathway analysis represents a
novel perspective in glaucoma diagnosis. It could lead to significant improvements in
the clinical flow and consequently the therapy of glaucoma.

6.2 Materials

6.2.1 Subjects

The system was applied to a group of control subjects and a group of glaucoma
patients. The glaucoma group was further divided into two categories representing
two types of glaucoma. The first type was POAG and the second was NTG. The
POAG category included 39 patients (19 females and 20 males) with an average age
(mean ± SD) of 61.74 ± 8.32 years while the NTG group consisted of 18 patients (13
females and 5 males) with an average age of 62.33 ± 9.44 years. This resulted in a total
of 57 glaucoma patients with an average age of 61.93 ± 8.61 years. The identification
of OAG was performed by ophthalmological examinations. The patients of OAG
were characterized by an open anterior chamber angle, cupping of the optic disc, and
visual field defects > 2 dB. The untreated IOP was measured and used to differentiate
between POAG and NTG patients where POAG patients were associated with an
elevated IOP > 21 mmHg while NTG subjects had normal IOP < 21 mmHg. Twenty
seven normal subjects constituted the control group (17 females and 10 males) with
an average age of 58.52 ± 10.10. The three different categories were age matched
to exclude the aging effects from the analysis. Table 6.1 summarizes the different
groups. The subjects were selected randomly from the patients in the clinic of the
Department of Ophthalmology at the University Erlangen-Nuremberg. The control



6.3. Methods 75

Table 6.1: Categories of subjects
Group Subjects Age Sex

Mean SD Male Female
Glaucoma 57 61.93 8.61 25 32
POAG 39 61.74 8.32 20 19
NTG 18 62.33 9.44 5 13
Control 27 58.52 10.1 10 17
All subjects 84 60.83 9.2 35 49

group was examined and did not show an impairment of the neuronal parts of the
visual system. Moreover, the brains of the subjects were scanned to produce MRI and
DTI datasets. These datasets were examined by neuroradiologists to check for any
abnormalities in the optic radiations and to exclude patients with cerebral diseases.

6.2.2 Brain imaging

MRI and DWI-images were acquired for the subjects involved in this work using the
same acquisition protocols in Chapter 5. The high resolution T1-weighted images
were utilized for the anatomical examinations. This included the validation of the
automatic segmentation and manual configuration of the optic radiation in addition
to the detection of other cerebral diseases or abnormalities in the visual pathway.
Diffusion-weighted images are used for optic radiation identification and for feature
extraction.

6.3 Methods

The proposed classification system processes the diffusion weighted images to calcu-
late the diffusion tensors and their derived parameters. The optic radiation is auto-
matically segmented to minimize the operator intervention. Then, a specified region
of interest (ROI) on the segmented optic radiation is manually identified. Different
diffusion tensor derived measures are used for the extraction of features. For each
DTI-measure, statistical based features including histogram, co-occurrence matrix,
and Laws features are computed on the selected ROI. The features are then ranked
to determine the best discriminating features between the diseased and the normal
groups. An SVM classifier with a recursive feature elimination technique is utilized for
feature ranking. The high performing feature sets are the input to an SVM classifier
to identify the different groups. The system is applied to three different categories of
subjects: control, POAG, and NTG groups. The classification accuracy of the system
is evaluated using a 10-fold cross validation scheme and the most significant features
for differentiating between the different groups are determined. In Figure 6.1, the
flow and the various steps of the system are demonstrated.
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Figure 6.1: Schematic of the classification system. The system discriminates glau-
coma patients from healthy subjects by features extracted from the diffusion tensor
derived parameters of the optic radiation. The different stages of the system are
illustrated in the schematic.

6.3.1 Semi-automated identification of the optic radiation

The automatic segmentation and region of interest configuration of the optic radi-
ation are very similar to the procedure followed in Chapter 5. Therefore, they are
combined in this subsection and the differences are highlighted. The eigenvectors and
eigenvalues of the tensors are computed. The eigenvalues are used to calculate FA,
AD, RD, and MD. The main diffusion direction is the PDD described by the major
diffusion ellipsoid axis. The system we presented in Chapter 4 is used for delineating
the optic radiation automatically. It is worth mentioning that the initialization alone
provided accurate segmentations in many subjects that were sufficient for proceeding
with the manual ROI selection. However, in some cases it was necessary to evolve
the level set to obtain the appropriate delineation.

The manual ROI determination followed approximately the same steps demon-
strated in the previous chapter. This is performed in two manual steps: First, the
optic tract is traced and its intersection with the optic radiation at the LGN is iden-
tified. Then, the axial slice that contains the largest part of the LGN is selected
for additional processing. Second, the segmentation is examined and matched to a
DTI-white matter atlas by two DTI-experts. Based on the examination, the segmen-
tation errors are corrected. The optic radiation branches near its distal end to the
primary visual cortex are removed from the analysis to avoid the inclusion of voxels
with wrongly reduced anisotropy. In the case of the VBM analysis, shape similarity
was the important factor. Therefore, LGN was eliminated from the analysis. For
classification purposes, LGN is retained as a part of the visual system. In Figure 6.2,
an example of a configured ROI is shown on an FA image. This process is aided
by the GUI developed by the author for segmentation modification in a standard
manner. This reduces the inter-operator variability and ensures the consistency of
the selected ROI.
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Figure 6.2: Region of interest (ROI) identified on the optic radiation demonstrated
on a fractional anisotropy image (left). The diffusion direction coded ROI-axial slice
(right) indicates the main anterior-posterior diffusion direction in the optic radiation.
The intersection of the optic tracts and the optic radiation in the lateral geniculate
nuclei is clear and shown by white arrows on the selected slice on the right image.

6.3.2 Assessment of the inter-operator reliability for region of

interest configuration

An important aspect in evaluating the reproducibility of the classification system
is the reliability of the ROI configuration among operators. This is important be-
cause, it is the only step that requires manual intervention from users. Some of the
subjects involved in this analysis are different than the subjects in Chapter 5. In
addition, the LGN structure is not removed in this work and, therefore, can reduce
the inter-user reliability. Therefore, the reliability assessment is necessary in spite of
the systematically followed procedure in delineating the ROI and the developed GUI.
The GUI usage and the ROI identification procedure are explained to two experts.
Then, twenty subjects were randomly selected and the two experts were requested
to perform the manual ROI delineation on these 20 subjects independently. The se-
lected subjects included 8 POAG, 5 NTG, and 7 healthy subjects. This includes the
correction of segmentation errors as well as the removal of the branching segments
of the optic radiation near its distal end. The degree of agreement between the op-
erators is measured using the percentage of voxel overlap given by Equation 5.1 and
MHD (See Section 5.3.5).

6.3.3 Feature Extraction

Statistical features are extracted from diffusion tensor derived parameters on the
configured ROI. The utilized DTI measures are: (1) three diffusivity parameters:
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AD which represents the diffusion along the fiber, RD is the average diffusion in the
direction normal to the fiber, and MD is the average diffusion within a voxel. (2) An
anisotropy index (FA) which is related to the intravoxel fiber coherence and integrity
as it measures the degree of anisotropy. FA ranges from zero for an isotropic diffusion
to one for a perfect anisotropic diffusion. (3) Fiber orientation parameters based on
the PDD. The PDD has three Cartesian components along the three coordinate axes
and has a length of unity as it represents a direction. By transforming the PDD
to the spherical coordinates, we can exclude the radial component since its value
is always one. Thus, it reduces the PDD variables to the azimuth and inclination
angles. Moreover, due to the symmetry of the diffusion tensor, the sign of the PDD
does not correspond always to the actual diffusion direction. Therefore, the azimuth
and inclination angles are confined to fall in the range of 0-180 degrees by reversing
the PDD direction in case of pointing outside this range. This results in a total of
six medically relevant parameters describing fiber aspects of the optic radiation. The
features extracted from each DTI-parameter can be categorized based on the order
of the statistical features. i.e., the degree of spatial interaction between image voxels.
The histogram group corresponds to the first order statistical features computed on
the basis of individual voxels. Co-occurrence matrices [Hara 73] represent the second
category and are distributions of patterns considering the values of two voxels at
specific relative spatial location. The third group is the Laws energy features which
is a higher order statistical features by examining the relation between more than
two voxels [Laws 80]. In the following subsections we describe each category.

Histogram features

The range of the DTI-derived measures is divided into a number of bins. The number
of voxels in each bin is counted and the histograms are obtained. The histograms are
divided by the number of voxels in the ROI to give the probability of occurrence. The
histograms are computed from the values of the individual voxels and do not take
the spatial relation into account. Therefore, the histogram features are first order
statistical features. The mean, variance, skewness, kurtosis, energy, and entropy are
the six features derived from the histograms resulting in a total of 36 features (6 DTI-
measures × 6 histogram features). Equations (6.1-6.6) provide the mathematical
formulation of the histogram features. The mean is the average parameter value
while the variance measures the deviation from the mean. Skewness is the third
central moment and measures the symmetry around the mean of the histogram with
a negative skewness if the histogram is skewed to the left and a positive skewness
if it is skewed to the right. The kurtosis measures the deviation of the histogram
from the normal distribution having equivalent variance with regard to peakedness.
The energy is the sum of squared probabilities. The Energy reaches its minimum for
a flat histogram and describes the intensity variations within the ROI. The entropy
corresponds to the histogram uniformity.

Mean : µ =
N
∑

i=1

param(i)× hist(i) (6.1)
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V ariance : σ2 =
N
∑

i=1

(param(i)− µ)2 × hist(i) (6.2)

Skewness : µ3 = σ−3

N
∑

i=1

(param(i)− µ)3 × hist(i) (6.3)

Kurtosis : µ4 = σ−4

N
∑

i=1

(param(i)− µ)4 × hist(i)− 3 (6.4)

Energy : E =
N
∑

i=1

hist(i)2 (6.5)

Entropy : H = −
N
∑

i=1

hist(i) log(hist(i)) (6.6)

where the number of bins in the DTI-parameter histogram is N , the normalized
histogram is hist (i.e. probability distribution which is the histogram divided by the
total number of voxels within the ROI), i is the index of the ith bin, and param(i) is
the mean value of the corresponding parameter (param) in the ith bin.

Gray-level co-occurrence matrices features

The gray-level co-occurrence matrix (GLCM) proposed by Haralick et al. [Hara 73]
of an image takes into account the spatial dependences on a two pixels basis. It
calculates the distribution of gray level values co-occurring at two points separated
by a certain offset. GLCM is a square symmetric matrix where the rows and columns
correspond to the gray levels in the image or identified ranges of gray levels. The ij-
element of the matrix represents the number of occurrences of gray level corresponding
to row i and the gray level corresponding to column j for a given spatial offset. In
Figure 6.3, an example offset is illustrated. This offset is commonly described by a
distance and an angle along which the distance is measured. The GLCMs of all the six
DTI-measures are computed with an offset distance of one pixel and along four angles
0◦, 45◦, 90◦, and 135◦. The contrast, correlation, angular second moment (ASM), and
homogeneity are statistical measures derived from the GLCMs resulting in 96 features
for the six DTI-parameters. Before the calculations of the statistical parameters, the
GLCM is normalized so that the sum of the matrix elements is one and the values
represent the joint probability of occurrence. Also, the analysis is restricted to the
defined ROI. The contrast reflects the degree of local intensity variations in the ROI.
Correlation expresses the relation and dependency between the gray levels and the
neighboring. The squared sum of the probabilities is the ASM while the deviation of
the matrix from its diagonal is inversely proportional to the homogeneity. All derived
statistics are summed over the whole ROI or equivalently over the GLCM as given
by the following equations:

Contrast =
G−1
∑

i=0

G−1
∑

j=0

(i− j)2p(i, j) (6.7)
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Figure 6.3: The offset associated with the gray-level co-occurrence matrix shown on
an image grid. In this case, the offset is represented by an angle (θ) = 0 and a
distance (d) of two pixels.

Correlation =
G−1
∑

i=0

G−1
∑

j=0

(i− µi)(j − µj)p(i, j)

σiσj

(6.8)

AngularSecondMoment(ASM) =
G−1
∑

i=0

G−1
∑

j=0

[p(i, j)]2 (6.9)

Homogeneity =
G−1
∑

i=0

G−1
∑

j=0

p(i, j)

1 + |i− j| (6.10)

where i and j are the gray levels (indices) of the ith row and the jth column ranging
from zero to G− 1, respectively. p(i, j) are the joint probability of i and j given by
the ij-element of the normalized GLCM. µi and σi are the mean and the standard
deviation of the rows sums of the GCLM while µj and σj are the equivalents for the
columns sums.

Laws texture energy features

Higher order statistical features examine the spatial relation between image points on
more than two pixels scale. Laws energy features belong to this category [Laws 80].
The five following one-dimensional kernels were devised by Laws to correspond to
average gray level (L), edge (E), spot (S), wave (W), and ripple (R):
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Level : L5 = [ 1 4 6 4 1]

Edge : E5 = [−1 − 2 0 2 1]

Spot : S5 = [−1 0 2 0 − 1]

Wave : W5 = [−1 2 0 − 2 1]

Ripple : R5 = [ 1 − 4 6 − 4 1]

Twenty five two-dimensional kernels are obtained from the convolution of the
one-dimensional kernels with each other and with themselves. This is performed by
convolving one vertical kernel with one horizontal kernel. These 25 kernels are then
convolved with the DTI-derived parameters’ images to produce 25 images for each
DTI-parameter. This is accomplished by replacing the value of a pixel at a certain
location with the result of applying one of the convolution kernels at this location.
The texture energy is evaluated for each kernel by locally applying a 3 × 3 average
filter resulting in 25 energy images. The dual energy images that are calculated from
the same one-dimensional kernels regardless of the order of the convolution (e.g.,
L5S5 and S5L5) are averaged. This leads to rotational invariant features and reduces
the number of energy images to 15 images. Finally, the mean, variance, and energy
range on the ROI for each DTI-measure are computed and used as features. The
total higher order statistical features are 270 features.

6.3.4 Feature selection and classification

The combined feature vector contains 36 histogram features, 96 GLCM features, and
270 Laws energy features which are summed to 402 features from the six DTI-derived
measures under consideration. In this step, we apply a feature ranking algorithm to
determine the most discriminating features in differentiating the different subjects’
groups (i.e., healthy subjects and patients having different types of glaucoma). The
utilized algorithm ranks the features by recursive feature elimination [Guyo 02]. The
criterion for determining the feature to be excluded is the squared weight of the
feature evaluated by an SVM classifier. It operates on the complete feature set by
performing the following steps: (1) an SVM classifier is trained and the weights of
the features are calculated. (2) The squared weights are examined and the feature
corresponding to the smallest squared weight is marked and placed at the bottom of
the ranked feature list. (3) The marked feature from the previous step is excluded
from the feature set. (4) Steps(1-3) are applied to the remaining features and the
procedure is repeated iteratively until the ranking of the entire feature set is ac-
complished. After the feature ranking, a search is performed on the ranked feature
list to determine the optimal number of features and the classifier to be used in the
classification. The result of this analysis is the selection of an SVM classifier for
subjects’ classes identification. The number of used ranked features differs based on
the subjects’ groups being investigated and will be detailed in the results section.
The classification performance is tested using 10-fold cross validation. The feature
ranking as well as the classification are performed using the software implementation
of the algorithms in Weka [Hall 09].
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Table 6.2: The number of classification features categorized according to their DTI-
derived parameter for the different group pairs
Groups #Features FA MD AD RD THETA PHI
Normal vs. G 33 2 7 10 3 5 6
Normal vs. POAG 53 6 10 15 7 8 7
Normal vs. NTG 28 5 1 4 4 6 8
NTG vs. POAG 52 12 9 15 9 3 4

The previous analysis may introduce selection bias as all the samples are included
in the feature selection during the cross validation [Saey 07]. Thus, the classification
rates can be overestimated. However, the aim of this evaluation is to provide a
single set of ranked features for each group pair and to give an indication of the
corresponding classification performance. An alternative approach is used that should
result in an almost unbiased classification accuracy [Wood 07]. In this approach, 10
fold cross validation is performed. A single fold is used for testing while the remaining
9 folds are utilized for feature ranking and model determination. Stratified sampling
is applied for data division into folds. i.e., the samples belonging to the same class
are divided into folds separately and then added to form the final folds. This keeps
approximately the same ratio of the classes in the training and testing subsets with
respect the entire sample set. The aforementioned feature ranking methodology and
SVM classifier are incorporated. This step is repeated 10 times so that all the folds
are used for testing. The classification performance in each step is calculated. The
correctly identified subjects as well as the misclassified subjects in each class from all
the steps are concatenated to evaluate the overall accuracy.

6.4 Results

The ability of the classification system to differentiate between healthy subjects and
glaucoma (POAG and NTG) patients is investigated. Moreover, the most signif-
icant DTI-parameters in distinguishing the normal class from different entities of
glaucoma are identified. This is performed by the application of the system twice,
once to the normal group against the POAG group and once to the normal group
against the NTG group. The discrimination between different glaucoma types is ex-
amined by considering the POAG and the NTG groups. For the four aforementioned
system applications, the distribution of the most significant features that lead to
the best classification with respect to their DTI-measures is recorded in Table 6.2.
Graphical representations of these distributions are shown in Figures 6.4(a)-6.7(a),
the system performance is evaluated by the area under the ROC curve, classification
accuracy (ACC), and Sensitivity/Specificity values as indicated in Table 6.4. The
ROC curves are plotted in Figures 6.4(b)-6.7(b). The unbiased accuracy and Sen-
sitivity/Specificity pairs are presented in Table 6.5. The results section is divided
into four main subsections corresponding to the group pairs under investigation. An
additional subsection is added for the inter-operator reliability analysis.
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Table 6.3: Assessment of the inter-operator reliability of the optic radiation manual
configuration
Group Subjects Overlap(%) Modified Hausdorff(mm)

Mean SD Mean SD
All subjects 20 92.94 6.61 0.80 0.95

6.4.1 Inter-operator reliability analysis of the ROI identifica-

tion

The overlap and the MHD between the manipulated optic radiations from both op-
erators were calculated for the twenty randomly selected subjects. The mean and
the standard deviation of the overlap and the MHD among all sample subjects are
computed and used as reliability measures. Table 6.3 summarizes the results of the
reliability assessment. The mean overlap was 92.94% and the corresponding standard
deviation was 6.61%. A mean MHD of 0.80 mm in comparison to an interslice reso-
lution of 1.8 × 1.8 mm2 indicates an average subvoxel agreement between operators.

6.4.2 Healthy vs. glaucoma

Thirty nine POAG patients were added to 18 NTG patients to form the glaucoma
group that contained 57 subjects. The number of features that led to the highest
classification accuracy of 94.05% and an AUC of 0.97 was 33 features. At a specificity
of 96.30%, the sensitivity was 92.98%. The features categories are demonstrated
in Figure 6.4b. Features extracted from MD and AD accounted for 51% of the
classification features. The unbiased accuracy was approximately 9.5% lower than
that of the single set of features at 84.52%. The sensitivity was 94.74% corresponding
to 54 glaucoma patients being accurately recognized while the specificity was 62.96%
corresponding to 17 subjects correctly associated with the normal class.

6.4.3 Healthy vs. primary open angle glaucoma

The ranked features according to the discrimination ability of healthy subjects from
POAG patients that were selected as features for the classifier amounted to 53 fea-
tures. As in the previous case, MD and AD represented the highest two contributions
in the feature set with 25 features (47%) as indicated in Figure 6.5b. The accuracy
of identifying the subjects’ corresponding class was 92.42% with 36 glaucoma and 25
control subjects correctly classified and 5 subjects being wrongly classified (2 controls
and 3 POAG patients). The AUC was 0.96 with a sample sensitivity/specificity of
92.31%/92.59%. The selection bias was estimated to be 10.6% and the classification
error was increased to 18.18% instead of 7.58% in the biased case. Misclassifica-
tion cases were 7 controls and 5 POAG patients resulting in modified a sensitiv-
ity/specificity of 87.18%/74.07%.
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(a)

(b)

Figure 6.4: The distribution of classification features based on the DTI-derived mea-
sures for the healthy vs. glaucoma groups (a) and the ROC curve of the classification
with an area under the curve of 0.97 (b)
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(a)

(b)

Figure 6.5: The distribution of classification features based on the DTI-derived mea-
sures for the healthy vs. primary open angle glaucoma groups (a) and the ROC curve
of the classification with an area under the curve of 0.96 (b)
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Table 6.4: Classification performance for the different group pairs evaluated by
area under the receiver operating characteristic curve (AUC), classification accuracy
(ACC), and sample Sensitivity/Specificity
Groups #Features AUC ACC(%) Sensitivity/Specificity
Normal vs. G 33 0.968 94.05 92.98/96.30
Normal vs. POAG 53 0.962 92.42 92.31/92.59
Normal vs. NTG 28 1 100 100/100
NTG vs. POAG 52 0.996 98.25 100/94.44

Table 6.5: Unbiased classification performance for the different group pairs evaluated
by classification accuracy (ACC), and Sensitivity/Specificity
Groups ACC(%) Sensitivity/Specificity
Normal vs. G 84.52 94.74/62.96
Normal vs. POAG 81.82 87.18/74.07
Normal vs. NTG 80 77.78/81.48
NTG vs. POAG 80.70 92.31/61.11

6.4.4 Healthy vs. normal tension glaucoma

The number of features selected as an input to the classifier was 28. However, MD
and AD amounted only to 18% of the features while PHI and THETA constituted
50% of the feature set. The achieved accuracy was 100% with all the subjects correctly
categorized. This corresponded to a unit step ROC curve (Figure 6.6a) with an unity
area and a maximum sensitivity/specificity of 100%/100%. The classification rate
based on the unbiased analysis was 80%. This represented a 20% reduction from
the aforementioned accuracy. Almost the same reduction ratio was observed in the
sensitivity and specificity at 77.78% and 81.48%, respectively.

6.4.5 Primary open angle glaucoma vs. normal tension glau-

coma

The final group pair tested the ability of the system to distinguish between subclasses
of glaucoma (POAG and NTG). In this case the PDD related measures (THETA and
PHI) had only 7 (14%) features among the 52 features that gave the best perfor-
mance. The AD and FA based features were 29% and 23% of the set, respectively.
From the ROC curve in Figure 6.7a, a 100% sensitivity can be observed at a 94.44%
specificity while the AUC was 0.996. All POAG subjects were accurately recognized
and only one NTG patient was misclassified as POAG subjects resulting in a 98.25%
recognition rate. The difference between the two analyses was 17.5% and the adjusted
recognition rate was 80.7%. Thirty six POAG patients and 11 NTG patients were
correctly associated to their respective groups resulting in a sensitivity of 92.31% and
a specificity of 61.11%.
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(a)

(b)

Figure 6.6: The distribution of classification features based on the DTI-derived mea-
sures for the healthy vs. normal tension glaucoma groups (a) and the ROC curve of
the classification with an area under the curve of 1.0 (b)
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(a)

(b)

Figure 6.7: The distribution of classification features based on the DTI-derived mea-
sures for the Primary open angle glaucoma vs. normal tension glaucoma groups (a)
and the ROC curve of the classification with an area under the curve of 0.996 (b)
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6.5 Discussion

A novel direction in glaucoma classification using visual pathway analysis is proposed
in this work. The system utilizes DTI to segment the optic radiation as a part of the
human visual system and to extract features based on various aspects describing the
state of its fiber bundle. The system is applied to four group pairs containing normal
and different types of glaucoma. In addition, it identifies the DTI-parameters that
have the most significant contribution in obtaining high classification rates for each
group pair. Using this new approach, the system achieves very high classification
rates for all the groups under consideration.

The automated segmentation algorithm followed by a minor manual post process-
ing minimizes the user interaction and increases the reliability of the ROI selection.
The finally processed ROI should represent the core coherent fiber bundle of the
optic radiation ensuring the correct correspondence among all subjects and the DTI-
problems. As can be seen from the reliability analysis of the ROI configuration, a
mean subvoxel agreement measured by the MHD is obtained among two different op-
erators in addition to a mean overlap of approximately 93%. The robust automated
segmentation which requires no operator interaction, the developed manipulation
GUI, and the devised configuration procedure contribute to this high inter-operator
reliability. This is a very critical step to ensure that the extracted features are not
operator dependant.

In addition to the three diffusivity parameters (MD, AD, and RD) and the
anisotropy measure FA, the two angles of the spherical coordinate system describe
the orientation of the fibers are used for feature extraction. These measures can be
medically interpreted as they describe fiber aspects. Thus, these six DTI-parameters
were included in the performed analysis.

The selection of the first order histogram features is motivated by the sensitivity of
the DTI-parameters to Glaucoma [Gara 09, Enge 12a, Enge 12b]. Significant changes
in the mean of FA, MD, and RD were demonstrated in glaucoma patients compared
to healthy controls. Thus, the histogram statistics were previously examined as fea-
tures by the author providing competitive glaucoma classification rates [El R 11c] and
so they are included in this system as well. The performed voxel based morphome-
try analysis using DTI in Chapter 5 and the preliminarily results indicated localized
fiber abnormalities due to glaucoma in the optic radiation for the DTI-derived mea-
sures. This suggests a possible texture difference along the optic radiation bundle
and, therefore, second and higher order texture features are utilized. A ranking al-
gorithm was applied to the features to identify the most discriminating features for
each glaucoma type.

The relatively small number of samples with respect to the number of features
in this study is a common challenge for classification that limits the evaluation of
the presented system [Saey 07, Wood 07]. The optimal solution to such a problem
is to have sufficient number of subjects to perform feature selection and classifier
training on a separate subset that adequately represents the classes. The rest of the
data should then be utilized to test the ranked features and to obtain the unbiased
recognition rates. However, this is not feasible in many classification cases where the
determination of the best performing features and the accuracy need to be computed.



90 Chapter 6. Glaucoma Classification Using Visual Pathway Analysis

This study faces the same challenge. In order to mitigate this problem, we have
utilized two types of analysis. The first method targets mainly the selection of the
optimal classification features and their distribution. The features are ordered using
cross validation on the whole dataset. Then, a second cross validation on the entire
data is used to evaluate the classification based on the selected features. The main
drawback of this analysis is that the selection is based on the complete data which
might give overrated recognition accuracy. However, it is expected that these rates
should relate to the unbiased accuracies. The purpose of the second approach is to
provide unbiased evaluation of the classification. This is accomplished by performing
the testing on data that are not used for feature ranking and model construction as
described in Subsection 6.3.4. Despite providing an unbiased accuracy, this method
can not be used for determining a single set of features or the parameters’ distribution.
This is due to the possibility of having different feature sets in each step. Therefore,
both methods are presented in this work to identify the generalized discriminative
feature distributions and to estimate accurately the classification rates.

The separation of control subjects from the different entities of glaucoma or in
general glaucoma subjects is accomplished with high recognition rates and limited
number of features. However, a certain degree of bias is anticipated in the rates. The
normal-NTG classes can be identified with 100% accuracy using only 28 features while
for normal-POAG the accuracy is 92.4%. The system produces 94.1% recognition
accuracy for the normal-glaucoma (POAG+NTG) groups with 33 features. Moreover,
the two considered types of glaucoma can be distinguished from each other with 98.3%
accuracy. This emphasizes the significance of the visual pathway analysis and the
sensitivity of the used DTI-parameters. The set of parameters for a group pair is
not necessarily the best for the others. For example, AD and MD represent almost
the source of half of the features used in normal-glaucoma and normal-POAG pairs.
However, AD and FA features comprises 52% of the features used for POAG-NTG
groups. So, the contribution of the DTI-parameters in the feature set is different
depending on the groups being classified. Eighty four subjects are included in this
analysis. The NTG is the smallest group containing 18 subjects while POAG is the
largest group with 39 patients. More subjects are needed to precisely determine the
distribution of the most discriminating DTI-indices. Nevertheless, the sensitivity of
the parameters to glaucoma and their effectiveness in glaucoma classification can be
observed from the system performance.

The selection bias for the healthy vs. glaucoma and POAG groups was calcu-
lated to be around of 10% leading to classification accuracies of 84.52% and 81.82%,
respectively. The bias was increased in the NTG vs. POAG and NTG vs. control
groups to 17.5% and 20%, respectively. The bias increase in the pairs involving the
NTG group could be attributed to the relatively small number of samples in this
group. Thus, removing 10% of the samples for testing and estimating the features
based on the rest could highly affect the generalization of the classifier. This will in
turn degrade the performance.

The existence of many eye imaging modalities that are integrated in the clini-
cal flow for eye examinations and disease detection attracted many researchers to
develop systems utilizing the data provided by these modalities for glaucoma diag-
nosis [Mede 04]. Examples are methods based on fundus images [Naya 09, Bock 10],
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HRT [Burg 07], and OCT [Mede 04]. Despite the efficiency of these systems, there
are still many issues to be addressed and improved. e.g., detecting different types
of glaucoma, prognosis and early diagnosis of glaucoma, improving existing systems
performance, etc. The trend followed in the proposed system is new as it analyzes
the visual pathway in the brain which has not been considered before for glaucoma
classification. The high efficiency of the system is evident from the classification re-
sults from the system application to different diseased groups. Additionally, it uses
a different source of information that could open a new dimension in this field not
specifically for glaucoma but for other visual system diseases.
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Chapter 7

Summary

Many mechanisms and factors are involved in the formation of glaucoma pathology.
The pathophysiology of the different types of the disease is variable. The symp-
toms of glaucoma are scarce and the vision loss develops gradually. These cause
patients’ unawareness of the disease until a remarkable change of vision is observed.
The neuronal death and the visual impairment associated with the pathology can
not be restored. Therefore, early diagnosis is crucial to reduce the high prevalence of
glaucoma. The retina contains three out of the four visual pathway neurons (photore-
ceptors, amacrine and bipolar cells, retinal ganglion cells). Thus, it was the focus of
many studies that investigated the correlation between glaucoma and structural ab-
normalities such as retinal nerve fiber atrophy, retinal vessels and optic disk changes.
However, the third neuron (RGCs) connects the retina with the brain while the in-
tracerebral part of the fourth neuron (optic radiation) completely resides in the brain.
Furthermore, it has been reported that the glaucomatous degeneration is transneu-
ronal where disorders in various locations in the visual pathway were observed. This
suggests that brain imaging techniques can be utilized to increase the understanding
of the disease and, consequently, provide additional examinations that may result in
improving the diagnosis.

In this dissertation, we aimed to investigate the relevance and the significance of
visual system analyses to glaucoma at the cerebral level. The great possibilities offered
by the non-invasive DTI-modality allowed performing this research. DTI goes beyond
traditional MRI by supplying directional information about the self-diffusion within
fibers and, thus, it is used to capture the organization of the white matter pathways.
Moreover, parameters have been derived from the diffusion tensor to describe different
aspects of the diffusion process. Diffusivity, anisotropy, and coherence measures are
among the classes of DTI-derived indices. Some of these parameters are related to
the neuronal injury attributed to neurodegenerative diseases. The optic radiation is
the main targeted object for processing and analysis using DTI.

An algorithm has been proposed for the automatic segmentation of the optic ra-
diation. This algorithm is an essential element in the introduced systems and the
studies conducted in this work. It uses dissimilarity measure between the tensors and
relies on the coherence property within the fiber bundle of the optic radiation. The
automation eliminates the inconsistencies arising from inter-operator intervention for
identifying the optic radiation. In addition, it allows the processing of large num-
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ber of subjects. The problem of system initialization is addressed by utilizing prior
knowledge about the physiological and anatomical properties of the optic radiation
in order to automatically provide a robust estimation of it. The incorporation of
the Log-Euclidean framework in the statistical level set framework is suitable and
efficient for DTI segmentation because it accounts for the Riemannian nature of the
tensor space and incorporates the whole tensor information in a probabilistic frame-
work. The system is implemented and tested using real DTI-data. The experimental
results indicate that the system shows high efficiency in determining the main fiber
bundle of the optic radiation for normal and glaucoma subjects. Therefore, it is
suitable for usage in glaucoma related examinations.

Recent studies showed that the diffusion tensor parameters correlate with glau-
coma in the visual pathway. Mean diffusivity and FA are used as indicators of
impaired white matter. Decreased FA and increased MD demonstrated fiber de-
generation in the glaucomatous optic radiation and optic nerve. We confirmed these
results and additionally we investigated the diffusion in a direction transverse to the
fiber orientation described by the RD. Neuronal diseases causing demyelination are
suggested to lead to an increase in RD as observed in the obtained results. Fur-
thermore, significant correlation was found between the DTI-parameters in the optic
radiation and the stage of glaucoma indicated by indices derived from retinal exam-
ination. A statistical analysis was performed to cluster the glaucoma patients and
to identify the factors affecting the optic radiation such as age. In this study, we
observed that the age is a decisive factor to ascertain the glaucomatous disorder in
the optic radiation.

A framework is proposed for the localization of the deleterious glaucoma effect on
the optic radiation. The system overcomes the complexities of the DTI and allows
efficient voxel-based morphometric analysis. The framework is based on intersub-
ject shape similarity of the optic radiation bundle. Thus, it can be applied to any
neurological disease that does not influence the shape topology of the fiber bundle
under examination. It is independent from the diffusion tensor changes in the visual
pathway. The preliminary analysis of the system application provided maps of local-
ized fiber abnormalities in the optic radiation associated with glaucoma. These maps
showed the significant regional differences with respect to different DTI-measures.

Visual pathway analysis using DTI is recently introduced to glaucoma by analyz-
ing the white matter fibers of the visual system. The proposed system is the first to
classify the disease using optic radiation analysis. In contrast to the common diag-
nostic systems based on eye imaging modalities, the proposed visual pathway based
system presents a novel classification perspective. The system achieved high recogni-
tion rates not only for discriminating healthy subjects from different types of patients
but also for differentiating entities of the disease. Moreover, it is competitive to many
of the state of the art retina-based detection algorithms in terms of the recognition
rates. In agreement with previous studies, this analysis emphasizes the sensitivity of
the DTI-derived parameters to glaucoma. Moreover, it identified the most significant
DTI-measures for the considered forms of the pathology.

In conclusion, the proposed algorithms, systems, and studies can lead to the
advance of the glaucoma research and therapy. The suggested novel techniques to
process DTI-data assist in the understanding of neuro-ophthalmologic diseases. The
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results from the presented medical studies add more evidence to the extension of the
glaucoma insult to the visual pathway. Thus, they emphasize the importance and
potential of this direction. DTI is a valuable tool for the identification of white matter
fibers as well as the characterization and localization of pathologic abnormalities.
This suggests that integrating DTI-based visual pathway analysis to the glaucoma
examination flow can give more insight into the disease and in turn enhance the
diagnosis and treatment.
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Chapter 8

Outlook

The analysis of the visual pathway conducted in this work has the optic radiation
as its main focus. The optic radiation has a complex fiber structure that follows a
complicated course. In addition, the limited spatial resolution of the DTI modality
and the limitations of the diffusion tensor in modeling complex fiber situations such
as crossing and branching of fibers contribute to inaccuracies in identifying the optic
radiation. These inaccuracies lead to difficulties in distinguishing the optic radia-
tion from other intersecting bundles and to the inability to resolve the branching
segments to the visual cortex. Moreover, it results in mismeasurements of the de-
gree of anisotropy and diffusivities at locations with IVOH. Therefore, the analysis is
confined to the main coherent fiber bundle of the optic radiation. However, the seg-
mentation of the optic radiation connections to the visual cortex should be examined.
This requires the development of a robust tractography algorithm in order to capture
the highly variable branches of the optic radiation while taking into consideration the
complex fiber situations (e.g. crossing, branching, etc. . . ) and the uncertainties in
the diffusion tensor data.

The developed voxel based morphometry framework was applied to a limited
number of subjects. A large population study where different glaucoma entities and
factors can be examined and differentiated should be considered. This will increase
the reliability of the voxelwise statistical analysis and the confidence in the localiza-
tion maps. Such studies are expected to resolve the discriminating factors for each
glaucoma entity and to aid in explaining the pathology mechanism. Following the
introduced shape similarity concept, volumetric shape modeling of the optic radiation
can be incorporated to perform three-dimensional analysis.

Glaucoma is a complicated systemic disease. Therefore, analyses covering the
entire visual system can contribute in enhancing the screening and diagnosis of glau-
coma. This can be achieved, considering the advances in neuroimaging and retina
imaging, by complementing the data from various parts of the visual system. For
example, the non-myelinated axons comprising the RNFL using OCT, vessel trees
from fundus imaging, optic disc topography described by HRT, and myelinated ax-
ons along the visual pathway from the optic nerve to the optic radiation and visual
cortex by DTI. Gathering this information together can provide a comprehensive
characterization of the visual system. Thus, it can facilitate the understanding of the
pathophysiology of glaucoma. New treatment approaches may be developed which
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target the neuroprotection of the visual pathway. This may prevent the spread of the
disease. The effectiveness of these therapies may be evaluated in longitudinal studies
using the proposed morphometry framework. The utilization of the framework in
treatment follow up within a group of patients will demonstrate not only the global
effect but also the regional changes in the white matter architecture.

The parts of the visual pathway not considered in this thesis, such as the optic
nerve and the optic chiasm, require higher spatial resolutions in order to accurately
depict their structure. Algorithms to reconstruct the whole visual pathway should be
able to resolve voxels with directional heterogeneity. The drawbacks of the diffusion
tensor model discussed in Section 3.4 constrain the validity of the parcellation at
such locations. This may lead to disconnection of tracts due to the inability to deter-
mine the correct fiber orientation. Models capable of discriminating intravoxel fiber
populations having different orientations exist in the literature (Section 3.4). Due
to their long scanning duration, these models are currently utilized mainly for re-
search purposes. This is due to the fact that significantly large numbers of measuring
gradients need to be applied to adequately sample the diffusion process. The range
of 32-64 gradients directions is typical for calculating these models. Nevertheless,
algorithms based on them can track the fibers in a more plausible manner through
IVOH. Moreover, they provide the information that describes diverging or crossing
fibers. Their incorporation in the presented analyses is anticipated to produce more
precise construction of the visual system structures. Consequently, this will enable
performing global analysis of the entire visual pathway.
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