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Abstract—This paper presents methods for collecting and 
analyzing biomechanical and physiological data from several 
body sensors during recreational runs in order to classify an 
athlete's perceived fatigue state. Heart rate, heart rate 
variability, running speed, stride frequency and biomechanical 
data were recorded continuously from 431 runners during a 
free one-hour outdoor run. During the activity the sportsmen 
answered questions about their perceived fatigue state in 5 min 
intervals. The data were analyzed using specifically designed 
features computed for each of the 5 min intervals. The features 
were used to train different classifiers, which were able to 
distinguish two levels of the runner's fatigue state with an 
accuracy of 88.3 % across multiple study participants. 

Feature selection evidenced that a heart rate variability feature 
and two biomechanical features were best suited for 
classification of the perceived fatigue level. Therefore, the 
classification system needs the information from various 
sensors on the human body. The resulting classifier was 
implemented on an embedded microcontroller to show that it 
would be feasible to integrate it directly into a body sensor 
network. Such a wearable classification system for fatigue can 
be used to support sportsmen, for example by changing their 
training plan or by adapting their equipment to the specific 
needs of a fatigued athlete. 
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I.  INTRODUCTION 
Smart sensors embedded in clothes and equipment for 

sports enable novel opportunities to support and guide 
athletes. A prominent example is the adidas_1 running shoe, 
which is the first shoe that features a wearable embedded 
system (Fig. 1). This shoe is built to adapt to various running 
conditions like the prevailing surface situation or the runner's 
speed and fatigue state by changing the cushioning of the 
sole using a motor driven cable system. However, a precise 
classification of the mentioned conditions is mandatory for 
this adaptation. To facilitate the classification, the heel 
compression signal of the runner is continually measured and 
processed by the embedded microcontroller of the adidas_1. 
A description of the adidas_1, its functionality and 
embedded system hardware can be found below and in more 
detail in [1]. 

In this paper, we consider the task of classifying the 
fatigue state of a runner. A fatigue classification system 
would enable automatic changes to the training plan or even 
allow an adaptation of the training gear to the current fatigue 
level of the runner. Athletes could directly benefit from such 
a system, as it could lead to a lower level of fatigue after the 
training session, reduce the risk of overtraining and prevent 
injuries during the training [2]. In the particular case of 
running with the adidas_1, the shoe can be adapted 
according to the prevailing fatigue state, for example by 
stabilizing exhausted muscles by providing more stiffness. 
However, this is just one example. Similar actions could be 
taken in other endurance sports, where it is equally important 
to actively support an athlete by adapting the equipment to 
the amount of fatigue. 

To realize an automated fatigue classifier, physiological 
as well as biomechanical information from the athlete must 
be considered. Hence the final implementation will most 
probably consist of multiple body worn sensors, which form 
a body sensor network to collect the required data. This data 
would then be transferred wirelessly to a central processing 
node (e.g. a wristwatch or a mobile phone), which runs a 
fatigue classification algorithm. 

In order to build such an embedded classification system, 
multiple steps are required. The first step is to determine the 
necessary physiological and biomechanical parameters to 
describe the current fatigue state of the runner. The next step 
is to acquire a large enough data set, which contains the 
selected parameters together with ground truth information 
about the current fatigue state of the runner. From this data 
set features are extracted, which are possible indicators for 
the fatigue of the subject. These features are then used to 
train a fatigue classifier. Finally feature selection must be 
performed to extract the most relevant features for fatigue 
classification and to reduce the number of needed sensors 
and to reduce the computational effort for the final body 
sensor network. 

Many features of physiological and other signals have 
been proposed as indicators of fatigue by sports researchers 
and psycho-physiologists, but these are normally 
individually evaluated and their use for classification 
purposes is rarely tested [3]. Furthermore, no application that 
is known to the authors has been proposed to conduct online, 
embedded classification. 



In this paper, we show how we apply pattern recognition 
techniques to identify a feature set to appraise the perceived 
fatigue level of sportsmen during a free one-hour-outdoor 
run. During data collection different wearable sensor systems 
were used to obtain physiological as well as biomechanical 
data from the subjects. This included the heart rate (HR) and 
heart rate variability (HRV), as well as the compression of 
the heel of the adidas_1. The HR signal was chosen because 
previous studies have shown that the heart rate and 
especially heart rate variability is important for assessing 
psychological stress [3] and physiological fatigue [4]. The 
heel compression was chosen because also in this case, 
previous studies have shown that the measured signal can 
provide information about the fatigue state [5]. Additionally 
ground truth information about the perceived fatigue state of 
the runners was collected. This was done by inquiring the 
subjects periodically about their perceived fatigue level 
during the physical activity, which was accomplished using a 
specially programmed mobile phone. Self-rating the fatigue 
state is a widely used method to get information about 
fatigue [6]. The collected data was then used to compute 
several features from the signals and to train a fatigue 
classifier. Feature selection was performed to extract the 
most relevant features and build an embedded version of the 
classifier, which could be used in a future implementation of 
a body sensor network based fatigue classifier. 

In summary, the purpose of this paper was to show that 
using information from various body sensors, it is possible to 
classify the perceived fatigue state of an athlete on an 
embedded system. This can be used to build a body sensor 
network based fatigue classifier, which can in turn support 
sportsmen, for example by changing their training plan or by 
adapting their equipment to the specific needs of a fatigued 
athlete. 

 

 
Figure 1.  The adidas_1 shoe (w. cushioning element, magnet, motor unit). 

II. METHODS 

A. Data Collection 
A total of 431 runners participated in the one-hour 

outdoor running study. The subjects were not specifically 
chosen according to running experience, age or gender; 
instead, the group contained both low and high activity 
runners and represented an average runner population. 

The measurement system consisted of 3 separate sensors. 
Firstly, we used a Polar RS800 Running Computer [7], 
which included an S3 stride sensor and a chest strap. This 
system is capable of measuring running speed, stride 
frequency, barometric height, heart rate (HR) and the time 
between two consecutive heart beats (RR-interval). RR-
intervals were measured with a resolution of 1 ms, the 
sampling interval for the remaining four signals was set to 5 
seconds. 

Secondly, we continuously measured the heel 
compression signal of the runners using the adidas_1 running 
shoe [1]. Fig. 1 shows the measurement principle. A hall 
sensor mounted at the top of the cushioning element detects 
the magnetic field strength induced by a small magnet. The 
sensor was sampled with a rate fs of 342 Hz. The sensor-
magnet distance dm was computed from the field strength 
with an accuracy of 0.1 mm. 

Lastly, we used a Nokia 6110 Navigator cell phone with 
a custom-built Java software. It played sound files with 
predefined fatigue questions and recorded the related 
answers. Additionally it recorded the GPS position of the 
athlete from an inbuilt GPS receiver. The phone was placed 
in a belt that was attached to the upper arm of the 
participants. The runners also wore a Bluetooth headset that 
was wirelessly connected to the phone to capture their 
answers. 

At the beginning of the experiments, the participants 
were standing and a short pre-recorded instruction message 
was played to them. Once this was completed, they were 
asked about their fatigue state for the first time and then they 
were asked to start running. After that, the perceived fatigue 
state was asked every 5 minutes. The athletes were instructed 
to answer each question about their subjective fatigue level 
with a self-rated grade as given in Tab. I. An example run is 
visualized in Fig. 2 using the Google Earth (Google Inc., 
Mountain View, CA, USA) software. This representation 
allowed us to assess specific events in the free outdoor runs 
by means of an intuitive visualization. 

From the ratings in Tab. I, we derived two fatigue classes 
ωk, (k = 1, 2), which were used to label each five minute 
interval near the beginning and near the end of the runs. 
Class ω1 corresponded to low perceived fatigue (self-ratings 
0-4, 51.6% of the labels), ω2 corresponded to high perceived 
fatigue (self-ratings 5, 6, 48.4% of the labels). Each interval 
was labeled according to the recorded fatigue state given at 
the end of the interval. 

 

TABLE I.  ATHLETE SELF RATING TRANSCRIPTION 

Spoken Answer Meaning 
0 Not at all 
1 Very little 
2 Little 
3 Somewhat 
4 Rather 
5 Very 
6 Extremely 

 



  

 
Figure 2.  Visualization of an example run in Portland, OR, USA. Running 

speed is displayed as the height of the band along the running track. The 
fatigue levels from Tab. I are color coded: Green and yellow (light gray in 
b/w) means little or no perceived fatigue; orange (medium gray) represents 

the medium and red (dark gray) the extreme perceived fatigue classes. 

B. Feature Extraction 
For each step, we extracted 19 biomechanical features 

denoted by F1 … F19 from the heel compression signal. 
Fig. 3 shows F1 … F10. Features F11 … F19 all represent 
the standard deviation (SD) of different attributes (see e.g. 
[5]). In order to get the interval features, we computed mean 
(M) and standard deviation (SD) over all steps contained in 
the respective interval, resulting in 2*19 = 38 biomechanical 
features denoted by F1M … F19M and F1SD … F19SD. 

Three additional features were calculated directly from 
the heart rate signal. The first feature was the gradient of the 
HR signal. It was calculated from fitting a polynomial of 
degree one to the HR signal, with the gradient being the 
coefficient of this polynomial. The second feature was the 
standard deviation of the first feature. The third feature was 
the offset of the HR signal. It was defined as the difference 
between the mean HR while standing and listening to the 
initial instructions and the mean HR in the analysis window. 

Additionally, the RR-intervals were used to compute nine 
heart rate variability (HRV) features using two different 
methods: the Poincaré plot [8] (PP, four features) and the 
Lomb-Scargle periodogram [9] (LSP, five features). The four 
PP features are described in [5]. The five LSP features were 
computed from the mean energy in the five frequency bands 
0 Hz - 0.1 Hz, 0.2 Hz - 0.3 Hz, 0.6 Hz - 0.7 Hz, 0.7 Hz -
 0.8 Hz and 0.8 Hz - 0.9 Hz. These bands were selected 
according to a preliminary analysis [10]. 

C. Classification 
Two different classifiers were compared for their 

classification rates. These were Support Vector Machine [11] 
(SVM, linear kernel) and Linear Discriminant Analysis [12] 
(LDA). They were selected as both of them have been shown 
to be successfully applicable in other studies [13, 14]. 

For both classifiers a leave-one-runner-out cross-
validation (LORO CV [15]) was performed. For LORO CV, 
all except the feature vectors from one runner were used for 
classifier training. The remaining feature vectors from the 
left out runner were then used for testing. This was done for 
every runner. The classification accuracy was calculated as 
the mean of the single classification rates. 

D. Feature Selection 
For a possible embedded implementation of the body 

sensor data classification system, only limited processing 
power is available. Therefore a feature selection was 
performed to find the best performing feature vector in order 
to reduce the number of features. A forward feature selection 
strategy was used for this purpose, with the LORO CV 
classification accuracy as optimization criterion. Both 
classifiers were tested for performance and the best 
performing one was selected. 

Without restriction of generality, the system was 
optimized for three features. However, different target 
numbers of features could be selected depending on the 
employed microcontroller.  

E. Microcontroller Implementation 
According to feature selection, the best three-feature 

vector and classifier was implemented on microcontroller 
hardware (ATmega 32, 8-bit RISC-based, 32KB flash 
memory, 2KB SRAM, 16 MHz clock speed: Atmel Corp., 
San Jose, CA, USA). The ability of this implementation to 
compute online classification results, which could be used 
for a body sensor network data classification, was tested. 

 

 
Figure 3.  The biomechanical features F1 … F10 that originate from the 

heel compression signal during running. 



III. RESULTS 
Regarding data collection, 177 of the 431 study 

participants had to be excluded from further processing for 
various reasons. More specifically, two runners had 
incomplete audio data due to malfunctioning of the 
Bluetooth headset, and 17 other participants had incomplete 
data from the Polar RS800 system. The remaining runners 
had to be excluded because of unusable data from the 
adidas_1 shoe. In 69 cases, data collection was erroneous 
due to short interruptions in the battery connection and 
therefore data loss. In another 89 cases, the runners were 
mid- or forefoot strikers. The measurement system of the 
adidas_1 is located at the heel of the shoe and can therefore 
only record data for rearfoot strikers which account for more 
than 80% of the population [16]. 

Classification without feature selection for the different 
feature groups resulted in the classification rates given in 
Tab. II. 

TABLE II.  CLASSIFICATION RATES WITHOUT FEATURE SELECTION 

Feature Type SVM LDA 
F1M,SD … F19M,SD 88.2% 87.3% 
HR + PP 68.5% 68.0% 
LSP 61.7% 62.4% 
All features 89.8% 88.3% 

 
Classification with feature selection resulted in the 

selection of the features F2M, F4M and the LSP feature 
describing the energy contained in the band from 0.8 Hz -
 0.9 Hz. The LDA classifier was selected as the best 
performing one. The classification rate for this combination 
of features and classifier was 88.3%. 

We compared the classification results of the 
microcontroller implementation with those of our desktop 
PC implementation. The results were identical. 

IV. DISCUSSION 
The evaluation of the collected data revealed that despite 

our efforts during collection, a high number of datasets was 
unusable. We made sure that batteries were always fully 
loaded and applied a salt-water solution to the HR measuring 
chest strap to ensure collecting usable data. However, most 
unusable datasets originated from the forefoot runners in our 
participant population. We did not want to ask runners 
specifically whether they are fore- or midfoot strikers before 
the run to prevent a change in running style. Following this 
procedure, we had to cope with data loss for these runners. 
However, no additional bias was introduced thereby. 
Nevertheless, the negligence of forefoot runners is a 
disadvantage of our current measurement system and 
additional sensors in the forefoot have to be incorporated in 
future studies. 

The LDA and SVM classification experiments with all 
features showed that both classifiers yielded similar results, 
with the SVM being slightly better. The shoe features alone 
resulted in the best performance, followed by the HR + PP 
features and the LSP features with lowest classification rates.  

Using all features, classification rates of up to almost 
90% were reached. This showed that the classification of the 
fatigue level of a runner is possible with adequate accuracy. 

In the feature selection experiments the three feature 
vectors usually contained at least two shoe features 
combined with either one LSP feature or one PP feature. 
Overall, the LSP features outperformed the PP features 
during feature selection. Good classification results without 
either LSP or PP features were not achievable. This indicated 
that for a final implementation, a body sensor network that 
delivers physiological as well as biomechanical data is 
needed. 

It is also notable that the best three-feature combination 
resulted in classification rates comparable to those using all 
features. This was beneficial for the implementation of the 
online classification system on a microcontroller, which 
could not compute a high number of features. 

The microcontroller implementation was successful, 
showing that such a system can be implemented in future 
body sensor networks using embedded systems for the 
classification of fatigue in endurance sports. Such systems 
will allow to guide and assist a multitude of athletes. 

V. CONCLUSION 
This research demonstrated the application of pattern 

classification methods to detecting perceived running fatigue 
using data from several body sensors. The finally 
implemented system used biomechanical as well as 
physiological features for classification. We showed that this 
system is capable of recognizing the fatigue state of a runner 
with high accuracy on an embedded system. This suggests 
that an automatic system can precisely support an athlete, for 
example by providing more shoe stiffness by the adidas_1 
running shoe when a sportsman gets fatigued. 

Further work will be conducted to incorporate 
additionally collected speed, stride frequency and altitude 
information. Moreover, we will also collect new information 
from different body sensors. Possibilities are biosignals such 
as body temperature or movement signals from inertial 
measurement sensors like accelerometers or gyroscopes. We 
also have to incorporate sensors to allow for the 
measurement of biomechanical parameters from forefoot 
runners. Additional features can be derived from these 
sensors and used to further enhance the fatigue classification 
ability of a body sensor network specifically designed for 
this purpose. 
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