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Abstract

Lymph nodes have high clinical relevance because they are often affected by cancer,
and also play an important role in all kinds of infections and inflammations in general.
Lymph nodes are commonly examined using computed tomography (CT).

Manually counting and measuring lymph nodes in CT volumes images is not only
cumbersome but also introduces the problem of inter-observer variability and even intra-
observer variability. Automatic detection is however challenging as lymph nodes are hard
to see due to low contrast, irregular shape, and clutter. In this work, a top-down approach
for lymph node detection in 3-D CT volume images is proposed. The focus is put on lymph
nodes that lie in the region of the mediastinum.

CT volumes that show the mediastinum are typically scans of the thorax or even the
whole thoracic and abdominal region. Therefore, the first step of the method proposed in
this work is to determine the visible portion of the body from a CT volume. This allows
pruning the search space for mediastinal lymph nodes and also other structures of interest.
Furthermore, it can tell whether the mediastinum is actually visible. The visible body
region of an unknown test volume is determined by 1-D registration along the longitudinal
axis with a number of reference volumes whose body regions are known. A similarity
measure for axial CT slices is proposed that has its origin in scene classification. An axial
slice is described by a spatial pyramid of histograms of visual words, which are code words
of a quantized feature space. The similarity of two slices is measured by comparing their
histograms. As features, descriptors of the Speeded Up Robust Features are used. This
work proposes an extension of the SURF descriptors to an arbitrary number of dimensions
(N -SURF). Here, we make use of 2-SURF and 3-SURF descriptors.

The mediastinal body region contains a number of structures that can be confused with
lymph nodes. One of them is the esophagus. Its attenuation coefficient is usually similar,
and at the same time it is often surrounded by lymph nodes. Therefore, knowing the outline
of the esophagus both helps to reduce false alarms in lymph node detection, and to put
focus on the neighborhood. In the second part of this work, a fully automatic method for
segmenting the esophagus in 3-D CT images is proposed. Esophagus segmentation is a
challenging problem due to limited contrast to surrounding structures and a versatile shape
and appearance. Here, a multi step method is proposed: First, a detector that is trained to
learn a discriminative model of the appearance is combined with an explicit model of the
distribution of respiratory and esophageal air. In the next step, prior shape knowledge is
incorporated using a Markov chain model and used to approximate the esophagus shape.
Finally, the surface of this approximation is non-rigidly deformed to better fit the boundary
of the organ.

The third part of this work is a method for automatic detection and segmentation of
mediastinal lymph nodes. Having low contrast to neighboring structures, it is vital to
incorporate as much anatomical knowledge as possible to achieve good detection rates.
Here, a prior of the spatial distribution is proposed to model this knowledge. Different
variants of this prior are compared to each other. This is combined with a discriminative
model that detects lymph nodes from their appearance. It first generates a set of possible
lymph node center positions. Two model variants are compared. Given a detected center
point, either the bounding box of the lymph node is directly detected, or a lymph node
is segmented. A feature set is introduced that is extracted from this segmentation, and a
classifier is trained on this feature set and used to reject false detections.





Kurzfassung

Lymphknoten sind von hoher klinischer Relevanz. Zum einen sind sie häufig von Krebs
betroffen, und zum anderen spielen sie eine wichtige Rolle bei Infektionen und Entzündun-
gen. Zur Untersuchung von Lymphknoten ist die Computertomographie (CT) die bildge-
bende Modalität der Wahl.

Lymphknoten in CT Aufnahmen von Hand zu zählen und zu vermessen ist allerdings
nicht nur mühsam, sondern die Ergebnisse variieren auch stark von Beobachter zu Be-
obachter, und sogar auch innerhalb eines Beobachters. Eine Automatische Detektion ist
wegen leichter Verwechselbarkeit mit benachbarten Strukturen allerdings schwierig. In
dieser Arbeit wird ein Top-Down Verfahren zur Automatischen Lymphknotendetektion
vorgestellt, wobei der Fokus auf der Region des Mediastinums liegt.

CT Aufnahmen, die das Mediastinum zeigen, sind meist Aufnahmen der Brust oder
des gesamten Rumpfes. Der erste Schritt des vorgestellten Verfahrens schätzt deshalb die
sichtbare Körperregion eines CT Bildes. Dies erlaubt es, den Suchraum einzuschränken,
und auch festzustellen, ob das Mediastinum im aktuellen Bild überhaupt sichtbar ist. Die
Körperregion, die in einem unbekannten Volumenbild sichtbar ist, wird durch 1D Regis-
trierung entlang der Längsachse mit Volumenbildern, deren Körperregionen bekannt sind,
ermittelt. Ein Ähnlichkeitsmaß für axiale CT Schnittbilder wird vorgestellt, das ursprüng-
lich aus dem Bereich der Szenenklassifikation kommt. Ein Schnittbild wird durch eine
räumliche Pyramide von Histogrammen visueller Wörter beschrieben. Dies sind die Co-
dewörter eines quantisierten Merkmalsraumes. Die Ähnlichkeit zweier Schnittbilder wird
durch den Vergleich ihrer Histogramme gemessen. Als Merkmale werden die Deskripto-
ren der Speeded Up Robust Features (SURF) verwendet. In dieser Arbeit werden diese
auf eine beliebige Anzahl von Dimensionen erweitert (N -SURF). Verwendet werden hier
2-SURF und 3-SURF Deskriptoren.

Einige Strukturen der Region des Mediastinums können leicht mit Lymphknoten ver-
wechselt werden. Darunter fällt auch der Ösophagus (Speiseröhre). Sein Abschwächungs-
koeffizient ähnelt dem von Lymphknoten, und gleichzeitig ist er oft von Lymphknoten um-
geben. Eine Segmentierung des Ösophagus hilft daher einerseits, falsch positive Lymph-
knotendetektionen zu vermeiden, und kann zum anderen verwendet werden, mehr Auf-
merksamkeit auf die direkte Nachbarschaft zu lenken. Im zweiten Teil dieser Arbeit wird
ein vollautomatisches Verfahren zur Ösophagussegmentierung in 3D CT Bildern vorge-
stellt. Ösophagussegmentierung ist wegen schlechten Kontrastes zu benachbarten Struk-
turen und unterschiedlichen Aussehens ein schwieriges Problem. Das hier vorgestellte
Verfahren besteht aus mehreren Schritten: Zunächst wird ein Detektor trainiert, Ösopha-
gussegmente mit Hilfe eines diskriminativen Modells anhand ihres Aussehens zu erkennen.
Dies wird mit einem expliziten Modell von ösophagealer Luft und Atemluft kombiniert.
Im nächsten Schritt wird durch eine Markovkette modelliertes a priori Formwissen hin-
zugenommen und verwendet, um auf die ungefähre Form zu schließen. Schließlich wird
die approximierte Oberfläche nichtrigide deformiert und besser an die Organgrenzen ange-
passt.

Im dritten Teil dieser Arbeit wird ein Verfahren zur automatischen Detektion und Seg-
mentierung mediastinaler Lymphknoten vorgestellt. Um gute Detektionsergebnisse zu er-
reichen, ist es wegen der leichten Verwechselbarkeit mit anderen Strukturen wichtig, so
viel anatomisches Vorwissen wie möglich zu Hilfe zu nehmen. In dieser Arbeit wird die-
ses Vorwissen mittels einer räumlichen Aufenthaltswahrscheinlichkeit modelliert. Mehrere



Varianten dieser Aufenthaltswahrscheinlichkeit werden miteinander verglichen. Dies wird
mit einem diskriminativen Modell, das Lymphknoten anhand ihres Aussehens erkennt,
kombiniert. Es erzeugt zunächst eine Menge möglicher Lymphknotenmittelpunkte. Zwei
Modellvarianten werden verglichen. Ausgehend vom detektierten Zentrum wird entweder
direkt eine Bounding Box des Lymphknotens detektiert, oder der Lymphknoten wird seg-
mentiert. Ein aus einer solchen Segmentierung extrahierbarer Merkmalssatz wird vorge-
stellt und verwendet, um einen Klassifikator zu trainieren und falsch positive Detektionen
auszusortieren.
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Chapter 1

Introduction

1.1 The lymphatic system
The lymphatic system can be considered as a part of the circulatory system, with the other
part being the cardiovascular system. The cardiovascular system contains blood that pro-
vides tissue with oxygen, nutrition and other vital supplies. Fluid and solved substances
flow through capillary walls into the tissue. However, the capillaries cannot remove all
fluid and waste products from the perfused tissue.

This is the task of the lymphatic system. Lymph vessels that pervade the tissue take
up interstitial fluids, proteins and other substances, and finally carry it back into the car-
diovascular system just before the right atrium. The fluid flowing inside the lymph vessels
is called lymph. On its way back to the heart, it is several times filtered in lymph nodes.
These are small, usually bean-shaped nodes with a diameter that is normally in the range
of a few millimeters up to 2 cm [Warw 58]. In total, a human typically has more than 500
lymph nodes. Figure 1.1 illustrates both the lymphatic system and a lymph node. Lymph
nodes are also a part of the immune system. They contain a variety of immune cells that
detect and filter germs and other foreign particles and can initiate an immune response.

In case of an infection, lymph nodes can swell to a size of several centimeters due to
the production of immune cells, and also because the inflow of immune cells from the
blood exceeds the outflow. Lymph nodes can furthermore be enlarged due to cancer. This
can be secondary cancer that is also called metastatic, meaning that the cancer developed
elsewhere and has spread to the lymph nodes. Or it is lymphoma, a cancer of the lymphatic
system itself.

Therefore, lymph nodes play an important role in diagnosis. They are routinely consid-
ered during all kinds of examinations, in particular those related to cancer. Lymph nodes
are commonly examined using computed tomography (CT) scans.

1.2 German research project Theseus Medico
Theseus Medico1 is a research project that was initiated by the German Federal Ministry
of Economics and Technology in 2007. The aim is to develop a system for semantic search
in medical image databases. A huge amount of image data is acquired in modern hospitals

1http://www.theseus-programm.de/de/920.php (retrieved on 25.06.2011)

1
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Figure 1.1: Left: Schematic illustration of the human lymphatic system. Right: Illustration
of a lymph node. Sources: National Cancer Institute, SEER Training Modules2, Module:
„Lymph nodes“, U.S. National Institutes of Health, and VisualsOnline3. United States
Government works, not copyright protected.

every day from a variety of modalities such as X-ray, CT, magnetic resonance (MR), and
ultrasound. It becomes increasingly difficult for physicians to handle these amounts of data,
and in particular to retrieve the information they are interested in from the databases. For
instance, if a patient has a tumor in a certain region with a certain shape and appearance, a
physician may be interested in patients that had similar lesions in order to find out which
treatments were successful and which were not.

After an image is acquired, it is usually interpreted by the physician, and his findings
are stored as text along with the image in the database. These texts can be searched by a
user. Searching text is a standard problem, and efficient solutions based on index structures
exist for decades. There are, however, limitations in this context:

• The way different physicians, or humans in general, describe the same image can
vary a lot. While one description may be verbose, another one may be short. Or a
physician only focuses on a particular aspect.

• The same concepts are often termed differently. This is obviously the case when
findings are written in different languages. But even in the same language, there are
often synonyms.

• Manual descriptions are in general not very detailed because physicians only have a
limited amount of time to read an image. For instance, if there is a number of liver
lesions visible in a CT image, the physician usually will not include statistics such
as the volume, surface and precise location of the lesions because it simply would be
too tedious.

• There is data that is difficult to describe with words, as for example shape and texture.
Here, a numerical description is often more adequate.

2http://training.seer.cancer.gov (retrieved on 17.01.2012)
3http://visualsonline.cancer.gov/details.cfm?imageid=3237

(retrieved on 17.01.2012)
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These issues limit the use of the search tools for medical images that are available
today. The strategy of the Theseus Medico project is to first develop a formal description
language for medical images to solve the problems arising from synonyms and multiple
languages, and that also includes numerical image features to allow visual search. Second,
a parsing system for medical images is developed that understands what the images show,
recognizes the visible objects and automatically generates formal descriptions.

Figure 1.2 gives an overview of the Theseus Medico system. A user can either pose
a textual query or an image query. A text query is first semantically interpreted and con-
verted into a formal description that is used for searching. If an image is used for a query,
it is analyzed by an image parsing module. Depending on the type of query, it extracts in-
formation about what the image shows, such as the imaging modality, the body region, and
statistics about the visible anatomic structures, or it extracts a set of features that describe
the overall appearance of the image without a semantic interpretation. The database being
searched contains medical images along with the corresponding findings from physicians.
These are offline interpreted by the image parsing and text understanding modules that
also analyze the search queries. The resulting formal descriptions of the images and the
findings are also stored in the database and can be used for searching. For efficiency, the
formal descriptions are stored in an index structure. Further details about the project and
the system architecture can be found in [Zill 09] and [Mlle 07].

A problem is that the scope of the project is very wide. To be able to come up earlier
with a working prototype, a small set of use cases has been defined, and one of them is
lymphoma (see section 1.1).

This use case, and in particular the image parsing module, is the context of this work:
Given an image, the aim is to automatically extract information about the visible lymph
nodes, such as the number, the size, and the anatomical location.

1.3 Contributions

In this work, a top-down approach for lymph node detection and segmentation in CT vol-
ume images is proposed. The focus is put on lymph nodes that lie in the region of the
mediastinum, which is the area between the lungs. It is of particular interest for radiolo-
gists during oncological examinations.

CT volumes that show the mediastinum are typically scans of the thorax or even the
whole thoracic and abdominal region. Therefore, the first step of the method proposed in
this work is to determine the visible portion of the body from a CT volume. This allows
to prune the search space for mediastinal lymph nodes and also other structures of inter-
est. Furthermore, it can tell whether the mediastinum is actually visible. The scientific
contributions of this part of this work are listed below. The insights and results were also
published in [Feul 09b, Feul 11c].

• A novel method was developed that estimates the visible body region from a CT
volume image or a small number of axial image slices.

• A similarity measure for axial CT image slices is proposed that originates from scene
classification.
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Figure 1.2: Overview of the system developed in the Theseus Medico project.
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• This similarity measure makes use of a quantized high dimensional feature space. As
features, the descriptors of the Speeded Up Robust Features (SURF) are used. These
are high dimensional and very descriptive features that are popular in the computer
vision community. However, these features were only described for 2-D images. In
this work, N -SURF descriptors are proposed, which are an extension of SURF to
an arbitrary number of dimensions. For efficient computation, SURF makes use of
integral images, which are also extended to N dimensions.

The mediastinal body region contains a number of structures that can be confused with
lymph nodes. One of them is the esophagus. Its attenuation coefficient is often similar to
lymph nodes, and furthermore it is often surrounded by lymph nodes. Therefore, knowing
the outline of the esophagus both helps to reduce false alarms in lymph node detection, and
to put focus on the neighborhood. In the second part of this work,

• the first fully automatic method for segmenting the esophagus in 3-D CT images is
proposed.

• Prior knowledge about the shape of the esophagus is modeled using a Markov chain
framework. This is combined with a powerful detector based on discriminative learn-
ing.

This second part was previously published in [Feul 09a, Feul 10b, Feul 11a].
The third part of this work addresses the problem of detecting and segmenting medi-

astinal lymph nodes and contains the following contributions to research:

• A method is proposed that combines anatomical knowledge about where lymph can
occur and are likely to occur with a detector that was trained to recognize lymph
nodes from their appearance.

• The anatomical knowledge is modeled using a spatial prior of the lymph node den-
sity. Different variants of this prior are compared against each other.

• A semiautomatic segmentation method for lymph nodes is proposed that requires
a single seed point as input and is a variant of the graph cuts method for image
segmentation. A radial weighting factor of the graph is proposed to resolve the small
cut problem and serve as a prior for blob-like shapes.

• A set of features in introduced that is extracted from segmented lymph nodes and
used to classify them into true and false positives to further improve the detection
performance.

This third part was published in [Feul 10a, Feul 11b].

1.4 Outline
The remainder of this thesis is structured as follows:

In chapter 2, state of the art classification techniques are explained that are used in later
chapters. Understanding their principles helps to understand the rest of this work. The
focus is clearly on boosting techniques. The most popular boosting method, AdaBoost, is
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explained in detail. Next, the probabilistic boosting tree classifier is explained. This is a
decision tree that uses AdaBoost classifiers at its inner nodes.

Chapter 3 explains standard features for image analysis that are used in later chapters.
These are on the one hand two large pools of simple scalar features that are well suited to
be used together with boosting techniques. The first pool contains Haar-like features that
are computed from integrals over axis-aligned boxes. The second pool consists of steerable
features. These are simple point features, evaluated on each point of a sampling pattern.
On the other hand, the SURF descriptor is explained. This is a higher dimensional feature
with a good descriptive power.

Chapter 4 presents the first major contribution of this work, the system for automatic
estimation of the visible body region.

The second major contribution, the system for automatic segmentation of the esophagus
in 3-D CT, is presented in chapter 5.

Chapter 6 contains the third major contribution of this work, the system for automatic
lymph node detection and segmentation.

Chapter 7 gives an outlook, and chapter 8 summarizes this work.



Chapter 2

Boosting techniques for discriminative
learning

2.1 Motivation
Discriminate learning techniques, and in particular boosting techniques, have become very
popular for computer vision applications. This chapter gives an overview of classification
techniques that are used in this thesis. Discriminative learning in general is explained and
related to its counterpart generative learning. The probably approximately correct (PAC)
property that boosting algorithms have by definition is explained together with AdaBoost,
the most popular boosting algorithm. Finally, the probabilistic boosting tree classifier is
described, which is a decision tree consisting of multiple AdaBoost classifiers.

2.2 Discriminative learning
Classification deals with the problem of inferring a discrete class variable y ∈ Y =
{y1 . . . yK} from a feature vector x ∈ X . A classifier that maps a feature vector to a class
variable can be seen as a partitioning of the feature space into disjoint decision regions

X = X1 ∪X2 ∪ . . . ∪XK ; Xi ∩Xj = ∅ ∀i 6= j. (2.1)

The region Xn covers all features that are assigned to class yn.
We are now interested in the optimal decision regions Xi that minimize the expected

cost C. This cost depends on a user-defined cost function C(k, j) that maps a decision for
a class yj if the true class is yk to a scalar cost. Note that k and j may also be the same,
which corresponds to a correct classification. The expected cost of the decision regions is
[Bish 07]

E(C) =
∑
k

∑
j

∫
Xj

C(k, j)p(x, yk)dx. (2.2)

For a given feature vector x, the class yopt that minimizes the expected cost is then

yopt = argmin
yj

∑
k

C(k, j)p(x, yk), (2.3)

7
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which is equal to
yopt = argmin

yj

∑
k

C(k, j)p(yk|x) (2.4)

because p(x, y) = p(y|x)p(x), and p(x) does not depend on yj .
Thus, we can make the optimal decision in terms of the cost function given the pos-

terior probability p(y|x). Estimating the posterior from training data directly is called
discriminative learning.

Instead of directly modelling the posterior p(yk|x), it is also possible to express it as

p(y|x) =
p(x|y)p(y)

p(x)
(2.5)

and to model the likelihood p(x|y) and the priors p(y) and p(x). This is commonly referred
to as generative learning [Bish 07]. For many problems, however, the likelihood p(x|y) and
the prior p(x) is not available or hard to compute. For instance, if we consider the problem
of classifying image patches into the classes “face” and “no face”, the likelihood functions
for both classes will have a very complicated form due to the great diversity of image
patches showing faces and something else than faces.

2.3 Boosting and probably approximately correct learn-
ing

Boosting is a technique for combining a number of binary classifiers, resulting in a classi-
fier that is often much more powerful than any of the original ones. The combined classifier
is commonly referred to as strong classifier, the original ones as weak classifiers.

Boosting can be viewed as a voting technique: Each of the weak classifiers votes for a
class, and all votes are averaged to generate the final result.

By definition, all boosting algorithms are probably approximately correct (PAC) learn-
ing algorithms. PAC is a framework proposed in [Vali 84] for the mathematical analysis
of machine learning. It basically means that given enough independent random training
samples, with arbitrarily high probability, boosting will find an algorithm that has a gener-
alization error that is arbitrarily low, given that the problem is PAC learnable. This in turn
means that such an algorithm exists.

More formally, let us consider a binary classification problem with classes Y = {−1, 1}.
Let further c ∈ C denote a concept that is to be learned. A concept is the subset of all fea-
tures x ∈ X that belong to class 1. It is represented as a function c : X 7→ Y . C is the set
of all allowed concepts and is called a concept class. Let h denote a hypothesis concept,
or classifier, that is the learned decision rule. Just like c, it is represented as a function
h : X 7→ Y . Let D denote a probability distribution over the feature space, and pD(x)
the prior probability of observing feature x. Let further EX(cD) denote a process that,
every time when invoked, generates a labeled sample (x, y) that is randomly drawn from
X according to D.

We now define the error of the classifier h as

error(h) =

∫
x∈Xc 6=h

pD(x)dx, (2.6)
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where
Xc 6=h = {x ∈ X|c(x) 6= h(x)} (2.7)

is the subset of X in which the classifier h is wrong. Note that error(h) equals the proba-
bility that a randomly drawn sample is misclassified.

The PAC property of a learning algorithm can now be defined as follows:

Definition 1. Algorithm L is a strong PAC learning algorithm if for each con-
cept c ∈ C, for each probability distribution D over X , for each ε in the range
0 < ε < 1

2
, for each δ in the range 0 < δ < 1

2
, with inputs ε and δ and access

to EX(cD), L will find with a probability of at least 1− δ a hypothesis concept
h ∈ C with error(h) ≤ ε, given that an algorithm with this property exists for
C.

A more detailed introduction to the topic and an illustrative example can be found in
[Kear 94]. We further define the weak PAC property of an algorithm as follows:

Definition 2. Algorithm L is a weak PAC learning algorithm if it has the same
properties as a PAC learning algorithm but with the difference that ε is only in
the range 1

2
− γ ≤ ε < 1

2
, where γ > 0 is constant or decreases with 1

p(s,n)
. s

in turn is the „size“ of the concept c in some encoding, n is a measure for the
„size“ of a feature such as the dimension, and p is a polynomial in s and n.

In [Scha 90] it was shown that any weak PAC learning algorithm can be transformed
into a strong PAC learning algorithm, and this transformation is called „boosting“. Algo-
rithms that are similar to boosting but do not fulfill the PAC property are commonly called
leveraging algorithms [Krau 04].

Note that many real world problems are not PAC learnable because in practice, different
classes often overlap in feature space. If there are samples with different labels at the same
position in the feature space, and the probability of observing such samples is above zero,
then the classification error obviously cannot become arbitrarily small. An example is the
recognition of single handwritten characters. There are, for instance, people that write
the letters “u” and “n” in exactly the same way. Or classes overlap because of imperfect
features that do not contain enough information. Consider, for instance, the problem of
guessing the gender of a person given the size of the shoes and the weight. While there
is certainly a correlation, there is also overlap that prevents the classification error from
approaching zero, even if an arbitrary number of training examples is available.

The first boosting algorithms were proposed by Schapire and Freund in [Scha 90] and
[Freu 90]. Later, they proposed an improved boosting algorithm called AdaBoost. This
became one of the most popular boosting algorithms.

2.4 AdaBoost
AdaBoost means “adaptive boosting”. In contrast to previous earlier boosting algorithms,
AdaBoost puts special focus on samples that are misclassified. It was proposed in [Freu 95]
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1: Input: Labeled samples (xn, yn), n = 1 . . . N, xn ∈ X, yn ∈ Y = {−1, 1}, number
T of weak classifiers to train.

2: Initialize sample weights wi = 1
N

3: for t = 1 . . . T do
4: Find the weak classifier ht : X 7→ {−1, 1} in the poolH of weak classifiers that

has the minimum weighted classification error εt:

ht ← argmin
h∈H

ε, where ε =
N∑
n=1

wn [yn 6= h(xn)] . (2.8)

5: Set weak classifier weight

αt ←
1

2
ln

1− εt
εt

. (2.9)

6: Update sample weights

wn ←
wn exp (−αtynht(xn))

Z
where Z is chosen such that

N∑
n=1

wn = 1 (2.10)

7: end for
8: Output: The classifier

signH(x), where H(x) =
T∑
t=1

αtht(x) (2.11)

Figure 2.1: The AdaBoost algorithm [Freu 96]. The computational complexity is O(N ·
|H| · T ).
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Figure 2.2: The misclassification and the exponential cost functions.

by Freund and Schapire. An introduction that is shorter than [Freu 95] can be found
in [Freu 99].

The algorithm in shown in Figure 2.1. Its input is the number T of weak classifiers to
train, and a set of labeled training samples

{(xn, yn)|n = 1 . . . N} , (2.12)

where xn is an element of the feature space X , and yn ∈ Y = {−1, 1} is the class label
of xn. Each sample (xn, yn) is associated with a weight wn. In each iteration t, the weak
classifier ht with the lowest weighted classification error is selected from a poolH of weak
classifiers. The classifier ht is weighted with αt that depends on its classification error (2.9).
Then, the weights of the samples are multiplicatively updated: The weights of samples that
are misclassified by ht are increased, while the weights of the correctly classified samples
are decreased. In further iterations, the algorithm will try harder to correctly classify the
samples with a high weight. The final classifier is the majority vote of all weighted weak
classifiers (2.11).

AdaBoost works surprisingly well [Freu 96], and it was also observed that it is not
very prone to overfitting, meaning that for many problems, even for high values of T the
performance on test data still does not decrease.

In [Frie 00], AdaBoost was examined from a statistical point of view. It turns out that
AdaBoost has an exponential cost function, and that it optimizes the expected cost J(H)

J(H) = E (exp(−yH(x))) ≈ 1

N

N∑
n=1

exp(−ynH(xn)) (2.13)

using adaptive Newton updates. This can be proven by showing that Newton optimization
of J(H) results in update rules that are identical to (2.9) and (2.10), and it also results in
the AdaBoost rule for selecting the next weak classifier:
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In each iteration t of AdaBoost, the next weak classifier ht and its weight αt are

(ht, αt) = argmin
α,h∈H

N∑
n=1

exp (−ynHt(xn)) (2.14)

= argmin
α,h∈H

N∑
n=1

exp (−yn(Ht−1(xn) + αh(xn))) (2.15)

= argmin
α,h∈H

N∑
n=1

exp (−ynHt−1(xn)) exp (−ynαh(xn))) , (2.16)

given that AdaBoost optimizes the exponential cost function (2.13). In (2.16), the term
right of the argmin operator can be viewed as a weighted sum over the samples, with a
weight

w(t−1)
n ∝ exp (−ynHt−1(xn)) (2.17)

of sample n in iteration t− 1. The weights of the samples are normalized and defined such
that their sum equals one:

N∑
n=1

w(t−1)
n = 1. (2.18)

Note that the definitions (2.17) and (2.18) correspond directly to the weight update rule
(2.10) of AdaBoost, because

exp (−ynHt(xn)) = exp (−yn(Ht−1(xn) + αtht(xn))) (2.19)
= exp (−ynHt−1(xn)) exp (−ynαtht(xn)) (2.20)

∝ w(t−1)
n exp (−ynαtht(xn)) . (2.21)

With (2.17), (2.16) becomes

(ht, αt) = argmin
α,h∈H

N∑
n=1

w(t−1)
n exp (−ynαh(xn))) . (2.22)

We now approximate the sum in (2.22) with its second order Taylor expansion around
h(x) = 0:

N∑
n=1

w(t−1)
n exp (−ynαh(xn))) ≈

N∑
n=1

w(t−1)
n

[
1− ynαh(xn) +

y2nα
2h2(xi)

2

]
(2.23)

=
N∑
n=1

w(t−1)
n

[
1− ynαh(xn) +

α2

2

]
. (2.24)

From (2.23) to (2.24), we used that y2n = 1 and h2(xi) = 1 because both yn and h(xi) are
in {−1, 1}.

We first find the optimal weak classifier ht for a fixed (but arbitrary) positive value of
α:

ht = argmin
h∈H

N∑
n=1

w(t−1)
n

[
1− ynαh(xn) +

α2

2

]
. (2.25)
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With α > 0, this equals

ht = argmax
h∈H

N∑
n=1

w(t−1)
n ynh(xn). (2.26)

Since there are only two possible values of both yn and h(xn), this can be written as

ht = argmax
h∈H

N∑
n=1

w(t−1)
n [yn = h(xn)]−

N∑
n=1

w(t−1)
n [yn 6= h(xn)], (2.27)

where

[yn = h(xn)] =

{
1 if yn = h(xn)
0 otherwise, (2.28)

and [yn 6= h(xn)] is defined analogously. Equation (2.27) in turn can be expressed as

ht = argmax
h∈H

(
1−

N∑
n=1

w(t−1)
n [yn 6= h(xn)]

)
−

N∑
n=1

w(t−1)
n [yn 6= h(xn)] (2.29)

by using (2.18), and further rewritten as

ht = argmax
h∈H

1− 2
N∑
n=1

w(t−1)
n [yn 6= h(xn)] (2.30)

= argmin
h∈H

N∑
n=1

w(t−1)
n [yn 6= h(xn)]. (2.31)

Note that equation (2.31) equals the weak classifier selection rule (2.8) of the AdaBoost
algorithm shown in 2.1.

Next, we optimize the classifier weight α for a given weak classifier h:

αt = argmin
α

N∑
n=1

w(t−1)
n exp (−ynαh(xn)) . (2.32)

The sum in (2.32) can be rewritten as

N∑
n=1

w(t−1)
n exp (−ynαh(xn)) =

N∑
n=1

w(t−1)
n exp(−α)[yn = h(xn)]

+
N∑
n=1

w(t−1)
n exp(α)[yn 6= h(xn)]. (2.33)

If we define the weighted misclassification error ε as

ε =
N∑
n=1

w(t−1)
n [yn 6= h(xn)], (2.34)
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then (2.33) becomes

N∑
n=1

w(t−1)
n exp (−ynαh(xn)) = e−α(1− ε) + eαε, (2.35)

where again (2.18) was used. Equation (2.35) can be minimized by setting the derivative
with respect to α to zero

d

dα
e−α(1− ε) + eαε = −e−α(1− ε) + eαε (2.36)

:= 0, (2.37)

which leads to

αt =
1

2
ln

1− ε
ε

. (2.38)

Note that (2.38) is precisely the AdaBoost update rule (2.9) for the weak classifier weight.
This proves that AdaBoost optimizes an exponential cost function using Newton updates.

Since the exponential function is convex and the expectation operator E can be approx-
imated by the average (2.13) and due to the fact that a sum of convex functions is again
a convex function, J(H) is convex. This means that Newton updates are a very efficient
method for optimizing J(H). The exponential cost function exp(−yH(x)) can also be
viewed as a convex upper bound of the misclassification cost function [y 6= signH(x)]
(see Figure 2.2).

In [Frie 00], it was further shown that the result of H(x) has a probabilistic interpreta-
tion. The expectation of exp(−yH(x)) for a given x can be written as

E
(
e−yH(x)

∣∣x) = p(y = 1|x)e−H(x) + p(y = −1|x)eH(x). (2.39)

Because the expectation of the exponential cost with respect toH is convex, there is exactly
one local minimum, which is also the global one. Therefore, the derivative of the expected
cost with respect to H

∂E
(
e−yH(x)

∣∣x)
∂H(x)

= −p(y = 1|x)e−H(x) + p(y = −1|x)eH(x) = 0 (2.40)

must be zero for a H that minimizes the cost. After solving for H , we get

H(x) =
1

2
log

p(y = 1|x)

p(y = −1|x)
, (2.41)

and solving for p(y = 1|x) yields

p(y = 1|x) =
eH(x)

e−H(x) + eH(x)
. (2.42)

This shows that AdaBoost can be used to directly estimate the posterior probability p(y =
1|x).
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2.5 Probabilistic boosting tree

AdaBoost combines a set of weak classifiers into a strong classifier. In turn, we can com-
bine multiple strong classifiers into a new one that may be even more powerful.

Viola and Jones [Viol 01] proposed to use a cascade of AdaBoost classifiers for object
detection. The detection threshold of all classifiers except the last one is selected such that
the recall is close to one, at the cost of a high false positive rate like 50%. However, as
both the detection rate and the false positive rate are multiplied at each level of the cascade,
the false positive rate quickly approaches zero, while the detection rate remains close to
one. The negative training examples at each level are selected from the false positives of
the previous stage. The cascade also helps to speed up the detection. In object detection
problems, there is typically a strong bias toward the negative class, and negative samples
can already be rejected in early stages.

This idea was extended in [Tu 05]: There, the cascade is replaced by a binary decision
tree that has an AdaBoost classifier at each node. If a sample is classified as negative at a
node, it is not necessarily rejected but can also be passed down to a child that is specialized
to detect positive samples that were previously classified as negatives. The classifier is
called probabilistic boosting tree (PBT).

2.5.1 Training and testing

A PBT with two levels of strong classifiers is illustrated in Figure 2.3 (top). The inner
nodes of the tree (circles) are AdaBoost classifiers. Each inner node stores its empirical
class distribution. These class distributions are visualized as boxes. All leaf node are
empirical class distributions as well.

The basic principle is that a sample x is classified by a strong classifier that was trained
to learn p(y|x). Then, the sample is passed down either to the right if p(y|x) is close to
one, to the left if p(y|x) is small, or to both child nodes if p(y|x) is close to 1

2
. If the sample

is only passed down to one child, the result from the other child is set to its empiric class
distribution. The final classification score is the average of the scores from the child nodes
weighted by p(y|x). It is claimed in [Tu 05] that this classification score approximates the
posterior p(y|x).

Figure 2.4 summarizes the training algorithm of the PBT. It starts by training an Ada-
Boost classifier on the set of labeled input samples (xn, yn), n = 1 . . . N . This classifier
then divides the set of samples into two overlapping subsets. Samples with a high classi-
fication score p(y = 1|x) are only inserted into the right subset, samples with a low score
are only inserted into the left set. If the score p(y = 1|x) of a sample is close to 1

2
, it

is inserted into both sets. The amount of overlap is controlled by the parameter ∆p. For
∆p = 0, there is no overlap between the sets. For each strong classifier, the empirical class
distribution is estimated from its training samples. This procedure is repeated recursively
for the two child nodes. If the maximum tree depth L is reached, no classifier is trained and
the node only stores the class distribution of the samples. Figure 2.3 (bottom) illustrates
how a set of training samples is split by the nodes and passed down to the children.

The testing algorithm is summarized in Figure 2.5. The classification score FN (x) of
a tree node N is determined by first computing the score p(y|x) of the node’s AdaBoost
classifier. The final classification score is then set to the weighted average of the child
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(not used for root)

p(y|y0 = 1, y1 = −1)

p(y|y0 = −1, y1 = 1) p(y|y0 = 1, y1 = 1)

p(y)

p(y|y0 = −1, y1 = −1)

p(y|x)

p(y|x, y0 = −1) p(y|x, y0 = 1)

p(y|y0 = −1) p(y|y0 = 1)

Figure 2.3: Top: Illustration of a probabilistic boosting tree with two levels. The circles
are AdaBoost classifiers, the squares contain the empirical class distribution. Bottom:
Illustration of how the sample set is separated by the nodes. The first node is trained on all
samples. It splits the set into two subsets that may in general overlap, and the child nodes
are trained on the subsets. Red and blue correspond to the two classes.
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1: Input: Labeled samples (xn, yn), n = 1 . . . N, xn ∈ X, yn ∈ Y = {−1, 1}, number
of layers L, margin parameter ∆p, maximum weak classifier error εmax, maximum
number of weak classifiers T .

2: Define set of uniformly weighted samples S =
{

(xn, yn, wn)
∣∣n = 1 . . . N, wn = 1

N

}
3: Create a node. Empirically estimate the distribution

p(y) ≈
∑
n

wn[yi = y]. (2.43)

4: Store it with the node.
5: if the current tree depth is L then
6: This is a leaf node. Exit.
7: end if
8: This is an inner node. Train an AdaBoost classifier on S to learn p(y|x). Stop if
εt > εmax OR t ≥ T . Store the strong classifier with the node.

9: Initialize two empty sets Sleft, Sright.
10: for every weighted sample (xn, yn, wn) ∈ S do
11: if p(y = 1|xn)− 1

2
> ∆p then

12:
Sright ← Sright ∪ {(xn, yn, wn)} (2.44)

13: else if p(y = −1|xn)− 1
2
> ∆p then

14:
Sleft ← Sleft ∪ {(xn, yn, wn)} (2.45)

15: else
16:

Sright ← Sright ∪ {(xn, yn, p(y = 1|x))} (2.46)
Sleft ← Sleft ∪ {(xn, yn, p(y = −1|x))} (2.47)

17: end if
18: end for
19: Normalize the weights in Sleft

20: Recursively continue with Sleft and step 5
21: Normalize the weights in Sright

22: Recursively continue with Sright and step 5
23: Output: The PBT classifier.

Figure 2.4: Training algorithm of the probabilistic boosting tree [Tu 05].
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scores fleft(x) and fright(x) (see equation (2.55)). Here, the score of the child fleft(x)
is either set to Fleft(x) and computed recursively if p(y = 1|x) < 1

2
+ ∆p, or else the

left subtree is pruned and fleft(x) is set to the empirical class distribution at the left child.
fright(x) is computed likewise. In this work, the parameter ∆p is always set to 0.1.

According to [Tu 05], the PBT classifier can also separate classed with complicated
and interwoven distributions. However, it is also more prone to overfitting compared to a
single AdaBoost classifier, and the probabilistic interpretation of the detection score is only
an heuristic. For instance, the final detection score is bounded by the empirical distributions
in the outer leaf nodes. If p(y = 1) = 80% in the right outer leaf node, the final classifier
score will never be above that value, even if the AdaBoost classifiers are very certain about
a particular sample.

It is worth mentioning that, despite of its name, the probabilistic boosting tree does
work with any sort of strong classification algorithm that outputs a probability estimate.
For instance, the AdaBoost classifiers could be exchanged with support vector machines.

2.5.2 Time complexity
To the best of our knowledge, the computational complexity of the PBT training and testing
algorithm has not been analyzed so far. We will start with analyzing the computational
requirements of the PBT training algorithm shown in Figure 2.4 with respect to the number
of layers L in the tree, the number of training samples N and the sample set growth factor
a from layer l to layer l + 1. a depends on the margin parameter ∆p and the posterior
distribution p(y|x) learned by the AdaBoost classifier. It encodes how many samples are
inserted in both children. For ∆p = 0, no samples are inserted twice and thus a = 1. For
∆p = 1

2
, all samples are inserted into both children, and the number of samples doubles at

each layer. Thus, a = 2 in this case.
In layer l, there are 2l nodes that have to be trained. The expected number of training

samples N(l) for a certain node in layer l is

N(l) =
Nal

2l
. (2.56)

The time complexity for training a single AdaBoost classifier is (see Figure 2.1)

O(N · |H| · T ). (2.57)

Thus, the total time complexity of the PBT training algorithm is in

O

(
L∑
l=0

2l
Nal

2l
|H|T

)
= O

(
N |H|T

L∑
l=0

al

)
. (2.58)

The exponential sum that appears in (2.58) is bounded by∫ L+1

0

al−1dl <
L∑
l=0

al <

∫ L+1

0

aldl (2.59)

because the mid term is the upper sum of the left integral and at the same time the lower
sum of right integral for a > 1, as illustrated in Figure 2.6. By computing the integrals, we
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1: Function FN : x 7→ [0, 1] that computes the classification score at tree node N :
2: Input: Sample x
3: if N is a leaf node then
4: Use empirical distribution at this node as classification score

FN (x)← p(y = 1) (2.48)

5: Exit.
6: end if
7: Estimate p(y|x) using the AdaBoost classifier of the current tree node N
8: Compute fleft(x) and fright(x) as follows:
9: if p(y = 1|x)− 1

2
> ∆p then

10: Recursively descend into right child node:

fleft(x) ← pleft(y = 1) (2.49)
fright(x) ← Fright(x) (2.50)

11: else if p(y = −1|x)− 1
2
> ∆p then

12: Recursively descend into left child node:

fleft(x) ← Fleft(x) (2.51)
fright(x) ← pright(y = 1) (2.52)

13: else
14: Recursively descend into both child nodes:

fleft(x) ← Fleft(x) (2.53)
fright(x) ← Fright(x) (2.54)

15: end if
16: Set classification score to weighted average

FN (x)← p(y = 1|x)fright(x) + p(y = −1|x)fleft(x) (2.55)

17: Output: Classification score FN (x)

Figure 2.5: Testing algorithm of the probabilistic boosting tree [Tu 05].
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Figure 2.6: Illustration of (2.59) for a = 1.2.

see that they are both in the same complexity class

O

(∫ L+1

0

al−1dl

)
= O

(∫ L+1

0

aldl

)
= O(aL). (2.60)

Therefore, the complexity class of the exponential sum is

O

(
L∑
l=0

al

)
= O(aL) (2.61)

and the complexity of the PBT training algorithm is

O
(
N |H|TaL

)
. (2.62)

To analyze the time complexity of the PBT testing algorithm, we again make use of
the sample growth factor a. The complexity class of the AdaBoost testing algorithm is in
O(T ). A sample is examined T times by weak classifiers at the root level of the tree, Ta2

times at the second level, Ta3 times at the third level, and so on. Thus, the complexity
class of the total PBT testing algorithm is in

O

(
L∑
l=0

Tal

)
=

{
O
(
TaL

)
for a > 1

O (TL) for a = 1
(2.63)

where again (2.59) and (2.60) was used to resolve the exponential sum.



2.6. Conclusion 21

2.6 Conclusion
This chapter showed that the AdaBoost algorithm minimizes the expected exponential cost
E (exp(−yH(x))), which is a convex optimization problem and can therefore be solved
very efficiently. It was also shown that the score H(x) of the trained classifier has a proba-
bilistic interpretation because it can be directly converted into an estimate of the posterior
distribution p(y = 1|x). These two facts are reasons for the popularity of AdaBoost.

The probabilistic boosting tree classifier that originated from the idea of using boosted
classifiers in a cascade was explained, and its training and testing time complexity was
analyzed.

The performance of a classifier is however bounded by the quality of the features. The
following chapter discusses state of the art features for image analysis.
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Chapter 3

Features for 2-D and 3-D image analysis

3.1 Motivation
This chapter presents state of the art features for both 2-D and 3-D image analysis prob-
lems. The features explained here are used in later chapters and therefore worth a closer
look.

3.2 Haar-like features
Haar-like features are weighted sums of simple box filters. Each box filter simply computes
the sum of the image values inside the box. Although being simple, they are powerful
because they can be computed very efficiently with the help of an integral image.

Haar-like features were introduced in [Viol 01] and there very successfully used for face
detection. Figure 3.1 illustrates four different types of 2-D Haar features. Each feature is a
scalar. The sum of the image intensities inside the dark boxes is subtracted from the sum of
the image intensities inside the bright boxes. If a feature has an unequal number of black
and white boxes, the boxes are weighted such that the sum of the weights of the white
boxes equals the sum of the weights of the dark boxes. The features are computed inside
a sliding window. The bounds of the window are illustrated by the four boxes. Different
features can be generated by translating the boxes inside the sliding window, by scaling the
boxes, or by changing the number and relative position of the boxes. Thus, easily a feature
pool containing thousands of features can be generated.

3.2.1 Integral images
If it is implemented the straightforward way, computing the sum of pixels inside a box has
a time complexity of O(number of pixels in the box). When the sums over a lot of boxes
have to be computed for the same image, the computation time can be greatly reduced
by using integral images that are also known as as summed-area tables in the computer
graphics community [Crow 84]. The value of the pixel (p1, p2) of the integral image II of
an image I is defined to be the sum

II(p1, p2) =

{ ∑p1
i1=1

∑p2
i2=1 I(i1, i2) if p1 > 0 ∧ p2 > 0

0 otherwise
(3.1)
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Figure 3.1: Four examples of 2-D Haar-like features as used in [Viol 01]. Dark boxes have
a negative and bright boxes a positive weight.

of pixels in I inside the region that is bounded by the origin and (p1, p2). Computing the
integral image has a complexity ofO(number of pixels in the image). Once it is computed,
the integrated intensity of a box bounded by the origin and a point in the image can be
computed by simply looking up the value in the integral image. The integral over an
arbitrary axis-aligned rectangle can be computed using two subtractions and one addition
operation from four values of the integral image. This is illustrated in Figure 3.2. Thus, the
time complexity of computing the integral over a box is constant (in O(1)) and does not
depend on the size of the box.

3.2.2 Extension to 3-D
The concept of Haar features and integral images can be extended to three dimensions as
described in [Tu 06]. Once the integral image has been computed, the integral over an axis
aligned cuboid can be computed from eight values of the integral image. The 3-D Haar
features proposed in [Tu 06] are simply rotated versions of the 2-D Haar features as used
in [Viol 01] along with a new feature that consists of two nested boxes. These features are
shown in Figure 3.3.

3.3 Steerable features
Haar-like features can be computed very efficiently and if the feature pool is large enough,
they can also separate objects with a more complex appearance. However, a severe limita-
tion of Haar-like features is that features that are rotated by an angle other than 90◦ cannot
be efficiently extracted. That means, it is not possible to train a classifier using Haar-like
features on a set of training images with a normalized orientation, and detect rotated objects
in a test image using rotated features. On 2-D images, a possible workaround would be to
simply generate rotated versions of the test image and generate an integral image for each
angle. On 3-D images, this is however computationally intractable because 3-D rotations
have three degrees of freedom in contrast to 2-D rotations that only have a single degree of
freedom, and because 3-D images are typically much larger in size than 2-D images.
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Figure 3.2: The pixel (q1, q2) of the integral image II contains the sum of the image pixels
within the region C, II(q1, p2) = A + C, II(p1, q2) = C + D, and II(p1, p2) = A +
B + C +D. Thus, the sum B = II(p1, p2)− II(p1, q2)− II(q1, p2) + II(q1, q2) over an
arbitrary rectangular axis-aligned region can be computed by accessing the integral image
four times.

Figure 3.3: Illustration of 3-D Haar-like features as used in [Tu 06]. Dark boxes have a
negative and bright boxes a positive weight.
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Figure 3.4: Example of a regular sampling pattern for the extraction of steerable features.

So-called “steerable features” that can be efficiently rotated and also scaled have been
proposed in [Zhen 07]. These are a set of simple point features that are extracted on a
sampling pattern. For each point (x, y, z) of the pattern, the image intensity I(x, y, z), the
partial derivatives ∂I

∂x
, ∂I
∂y

, ∂I
∂z

in all directions, the gradient magnitude ‖∇I‖2, and nonlinear
variations including I2, I3, log I ,

√
‖∇I‖2, ‖∇I‖

2
2, ‖∇I‖

3
2, log ‖∇I‖2 are used. In total,

24 scalar features are extracted for each point.
The sampling pattern cannot only be translated but also scaled and rotated. This makes

steerable features particularly useful for finding an object that has an unknown orientation
and scale.

A regular sampling pattern is a suitable choice for many applications and has been
widely used in the literature [Iona 10, Vita 09, Wels 09, Seif 09], but it is also possible
to use non-regular patterns that are specific to the problem. For instance, [Zhen 07] also
proposed a sampling pattern that has the shape of the outline of the object being sought in
order to get a high response when the sampling pattern matches the object.

Figure 3.4 illustrates how a regular sampling pattern is deformed to cover the object of
interest, which is a section of the esophagus in this case.

3.4 Speeded-up robust features (SURF)

The “Speeded Up Robust Features” (SURF) [Bay 06, Bay 08] are popular in the computer
vision community because they have good discriminative power, are robust and can be
made invariant to rotation. They are similar to the older SIFT features [Lowe 99] which
have been successfully used for various applications, for instance, scene classification
tasks [Laze 06, Fei 05, Lowe 99], but can be computed faster.

To compute a standard SURF descriptor at a certain location p = (p1, p2) in a 2-D
image I(p), a regular sampling pattern of size 20 × 20 is placed on the image so that the
center of the pattern is located at p. For each point r of the pattern, the gradient ∇I(r)
of the image is approximated with the responses (c1, c2) of two Haar filters, which are
weighted with a 2-D Gaussian centered at p. Both the Haar filters and the sampling pattern
are shown in Figure 3.5. The sample spacing of the pattern is 1s, and the size of the Haar
filters is 2s, where s is the scale of the descriptor. The response of a Haar filter is efficiently
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Figure 3.5: (a) The Haar filters for the 2-D case. (b) Sampling pattern for 2-SURF-4 (2-D
with four bins b per dimension). The scale s of the descriptor equals the sample spacing
and is half the size of the Haar filter.

computed with an integral image as described in section 3.2. The sampling pattern has 16
bins, each one containing 5× 5 sample points. For each bin, a feature vector v

v =

(
25∑
i=1

c
(i)
1 ,

25∑
i=1

c
(i)
2 ,

25∑
i=1

|c(i)1 |,
25∑
i=1

|c(i)2 |

)
(3.2)

containing the summed and the summed absolute filter responses of the 25 samples of
the bin is computed. The summation index i is the number of a sample inside a bin of
the pattern. The feature vectors of all 16 bins are concatenated into a 64 dimensional
descriptor.

3.5 Computational complexity of SURF
As the image gradient approximations can be computed in constant time with the help of
an integral image, the time needed to compute a SURF descriptor linearly grows with the
total number of sample points in the pattern. Note that is does not depend on the scale s of
the descriptor.

3.6 Conclusion
This chapter presented three different feature sets that are popular for image analysis prob-
lems. While SURF have a very good descriptive power, Haar-like and steerable features
have the advantage that single (scalar) components can be computed independently from
each other. This makes them particularly suitable for boosting methods, where few features
are selected from a large pool.
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Chapter 4

Estimating the visible body region of 3-D
CT scans

This work presented in this chapter was first published in [Feul 09b] and later in [Feul 11c]
in an extended version.

4.1 Motivation
This chapter addresses the problem of determining which portion of the body is shown by
a stack of axial CT image slices. For example, given a small stack of slices containing
the heart region, one may want to automatically determine where in the human body it
belongs.

Such a technique can be used in various applications such as attaching text labels to
images of a database. A user may then search the database for volumes showing the heart.
The DICOM protocol already specifies a flag “Body part examined”, but this is imprecise
as it only distinguishes 25 body parts. Moreover, the flag can often be wrong as reported
by Gueld et al [Guel 02]. Or alternatively, our method may be used to reduce traffic load
on medical image databases. Often physicians are only interested in a small portion of a
large volume stored in the database. If it is known which parts of the body the large image
shows, the image slices of interest showing e. g. the heart can be approximately determined
and transferred to the user. Another possible application that is especially important for this
work is the pruning of the search space of subsequent image analysis algorithms, like organ
detectors.

The problem of estimating the body portion of a volume image is closely related to
inter-subject image registration as it can be solved by registering the volume to an anatom-
ical atlas. This is typically solved in two ways: By detection of anatomical landmarks in
the volume image, or by intensity based non-rigid image registration. Landmark based
registration may also be used as an initialization for non-rigid registration. However, a set
of landmarks is required that covers all regions of the body and can be robustly detected.
Intensity based registration tends to be slow, and because it is prone to getting stuck in local
optima, it requires a good initialization. In many cases one is only interested in registration
along the longitudinal (z) axis and a complete 3-D registration is not necessary.

Dicken et al. [Dick 08] proposed a method for recognition of body parts covered by
CT volumes. An axial slice is described by a Hounsfield histogram with bins adapted to

29
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Figure 4.1: The proposed system for body portion estimation. The axial slices of a CT
volume are first processed separately. sample positions are generated on a regular grid.
For each sample position inside the patient, a SURF descriptor is computed from the local
neighborhood called “patch”. The descriptors are classified into visual words and accu-
mulated in a histogram. The stack of histograms from the axial slices is registered with
prototype histogram stacks to find the body portion.
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the attenuation coefficient of certain organs. Derived values such as the spatial variance
within the slice of voxels of a certain bin are also included into the descriptor. The stack
of the ND-dimensional axial slice descriptors is interpreted as a set of ND 1-D functions
whose domain is the (vertical) z level. Then five handcrafted rules are used to decide
which of eight different body parts are visible. However, the results are imprecise because
no quantitative estimation of the covered body region is performed. Furthermore, Dicken
et al. report problems with short scan ranges.

In scene classification, it has recently become popular to measure the similarity of two
images by extracting a „bag of features“ from both images. Grauman and Darrell [Grau 05]
proposed a distance measure for feature bags that builds a pyramid of histograms of fea-
tures. They then compare the two histogram pyramids. Lazebnik [Laze 06] adapted this
distance measure by first classifying the feature vectors into visual words. The vocabulary
is generated in advance by clustering feature vectors that have been extracted from a set of
training images. Thus, a visual word corresponds to a class of image patches that have a
similar descriptor and similar appearance. For example, a visual word may correspond to
blobs, curved edges, or homogeneous regions. Then a spatial pyramid of histograms of the
visual words is generated and used in comparing two images.

In [Feul 09b], we introduced the use of histograms of visual words to register stacks of
CT image slices. Only the z axis of the volume is considered as it is sufficient for many
applications and it leads to a small search space that even allows exhaustive search. The
body region of a test volume is estimated by 1-D registration along the longitudinal axis
to a set of prototype volumes with known body regions. In order to quantify body regions,
patient-specific 1-D “body coordinates” (BC) are introduced. The origin is defined to be
at the level of a landmark in the pelvis, and the unit length is set to the distance between a
landmark at the clavicle and the pelvis landmark.

In [Feul 11c], we proposed an extension of [Feul 09b]. We introduced an extension of
the SURF descriptor to higher dimensions. We also presented two methods for making
such a descriptor rotation invariant.

Figure 4.1 shows an overview of the proposed system. For an incoming volume, first
the skin of the patient is detected. Independent of this, the axial slices of the volume are
regularly divided into small quadratic or cubic patches that also cover neighboring slices.
In the next step, a feature vector is extracted from each patch, which is used to classify
the patch into a visual word belonging to a predefined vocabulary. The feature vector is
a combination of a 2-D or 3-D SURF descriptor and a histogram of the image values.
Only patches inside the patient’s skin are considered so as to avoid getting confused by
the environment, e.g. the table the patient lies on, or the air surrounding the patient. A
spatial pyramid of histograms is then generated from the visual words detected in a slice
of the volume. This pyramid serves as a descriptor of the slice and it is computed for all
slices of the volume. Thus, the result is a stack of histograms. A set of training volumes
with known annotations of the pelvis and clavicle landmarks are processed in the same
way, resulting in a set of prototype histogram stacks. The vocabulary of visual words is
generated in advance by clustering the feature vectors extracted from the training volumes.
In the end, the body portion of the input volume is determined by 1-D registration of its
histogram stack with respect to the prototype stacks with known body regions. Generally
a single prototype would be enough, but using more than one leads to more robust results.
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Figure 4.2: Illustration of an image region with upper bounds p and lower bounds q. The
regions on which image I and its integral image II are defined for two dimensions (N = 2)
are also shown. Both p and q are pixel/voxel indices. The origin of the image is (1, 1),
while the origin of the integral image is (0, 0).

The structure of the rest of this chapter is as follows: Sections 4.2 and 4.3 describe the
extension of the SURF descriptor to N dimensions and two approaches to make it rotation
invariant. In section 4.4 the extraction of visual words and the histogram generation are
explained. Section 4.5 is on the registration of the histogram stacks. Section 4.6 describes
experiments and presents results, and section 4.7 concludes the chapter.

4.2 N -SURF

When dealing with 3-D volumetric images, it is desirable to also use a 3-D descriptor.
So far, SURF features have only been defined for two dimensions (see section 3.4). We
propose an N -SURF descriptor, which is an extension of SURF to an arbitrary number N
of dimensions. For N = 2, N -SURF simplifies to standard SURF. The formulation for an
arbitrary N leads to a uniform notation and enables application for N > 3, for instance in
case of 3-D+t temporal volumetric sequences.

N -D Haar filters

First, the concept of Haar filters and rectangle filters is generalized to N dimensions. As
Haar filters are combinations of rectangle filters, anN -D Haar filter becomes a combination
of N -D (hyper)-cuboid filters. When applying a hyper-cuboid-filter, we need to compute
the integral C over an axis-aligned (hyper)-cuboid which is described by its upper bounds
p = (p1 . . . pN) and its lower bounds q = (q1 . . . qN) with pi ≥ qi, i = 1 . . . N . As we
are dealing with discrete images, pi and qi are voxel indices of the i-th dimension. See
Figure 4.2 for an example of a box described by p and q for N = 2. In this case, p is the



4.2. N -SURF 33

upper right corner of the box and q is the lower left corner. When I is an N -dimensional
image, the sum of voxels C inside the hyper-box is

C(p, q) =

p1∑
i1=q1+1

p2∑
i2=q2+1

. . .

pN∑
iN=qN+1

I(i) (4.1)

with i = (i1 . . . iN).
Just like in the 2-D case, the sum can be efficiently computed with the help of an

integral image II

II(p) =

{ ∑p1
i1=1

∑p2
i2=1 . . .

∑pN
iN=1 I(i) if pj > 0 ∀j ∈ {1 . . . N}

0 else
(4.2)

=

{
C(p,0) if pj > 0∀j ∈ {1 . . . N}
0 else. (4.3)

Each voxel p of this integral image contains the sum of voxels of the original image I that
lie inside the axis-aligned (hyper)-cuboid that has the origin and p as two opposite corners.

Theorem 1. Let T (N, d)

T (N, d) =

{
t ∈ {0, 1}N

∣∣∣∣ N∑
i=1

ti = d

}
(4.4)

denote the set of permutations of anN -dimensional vector that contains d ones
and N − d zeros. Let CN(t,p, q) be

CN(t,p, q) = II

 (1− t1)p1 + t1q1
...

(1− tN)pN + tNqN

 , (4.5)

where II denotes the integral image of image I . Then the sum C(p, q) of the
image-values inside a hyper-box with upper bounds p and lower bounds q is

C(p, q) =
N∑
d=0

(−1)d
∑

t∈T (N,d)

CN(t,p, q). (4.6)

This theorem is proven in appendix A.
Since the number of permutations is |T (N, d)| =

(
N
d

)
and

N∑
d=0

(
N

d

)
= 2N , (4.7)

the sum C(p, q) can be computed with a complexity of O(2N). Though the sum grows
exponentially in the number of dimensions, it does not depend on the size of the rect-
angle filter and is, therefore, very efficient for small N . The integral image II can be
precomputed efficiently by first computing the integral images of all (hyper)-slices and
then summing over the outermost dimension.
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N -D descriptor

As in the 2-D case, the image is sampled on a regular grid around an interest point. The
samples are split into b bins per dimension, resulting in bN bins. For each sample, the
gradient is approximated with N Haar filters c1 . . . cN , which are weighted with an N -D
Gaussian centered at the interest point with σ = 10s. If σ is high, then the gradients
computed at different sample points have a similar influence, meaning that there is no
special focus on the center of the sampling pattern. If σ is low, only the gradients extracted
close to the center of the sampling pattern have influence, and the remaining ones are
effectively not used. A value of 10s is a reasonable choice. For each bin, a feature vector v

v =

(
NSB∑
i=1

c
(i)
1 , . . . ,

NSB∑
i=1

c
(i)
N ,

NSB∑
i=1

|c(i)1 |, . . . ,
NSB∑
i=1

|c(i)N |

)
(4.8)

is extracted, and the final descriptor is generated by concatenating the vectors from all bins.
In (4.8), NSB denotes the number of samples in a bin of the pattern. The final descriptor
has a dimension n of

n = 2NbN . (4.9)

4.3 Rotation invariance
To make the descriptor invariant to rotation, standard SURF first assigns a canonical ori-
entation to the interest point where the descriptor is extracted. The sampling pattern is
rotated according to this orientation. For each sample point, the gradient is approximated
using Haar filters. As the Haar filters can only be extracted efficiently in an axis-aligned
orientation, they are computed upright, and the approximated gradient is rotated afterwards
into the coordinate system of the sampling pattern. In the 2-D case, the canonical orien-
tation is determined by generating a 1-D angle-histogram from gradients extracted inside
a circular region around the interest point. This histogram is then filtered with a rectangle
filter (sliding window), and the mode is used as dominant orientation.

This cannot be directly generalized to more than two dimensions, because the mode of
the gradient directions fixes only N − 1 degrees of freedom (DOF), which is not enough
for N > 2. In general, an N -D rotation has (N−1)N

2
DOF.

As a solution to this problem, we propose two methods for obtaining rotation invariance
in three or more dimensions. In both cases, first gradient approximations c(i), i = 1 . . . G
are extracted inside a (hyper-)spherical region with radius r = 6s around the interest point
like in the 2-D case. The orientation is then determined from this set of gradients. G is the
number of sample points with spacing s that fit into the (hyper-)spherical region.

A convenient representation for an N -D rotation is a rotation matrix. An N×N matrix
R is a rotation matrix if and only if det(R) = 1 and it is orthonormal, meaning that all
columns have unit length and are orthogonal to each other.

4.3.1 Variant 1
For the first variant, it is assumed that the gradient vectors c(i), i = 1 . . . G are normally
distributed. The principal component analysis (PCA) is computed on the gradient vec-
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tors. Note that PCA analysis of gradients has similarities with the structure tensor for edge
and corner detection as described in [Kthe 03], as the spatially averaged structure tensor
is similar to the covariance matrix of the gradients if the gradients have zero mean. The
eigenvectors u(i), i = 1 . . . N resulting from the PCA analysis are sorted in descending
eigenvalue order. The columns of the rotation matrix R are generated from the eigenvec-
tors u(i). These are already orthogonal, but an eigenvector can point in either of the two
directions of its principal axis. To standardize this direction, an eigenvector u(i) is mul-
tiplied with −1 if the scalar product of u(i) with the mean gradient c is below zero. The
eigenvectors with canonical direction are denoted as u(i)

a :

u(i)
a =

{
−u(i) if cTu(i) < 0
u(i) else

with c =
1

G

G∑
i=1

c(i). (4.10)

They are normalized to unit length

u
(i)
b =

u
(i)
a∥∥∥u(i)
a

∥∥∥
2

. (4.11)

Now the matrix
R′ =

(
u

(1)
b . . .u

(N)
b

)
(4.12)

is orthonormal, but its determinant det(R′) can be either +1 or −1. As a rotation matrix
must have a determinant of +1, the last column of R′ is multiplied with −1 if necessary.
The result is called R and is the final rotation matrix.

Note that R is always a valid rotation matrix for all possible gradients c(i), i = 1 . . . G
because the covariance matrix is real and symmetric. Thus, there are N orthogonal eigen-
vectors, even if some or all of the eigenvalues are zero.

4.3.2 Variant 2

In variant 1, only the covariance matrix of the gradients is used in determining the axes of
the rotated coordinate system. Since the gradients are converted to zero-mean as part of the
process, the absolute gradient values are not taken into account, although they contain valu-
able information. For instance, if all gradients c(i) happen to be the same, their covariance
matrix is the zero matrix, and the resulting rotation matrix is valid but describes an arbitrary
rotation, although different orientations will in general result in different descriptors.

In the second variant, this is solved by taking the normalized mean c
‖c‖2

of the gradients
into account. It is used as the first axis of the rotated coordinate system and as the first
column of the rotation matrix R. Then, all gradient vectors c(i) are projected onto the
(N − 1)-D (hyper)-plane orthogonal to c. This cannot be continued in the same way for
the remaining dimensions because the projected (N − 1)-D gradient vectors, denoted by
c
(i)
p , always have zero mean. Therefore, they are now treated similarly to variant 1: The

(N − 1)-D PCA of the projected gradient vectors c(i)p is computed, and the principal axes
are taken as the remaining axes of the rotated coordinate system. The eigenvectors are
normalized to unit length. As before, the orientation of the eigenvectors with respect to
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Figure 4.3: Gradient vectors (blue dots) extracted in a spherical image region with assigned
orientation according to variant 2 in red. The single red line is the mean gradient vector.
The gradients are projected onto the plane of the square. The single red line and the square
are axis-aligned to the rotated coordinate system.

their principal axis can be positive or negative and must be standardized. We cannot use
the mean gradient as reference like in variant 1 because it is zero. Instead, we use cr with

cr =
G∑
i=1

c(i)
∥∥c(i)∥∥2

2
. (4.13)

The columns 2 . . . N of the rotation matrix R are formed by the eigenvectors. Again, an
eigenvector is multiplied with −1 if its scalar product with cr is less than zero, except for
the last eigenvector, which is multiplied with −1 if the determinant of the rotation matrix
R was −1 otherwise. Variant 2 is illustrated in Figure 4.3.

4.4 Histograms of visual words

The concept of describing images using a visual vocabulary has been successfully used in
the past in data mining, scene classification and object recognition. The visual vocabulary
consists of visual words, which are primitive patches used to characterize an ensemble of
images. In practical applications, the visual words are learned from the image ensemble
and often include straight lines, corners, uniform patches, holes or certain textures.
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(a) 2-SURF-4 R2 150 (b) 2-SURF-4 U 400

(c) 3-SURF-3 R2 150 (d) 3-SURF-3 U 400

Figure 4.4: Example images shown for selected visual words taken from four different
vocabularies. (a) and (b) show examples from 2-D vocabularies. Each row corresponds
to one visual word. The vocabulary (a) was generated using a 2-D SURF descriptor with
rotation invariance of type 2. (b) shows example images for five visual words with rotation
invariance turned off (“upright”). (c) and (d) show each examples for four different visual
words. Now the image patches are cubes instead of 2-D regions. A cubic image region
is visualized by three axis-aligned cross-sections, displayed in a row. For (c), rotation
invariance of type 2 was turned on. (d) was generated with an upright descriptor. The size
of the vocabulary was 150 in the rotation invariant cases and 400 in the upright cases.
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Bhattacharya et al. [Bhat 05] described retina images using a visual vocabulary. This
description was used to distinguish image classes and to highlight parts of the image that
are characteristic for their class. Duygulu et al. [Duyg 02] labeled image regions with
keywords from a predefined vocabulary of nouns in order to automatically generate an
image description and to recognize objects.

In this chapter, we use visual words to describe an axial CT slice in the form of a spatial
pyramid of histograms of visual words. Two axial CT slices are compared by measuring
the similarity of the two descriptors. This is done using a technique called spatial pyramid
matching. In the remainder of this section, we explain the matching technique and how
this descriptor is obtained from a CT slice.

4.4.1 Spatial pyramid match kernel
The spatial pyramid matching scheme that is used in this work to measure the similarity of
CT slices was derived in [Laze 06] from the pyramid match kernel proposed in [Grau 05].
The pyramid match kernel was proposed as an efficient similarity measure for two feature
sets, or point clouds in general. Let X and Y denote two sets of n-dimensional feature
vectors. The pyramid match kernel places a pyramid of grids (or histograms) over the
feature space, with a grid spacing that doubles from a finer to a coarser level. At each level
of the pyramid, features are said to match if they fall into the same grid cell, and matches at
finer level are weighted higher because feature vectors that are close do on average match
at finer grid levels.

Let l denote the current pyramid level with l ∈ {0 . . . L}. The grid at level l has 2l

bins in each dimension and Dl = 2nl bins in total. Let further H l
X and H l

Y denote the
histograms of the feature vectors in X and Y at level l, respectively, and H l

X(i) and H l
Y (i)

the number of features in X and Y that fall into the ith bin of the histogram at level l. The
number of matching features at level l is then given by the histogram intersection [Swai 91]

I(H l
X , H

l
Y ) =

Dl∑
i=1

min
(
H l
X(i), H l

Y (i)
)
. (4.14)

In the remainder of the section, I(H l
X , H

l
Y ) is abbreviated with I l.

The matches I l at level l do always include the matches at finer levels. The number
of new matches at level l with respect to the finer level l + 1 are given by I l − I l+1 for
l ∈ {0 . . . L − 1}. New matches at level l are weighted with 1

2L−l
, which is inversely

proportional to the grid spacing.
The pyramid match kernel of [Grau 05] is then the weighted sum of new matches

κL(X, Y ) = IL +
L−1∑
l=0

1

2L−l
(I l − I l+1) (4.15)

=
1

2L
I0 +

L∑
l=1

1

2L−l+1
I l. (4.16)

In [Laze 06], it was proposed to first quantize the feature vectors into M classes. Then,
pyramid matching is carried out in the image coordinate space in order to include spatial
neighborhood. It is assumed that only features of a certain class can match. Pyramid
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matching is then carried out M times, once for each class, or channel. Let Xi denote the
set of 2-D vectors of the image coordinates of the features of class i in X , and let Yi be
defined analogously. Then the spatial pyramid match kernel is defined as

KL(X, Y ) =
M∑
i=1

κL(Xi, Yi). (4.17)

By using that κL is a weighted sum of histogram intersections, and due to cmin(a, b) =
min(ca, cb) for c, a, b ≥ 0, (4.17) can be computed as the histogram intersection of two
long histograms that are formed by concatenating weighted M dimensional histograms.

4.4.2 Sampling

In the first step of extracting such a spatial pyramid of quantized features from a slice,
it is densely sampled on a regular grid with a sample spacing of 10mm. An alternative
to a fixed sampling grid is to detect key locations in the image, for example minima and
maxima in scale space as suggested by Lowe [Lowe 99]. However, according to Fei-Fei
and Perona [Fei 05], better results have been reported for a regular dense sampling.

4.4.3 Patient detection

Since we are only interested in the patient and not the surrounding air or other objects like
the table that is usually visible in a CT slice, we first run a simple detector that segments
the patient in a slice. First, a binary mask that has the same dimensions like the slice is
initialized with ones. Then, each row and each column is scanned from outside to inside,
from both directions. A pixel is assumed to be the skin if a certain number ns of successors
and the pixel itself are above a threshold of -600 HU. ns is set to 3mm divided by the voxel
spacing for scans in dorsal direction, and to 10mm divided by the voxel spacing for scans
in other directions. The reason for the difference is that sometimes the chest wall is thinner
than 10mm. Pixels outside the skin are set to zero. The result is a mask that marks each
voxel either as “patient” (1) or “environment”(0). This simple algorithm proved to be fast
and effective for rejecting the air surrounding the patient and also the table s/he lies on.

4.4.4 Feature extraction

For all sample points inside the patient, a feature vector is computed, which consists of
an eight bin histogram of the Hounsfield units and a 2-SURF or a 3-SURF descriptor. In
the 2-D case, the descriptor is computed from the axial slice. In the 3-D case, voxels from
neighboring slices are also considered.

As SURF descriptors were designed to be invariant to illumination changes that often
cause problems in computer vision, they do not make use of absolute intensities. However,
in CT images absolute intensities are reliable. In order to use this information, the N -
SURF descriptor is extended with the Hounsfield histogram, which is scaled to fit the
mean values of the N -SURF descriptor entries. Descriptors are computed at a fixed scale
of s = 1, which corresponds to a descriptor window size of 20× 20 pixel.
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Figure 4.5: Illustration of the spatial pyramid of histograms used to describe an axial CT
slice, here displayed with two levels. At the first level (left), a histogram of quantized
features (visual words) is generated for the whole slice. Here, the vocabulary size is 100.
At level two (right), the image slice is split into four parts, and for each one, a histogram is
generated. The quantized features remain the same, meaning that the sum of the four right
histograms equals the left (red) one.

4.4.5 Visual words

The extracted feature vectors are now quantized and classified into a set of visual words.
The vocabulary is represented by a prototype feature vector for each word, and a nearest
neighbor classifier maps a new feature vector to the nearest prototype. The distance of
two feature vectors is measured using the L2 norm. To generate the vocabulary, a random
subset of feature vectors is extracted from a set of training images. The K-Means algorithm
is used in finding clusters. The cluster centers are chosen as the vocabulary.

Figure 4.4 shows example images from four different vocabularies, generated using a
2-D or 3-D descriptor with rotation invariance turned on or off. In the 2-D case, image
patches from five visual words are displayed for the rotation invariant case (a) and the
upright case (b). Image patches in one row belong to the same visual word. With a rotation
invariant descriptor (a), the orientation of the patches within a word is arbitrary, while in
the upright case (b), patches of a word share a similar orientation. In Figure 4.4 (c,d),
images patches from two 3-D vocabularies are visualized. One 5 × 3 block of images
corresponds to one word. Each row shows an axial, coronal and sagittal cross-section of a
cubic image patch. In (c) the descriptor was made rotation invariant using method 2, and
in (d) an upright descriptor was used. Generally, the number of clusters in features space,
which equals the vocabulary size, needs to be higher in the upright case in order to separate
patches showing different tissue types.
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Figure 4.6: Histograms of visual words along with a coronal section of the volume it was
generated from. Salient are especially the visual words that correspond to the lung region.
The image is best viewed in color.

4.4.6 Histograms of visual words

The visual words (or quantized features) extracted from a slice are now aggregated in
a spatial pyramid of histograms, which serves as a descriptor of the slice. Figure 4.5
illustrates a spatial pyramid with two levels. At the root level, a histogram of quantized
features inside the patient body is computed for the entire slice (level l = 0). At the next
level (l = 1), four histograms are computed for different parts. Note that the features only
need to be computed and quantized once for each sample, independent from the number
of pyramid levels. A slice is finally described by a concatenation of all the histograms.
In the shown example, the vocabulary size, which is the histogram length, is 100, and the
slice descriptor is therefore of dimension 500. The spatial pyramid match kernel weights
deeper pyramid levels higher (4.16). In this work, we however use one level below the root
(L = 1), and as the weights for l = 0 and l = 1 are the same, the weighting is omitted
here. In Figure 4.6, a stack of histograms of visual words is shown together with a coronal
section of the original volume (for only one pyramid level).

4.5 Histogram matching

Consider two 2-D images j and k that are axial slices taken from two 3-D volumes Ij and
Ik at level zj and zk

j(x, y) = Ij(x, y, zj) (4.18)
k(x, y) = Ik(x, y, zk). (4.19)

Two slices j and k are now compared by matching their spatial pyramids of histograms
according to (4.17). If Hj and Hk denote the corresponding concatenated histograms con-
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sisting of 5M bins each (L = 1), the spatial pyramid match kernel can be computed (see
section 4.4.1) as their histogram intersection

I(Hj, Hk) =
5M∑
i=1

min(Hj(i), Hk(i)). (4.20)

For a fixed number of samples per image, I(Hj, Hk) is, up to a normalizing factor, equiv-
alent to using one minus the sum of absolute differences

d(j, k) =
5M∑
i=1

|Hj(i)−Hk(i)| (4.21)

that is used as a distance measure in this work. Other distance measures, such as the L2

norm or the Kullback-Leibler divergence, are conceivable as well, although they do not fit
as well into the spatial pyramid match kernel. We leave their evaluation for future work.

In the following subsection we compare two different methods for registering two slice
stacks J = j1, . . . , jnJ and K = k1, . . . , knK along the z axis, which is discretized with a
4mm resolution.

4.5.1 Rigid matching
The first method is a rigid registration. An objective function f(z) measures the average
distance of the slices given a longitudinal offset z:

f(z) =
1

imax − imin + 1

imax∑
i=imin

d(ki, ji+z). (4.22)

In (4.22), imin, . . . , imax denotes the range of overlapping slices. The objective function is
only evaluated in the z range that results in an overlap of at least 80% between the two
stacks J and K.

Because a single evaluation of the objective function f is computationally inexpensive
and the search space is only one-dimensional, exhaustive optimization is feasible. Fig-
ure 4.7 shows f(z) for two test stacks K1,2 of different size and four reference histogram
stacks J1 . . . 4.

After exhaustive optimization, a set of candidates C = {c1, c2, . . . , c|C|} is generated
from f by finding local optima. The reason is that especially for volumes with a small
number of slices, it occasionally happens that the global optimum is not the right solution.
However, the correct solution is almost ever located in a valley. Thus, we associate a weight
wi with each candidate ci. The weight wi is computed from the objective function at ci and
its second derivatives:

wi = 2

(
2∑
s=0

f(z − ci) ∗ gs(z)

)
− f(ci). (4.23)

Here, ∗ denotes convolution, g0 is a filter kernel to compute the second derivative, and
gs+1(z) = gs(

z
3
) is scaled with a factor of 3 relative to gs.
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Figure 4.7: The objective function f of four different prototype volumes. Left: Test volume
with 114 slices. Right: Test volume with 10 slices from the abdomen. For the large
volume, one clear minimum exists. For the small stack identification of a minimum is
more ambiguous. But still in 3 out of 4 cases, the global optimum is close to the correct
location (at approx. 0.2BC).

In order to achieve robust results, a test volume is registered with several prototype
volumes. As final registration result, the candidate with the best weight is selected. Note
that, though the described method does not explicitly handle scale variations, it implicitly
addresses the issue through the scale variations of the training data. For instance, a test
volume of a tall patient will generally fit better to tall patients in the training set.

4.5.2 Non-rigid matching

For comparison, additionally to the rigid matching, non-rigid matching based on dynamic
time warping (DTW) was used for registering a test volume with a prototype volume.

Now the objective function fd(z0, z1) takes two arguments, which are the longitudinal
coordinates of the lower and the upper slice of the test stack. In each evaluation of fd,
the top and bottom slice remains fixed and only the positions of the intermediate slices
of the test stack are varied. As before, the similarity of two slices j, k is measured using
the distance function d(j, l). The costs of the cheapest match of the intermediate slices is
computed using dynamic time warping and returned by fd. The objective function fd is
evaluated for every pair z0, z1 of upper and lower z-coordinates of the test stack, which are
inside the z-range of the reference patient and satisfy

∣∣∣∣z1 − z0 −∆z

∆z

∣∣∣∣ < 0.15, (4.24)

where ∆z is the height of the test stack, measured in mm. This means that a test stack is
never shrunk or enlarged more than by 15%. In Figure 4.8, the cheapest warp is visualized
in the DTW cost matrix. The columns of the matrix are the slices of the test stack, and the
rows correspond to the slices of the reference stack in the range between z0 and z1.
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Figure 4.8: Example of a cost matrix for dynamic time warping. The horizontal axis
corresponds to the test stack, and the vertical axis to the section of reference stack between
z0 and z1. Black denotes low costs, red high costs. The cheapest warp that registers two
slice stacks is shown in green.

U R1 R2
2-SURF-4 9.0 10.8 11.0
3-SURF-3 102.2 148.5 154.3

(a)

b 2 3 4
3-SURF-b U 53.7 102.2 236.2

(b)

Table 4.1: Computation times in seconds for different variants of the method. Top: Com-
parison between a 2-D and 3-D descriptor computed either upright (U), with rotation in-
variance of type 1 (R1) or type 2 (R2). Comparison of three upright 3-D descriptors with a
different number of sub-bins b per dimension.

Figure 4.9: Illustration of the error measure used. For a single registration, the error was
measured at the top and bottom of the test volume.
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Num. partitions/
size in mm∗ 10/44 5/86 3/140
2-SURF-4 U 300 18.08 ± 25.81 15.18 ± 15.16 15.30 ± 15.06
3-SURF-3 U 400 18.74 ± 29.13 15.59 ± 14.82 15.57 ± 14.88
2-SURF-4 R1 300 20.33 ± 33.95 17.18 ± 19.86 15.38 ± 14.30
2-SURF-4 R2 150 20.13 ± 28.53 17.18 ± 20.11 15.14 ± 15.16
3-SURF-3 R1 150 20.01 ± 28.74 16.70 ± 16.22 15.43 ± 14.56
3-SURF-2 R2 100 21.79 ± 32.79 19.35 ± 23.10 15.12 ± 13.83
3-SURF-3 R2 150 20.86 ± 34.09 17.13 ± 20.65 15.46 ± 15.00
3-SURF-4 R2 200 19.44 ± 25.30 16.29 ± 16.35 14.55 ± 13.73
3-SURF-3 U 200 F 23.38 ± 48.28 18.22 ± 26.00 15.53 ± 14.00
3-SURF-3 U 200 19.69 ± 36.37 17.33 ± 28.14 14.61 ± 13.97
3-SURF-3 U 100 DTW 21.43 ± 30.80 19.25 ± 22.94 18.31 ± 16.41
3-SURF-3 U 100 19.79 ± 25.71 16.55 ± 16.21 15.42 ± 13.91
Hounsfield 48.02 ± 82.39 38.64 ± 69.64 35.54 ± 76.64

Num. partitions/
size in mm∗ 2/206 1/427 average
2-SURF-4 U 300 13.60 ± 9.06 15.46 ± 9.16 15.52 ± 14.85
3-SURF-3 U 400 12.94 ± 8.95 14.68 ± 10.27 15.50 ± 15.61
2-SURF-4 R1 300 13.30 ± 9.45 15.89 ± 10.65 16.42 ± 17.64
2-SURF-4 R2 150 12.80 ± 9.47 15.20 ± 10.29 16.09 ± 16.71
3-SURF-3 R1 150 12.99 ± 9.02 17.09 ± 12.12 16.44 ± 16.13
3-SURF-2 R2 100 13.01 ± 9.48 16.50 ± 10.61 17.15 ± 17.96
3-SURF-3 R2 150 13.58 ± 9.99 16.66 ± 11.49 16.74 ± 18.24
3-SURF-4 R2 200 13.73 ± 9.49 17.12 ± 10.27 16.23 ± 15.03
3-SURF-3 U 200 F 14.80 ± 12.88 15.07 ± 10.37 17.40 ± 22.30
3-SURF-3 U 200 12.91 ± 9.34 15.57 ± 10.93 16.02 ± 19.75
3-SURF-3 U 100 DTW 17.24 ± 10.71 20.12 ± 14.10 19.27 ± 18.99
3-SURF-3 U 100 13.23 ± 8.00 15.94 ± 10.88 16.19 ± 14.94
Hounsfield 28.99 ± 56.73 17.00 ± 10.43 33.64 ± 59.17

Table 4.2: Results of accuracy evaluation. Each row corresponds to a different method.
2-SURF-4 means 2-D SURF with 4 sub-bins b per dimension. U means upright, R1 is the
first approach for rotation invariance, R2 the second one. The final number is the number
of clusters. A trailing F stands for a flat pyramid which has only one level, and DTW
means that dynamic time warping was used for the registration. ∗Size of partition in mm is
an approximate value, averaged over patients.
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Figure 4.10: Example of a registration result. Middle: Sagittal slice through the test sub
volume of which the body region is to be determined. It consists of 10 axial slices with
a slice thickness of 5mm and shows a portion of the abdomen. Left: True position in the
original volume from which the sub volume was cropped. Right: Sagittal slice through a
volume with known body coordinates. The horizontal lines show the estimated body region
covered by the test sub volume.

4.6 Results
Registration accuracy was evaluated using 84 CT volume scans of the thoractic and ab-
dominal region. For all datasets, annotations of landmarks at the clavicle and the pelvis
were available. They served as ground truth for the body coordinate system, marking the
levels zero and one. In between, linear interpolation was used to generate ground truth
values for the body coordinates. All datasets were resampled to an isotropic resolution of
2× 2× 2 mm3 and descriptors were generated for every second axial image slice.

Three fold cross validation was used to separate the datasets in test and prototype vol-
umes. Registration was performed with slice stacks of five different sizes: A test stack was
always partitioned into ten, five, three, two and one pieces, resulting in 10+5+3+2+1 =
21 registrations per fold and test volume.

The error of a single registration was measured at the top and the bottom of the test
volume (see Figure 4.9). The average of the absolute error values

e =
1

2
(|etop|+ |ebottom|) (4.25)

was taken as the final error e. Table 4.2 shows the results of the cross validation. The
columns show the registration accuracy for the five different test volume heights. Each row
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shows results for a different method. The mean error in mm is displayed along with the
standard deviation. Cross-validation was run for 2-D and 3-D descriptors with two, three
and four sub-bins per dimension (see Figure 3.5 (b)), with rotation invariance of type 1,
type 2 or with an upright descriptor, for 50, 100, 150, 200, 300, 400 and 800 clusters. In
rows one to eight, the number of clusters that gave best results is displayed. For example,
a 2-SURF-4 U descriptor worked best with 300 clusters. Results for 50 and 800 clusters
don’t show up in the table because they were never among the best performers.

Comparing the 2-D with the 3-D descriptor, average accuracy was slightly better for 3-
D in the upright case (15.50mm for 3-SURF-4 U vs. 15.52mm for 2-SURF-4 U). While the
2-D descriptor worked better for smaller test stacks of 4.4cm and 8.4cm, the 3-D descriptor
performed better for larger test stacks of 20.6cm and 42.7cm. A possible explanation is
that the 3-D descriptor takes into account the neighboring slices, which makes it more
descriptive but lowers the resolution in z direction. When rotation invariance was turned
on, the 2-D descriptor performed better.

The upright descriptors performed clearly better than the rotation invariant ones (rows
1–2 vs. 3–8). The reason is probably that patients are almost always lying in the same
position on their back and thus the orientation of an image patch contains valuable infor-
mation which is lost when the descriptor is made rotation invariant. But we see that the
upright descriptors require more clusters in the feature space: They performed best with
300–400 clusters (rows 1–2), while the rotation invariant descriptors performed best with
100–300 clusters (rows 3–8). This means that the vocabulary of visual words is longer and
therefore also the concatenated histograms which describe an image slice. Comparing the
two approaches to make a descriptor rotation invariant, the second one (R2) worked better
in the 2-D case, and the first one (R1) was more accurate in 3-D. A possible explanation
is that in 2-D, a rotation has only one degree of freedom, and therefore the mean gradient
used by R2 suffices for determining the angle.

In rows 6–8, the number of bins b per dimension of the SURF sampling pattern is varied
(see Figure 3.5). For b = 2, 3, 4, according to (4.9), the length of the 3-D descriptor is 48,
162 and 384, respectively. The mean error decreased for higher b. While the error was
17.15mm for b = 2, it dropped to 16.74mm for b = 3 and to 16.23mm for b = 4. However,
the time needed to extract a descriptor is in O(bN), which means it is more than twice as
expensive to compute a 3-SURF-4 instead of a 3-SURF-3 descriptor.

The accuracy, depending on whether a spatial pyramid is used for the matching or not,
is shown in rows 9–10. In the flat case, denoted with a trailing F, an image slice is not
split into four subregions. The average mean error dropped from 17.40mm to 16.02mm
when a spatial pyramid was used. While the difference is small and the flat approach is
even slightly better for larger test volumes of 42.7cm height, the spatial pyramid based
approach works considerably better for smaller test volumes of 4.4cm height. Here, the
mean error dropped from 23.28mm to 19.69mm. In the results presented so far, two volume
images were always registered rigidly. Lines 11–12 compare the rigid registration with the
non-rigid version which is based on dynamic time warping, denoted with DTW. In the
experiments, the rigid registration worked better than the non-rigid independent of the test
volume size. The problem with dynamic time warping is that it often generates unnatural
warps in order to match axial slices that happen to have similar descriptors but belong
to different body regions. For instance, only the abdominal region is stretched, and the
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remaining regions are unchanged. However, such nonlinear deformations are rare in nature
and the missing constraint leads to false matches.

For comparison, accuracy was also measured for an approach that simply takes a 1024-
bin histogram of the Hounsfield intensities as a descriptor of an axial slice. The results
are shown in the last row of Table 4.2. The visual word based approach performed clearly
better than the method using an intensity histogram.

Figure 4.10 shows an example of the algorithm’s output. The input is a portion of
the abdomen of 10cm height. To visualize the result, another volume shown at the right
side was annotated with body coordinates. The horizontal lines on the right indicate the
estimated body region. The horizontal lines on the left show the true position in the original
volume.

As the proposed algorithm is deterministic, its computation time was only benchmarked
on a single dataset of 100 slices and using 28 prototype volumes. Results measured on a
standard PC with 2.2GHz CPU are shown in Table 4.1. Displayed is the total time needed
in seconds for different descriptors. The values include 23ms needed for patient detection
and 2.07s for exhaustive optimization, which are both independent of the descriptor. The
2-D descriptors can be computed fast. When using a 2-D upright descriptor, the algorithm
takes 9s in total to estimate the portion of the body. With a rotation invariant descriptor, it
takes 2s longer. The 3-D descriptors are considerably more expensive to compute. Here,
the algorithm takes between 102.2s and 154.3s, depending on whether rotation invariance
is turned on. In Table 4.1 (b), the computation time is shown for 3-D upright descriptors
of different dimensions, which depends on the number b of sub bins per dimension. For
a 48-dimensional descriptor (b = 2), the algorithm takes 53.7s, while for 384 dimensions
(b = 4), it takes more than four times longer (236.2s). Parallelization of the algorithm is
straightforward. We leave this for future work.

4.7 Conclusion
This chapter presents a method for estimating the body region of a CT volume image. It is
based on 1-D registration of histograms of visual words, which serve as a description of a
CT slice.

As part of this work, the SURF descriptor was generalized to N dimensions. It was
used in generating the vocabulary of visual words. Different variants of the descriptor
were compared. Results show that upright descriptors perform better than rotation invariant
ones. 2-D and 3-D upright descriptors perform equally well. As 2-D descriptors are simpler
and can be more efficiently computed, we propose the use of 2-D upright SURF descriptors
for estimating the body region. In such a setup, an estimation with an average error of
15.5mm can be computed in 9s. This error can be considered as a good result. As we are
registering different subjects with each other, we have to deal with considerable anatomical
inter-patient variations that exist in the thoracic and abdominal regions. This limits the
accuracy because finding a level along the longitudinal axis of a patient that corresponds
to a certain level in another patient may become ambiguous.

Besides automatic initialization of further processing steps as presented in the next
chapters, possible applications are also automatic labeling of images for the purpose of
semantic image search. The 3-D descriptors as described here may also be used for point
matching tasks, which is the classical application for SURF and SIFT. 3-D and 4-D SURF
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descriptors may be especially useful for finding point correspondences in 2-D sequential
data, volumetric data, or even sequential 3-D volumetric data.
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Chapter 5

Automatic segmentation of the
esophagus in 3-D CT scans

The work presented in this chapter was published by the author of this thesis first in
[Feul 09a, Feul 10b] and later as an extended version in [Feul 11a].

5.1 Motivation
During oncological examinations of the chest, radiologists are particularly interested in
the region around the trachea and the esophagus [Duwe 05]. These are natural gateways
into the body and therefore often surrounded by lymph nodes, which need to be examined
for all types of cancer. CT scans of the thorax are common practice for diagnosis and
in order to assess whether treatment is effective. While the trachea is clearly visible in
CT, the esophagus is much harder to see and can easily be confused with other structures,
which is one reason that makes the interpretation of the CT images tedious. An automatic
segmentation can serve as a guideline and provide valuable overview to a physician.

A segmentation is also useful for therapy planning. Atrial fibrillation, which is a major
cause of stroke, can be treated with an ablation therapy in the heart. During this interven-
tion, however, there is a small risk of an atrial-esophageal fistula. Then, air from the esoph-
agus can enter the left atrium, which normally leads to the death of the patient [Papp 04].
A preoperative segmentation of the esophagus can be useful for intervention planning.

Automatic esophagus segmentation is a challenging problem. The wall of the esoph-
agus consists of muscle tissue, which has even on contrasted CT scans a low contrast to
vessels, other muscles and lymph nodes. Shape and appearance can vary a lot. It appears
solid if it is empty, but it can also be filled with air, remains of orally given contrast agent,
or both. Even for a human, it is often impossible to accurately delineate the boundaries
given only a single slice. Figure 5.1 shows two examples along with manual ground truth
segmentation.

In [Rous 06], a method is described which combines a spatial prior of the esophagus
centerline with a histogram based appearance model. The centerline is extracted using a
shortest path algorithm. Then, ellipses are fitted into axial slices by optimizing an energy
function that is again histogram based and also has a regularization term for smooth transi-
tions between neighboring slices. The method is semiautomatic and requires two manually
placed points on the centerline and also a segmentation of the left atrium and the aorta as
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Figure 5.1: Two axial slices with and without manual ground truth segmentation displayed
as white contours. In the right example, it is hardly possible to accurately delineate the
boundary given only one slice.

input. In [Kuru 10], another semiautomatic segmentation method is proposed which also
uses a spatial prior of the esophagus centerline. The prior is estimated relative to a set of
axial 2-D contours of vertebrae, the trachea, the left main bronchi, the aorta and the heart
that were segmented manually in seven reference slices. This is combined with a level set
segmentation, which is initialized with the detected centerline. In [Fies 08a], contour lines
that were manually drawn in axial slices are interpolated in the frequency domain without
using the image itself. In [Huan 06], the user draws one contour in an axial slice, and reg-
istration based on optical flow is used to propagate the contour to neighboring slices. The
segmentation error was not evaluated quantitatively.

In the last years, discriminative learning has become increasingly popular for object de-
tection [Viol 01, Tu 05, Zhen 07]. In [Feul 09a, Feul 10b, Feul 11a], we proposed a model-
based approach for esophagus segmentation which consists of multiple sub-steps:

• A region of interest (ROI) containing the esophagus is detected. In order to make
sure that the esophagus is always inside, the ROI has to be made relatively large,
although a larger ROI makes the detection problem harder because of the increased
search space and more clutter that is visible in the ROI.

• Elliptical candidates of the esophagus contour are generated for each axial slice of
the ROI using a cascade of detectors based on discriminative learning techniques.
Ellipse detection is supported by an explicit model of respiratory and esophageal air,
because we noticed that esophageal air holes rather distract the detector, even though
they are a clear hint to a human observer.

• This is combined with prior knowledge of the esophagus shape which is modeled in
two alternative ways, a Markov chain and a new variant of the Condensation algo-
rithm. This allows to efficiently infer the most likely path through the axial slices.

• The path is converted into a surface representation and further refined using a detec-
tor that was trained to find the esophagus boundary.

We evaluated our method on 217 CT scans. Manual segmentations served as ground
truth. Besides evaluating the influence of model parameters, we also investigated the inter
observer variability of manual segmentations.
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Figure 5.2: Overview of the system and the steps involved in ellipse detection.

The chapter is structured as follows: Section 5.2 describes the region of interest detec-
tion, ellipse candidate detection, path inference and surface generation steps of our method.
Section 5.3 presents experiments and results, and section 5.4 concludes the chapter.

5.2 Esophagus segmentation

5.2.1 Region of interest detection

CT scans containing the thoracic esophagus typically show at least the hole thorax and
often also the abdominal region. To simplify and accelerate the actual segmentation, a
region of interest (ROI) is automatically detected. The ROI is an axis aligned cuboidal
region that is rigidly attached to an anatomic landmark. As landmark, the bifurcation of
the trachea is used because it is close to the esophagus and can be detected robustly in CT as
it is unique and rich in contrast. We follow the approach of [Seif 09] to find this landmark.
Instead of directly constructing a single detector, a network of detectors for salient axial
slices and landmarks is used to constrain the results to be anatomically reasonable. This
helps to resolve ambiguities and improves robustness. The size of the ROI and the offset
from the landmark was selected such that the esophagus was always inside in all datasets
that were available for evaluation with a minimum margin in x and y direction that was set
to 3 cm, where the x axis points to the left and the y axis to the back. The resulting cuboid
has a cross section of 13.3× 15.6 cm2. Along the z axis, which points upwards, the size is
set to 26 cm. This ROI is relatively large which assures that the esophagus is not missed,
but which also makes the detection problem harder as the region contains more clutter.
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5.2.2 Ellipse detection
In the first steps of our method, the contour of the esophagus in an axial slice is approxi-
mated using an ellipse with parameters e

e = (t, θ, s)T ∈ R5, (5.1)

where t = (x, y)T is the center, θ is the rotation angle within the slice, and s = (a, b)T are
the lengths of the semi major and semi minor axes (a ≥ b). Using ellipses, we can get a
good approximation of the contour with only five degrees of freedom.

For each axial slice, we want to find a set of ellipse candidates e(i), i = 1 . . . N , which
are hypothesis of the true esophagus contour. Figure 5.2 gives an overview of the ellipse
detection process. Instead of searching the five dimensional search space directly, we use a
technique called marginal space learning which has been proposed in [Zhen 07]. The idea
is to prune large portions of the search space using classifiers that were trained on marginal
spaces, which are translation t only and translation together with orientation (t, θ)T in this
case. The classifiers form a cascade. At each level, candidates with a poor detection score
are rejected, and the remaining ones are propagated to the next level and augmented if the
dimension increases. Translation is detected in steps T1 and T2 by two classifiers that
differ in the examples they are trained with. They also take into account the distribution of
respiratory and esophageal air, which is further explained in section 5.2.2. Finally, the set
of candidates is reduced in a clustering step. As classifiers, we use probabilistic boosting
trees (PBT) as explained in section 2.5

In step T1, we only consider translation and train a classifier to learn the probability

p(m = 1|H(t)) (5.2)

of whether there is an ellipse model instance with center t given a feature vector H(t) that
was extracted at position t. Here,m is the binary class label which is either one for “true” or
zero for “false”, and H are 3-D Haar-like features as described in section 3.2.2. Although
being simple, these features are powerful because they can be computed very efficiently
with the help of an integral image, which allows to search the whole volume exhaustively.
Training requires a set containing positive and a set containing negative examples. The
positive examples come from manual annotations, and the negative examples are generated
by random sampling and rejecting samples too close to the positive samples. A set of
translation candidates CT1 = {t1 . . . tNT1

} is generated from the NT1 positions with best
detection score p(m = 1|H(t)).

In step T2, a second classifier is trained to also learn (5.2). In contrast to step T1, the
negative training examples of this second classifier are not randomly drawn from the image,
but set to the false positives of the first one. The second classifier only considers the setCT1
and generates a new setCT2 containing theNT2 top position candidates, whereNT1 > NT2.
This significantly improves the accuracy because the second one gets specialized on the
difficult cases [Feul 10b].

In the third step, a classifier is trained to learn the probability

p(m = 1|S(t, θ)) (5.3)

of a model instance given a vector S of steerable features (see section 3.3) that depend on
rotation and translation. These are point features like the image intensity, the gradient, and
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nonlinear combinations of them which are evaluated on a regular grid of size 7× 7× 3 that
is placed at position t and rotated according to θ. While these features are more expensive
to compute compared to the Haar-like features, rotation detection is still efficient because
only the setCT2 of position candidates needs to be considered. The result is a set containing
NTR rotation and translation candidates.

A fourth classifier is trained on the full search space to learn

p(m = 1|S(t, θ, s)), (5.4)

again using steerable features, but now the sampling pattern is also scaled according to
s. It generates the final set of ellipse candidates C = {e1 . . . eN}. Also for the last two
classifiers, the negative training examples are generated from the false positives of the
previous one.

Incorporating the distribution of air

In section 5.2.2, the detection only relies on local features. As described in [Feul 10b], this
can lead to ambiguities in the presence of air bubbles in the esophagus. To a human, air
bubbles, which are easy to see in CT, are a clear hint for the esophagus. But we observed
that instead of learning a correlation between air bubbles and the esophagus, the classifier is
rather distracted by esophageal air. The reason is that locally, esophageal air looks similar
to respiratory air, which is a priori much more likely because the lung and the trachea cover
a larger volume. A human, however, easily recognizes and excludes the respiratory organs.

We found that the detection performance can be improved by adding the knowledge
that respiratory air cannot belong to the esophagus, while air elsewhere most likely does.
This is modeled by a binary mask B(t)

B(t) =

{
0 : t belongs to a respiratory organ
1 : otherwise

(5.5)

and a probability map A(t) of the esophagus that is generated from detected air holes.
Respiratory air can be segmented easily in CT because it forms one connected region.
In the first step, voxels with an attenuation coefficient below -625HU are labeled as air.
To also include vessels and airways inside the lung, 2-D connected components in axial,
sagittal and coronal slices with an area below 9 cm2 are labeled as air as well. Now all 3-D
connected components marked as air that touch the left, right, front or back border of the
region of interest are removed. The removed regions are labeled as 0 in B. Elsewhere, B
is set to 1. Regions filled with air that were not removed probably belong to the esophagus.
These regions are marked in a second binary mask E(t)

E(t) =

{
1 : esophageal air at t
0 : otherwise.

(5.6)

A similar method to detect air holes in the esophagus is described in [Fies 08b]. If now
an axial binary slice of E contains exactly one connected region marked as esophageal
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(a) (b) (c) (d)

Figure 5.3: Two examples of CT slices (a,c) along with their combined probability map
C(t) (b,d) generated from the distribution of air inside the volume. Left: The air hole is
a clear hint for the esophagus. Right: No air hole is present, but respiratory air can be
excluded.

air, this is a very strong hint for the esophagus. Then, the corresponding axial slice of the
probability map A is set to

A(t) = g(‖t− p‖2) (5.7)

g(r) = max

e− r2

σ2a − e−
w2

σ2a

1− e−
w2

σ2a

, 0

 , (5.8)

where p denotes the centroid of the region marked as esophageal air within the slice and
g is a Gaussian with standard deviation σa that is deformed to have a maximum of 1 and
limited support in [−w,w]. We selected a value of 7 mm as σa and 10 mm as w, which is
a good compromise between accuracy (low σa and w) and robustness (high σa and w).

We now define a combined probability map C(t) as

C(t) =
B(t) + A(t)

2
(5.9)

and model the probability p(m = 1|C(t)) of observing the esophagus at position t given
the global distribution of air as being proportional to C(t):

p(m = 1|C(t)) ∝ C(t). (5.10)

During the position detection step, we are finally interested in the probability p(m =
1|H(t), C(t)) of observing the esophagus at a certain location t given the Haar-like feature
response H(t) and the information from the global distribution of air C(t). In order to
simplify the notation, we will omit the argument t in the remainder of this section. Using
Bayes’ rule, this can be rewritten as

p(m = 1|H , C) =
p(H , C|m = 1)p(m = 1)

p(H , C)
. (5.11)

Now we assume that the feature vector H is statistically independent from the distribution
of air C, and we further assume that this independence does also hold under the condition
m = 1. This is of course a simplifying assumption. The feature vector H is affected by the
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presence of air, and therefore H and C are to some extent statistically dependent. But this
dependency is not very strong because H is extracted from a local neighborhood, while
C captures the global distribution of air. Locally, respiratory and esophageal air look very
similar, but globally, they can be well distinguished. With this assumption, (5.11) can be
transformed into

p(m = 1|H , C) =
p(H|m = 1)p(C|m = 1)p(m = 1)

p(H)p(C)
(5.12)

=
p(m = 1|H)p(m = 1|C)

p(m = 1)
, (5.13)

which is according to (5.10) proportional to the product p(m = 1|H)C of the classifier
output and the probability mapC. This means we can integrateC into a translation detector
simply by multiplying it with the detection score. This is done for both detectors T1 and
T2. In Figure 5.3, the probability map C is visualized for two axial CT slices.

Regions filled with respiratory air are not considered by the detector. Therefore, we also
do not generate negative training examples from these regions. This makes the learning
problem easier because now air is a priori more likely to be part of the esophagus.

The final detection score of a candidate e of the elliptical esophagus contour is now
modeled as being proportional to the product

p(m = 1|e) ∝ p(m = 1|H(t), C(t))

· p(m = 1|S(t, θ))p(m = 1|S(t, θ, s)) (5.14)

of the translation, the rotation and the scale detection score. Here, we only take into account
the score of the second translation detector T2 in order not to overemphasize translation.
Detector T1 is only used to reject most samples at an early stage.

Clustering

In order to reduce subsequent search effort and to detect modes in the distribution of the
candidates {e(1) . . . e(N)}, they are spatially clustered using an agglomerative hierarchical
average-linkage clustering algorithm until a distance threshold θd is reached. Two clusters
are merged if the mean radius of inter-cluster pairs of points is below θd. The result is a
set of cluster centers {c(1) . . . c(K)}, c(i) ∈ R2 ∀ i ∈ {1 . . . K}, with scores {γ(1) . . . γ(K)},
where the score γ(k) of cluster center k is the sum of detections scores p(m = 1|e) of its
members.

5.2.3 Path inference
First order Markov model

So far, the axial slices of the volume image were treated separately. Shape knowledge is
incorporated into a Markov chain model [Kind 80] of the esophagus and used to infer the
most likely path through the axial slices. A factor graph [Ksch 01] of the Markov model
used here is depicted in Figure 5.4. The variables c1 . . . cT correspond to the axial slices
of the image. Possible states of a variable ct are the ellipses corresponding to the cluster
centers c(k)t , k = 1 . . . Kt of slice t. Note that the slice index t and the 2-D ellipse center
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Figure 5.4: Factor graph of the Markov chain model.

t are different variables. Each state variable ct is conditioned on the observed image slice
vt. The clique potentials (or factors) of the observation cliques are denoted with Φt. They
are set to the scores of the cluster centers:

Φt(c
(k)
t ,vt) = γ

(k)
t . (5.15)

The clique potentials Ψt between adjacent state variables ct, ct+1 represent the prior shape
knowledge. They are set to the transition distribution from one slice to another:

Ψt(ct, ct+1) = p(ct+1|ct). (5.16)

To simplify the transition distribution, it was assumed that the transition of the transla-
tion parameters t is statistically independent from the other parameters s and θ. Likewise,
independence was assumed between the scale parameters s and the remaining parameters
t and θ. As the rotation parameter θ is not well defined for approximately circular ellipses,
the transition of rotation θ also depends on the scale s, but independence was assumed
between translation t and scale s. With these assumptions, the transition distribution can
be factorized and becomes

p(ct+1|ct) =p(tt+1|tt) (5.17)
·p(θt+1|θt, st) (5.18)
·p(st+1|st). (5.19)

The translation transition (5.17) is modeled as a 2-D normal distribution

p(tt+1|tt) = N (∆tt|Σp,mp) (5.20)

with ∆tt = tt+1 − tt, and the transition (5.19) of scale s = (a, b) as a 4-D normal distri-
bution

p(st+1|st) = N
(
(st+1, st)

T |Σs,ms

)
. (5.21)

In (5.20) and (5.21), Σp ∈ R2×2 and Σs ∈ R4×4 are the covariance matrices, and mp ∈
R2 and ms ∈ R4 are the mean vectors of the two normal distributions. We chose to
model p(st+1|st) as a 4-D normal distribution and not as a 2-D normal distribution of the
difference ∆st = st+1 − st, because some constellations of s = (a, b)T such as a� b are
unlikely, which cannot be captured by the 2-D distribution.
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Figure 5.5: Samples of rotation transitions from one axial slice to another of the ellipses
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The variance of the rotation transition is small for an elongated ellipse because the
esophagus is usually smooth and not heavily twisted. However, the variance highly in-
creases for more circular ellipses. The reason is that θ takes arbitrary values for a circle.
This may results in big jumps of θ from slice to slice even though the shape of the esopha-
gus contour hardly changes.

This is handled by modeling (5.18) with different normal distributions for elongated
and more circular ellipses. In total, we use ten 1-D normal distributions of ∆θt = θt+1−θt,
one for a certain interval of circularity, which is measured by the ratio b

a
of the length of

the semi minor and the semi major axis:

p(θt+1|θt, at, bt) ≈ N
(

∆θt

∣∣∣σr ( bt
at

)
,mr

(
bt
at

))
. (5.22)

Here, σr( ba) is the standard deviation and mr(
b
a
) the mean of the normal distribution that

corresponds to the circularity value b
a
. Figure 5.5 shows samples of rotation transitions

along with the circularity. It illustrates that (5.18) can be represented with a Gaussian for a
fixed circularity value.

This is an approximation because a normal distribution has only one mode and unlim-
ited support, but a rotation by 180◦ results into the same ellipse. It is, however, enough
to only consider the range of ∆θ between −90◦ and 90◦, where the approximation works
well.

The parameters of all normal distributions were estimated from manually annotated
data. The annotations are contours of the esophagus drawn in each axial slice. For each
slice, an ellipse is fitted into the contour points. We use the method described in [Fitz 99]
to non-iteratively compute the least squares solution. The transitions from one slice to the
next are treated as samples and used to compute the mean vectors and covariance matrices.
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The a posteriori joint distribution of all states p(c1:T |v1:T ) is now given by the product
of all factors of the factor graph. The maximum a posteriori (MAP) estimate

ĉ
(MAP)
1:T = argmax

c1:T

p(c1:T |v1:T )

= argmax
c1:T

Φ1(c1,v1)
T∏
t=2

Φt(ct,vt)Ψt−1(ct−1, ct) (5.23)

can be computed efficiently using dynamic programming.

Second order Markov model

Alternatively, the shape prior was modeled with a Markov chain that assumes a Markov
order of two for the transition of translation. In general, a higher Markov order makes a
model more accurate, but also requires far more examples during training because higher
dimensional probability density functions need to be estimated. The transition of rotation
and scale was handled as described in section 5.2.3 because we observed that the translation
parameters are more continuous compared to rotation and scale, and therefore the shape
prior should benefit most from a second order assumption here. Furthermore, generalizing
(5.21) and (5.22) to a second order model leads to problems because of limited training
data. Now, the factor Ψt corresponding to the state transition probability (5.16) becomes

Ψt(ct−1, ct, ct+1) =p(ct+1|ct, ct−1) (5.24)
=p(tt+1|tt, tt−1) (5.25)
·p(θt+1|θt, st) (5.26)
·p(st+1|st). (5.27)

The translation transition is again modeled using a normal distribution, but now, also the
second derivative

∆∆tt ∈ R2 with ∆∆tt = ∆tt −∆tt−1 (5.28)

of t with respect to z is considered, which corresponds to the curvature of the esophagus:

p(tt+1|tt, tt−1) = N
(
(∆tt,∆∆tt)

T |Σp2 ,mp2

)
. (5.29)

The MAP estimate

ĉ
(MAP)
1:T = argmax

c1:T

(
Φ1(c1,v1)Φ2(c2,v2)Ψ1(c1, c2) (5.30)

·
T∏
t=3

Φt(ct,vt)Ψt−1(ct−2, ct−1, ct)

)
(5.31)

can be computed in the same way as in the single order case.

Particle filtering

We furthermore investigated to model and infer the esophagus path with a particle filter ap-
proach [Isar 98b] instead of using a Markov chain. Particle filtering, which is also known
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as Condensation, is popular for tracking applications. Probability distributions are repre-
sented non-parametrically with weighted samples which are called particles. In contrast to
Kalman or extended Kalman filtering, the distributions may be multimodal, which allows
to model different hypothesis of the true state. It is also becoming popular for tracking of
tubular structures [Flor 05, Scha 07].

We formulate the problem of inferring the esophagus shape in the framework of dy-
namic state estimation. Though the problem is not dynamic, we treat the vertical axis z
of the volume image as time t. As before, an axial slice becomes the observation vt. The
unknown state at time t is the ellipse parameter vector et. Given the observation density
p(vt|et) and the state transition density p(et+1|et), the probability density p(et+1|v1:t+1)
of the state at time t+ 1 given all previous observations can be computed recursively as

p(et+1|v1:t+1) =
p(vt+1|et+1)

∫
p(et+1|et)p(et|v1:t)det

p(vt+1|v1:t)
(5.32)

for a Markov order of one. Here, we use the notation v1:t for the sequence v1 . . .vt. This
is the core equation of probabilistic dynamic state estimation. In the Condensation algo-
rithm [Isar 98a], the integral of (5.32) is computed by drawing samples from the probability
density p(et|v1:t) that is represented by a set St of particles

St =
{(

e
(i)
t , P

(i)
t

)
, i = 1 . . . I

}
. (5.33)

Each particle consists of a sample e(i)
t and a weight P (i)

t . The probability density p(et|v1:t)
is approximated as

pSt(et|v1:t) =
I∑
i=1

P
(i)
t δ(et − e

(i)
t ), (5.34)

where δ is a window function. For particle filtering, it is common practice to simply use
the Dirac window δ because the empiric probability density pSt is not evaluated but only
used for drawing samples or computing moments.

In the Condensation algorithm [Isar 98a], the samples are noisily propagated to the
next time step using p(et+1|et) and then weighted according to whether they fit to the new
observation vt+1 using p(vt+1|et+1). Figure 5.6 depicts this algorithm.

We found that the idea of marginal space learning can be nicely integrated into the
particle filtering framework by factorizing both the observation density p(vt|et) and the
state transition density p(et+1|et), and expressing the factors of the observation density
using classifiers that were trained on marginal spaces.

The observation density p(v|e) (to improve the readability, the subscript t is omitted
in this section if it is the same for all variables) requires a generative model which is often
not available in the context of object detection in images. Using Bayes’ rule

p(v|e) =
p(e|v)p(v)

p(e)
, (5.35)

it can be transformed to a discriminative model p(e|v) and two priors for the image v and
the parameter vector e. By using Bayes’ rule once again, p(e|v) = p(t, θ, s|v) can be
factorized into

p(e|v) = p(t|v)p(θ|t,v)p(s|θ, t,v). (5.36)
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For the state transition density p(et+1|et), we use the factorization of (5.17). Together
with (5.36), (5.32) can be rewritten as

p(et+1|v1:t+1) ∝
1

p(et+1)
p(st+1|θt+1, tt+1,vt+1)

∫
st

p(st+1|st)

p(θt+1|tt+1,vt+1)

[∫
θt

p(θt+1|θt, st)

p(tt+1|vt+1)

(∫
tt

p(tt+1|tt)p(et|v1:t)

dtt

)
dθt

]
dst. (5.37)

Because p(v) and p(vt+1|v1:t) do not depend on the parameters e that are to be estimated,
they can be treated like constants. In (5.37), the integral of (5.32) over the state space
was replaced by three nested integral over the scale, rotation and the translation subspace.
Note that each weighted integral is very similar to the weighted integral in (5.32). Like in
one iteration of the Condensation algorithm, it can be carried out by drawing, propagating
and weighting samples. But instead of propagating the samples across time, they are propa-
gated across dimension of the state space within a single time step. This is especially useful
for higher dimensional state spaces, like 5-D in this case: Filling a 5-D state space with
particles would require a high number of particles. Here, we can reject particles already
after the first 2-D integration if the translation parameters do not fit the new observation
and concentrate on particles with promising translation parameters. The same can be done
for the rotation parameters

Figure 5.7 depicts the algorithm we used to compute (5.37). It is formulated to solve
our specific problem, but the principle is always applicable if the state transition probability
density (5.17) and the observation probability density (5.35) can be factorized and the
factors are available.

The factors of (5.36) are now modeled as being proportional to the scores of the three
detectors trained on the marginal spaces of translation, rotation, and scale

p(t|v) ∝ p(m = 1|H(t), C(t)) (5.38)
p(θ|t,v) ∝ p(m = 1|S(t, θ)) (5.39)

p(s|θ, t,v) ∝ p(m = 1|S(t, θ, s)), (5.40)

and the prior p(e) is assumed to be uniform. In contrast to the Markov chain approach,
only a single translation detector is used here. A second one could be integrated by adding
a fourth integral in equation (5.37).

Finally, we are interested in the MAP estimate

ê
(MAP)
1:T = argmax

e1:T

p(e1:T |v1:T ). (5.41)

This estimate can be easily obtained [Isar 98b] from p(eT |v1:T ) by finding the history e1:T

of the particle
ê
(MAP)
T = argmax

eT

p(eT |v1:T ) (5.42)
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1: Input: Old particle set

St =
{(

e
(i)
t , P

(i)
t

)
, i = 1 . . . I

}
of time step t

2: Construct the new particle set

St+1 =
{(

e
(i)
t+1, P

(i)
t+1

)
, i = 1 . . . I

}
of the next time step from St as follows:

3: for i=1. . . I do
4: Construct the particle

(
e
(i)
t+1, P

(i)
t+1

)
:

5: Select a sample e
(j)
t with probability P (j)

t

6: Predict by sampling from p(et+1|e(j)
t ) to choose the sample e

(i)
t+1 of the next

time step
7: Weight the new sample by setting

P
(i)
t+1 = p(vt+1|e(i)

t+1)

8: end for
9: Normalize the weights s. th.

∑I
i=1 P

(i)
t+1 = 1

10: Output: New particle set St+1

Figure 5.6: One iteration of the original Condensation algorithm [Isar 98a].
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1: Input: Old particle set
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(i)
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(i)
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(i)
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(i)
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(i)
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)
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}
of time step t

2: STEP 1: Construct a first intermediate set of sub-particles
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8: end for
9: Normalize the weights s. th.

∑I
i=1 P

(i)
t+1,1 = 1

10: STEP 2: Construct a second intermediate set of sub-particles

St+1,2 =
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(t
(i)
t+1, θ

(i)
t+1), P

(i)
t+1,2

)
, i = 1 . . . I

}
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(i)
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(i)
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(i)
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)
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(j)
t+1 with probability P (j)
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(j)
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(k)
t ) to find θ(i)t+1

15: Weight with P (i)
t+1,2 = p(θ

(i)
t+1|t

(i)
t+1,vt+1)

16: end for
17: Normalize the weights s. th.

∑I
i=1 P

(i)
t+1,2 = 1

Figure 5.7: One iteration of the proposed variant of the Condensation algorithm for the
problem of ellipse tracking. This variant was first published in [Feul 11a]. Continued in
Figure 5.8.
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1: STEP 3: Construct the particle set of the next time step

St+1 =
{(

e
(i)
t+1, P

(i)
t+1

)
, i = 1 . . . I

}
from the second intermediate set St+1,2:

2: for i=1. . . I do
3: Construct the particle

(
e
(i)
t+1, P

(i)
t+1

)
:

4: Select a sample (t
(j)
t+1, θ

(j)
t+1) with probability P (j)

t+1,2

5: Predict by first finding the full particle predecessor e(k)
t of sub-particle

(t
(j)
t+1, θ

(j)
t+1) and then sampling from p(st+1|e(k)

t ) = p(st+1|s(k)t ) to find s
(i)
t+1

6: Weight with P (i)
t+1 = p(s

(i)
t+1|θ

(i)
t+1, t

(i)
t+1,vt+1)

7: end for
8: Normalize the weights s. th.

∑I
i=1 P

(i)
t+1 = 1

9: Output: New particle set St+1.

Figure 5.8: One iteration of the proposed variant of the Condensation algorithm for the
problem of ellipse tracking. This variant was first published in [Feul 11a]. Continued
from Figure 5.7.

with the highest weight in the last time step T .

5.2.4 Surface generation

After the MAP estimate of the path has been detected, the sequence of ellipses is converted
into a triangular mesh representation by sampling the ellipses and connecting neighboring
point sets with a triangle strip.

The cross-section of the esophagus is generally not elliptic, and the path obtained in
section 5.2.3 often contains some inaccuracies. Therefore, the mesh model is further re-
fined to better fit the surface of the organ.

A PBT classifier was trained to learn the boundary of the esophagus. The classifier
uses steerable features as proposed in [Zhen 07]. As for ellipse detection, the steerable
features are sampled on a regular grid, but now with a size of 5 × 5 × 9. For each mesh
vertex, the sampling pattern is placed so that the vertex is in the center of the pattern and
the longest axis points in direction of the mesh normal. Now the pattern is moved along the
normal to find the maximal detector response and the new position of the vertex. Finally,
the surface is passed through a Laplacian smoothing filter that replaces each vertex with
the average of its neighbors. Smoothing is necessary because the vertices are displaced
independently from each other. This process of deformation and smoothing is repeated for
a certain number of iterations that is varied in the experiments.

Figure 5.9 shows the first iteration of boundary refinement for a section of an inferred
path.

Figure 5.10 summarizes the detection pipeline and shows example output for each step.
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deformed smoothedoriginal

Figure 5.9: Example of one boundary refinement iteration shown for a section of the esoph-
agus. Left: The ellipses obtained in the path inference step, connected with triangle strips.
Middle: Surface after displacing the vertices along their normals according to the classifier
output. Right: Smoothed surface.

(a) (b) (c)

(d) (e) (f)

Figure 5.10: Example output for each step of the detection pipeline. (a): Score p(m =
1|H)C of the first classifier for position multiplied with the probability map C. (b): Score
p(m = 1|H)C of the second classifier for position multiplied with the probability map
C, evaluated for the best candidates from stage (a). (c): Candidate boxes after rotation
and scale detection. The confidence of a box is color coded in HSV color space. Violet is
lowest, red is highest score. (d): Cluster centers after clustering and merging. (e): Result
of the path inference step. (f): Final surface after refinement.
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Scanner type Number of datasets
Biograph 64 1
Definition AS+ 1
Sensation 10 25
Sensation 16 6
Sensation 64 110
Volume Zoom 1

Table 5.1: CT scanners used for data acquisition.

Filter kernel kernel description Number of datasets
B30f medium smooth 2
B31f medium smooth + 24
B31s medium smooth + 1
B40f medium 6
B41f medium + 110
B70f very sharp 1

Table 5.2: Filter kernels used for image reconstruction.

5.3 Results

5.3.1 Results of cross-validation

The method has been evaluated on 144 CT scans of the thoracic or the thoracic and abdom-
inal region. No patient was included twice. The voxel spacing in x and y direction was
in the range of 0.7 mm to 0.8 mm. The spacing in (longitudinal) z direction was 5 mm.
After ROI detection, the volumes were resampled to a voxel spacing of 0.7× 0.7× 5mm3.
The data was acquired using six different CT scanner types listed in Table 5.1. Out of
the 144 datasets, 143 were reconstructed using filter kernels for soft tissue, and one was
reconstructed using a lung kernel (B70f). The filter kernels are listed in Table 5.2. Further
details on the kernels can be found in [Soma 06]. The accelerating voltage was 120kV in
all cases, and the tube current ranged from 94mA to 575mA with a mean and standard
deviation of 293.79 ± 87.25 mA.

Manual segmentations were available for all datasets. The data was segmented by non-
experts, but difficult cases were reviewed by a radiologist. The segmentations typically
ranged from the thyroid gland down to a level below the left atrium.

Among the scans, 34 were taken from patients suffering from lymphoma, which often
causes enlarged lymph nodes in the mediastinal region. In some datasets, the esophagus
contained remains of orally given contrast agent.

The accuracy was measured using threefold cross-validation. For each fold, all five
classifiers for translation (2×), orientation, scale and surface were trained on two thirds of
the data, and the parameters of the Markov model were estimated from the same two thirds
of the data. The remaining third of the data was used for testing. There was no overlap
between training and testing data. For evaluation, the detector was run in z direction on the
same interval covered by the manual annotation in order not to introduce artificial errors
because of different lengths of the segmentations.
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Classifier tree levels weak classifiers candidates
Translation 1 2 20 400
Translation 2 2 20 120
Rotation 2 20 50
Scale 2 20 200
Surface 5 20 n/a

Table 5.3: Parameter settings for the five classifiers of the detection pipeline: The number
of levels in the PBT classifier, the number of weak classifiers per AdaBoost node, and the
number of candidates generated.

Method
mean err.

in mm

Hausdorff
dist.

in mm
P Proposed method 1.80 ± 1.17 12.62 ± 7.01
PB Proposed method, best 80% 1.34 ± 0.31 9.65 ± 3.07
NS No surface refinement 2.24 ± 1.08 12.93 ± 7.16
B Only binary air model B(t) 1.88 ± 1.24 13.00 ± 7.88
NA No air model 1.94 ± 1.39 13.06 ± 7.21
ST Single translation class. 2.07 ± 1.47 14.50 ± 8.92
NAT No air mdl., single trnsl. cls. 2.32 ± 1.87 15.02 ± 9.83
M0 Markov order 0 2.30 ± 1.49 17.29 ± 11.42
M2 Markov order 2 1.80 ± 1.15 12.65 ± 6.92
PF Particle filtering 5.39 ± 3.08 22.32 ± 7.97
IOV Inter observer variability 0.78 ± 0.17 7.29 ± 2.22

Table 5.4: Results of performance evaluation. Shown is the mean error and the mean Haus-
dorff distance along with the corresponding standard deviations. First row: The proposed
method uses the first order Markov chain approach. Rows 2-10: Proposed method with
at least one parameter or experimental setting altered. Last row: Inter observer variability
measured on ten of the 144 datasets.

ROI detection succeeded in all of the 144 datasets, meaning that the bifurcation of
the trachea was always detected with a reasonable accuracy. Due to the large ROI, the
segmentation method can tolerate normal anatomical variations and detection errors.

Unless otherwise stated, parameters of the classifiers were set to the values displayed
in Table 5.3, the distance threshold θd was set to 8 mm, and surface refinement was iterated
two times.

Table 5.4 and Figure 5.11 show the results of performance evaluation. Two error mea-
sures were computed: The mean symmetric point-to-mesh distance, and the maximum
symmetric point-to-mesh distance, which is also known as Hausdorff distance. Symmetric
means that the distance between two meshes remains the same if the meshes are swapped.

Our proposed method (P), which uses the Markov chain model for path inference with a
Markov order of one, segments the esophagus with a mean error of 1.80 mm and a standard
deviation of 1.17 mm. The data used for evaluation also contains difficult and extreme
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Figure 5.11: Mean segmentation error (a) and Hausdorff distance (b) of our segmentation
method and different variants. The length of an error bar is two standard deviations. See
text and Table 5.4 for an explanation of the abbreviations.
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Figure 5.12: Mean segmentation error for different values of the number of surface refine-
ment iterations (a) and the distance threshold used for clustering (b). The circles indicate
the values that were selected in the other experiments.
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Figure 5.13: Mean segmentation error for different values of the numberNT1 of translation
candidates of the first translation detector (a) and the number NT2 of translation candidates
of the second translation detector (b). The circles indicate the values that were selected in
the other experiments.
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cases. Here, our method occasionally failed to properly find the esophagus boundary. If
the 20% most difficult cases are excluded (PB), the mean error was 1.34 mm.

The surface refinement step has a significant impact on the accuracy: If it is omitted
(NS), the error raises to 2.24 mm.

To evaluate the effect of the soft probability mapA(t), we measured the accuracy when
only the binary air model B(t) is used (B). The resulting error is 1.88 mm, meaning that
A(t) improves the accuracy by 4.3%. If also B(t) is omitted (NA), the error is 1.94 mm,
which means that modelling the distribution of air explicitly leads to an improvement of
7.2%. Using a second classifier for translation improves performance by 13%: If it is
omitted (ST), the error raises to 2.07 mm. Omitting both the air model and the second
translation detector (NAT) leads to an error of 2.32 mm.

In addition to a Markov order of one, we measured the error for orders of zero (M0) and
two (M2). An order of zero means the detected ellipses in neighboring slices do not influ-
ence each other. The second order Markov model as described in section 5.2.3 also takes
the curvature of the esophagus into account. A Markov order of zero yields an mean error
of 2.30 mm, which shows that the Markov model clearly improves detection performance
by resolving ambiguities. A Markov order of two does not further improve the perfor-
mance. Therefore, we propose to use an order of one as it does not introduce unnecessary
complexity.

With a mean error of 5.39 mm, the particle filtering (PF) approach described in sec-
tion 5.2.3 performs poorly. The resulting segmentation was usually completely off the true
esophagus. We observed that particle filtering is much more prone to tracking loss com-
pared to the Markov chain based “detect and connect” approach. The reason is that in the
“detect and connect” approach, each slice is searched exhaustively in the position detection
step, while the particle filter does not search exhaustively but only evaluates the particles.
Occasionally, the esophagus is hard to see on a number of slices. The PF often follows
another structure, e.g. a vessel, and no particles remain on the true esophagus. Once the
PF loses track, it usually does not recover. We observed that the “detect and connect”
approach recovers much better after passing a difficult section.

In order to compare the performance of the detector to the performance of a human, we
did an experiment on the inter observer variability (IOV): In ten datasets, the esophagus
was manually segmented a second time by another person, and the second segmentations
were treated like automatic ones. The mean error was 0.78 mm with a standard deviation
of 0.17 mm.

Next, we evaluated how the presence of contrast agent in the esophagus affects the
detector performance. For thorax-abdomen scans, patients usually drink 1.5 l of contrast
agent over a 60 minutes period in preparation for the scan in order to contrast the digestive
system, especially the intestine that is hard to see otherwise.

In 119 out of the 144 datasets, we did not see remains of orally given contrast agent
(CA) inside the esophagus. In 19 datasets, the esophagus contains only small amounts of
CA, and also only in some sections of the esophagus. Visually, the CA hardly makes a
difference. In 6 datasets, the esophagus is filled with large amounts of contrast agent. The
diameter of the esophagus is greatly increased. These 6 cases look very different from the
remaining 138.

We do not have the medical findings of our images and therefore we neither do know
from what a patient suffered and why s/he was scanned nor details about the examina-
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Subgroup
num.

datasets
mean err.

in mm

Hausdorff
dist.

in mm
NC Not contrasted 119 1.62 ± 0.84 11.73 ± 6.44
HC Hardly contrasted 19 1.69 ± 0.68 12.00 ± 5.33
CD Contr. and dilated 6 5.75 ± 1.02 28.53 ± 1.88

Table 5.5: Detector performance depending on whether orally given contrast agent is visi-
ble in the esophagus.

tion. But in these 6 cases most likely 0.5 l of CA were administered when the patient was
already lying on the table, directly before s/he was scanned. In combination with given
Butylscopolamine, larger amounts of CA remain in the esophagus. This is typically done
to contrast the upper digestive system and the esophagus itself. Some of the 6 patients may
have suffered from achalasia, which means that the lower part of the esophagus does not
properly open. It is also possible that parts of the esophagus were resected due to cancer
and replaced with intestine tissue.

We refer to the 119 datasets as “not contrasted” (NC), to the 19 datasets as “hardly
contrasted” (HC) and to the 6 datasets as “contrasted and dilated” (CD). The results can
be found in Table 5.5. The performance of our proposed method on the “not contrasted”
and “hardly contrasted” datasets is similar and better than the 1.80 mm average segmen-
tation error. On the six “contrasted and dilated” datasets, the performance is much worse.
The esophagus is greatly increased in diameter in these cases and mostly bigger than the
aorta. Furthermore, the contrast agent leads to a unusual appearance. Here, the automatic
segmentation did not cover the whole cross section of the esophagus.

Generally, machine learning methods often have problems with rare extreme cases. We
think that cases like these can be handled in principle by our method as long as there are
enough examples in the training data, but we did not empirically verify this.

We also evaluated how the mean error depends on different parameter settings. The
results can be seen in Figure 5.12. When the number of surface refinement iterations is
varied (a), at first the error steeply drops, reaches an optimum after 2-3 iterations, and rises
again. We therefore kept the number of iterations fixed to two, which gives not only good
results but is also computationally efficient. Figure 5.12 (b) shows results for different
values of the distance threshold θd used for clustering. If this value is too low, the number
of clusters K will be high, and for θd = 0 equal to the number N of ellipse candidates.
Then, clustering is unable to find modes in the distribution of the ellipse candidates. On the
other hand, if θd is too high, most or even all candidates fall into the same cluster. In this
case, there are no different hypothesis about the esophagus contour in a slice any more, and
the Markov model becomes ineffective. Values between 6 mm and 8 mm performed best.
In (c), the number of candidates NT1 generated by the first translation detector is varied.
Selecting a too low value introduces the risk of missing the true esophagus, while a very
high value means that many false alarms are propagated to further levels of the detection
cascade. A value of NT1 = 400 is a reasonable choice. The number of candidates NT2

generated by the second translation detector (d) must be considerably lower than NT1,
otherwise the stage could be omitted. Low values are also computationally less expensive
because less candidates have to be examined in the later stages of the cascade. But again a
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Database num. datasets
slice

thickness
in mm

covered
body region

manual
segmentation

type

Thick slice 144 5
thorax or
thorax-

abdomen
full

Thin slice 10 0.5-0.8
thorax or
thorax-

abdomen
full

LIDC 27 3-5 thorax slice

Superset of
Fieselmann et
al. [Fies 08a]

36 0.6-1.5 heart slice

Fieselmann et
al. [Fies 08a]

8 0.6-1.5 heart full

Kurugol et al.
[Kuru 10]

8 3.75 thorax full

Rousson et al.
[Rous 06]

20 unknown heart full

Table 5.6: Rows 1-4: Datasets used for evaluation in this chapter. Rows 5-8: Datasets used
for evaluation in prior work.

too low value bears the risk of losing the true esophagus. Here, a value of NT2 = 120 was
chosen.

5.3.2 Results on further datasets

We furthermore evaluated our method on other image databases that are listed in Table 5.6
together with databases used for evaluation in [Fies 08a, Kuru 10, Rous 06]. The evaluation
results are shown in Table 5.7.

The first row of Table 5.7 shows the results of cross-validation of our method on the
144 datasets, referred to as “thick slice” data, as described above. Rows 2-4 show the
performance of our method on three further test databases. In these three experiments, our
model was trained on all 144 volume images from the “thick slice” database. We did not
train on other databases because it is hard to obtain a sufficient number of ground truth
segmentations.

Our 144 datasets all have a slice spacing of 5 mm. To obtain results on thin slice data,
we evaluated our method on ten high-resolution datasets with a slice thickness in the range
of 0.5-0.8 mm (second row of Table 5.7). An expert-reviewed ground truth segmentation
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Method fully
automatic

test data training data

Proposed method yes thick slice thick slice

Proposed method yes thin slice thick slice

Proposed method yes LIDC thick slice

Proposed method yes superset of
[Fies 08a]

thick slice

Fieselmann et
al. [Fies 08a]

no Fieselmann et
al. [Fies 08a]

n/a

Kurugol et al.
[Kuru 10]

no Kurugol et al.
[Kuru 10]

Kurugol et al.
[Kuru 10]

Rousson et al.
[Rous 06]

no Rousson et al.
[Rous 06]

Rousson et al.
[Rous 06]

Method
cross-

validation
mean err. in

mm
Hausdorff

dist. in mm
Dice coeff.

Proposed method yes 1.80 ± 1.17 12.62 ± 7.01 0.74 ± 0.14

Proposed method no 2.76 ± 2.76 14.91 ± 15.47 0.67 ± 0.21

Proposed method no 1.36 ± 0.44 7.19 ± 2.78 0.73 ± 0.08

Proposed method no 1.82 ± 1.27 9.64 ± 6.24 0.72 ± 0.11

Fieselmann et
al. [Fies 08a]

n/a unknown unknown 0.60-0.84∗

Kurugol et
al. [Kuru 10]

yes 2.6± 2.1 unknown unknown

Rousson et
al. [Rous 06] yes unknown unknown 0.80

Table 5.7: Performance on other datasets and comparison with other methods. ∗: Depend-
ing on the amount of user interaction.
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was available for each of the ten datasets. With a mean segmentation error of 2.76 mm, the
performance is considerably worse than the cross-validation error. One reason is an outlier
case with a very high segmentation error caused by an air pocket of the lung that distracted
the detector. The images are also noisier, and no thin slice data was included in the training
set.

Next, our method was evaluated on publicly available data. Since we are not aware
of a public chest CT database with images optimized for soft tissue, we selected a set of
images from the database of the Lung Image Database Consortium (LIDC)1. We used all
except one of the 28 volume images of the LIDC database that show the thorax and have
a slice thickness between 3 mm and 5 mm. One volume image was excluded because of a
rotated coordinate system, which is currently not handled by our method. In order to reduce
the effort for the manual annotation, the data was not completely segmented. Instead, the
contour of the esophagus was manually drawn in six cross-sectional slices and reviewed by
an expert. Our method’s mean error of 1.36 mm on this data is even better than the results
of cross-validation. One reason is that there are no extreme cases among the datasets.

Finally, we were able to evaluate our method on a superset of the data that was used
for evaluation in [Fies 08a]. We use a superset because it is not known on which of the im-
ages the method of [Fies 08a] was evaluated on. We also did not have the original ground
truth data and manually annotated the esophagus contour in four axial slices in each vol-
ume image. Only four instead of six slices were annotated because the images cover a
shorter segment of the esophagus. These annotations were reviewed by an expert as well.
Even though the data is a superset and the ground truth may be slightly different, it still
allows a relatively fair comparison. Our method achieved a mean segmentation error of
1.82 mm and a Dice coefficient of 0.72. In [Fies 08a], a Dice coefficient in the range of
0.60-0.84 is reported. The result depends on whether the user draws two, three or five
contours manually into axial slices. While the result of [Fies 08a] is better if five contours
are manually annotated, our automatic method outperforms [Fies 08a] with two manually
drawn contours.

For comparison, the results stated in [Kuru 10] and [Rous 06] are shown in rows six
and seven of Table 5.7. Our method performed considerably better than the mean error
of 2.6 mm reported in [Kuru 10] on three of four databases it was evaluated on. The Dice
coefficient reported in [Rous 06] is better than ours. However, the comparability is limited
because the methods of [Fies 08a, Kuru 10, Rous 06] all require user interaction, while our
method does not. In [Fies 08a, Rous 06], the focus was on the section of the esophagus
close to the left atrium, which is relatively short. Given two points on the centerline as
used in [Rous 06], the trivial centerline estimate, which is the linear interpolation of the
points, can already be close to the true centerline.

5.3.3 Examples and runtime requirements

Figure 5.14 shows examples of segmentation results of the proposed method in blue along
with the corresponding ground truth in green. Axial cross sections of two volumes are
shown in (a) and (b). The yellow boxes show the result of the path inference step. They
are the tight bounding boxes of the ellipses which approximate the esophagus contour.

1https://imaging.nci.nih.gov
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2cm

(a)

(b)

Figure 5.14: Examples of segmentation results on unseen data. Axial slices are shown for
two datasets (a) and (b). Blue is the automatic segmentation, green is the ground truth,
and the yellow boxes show the inferred path. The mean errors of the segmentations are
0.95 mm (a) and 0.88 mm (b). The bar in the top left slice indicates the scale.
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Figure 5.15: Examples of segmentation results on unseen data, shown in 3-D. Blue is the
automatic segmentation and green is the ground truth. The mean errors of the segmenta-
tions are from left to right and top to bottom: 0.95 mm (same datasets as 5.14 (a)), 1.15 mm,
0.99 mm and 0.95 mm.
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ROI prob. map ellipse path
refinement total

detec. generation detec. inference
6.96 1.13 7.40 0.40 · 10−3 0.34 15.83

Table 5.8: Runtime in seconds for different steps of the method.

In Figure 5.15, four example segmentations are displayed in 3-D. These 3-D images also
visualize the size of the ROI. All shown datasets were not included in the training data.

Table 5.8 shows the runtime requirements of the different steps of the proposed method.
It was measured on a single CT scan of the entire torso on a standard PC with a 2.20 GHz
dual core CPU. With 6.96 s, ROI detection is the second most time consuming step because
the whole volume is searched exhaustively. The remaining steps only consider the ROI.
Ellipse contour candidate detection including clustering takes 7.40 s and is the most time
consuming step. Generating the probability map based on air and surface refinement is
comparatively inexpensive, and the time needed for path inference is negligible. In total,
segmenting the esophagus from a CT volume takes less than 16 seconds.

5.4 Conclusion
We have presented a fully automatic method for esophagus segmentation from CT scans.
An ROI is detected by finding salient anatomical landmarks. A powerful detector that
learned a discriminative model of the appearance and an explicit model of the distribution
of air is combined with prior knowledge about the esophagus shape. It is used to infer
the approximate contour of the esophagus by finding the maximum a posteriori estimate.
Two alternative methods for shape knowledge representation and inference are compared:
A “detect and connect” approach using a Markov chain model, and a particle filter. The
influence of different model parameters on the performance was evaluated. In particular,
the Markov chain model was evaluated with Markov orders of zero, one, and two. Finally,
a surface is generated and further adapted to better fit the boundary, again using discrimi-
native learning.

The accuracy was measured using cross validation on 144 datasets. We found that
the Markov chain based “detect and connect” approach can well handle difficult regions
and resolve ambiguities. It performed clearly better than the particle filter, which is much
more prone to tracking loss. Explicitly modelling respiratory and esophageal air to support
the appearance based detector improves the mean error by 7.2%. Our proposed method
segments the esophagus from a CT scan without user interaction with a mean error of
1.80 mm in less than 16 s, which is only 1 mm above the inter observer variability.

Apart from the ROI detection and explicitly modelling air, the method is not specific to
the esophagus and can easily be adapted to other tubular structures like the spinal chord or
larger vessels.

In the following chapter, the method will be used to support lymph node detection in
chest CT images by excluding the segmentation from search and putting more focus on the
neighborhood, where lymph nodes are especially common.
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Chapter 6

Lymph node detection and segmentation
from chest CT

Parts of the work presented in this chapter were previously published in [Feul 10a] and
[Feul 11b]. It is all original work of the thesis’ author.

6.1 Motivation

This chapter focuses on detecting mediastinal lymph nodes in chest CT images. It builds
upon the esophagus segmentation method of the previous chapter. Lymph nodes are often
located close to the esophagus, and the outline of the esophagus therefore gives a valuable
hint about where lymph nodes can be expected.

Lymph nodes play an important role in clinical practice, especially in the mediastinal
area. They routinely need to be considered during oncological examination related to all
kinds of cancer [Duwe 05, Lang 06], for instance lung cancer [McLo 92], where metastases
settle in lymph nodes, but also lymphoma, which is a cancer of the lymphatic system itself.
Furthermore, they are also relevant in case of inflammation in general.

Cancer causes affected lymph nodes to be enlarged. In order to assess the progress
of the disease and to check whether treatment is effective, physicians are interested in
statistics like the number of enlarged nodes or the total volume of the nodes, but also in the
spatial distribution, and changes over time. Patients are commonly examined using CT.

Manually counting and measuring lymph nodes in the images is not only cumbersome
but also error prone because annotations from different human observers and even from
the same human observer vary significantly. In practice, lymph nodes are not annotated in-
dividually because it would take too much time, though the clinical value would be high1.
An automatic detection is however challenging because lymph nodes have an attenuation
coefficient similar to muscles and vessels and therefore low contrast to surrounding struc-
tures. Moreover, their shape and size varies a lot. Even a human needs days of training
to consistently find lymph nodes in CT volume images. Examples of mediastinal lymph
nodes are shown in Figure 6.1.

The topic has received increasing attention in the last five years. In [Kita 07], two blob
detectors which are called 3-D Min-DD filter and extended 3-D Min-DD filter are used in a

1according to A. Cavallaro, a radiologist at the university clinics in Erlangen
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Figure 6.1: Two axial cross sections of CT volumes with expert-reviewed lymph node
annotations (green).

cascade to detect lymph nodes in abdominal CT data. A Hessian based vessel detector, the
CT Hounsfield units and morphological operations are used to reduce the number of false
positives. In [Feue 09], a similar approach is used to detect lymph nodes in chest CT. Here,
the first 3-D Min-DD filter is replaced with a Hessian based blob detector. The more ex-
pensive extended 3-D Min-DD filter is used at the second level of the cascade. For segmen-
tation, a model-based approach using mass spring models was proposed in [Dorn 06]. It
was also used for detection by placing models on a regular grid over the volume [Dorn 08].
A lymph node was assumed at positions where the model fitting converged with a good
score. In [Feul 10a, Barb 10, Feul 11b], data driven approaches for lymph node detection
were proposed. In all three cases, a discriminative model is trained to detect lymph nodes
in CT from their appearance. In [Feul 10a, Feul 11b], the focus was on the mediastinal re-
gion (the region between the lungs), and the discriminative model was combined with prior
anatomical knowledge that is modeled as a spatial prior probability. In [Barb 10], the focus
was on the axillary region. After detection, lymph nodes are also segmented by fitting a
sphere model to the image that is centered at the detection. The result of the segmentation
is used to improve the detection: A good segmentation result indicates a good detection.
A similar technique is used in [Feul 11b]: In a final step, each detection is verified by ini-
tializing a segmentation algorithm with the detection. But instead of fitting a sphere, graph
cuts are adapted to the problem of lymph nodes segmentation. Features are extracted from
the segmentation and used to train a classifier to learn whether a segmentation is a true or
a false alarm.

This chapter is an extension of our prior work [Feul 10a] and [Feul 11b]. Figure 6.2
gives an overview of our system for lymph node detection and segmentation. Here, method
A corresponds to [Feul 10a], and method B is based on [Feul 11b]. Both approaches make
use of a cascade of binary classifiers. The first two stages of the cascade use 3-D Haar like
features to generate a set of candidate lymph node centers. In method A, the final binary
classifier of the cascade is trained to decide whether there is a lymph node with a certain
size at a given position that comes from the second stage. Bounding boxes of lymph node
position detections are estimated by evaluating different size hypothesis. In method B, the
size detection stage is replaced by two other stages. In stage 3 of method B, the detected
position candidates from stage 2 are verified by a third classifier that now uses gradient-
aligned features as proposed in [Barb 10]. The result is again a set of position candidates.
Finally, a segmentation algorithm is initialized with the lymph node position candidates.
The graph cuts method is adapted to the problem of lymph nodes segmentation by incor-
porating knowledge about the shape and the appearance of the node into the segmentation
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Figure 6.2: Overview of the detection and segmentation system. Lymph nodes are detected
by a cascade of binary classifiers. The first two stages detect the center of a lymph node
using 3-D Haar-like features. Then either the bounding box of a lymph node is detected
directly (Method A), or alternatively, the detected positions are verified using gradient-
aligned features in stage 3 (Method B). Method A ends at stage 3. In stage 4 of Method B,
each position candidate from stage 3 is used to initialize a segmentation algorithm, fea-
tures are extracted from the segmentation, and based on these features, a classifier decides
whether the detection is a true lymph node or a false alarm. At all stages, prior anatomical
knowledge is included in the form of a spatial prior probability, which is the same for all
stages.
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framework. A feature set is extracted from the segmentation, and a fourth classifier is
trained to learn whether a segmentation is a true lymph node or not.

This chapter is extended in several ways with respect to [Feul 10a] and [Feul 11b]. Both
approaches are explained in more detail and thoroughly compared to each other. Next, the
method of [Feul 11b] is compared to a method that does not only use a single segmenta-
tion at the final verification stage 4, but instead combines hints from multiple alternative
segmentations. Finally, this chapter contains experiments with different types of spatial
priors.

The remainder of this chapter is structured as follows: Section 6.2 explains the different
kinds of spatial priors that are used in this work to model anatomical knowledge. Section
6.3 describes how the region of interest containing the mediastinum is determined. Section
6.4 explains the first two stages of the detection cascade that method A and method B have
in common. Section 6.5 explains the final bounding box detection step of method A that
builds upon the lymph node center candidates generated in the first two stages. In sec-
tion 6.6, method B is explained that segments lymph nodes instead of detecting bounding
boxes and rejects or accepts them based on the segmentation result. Section 6.7 presents
experiments and results, and section 6.8 concludes the chapter.

6.2 Spatial prior of lymphatic tissue

Mediastinal lymph nodes are very hard to detect only from their appearance. They have
a similar attenuation coefficient like muscles and vessels, and both muscles and vessels
cover a much larger volume of the body. Thus, an automatic detector has to cope with
lots of clutter. Furthermore, the size of a lymph node can vary a lot. While healthy lymph
nodes typically have a size in the range of a few millimeters up to one or two centimeters
[Warw 58], lymph nodes that are pathologically enlarged, for instance, due to cancer or an
infection, can have a size of five centimeters and more. Often, multiple enlarged lymph
nodes are directly adjacent to each other and form clusters. Detecting lymph nodes in a
cluster is especially challenging because the boundary between different nodes is often not
clearly visible, or not visible at all. Then, the shape of the cluster can be almost arbitrary.

Because of these difficulties, it is vital to incorporate as much prior knowledge as pos-
sible into the detection. In particular, we know that

• lymph nodes do not appear anywhere. They always lie in fat tissue, so space inside
any organ can be excluded.

• In the remaining area, lymph nodes are not distributed uniformly. Instead, it is much
more likely to observe lymph nodes below the aortic arch and close to the trachea.

It turns out that exploiting this prior knowledge can help to greatly reduce the number
of false detections and thus improve the overall detection performance.

In this work, this knowledge is modeled using a spatial prior probability p(m = 1|t)
of observing a lymph node at a given location t = (tx, ty, tz)

T . m denotes the binary class
variable. Four different priors are proposed and compared against each other. These four
variants partly build upon each other and are increasingly complex.
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6.2.1 Automatic landmark detection and organ segmentation
While variant 1 is a trivial prior, the variants 2-4 depend on anatomical structures that
first need to be detected in a CT volume image. We automatically find a set of 20 salient
anatomical landmarks that lie mostly but not exclusively in the chest area and can be de-
tected robustly. The detection method used here is described in [Seif 09]. Examples of
landmarks are the bifurcation of the trachea, the bottom tip of the shoulder blade left and
right, the topmost point of the aortic arch and the topmost point of the lung left and right.

Besides the landmarks, a number of different organs are segmented. The lungs and the
trachea are detected using simple thresholding followed by a morphological opening oper-
ation. The four heart chambers are segmented by fitting a model described in [Zhen 07].
The esophagus is segmented as described in chapter 5. It is of special interest as it is often
surrounded by lymph nodes, but at the same time can be confused with lymphatic tissue.
All segmentation methods do not require user interaction.

6.2.2 Variant 1: Constant prior
In variant 1, the probability p(m = 1|t) is simply modeled to be constant

p1(m = 1|t) ∝ const., (6.1)

which means that no prior knowledge is used. This serves as a baseline for the remaining
three variants.

6.2.3 Variant 2: Binary mask
In the second variant, the spatial prior is modeled to be proportional to a binary mask B(t)

p2(m = 1|t) ∝ B(t) =

{
0 if t is inside an organ
1 otherwise (6.2)

that labels regions that cannot contain lymph nodes with 0 and other regions with 1. The
lungs, the trachea, the esophagus and the heart are excluded, i. e. labeled with zero in the
mask.

6.2.4 Variant 3: Global prior
The third variant consists of the binary mask B(t) and a global probabilistic atlas

G(t) ∈ [0, 1] (6.3)

which is learned in the space of a reference patient. Non-rigid inter subject registration is
used to map segmented lymph nodes from a set of test patients to the reference patient,
where they are averaged. The segmentations are binary masks, and thus G(t) is the spatial
probability of lymphatic tissue. The learned probabilistic atlas is blurred with a Gaussian
filter with a standard deviation of 12 mm which is necessary because of limited training
data.
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Figure 6.3: Heart and esophagus model fitted to a CT volume.

The registration is based on the set of 20 landmarks. If a landmark is not detected,
e. g. because it is not visible in the image, it is omitted. A thin-plate spline (TPS) transfor-
mation [Book 89] is created from the detected landmarks and the reference landmarks and
used for the warping. During training, the transformation maps from the reference space
to the current image, and for the testing phase, it maps into the other direction.

The prior is then modeled to be

p3(m = 1|t) ∝ B(t)G(t) (6.4)

the product of the binary mask and the probabilistic atlas.

6.2.5 Variant 4: Organ-specific local priors
A possible disadvantage of the global probabilistic atlas G is limited accuracy in case of
inter-subject variations of anatomy or missing landmarks on points or surfaces of interest.
In general, the problem of finding a transformation f that maps from one image to another
is ill-posed if certain points or regions, like for instance a gap between two organs, only
exist in one, or if the relative position of two structures, e.g. the esophagus and the trachea,
is different in the two images. This is a problem all atlas based techniques have to cope
with.

In this work, we investigate using a mixture of spatially weighted probabilistic atlases
as a solution to this problem. In addition to the landmark based global probabilistic atlas
G, a set of local probabilistic atlases Li, i = 1 . . .M is introduced. We already have
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Figure 6.4: Local probabilistic atlas weighting function.

the heart and the esophagus available, which are represented as triangular meshes. The
four chambers of the heart are treated like separate organs. The vertices of these meshes
can be used as landmarks for a TPS based registration like in case of the global atlas G.
If they were simply added to the existing set of landmarks, however, the resulting TPS
transformation would easily become rugged and produce folds or become inaccurate if
it was constrained to be smooth because of the problems described above. Here, each
segmented organ is associated with a probabilistic atlas Li. It is learned in the space of the
organ’s mean shape, which is generated by averaging the points of a set of training shapes
that were aligned by a generalized Procrustes analysis. Each local atlas Li(t) is trained
like the global, but now the vertices of the organ’s triangle mesh serve as landmarks for the
TPS transformation. In the testing phase, the final local atlas L(t) for a test volume is the
sum of the local atlases, weighted with wi(t) according to the minimum distance di(t) of
t to the surface of organ i:

L(t) =
1

Z(t)

M∑
i=1

Li(t)wi(t) (6.5)

Z(t) =
M∑
i=1

wi(t) (6.6)

wi(t) =

{
(di(t)−θ)2

θ2
if di(t) < θ

0 else.
(6.7)

Here, θ denotes the maximal distance from the organ surface up to that the corresponding
probabilistic atlas still has support. In the experiments, θ was set to 25 mm. The weight wi
decreases with increasing distance because the TPS transformation is only accurate close
to the surface. The distance weight function (6.7) is shown in Figure 6.4.

Now the binary maskB, the global probabilistic atlasG and the local probabilistic atlas
L are merged into the fourth variant p4(m = 1|t) of the prior probability of observing a
lymph node at position t. It is modeled as

p4(m = 1|t) ∝ B(t) (wmax(t)L(t) + (1− wmax(t))G(t)) , (6.8)

where wmax is the maximum weight

wmax(t) = max (w1(t), . . . , wM(t)) . (6.9)
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Thus, the term on the right hand side of (6.8) is zero inside an organ. Elsewhere, the global
atlas G(t) and the local atlas L(t) are blended according to the minimum distance of t to
the surface of any organ. Directly at an organ surface, wmax(t) equals one and p4(m = 1|t)
only depends on the local atlas L(t), while p4(m = 1|t) only depends on the global atlas
G(t) at a minimum distance of θ from any organ surface.

Figure 6.5 shows examples of the different prior types along with the original volume
image they were computed from. Each image in a column shows the same slice of the
volume, and the slices are parallel to the coordinate planes. The binary prior p2(m = 1|t)
shown in Figure 6.5 (b) excludes already considerable portions of the volume. The “global”
prior p3(m = 1|t) shown in Figure 6.5 (c) and the “combined” prior p4(m = 1|t) shown in
(d) put special focus on relatively small regions of the volume. Differences between these
two prior types are, however, small.

6.3 Region of interest detection
This work focuses on detecting mediastinal lymph nodes. Therefore, a region of interest
(ROI) is automatically detected that covers the mediastinum. Similar as described in sec-
tion 5.2.1, this ROI is anchored at the bifurcation of the trachea, because this landmark
can be detected very robustly. It is contained in the set of landmarks that are detected as
described in section 6.2.1. The ROI has a fixed minimum size of 18.4 × 18.0 × 19.5cm3

that is large enough to contain all ground truth annotations. If parts of the segmentations
of the heart or the esophagus, which are used to compute the spatial prior, are outside this
ROI, then it is enlarged to completely contain these segmentations. Figure 6.6 shows an
example of an ROI.

6.4 Position candidate detection
In this section, the spatial prior described in section 6.2 is combined with a discriminative
model of the lymph node appearance. We are finally interested in either a bounding box of a
lymph node, or, even better, the precise outline. Detecting the bounding box or the outline
in one step would, however, require the estimation of many parameters simultaneously.
Instead of directly searching a high dimensional parameter space, we break the detection
into smaller sub problems. At first, we only detect a number of candidates of possible
lymph node center positions. In later steps, these candidates are verified or rejected, and
used to initialize detectors for the lymph node size or the actual lymph node segmentation.

Stage one of the detection system (Figure 6.2) is a sliding window detector that uses
a probabilistic boosting tree (PBT) classifier (see section 2.5) in combination with 3-D
Haar-like features (section 3.2.2). The classifier is trained to learn the probability

p(m = 1|H(t)) (6.10)

of whether there is a lymph node model instance at a given position t. Here, H denotes
the Haar feature vector extracted at position t. Haar features are used because they can
be computed very efficiently so that it is even possible to search all positions in the ROI
exhaustively.
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(a)

(b)

(c)

(d)

axial coronal sagittal

Figure 6.5: Examples of different spatial priors computed for a test volume. The three
columns show axis-aligned orthogonal slices of the volume. (a): The input volume. (b):
The binary prior p2(m = 1|t) (see eq. (6.2)) that excludes air and organs. (c): The “global”
prior p3(m = 1|t) (see eq. (6.4)). (d): The “combined” prior p4(m = 1|t) (see (6.8)). It is
generally similar to the “global” prior.
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Figure 6.6: Axial, sagittal and coronal slice through the region of interest of a CT scan.

Figure 6.7: Local maxima of the probability map generated by the detector are used as
position candidates. Note that this is a 2-D slice of a 3-D volume and points that look like
local optima in 2-D are not necessarily local optima in 3-D.

Given the output of the classifier, a set of position candidates CH1 = {t1, . . . , t|CH1|} is
generated. If a fixed threshold θH1 is used and we select all t that satisfy p(m = 1|H(t)) >
θH1, we run into the problem that lots of candidates are generated at lymph nodes which
are clearly visible, but we do not get any candidates at lymph nodes which are hard to
see. To overcome this, we use a technique proposed in [Chen 09]. First, a probability
map is generated from the classifier output. This map is blurred using a Gaussian filter
with a standard deviation of 1.5 mm, and local maxima in the probability map are selected
as candidates. A standard deviation of 1.5 mm is a good compromise between a smooth
probability map and not losing more details about the classifier output than necessary. An
example of candidates extracted from the blurred probability map can be seen in Figure 6.7
along with the CT image data it was generated from.

Now, another PBT classifier is used to examine the position candidates in the set CH1

and to reject false positives, resulting in a set CH2 of candidates. Like the first one, the
second classifier again uses 3-D Haar-like features. The difference is that the negative
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examples for the training phase of this classifier are generated by scanning images using
the first classifier and collecting false positives.

This set CH2 of lymph node center point candidates is now used in two alternative
ways.

1. In the first way, the candidates are used to initialize either a detector that estimates
the lymph node bounding box. This is called “method A” and further explained in
section 6.5.

2. In the second way, lymph nodes are segmented, and the detected lymph node position
is used as seed. The resulting segmentation is used to verify the detection result. This
variant is called “method B” and explained in section 6.6.

6.5 Method A: Lymph node bounding box detection

6.5.1 Detecting the scale

So far, only the center point t of a lymph node was detected, but the size of the lymph
nodes was not taken into account. The classifiers for translation are trained with data of
different sizes. In this section, we are also interested in the size and want to find axes
aligned bounding boxes of the lymph nodes. The boxes b are parameterized by their center
t and size s:

b = (t, s) = (tx, ty, tz, sx, sy, sz). (6.11)

We again follow the idea of marginal space learning proposed in [Zhen 07]: Instead of
directly searching a high dimensional search space, which here consists of position t and
size s parameters, candidates of position are generated as described in section 6.4 using a
detector that is trained on a margin of the search space, which is spanned by t in this case.
A second detector trained to learn the probability p(m = 1|S(t, s)) of a lymph node at a
given position with a given size then only needs to consider the position candidates CH2,
leading to an enormous speedup. Here, S(t, s) denote steerable features (section 3.3)
evaluated at position t and size s. The sampling pattern is a regular grid of size 7× 7× 7
that is scaled and translated according to s and t.

6.5.2 Integrating the prior

Section 6.2 explained how a spatial prior p(m = 1|t) of lymphatic tissue can be modeled,
and sections 6.4 and 6.5.1 explained how lymph nodes are detected from their appearance
using discriminative learning techniques. In this section, the spatial prior and the discrimi-
native model are combined.

We start with integrating the prior into the position detection steps of section 6.4. This
can be done in a similar way as the translation score of esophagus detection was combined
with the probability map computed from the distribution of air in section 5.2.2. During
position detection, we are interested in the probability

p(m = 1|H , t) (6.12)
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of whether there is a lymph node at a given position t, with a given feature vector H . With
Bayes’ rule, (6.12) can be reformulated as

p(m = 1|H , t) =
p(H , t|m = 1)p(m = 1)

p(H , t)
. (6.13)

For simplification, we assume that the feature vector H is statistically independent from
the position t. This is an approximation as H obviously depends on t, but t determines
H only for a certain image. The assumption is justified by the fact that the spatial prior
clearly improves the performance as we will see, which means that H does not contain
much information about t.

Similar as in (5.12), (6.13) may now be transformed into

p(m = 1|H , t) =
p(H|m = 1)p(t|m = 1)p(m = 1)

p(H)p(t)
(6.14)

=
p(m = 1|H)p(m = 1|t)

p(m = 1)
, (6.15)

which is proportional to the product of (6.10) and the spatial prior p(m = 1|t) and is used
as final translation detection score. A blurred map of this score is visualized in Figure 6.7
(right).

Similarly, if also scale is incorporated and we are interested in the probability of having
a lymph node at a given position t with features H and S, it can be expressed as

p(m = 1|S,H , t) =
p(S,H , t|m = 1)p(m = 1)

p(S,H , t)
(6.16)

=
p(S|m = 1)p(H|m = 1)p(t|m = 1)p(m = 1)

p(S)p(H)p(t)
(6.17)

=
p(m = 1|S)p(m = 1|H)p(m = 1|t)

p2(m = 1)
. (6.18)

The step from (6.16) to (6.17) is valid under the assumption that the steerable features S
are statistically independent from the Haar-like features H and position t. The probability
(6.18) serves as final detection score. Based on it, a set

CS = {(t1, s1), . . . , (t400, s400)} (6.19)

that contains the 400 best translation and scale candidates is generated from the set CH2.

6.6 Method B: Joint detection and segmentation
Directly detecting bounding boxes is a standard approach for object detection problems
[Viol 01]. In case of lymph nodes, a segmentation contains valuable additional information
such as the volume or the shape of the node. Furthermore, a segmentation can even be used
to improve the quality of the detection result.

Standard features like Haar features or steerable features work well for a broad range
of applications. But better performance can be achieved using features that are that are
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designed for a particular problem. The idea is to not extract features at predefined locations
as, for instance, on a regular grid, but on the estimated object boundary, inside, and in the
neighborhood of the estimated object.

In this section, a set of problem-specific features is presented that is extracted from a
candidate segmentation. In general, the quality of the segmentation result will be good
if the segmentation was initialized with the center of a true lymph node, and otherwise it
will be poor. Therefore, the segmentation result can give a valuable hint of whether the
underlying detection is a true or a false positive. We use a variant of the graph cuts method
for seeded image segmentation [Boyk 03] to segment a lymph node given its detection.
Advantages of graph cuts are that the global optimum of the underlying cost function can
be computed efficiently, and at the same time, it is flexible enough to allow adapting it to
this particular problem, leading to a good performance.

In total, these segmentation based features are however computationally relatively ex-
pensive because the segmentation has to be carried out for every single candidate. There-
fore, these features are used in the final step of the detection cascade. To avoid having to
compute too many segmentations during test, an additional step is inserted into the detec-
tion cascade that reduces the number of position candidates CH2 generated by the second
cascade level. It uses so-called gradient-aligned features. These are point features that
are extracted at local maxima of the gradient magnitude. They are computationally less
expensive and explained in section 6.6.1 in more detail.

6.6.1 Verifying detections using gradient aligned features

In order to reduce the number of lymph node position candidates in the setCH2 (see section
6.4) that is generated by the second Haar feature based detector, the candidates are verified
by a detector that uses gradient-aligned features as proposed in [Barb 10].

Starting from the presumed center t of a lymph node, 14 rays are sent out in radial
direction such that tree rays are parallel to the axes of the coordinate system, three are an-
tiparallel, and the remaining eight hit the corners of an axes aligned cube placed at t. Each
ray is regularly sampled with a sample spacing of 1 mm. The image gradient magnitude is
computed for each sample, and local maxima of the gradient magnitude above a threshold
are detected along each ray. This is done for ten different threshold values, and not only on
the original image, but also on two coarser versions with a voxel spacing that is two times
and four times the original spacing, respectively. This resolution hierarchy is used to make
the features more robust to noise.

At each of the first three local maxima of each ray, 24 simple points features are com-
puted. These are the same point features that are also computed at each sample of the
steerable feature sampling pattern as described in section 6.5.1. The same point features
are computed halfway from the center t to each of the first three local optima, for each
ray. Next, the distance from the center to each of the first three local optima is used as a
feature. Finally, asymmetry is captured by measuring the differences of the distances of
corresponding local optima to the center for all pairs of different rays.

Now an AdaBoost classifier is trained to learn the probability p(m = 1|A(t)) of
whether there is a true lymph node (m = 1) given the gradient aligned feature vector
A extracted at position t. It is used to decide if a position candidate of set CH2 is a true
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Figure 6.8: Illustration of the graph of a 2-D 3× 3 image.

positive or a false positive. The set of candidates with the best classification score is kept
and denoted with CA.

6.6.2 Segmenting node-like structures using graph cuts
In this section, we adapt the graph cuts segmentation method to the problem of lymph nodes
segmentation. Graph cuts can be used as an all-purpose segmentation method, but the
performance can be considerably improved by using problem-specific seeds and weights.

We adapt graph cuts segmentation in two ways. First, we select the edge weights of the
graph according to boundary and object probabilities that are obtained from intensity and
joint intensity histograms extracted from manually segmented data.

Next, we propose a sphere shape prior that is well suited to segment blob-like nodal
structures. For approximately spherical objects, this prior solves at the same time a major
problem of graph cuts, which is the “small cut” behavior: When only few seeds are given,
the cheapest cut is often the one directly around the seeds.

At this point, we already have the center t ∈ CA of a detected lymph node candidate
from our previous detection steps. We consider a sub-image cropped from the original
volume image such that t is centered in the sub image. The size of the sub-image remains
fixed at 4× 4× 4 cm3. This is relatively large and ensures that almost all lymph nodes fit
into this window.

This sub-image is now converted into a graph representation. Each voxel is a node of
the graph, and neighboring voxels are connected based on a neighborhood criterion. In this
work, this is either a 6-neighborhood or a 26-neighborhood. A larger neighborhood leads
to a more complex graph and is computationally more expensive, but often leads to a more
accurate segmentation [Boyk 03]. There are furthermore two special nodes, the source and
the sink, that are directly connected to multiple voxel nodes. This graph topology is also
called s-t graph in the literature. Such a graph is illustrated in Figure 6.8 for a 2-D image
and a 4-neighborhood.

Each edge is associated with a capacity cij . The capacity between voxels i and j is
cij = βij if they are neighbored. The so-called unary capacities of the edges from the
source or to the sink are denoted by λi. The capacity csi from the source s to voxel i is
csi = λi if λi > 0, and csi = 0 otherwise. Likewise, the capacity cit from voxel i to the
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sink t is cit = −λi if λi < 0, and cit = 0 otherwise. Let N be the number of voxels
in the sub-image. Each voxel is associated with a label xi ∈ {0, 1} that is either one for
“foreground” or zero for “background”. The labels x = (x1 . . . xN) of all voxels define a
cut of the graph into two subgraphs with vertices

B = {s} ∪ {i|xi = 1} (6.20)
W = {t} ∪ {i|xi = 0}. (6.21)

The set B contains the source s and all voxels labeled with one, andW contains the sink
and all voxels labeled with zero. Such a cut is associated with a cost

C(x) =
∑
k∈B

∑
l∈W

ckl (6.22)

that equals the summed capacities of all cut edges. With the edge capacities defined above,
this cost is

C(x) =
N∑
i=1

xi max(0,−λi) +
N∑
i=1

(1− xi) max(0, λ) +
N∑
i=1

N∑
j=1

βijxi(1− xj). (6.23)

The first two sums in (6.23) are the cost of cutting the edges from the source or to the sink,
and the last sum is the cost of cutting the edges between voxels. The cost C(x) can be
minimized efficiently using min-cut/max flow algorithms, such as the algorithm proposed
in [Boyk 04], which was used in this work.

As shown in [Grei 89], in case of undirected edge weights βij = βji, minimizing the
cost C(x) and maximizing

argmin
x

C(x) = argmax
x

∑
i

λixi +
1

2

∑
ij

βijδ(xi, xj) (6.24)

the right hand side of (6.24) with

δ(a, b) =

{
1 : a = b
0 : otherwise (6.25)

yields the same solution x. In [Grei 89], the sum
∑

i λixi was interpreted as a log likelihood
function of the image intensities given the labels, and 1

2

∑
ij βijδ(xi, xj) was interpreted as

a prior of the labels. Then, optimizing (6.24) is a maximum a posteriori estimation of x.
Here, the edges between neighboring voxels are in general directed, and the function

that is maximized therefore slightly differs from (6.24). The cost (6.23) can be rewritten as

C(x) =
N∑
i=1

max(0, λi) +
N∑
i=1

xi [max(0,−λi)−max(0, λi)] +
N∑
i=1

N∑
j=1

βijxi(1− xj).

(6.26)
Because

∑N
i=1 max(0, λi) does not depend on x, and since

max(0,−λi)−max(0, λi) = −λi, (6.27)
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minimizing (6.26) is equivalent to maximizing

argmin
x

C(x) = argmax
x

N∑
i=1

xiλi −
N∑
i=1

N∑
j=1

βijxi(1− xj). (6.28)

As in [Grei 89], the sum
∑N

i=1 xiλi is interpreted as a log likelihood of conditionally
independent pixel intensities

ln p(I1 . . . IN |x) = ln
N∏
i=1

p(Ii|xi) (6.29)

that can be reformulated to

ln p(I1 . . . IN |x) = ln
N∏
i=1

p(Ii|xi = 1)xip(Ii|xi = 0)1−xi (6.30)

=
N∑
i=1

xi ln
p(Ii|xi = 1)

p(Ii|xi = 0)
+

N∑
i=1

ln p(Ii|xi = 0). (6.31)

If the unary capacities λi are set to ln p(Ii|xi = 1)/p(Ii|xi = 0), and if the prior p(x) of
the labels x is proportional to

p(x) ∝ exp

(
−

N∑
i=1

N∑
j=1

βijxi(1− xj)

)
, (6.32)

then (6.28) computes the MAP estimate of x.
Here, the unary capacity λi is set to

λi = ln
pu(xi = 1|Ii)

1− pu(xi = 1|Ii)
, (6.33)

which, except for u, equals ln p(Ii|xi = 1)/p(Ii|xi = 0) in case of equal priors p(xi =
0) = p(xi = 1). As the segmentation is initialized with detected lymph node candidates,
equal priors are a reasonnable assumption. The constant u is used to balance between the
influence of the unary and the binary capacities. It is set to u = 0.13 in the experiments.
The probability p(xi = 1|Ii) is estimated non-parametrically using a histogram.

A high βij value reflects that voxels i and j are likely to have the same label. A high λi
value means that, without knowing anything about its neighborhood, voxel i is more likely
to be foreground.

Since the center t of the sub-image is assumed to be the center of the lymph node, it is
used as positive seed and its λit value is set to∞. The boundary voxels of the sub-image
are marked as negative seeds and their unary capacities are set to −∞.

If all other unary capacities λi were set to zero, and all binary capacities βij to some
positive constant, then the cost of a cut would be proportional to its surface, and the smallest
cut that separates the source from the sink would simply separate the positive seed from its
direct neighbors (see Figure 6.9 left). This is also known as the small cut problem of graph
cuts [Sino 07]. In this special setting, the problem can be solved by simply adding a factor
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Figure 6.9: Left: The total flow through surfaces that separate the positive seed (+) from
the negative seeds (−), for instance concentric circles (spheres) centered at the positive
seed, is constant. If the unary edge weights λi are nonzero only at the seeds, and if βij is
constant for all edges between neighboring voxels i, j, then the cost of a cut is proportional
to its length (surface). Right: Illustration of p(outij). If the edge from voxel i to voxel j
points away from the center t (i. e. cosα ≈ 1), then it is likely to point in outward direction.

1
r2ij

to the capacities βij , were rij denotes the distance of the center point of the edge from
voxel i to voxel j to the positive seed at t. If the original capacities β′ij are constant and
βij = 1

r2ij
β′ij , then the integrated capacity K(r)

K(r) =
∑

(i,j)∈K(r)

βij (6.34)

over a sphere centered at t is nearly constant for different radii r (it is not exactly constant
because of discrete voxels). In (6.34), K(r) denotes the set of edges intersected by the
sphere centered at t with radius r. Now there is no bias any more toward a small cut.
Because of the smaller surface, spherical cuts are preferred over non-spherical cuts, which
is a desirable property for the purpose of segmenting a node-like structure. This method is
not only simple, is also comes at no additional computational costs.

Other shape priors have been proposed for graph cuts segmentation. In [Slab 05], a
prior for elliptic shapes was introduced. However, the segmentation must be solved iter-
atively. In [Funk 06], a method that favors cuts that are orthogonal to the line from the
current point to the center was proposed. This is effectively a prior for blob-like structures
but does not solve the small cut problem. A prior for star-shaped structures and also a bal-
loon force that corresponds to a certain boundary length was introduced in [Veks 08]. This
solves the small cut problem, but the balloon force is optimized iteratively. In [Das 09], the
same balloon force as in [Veks 08] is used together with a prior for compact shapes, but
there is no obvious extension of the shape prior to 3-D. [Wang 01] proposed to normalize
the cost of a cut by its boundary length. This solves the bias toward a small cut. However,
it also removes the bias toward a smooth surface and is therefore more prone to producing
leaking segmentations. Furthermore, the minimum cut / maximum flow based global opti-
mization technique of graph cuts is not applicable any more with this cost function and an
iterative optimization scheme is required.
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Motivated by (6.32), βij is based on the logarithm of the probability of observing the
object boundary between the voxels i and j. The range of the attenuation coefficients of
lymph nodes is restricted. This allows to estimate these probabilities according to intensity
histograms. Furthermore, βij should be set according to the distance of the edge from voxel
i to voxel j to the center t as pointed out above, and also according to the orientation of the
edge, the intensities at i and j and common intensity jumps at the border of lymph nodes
in order to use all available information. Here, it is set to

βij = − 1

r2ij
· 1

dij
ln [p(outij)p(xi = 1, xj = 0|Ii, Ij)] , (6.35)

where

p(outij) =
cosαij + 1

2
(6.36)

is the estimated probability that the edge from voxel i to voxel j is pointing in outward
direction. In (6.36), αij is the angle between the edge from i to j and the line from the
positive seed to the center of the edge. Thus, cosαij = 1 if the edge is pointing away
from the central seed, and cosαij = −1 if it is pointing toward the center. See Figure 6.9
(right) for an illustration. The term p(xi = 1, xj = 0|Ii, Ij) denotes the probability of
observing the object boundary between the adjacent voxels i and j given the intensity Ii of
the voxel that is assumed to be inside and Ij of the voxel that it assumed to be outside the
segmentation. The term dij in (6.35) denotes the Euclidean distance of the voxels i and j.
It is relevant when a neighborhood system is used that does not only include the six direct
neighbors.

Using directed capacities βij allows to incorporate additional knowledge about the ob-
ject boundary. If the edge from voxel i to j is pointing in inward direction, then p(outij) =
0 and therefore βij = ∞. It models that the interior of the lymph node is expected to be
closer to the center than the exterior of the node. If both p(outij) = 1 and p(xi = 1, xj =
0|Ii, Ij) = 1, then βij = 0, meaning that cutting this edge comes at no costs.

In (6.35), p(xi = 1, xj = 0|Ii, Ij) can be expressed as

p(xi = 1, xj = 0|Ii, Ij) =
p(xi = 1, xj = 0, Ii, Ij)

p(Ii, Ij)
. (6.37)

Both p(xi = 1, xj = 0, Ii, Ij) and p(Ii, Ij) are estimated non-parametrically using joint
intensity histograms. p(Ii, Ij) is set to the number of neighboring voxels with intensities Ii
and Ij divided by the number of neighboring voxels. This histogram is denseley populated
due to the huge number of training samples. p(xi = 1, xj = 0, Ii, Ij) is computed by first
counting the number of neighboring voxels with the properties that voxel i is inside a lymph
node and has an intensity of Ii, and voxel j is outside any lymph node and has an intensity
of Ij , and then dividing this number by the number of neighboring voxels. However, p(xi =
1, xj = 0, Ii, Ij) is sparse because of a limited number of training examples of points on
the boundary of lymph nodes. Therefore, p(xi = 1, xj = 0|Ii, Ij) is smoothed with a
Gaussian filter with σ = 40 HU, which is effectively a Parzen estimation. Figure 6.10
shows the estimated probability p(xi = 1, xj = 0|Ii, Ij). All histograms have 400 equally
spaced bins in each dimension, where the lowest bin corresponds to -1024 HU and each
bin is 4 HU wide.
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Figure 6.10: Estimate of the probability p(xi = 1, xj = 0|Ii, Ij). It is asymmetric because
the interior of a lymph node has usually a higher attenuation coefficient than its surround-
ings.

6.6.3 Segmentation based features
We now have the candidate segmentation that was initialized with the detected lymph node
center t. As final stage in the detection cascade, an AdaBoost classifier is trained with
features extracted from the segmentation to learn whether t is a true lymph node or a false
detection.

The first kind of features is histogram based: Given a binary segmentation mask image,
a hierarchy of normalized histograms of the intensity values inside the segmentation is
computed. The histogram at the first level has 256 bins. Each bin is one Hounsfield unit
wide, and the first bin corresponds to -128 HU. Lymph nodes typically fall into this range
of HU values. At the next level, the number of bins is halved, and the width of each bin is
doubled, which is why the number of bins in the original level is a power of two. In total,
seven levels are used. The frequency of each bin of each pyramid level is a scalar feature.

The second kind of features are again based on a hierarchy of histograms, but the
histograms are now computed from the 3 mm wide neighborhood of the segmentation.
The neighborhood is determined using morphological operations. Additionally, we use the
second, third and fourth central moments of the histograms both inside and outside the
segmentation.

Next, 100 points are randomly sampled from the surface of the segmentation. As pro-
posed in [Barb 10], the gradient is computed at each point, and the points are sorted by
their gradient magnitude. The sorting is necessary to enumerate the points. At each point,
the normal to the surface is computed, and the normal is sampled at seven positions with
a spacing of 1 mm between the samples. At each sample, steerable features are computed.
All scalar features at all samples at all normals at all points are added to the feature pool.

Furthermore, features are used that capture the relative position of the lymph node
center t within the tight axes aligned bounding box of the segmentation. A relative position
t′ of t inside this box is computed that is normalized to lie in [−0.5, 0.5] for each dimension.
A value of 0 indicates that t′ is centered, and values of −0.5 and 0.5 indicate that t′ lies
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on the bounding box wall in this dimension. The minimum relative distance to any wall
of the box, the difference of the maximum and the minimum distance to any wall, and the
relative distance averaged over the three dimensions are used as features.

Finally, the volume, the surface, the sphericity, the maximum flow value and the maxi-
mum flow divided by the surface are used. In total, the feature pool contains 51436 features.
The vector containing these features extracted at position t is denoted with D(t).

As in section 6.6.1, an AdaBoost classifier is used to select a small subset of the feature
pool and is trained to learn the probability p(m = 1|D(t)) of whether t is a true lymph
node and not a false positive given the segmentation based features. Note that, apart from
the maximum flow features, the described feature set does not depend on the segmentation
method and can therefore also be used in combination with other segmentation techniques,
as described in the following section.

6.6.4 Alternative segmentation methods

In section 6.6.2, a graph cuts based segmentation method was presented that was specially
designed for the problem of lymph nodes segmentation.

It is however interesting to see how the detection performance is affected if this graph
cuts based segmentation method is replaced with a simpler segmentation method. We
therefore also use both graph cuts with standard weights and a watershed based segmen-
tation method as a baseline. Features extracted from these segmentations are used in the
same way as described in section 6.6.3 to train a classifier to distinguish true positives and
false positives.

Graph cuts with standard weights

It is popular in the literature [Boyk 06] to use graph cuts segmentation with unary weights

λi = 0 (6.38)

set to zero for all voxels i except for the seeds. This means that no prior knowledge about
the foreground or background intensities is available and is therefore not specific to a cer-
tain problem. The binary edge weight βij from voxel i to voxel j is commonly set to

βij = exp

(
−(Ii − Ij)2

2σ2
β

)
, (6.39)

where σβ is a constant that is typically set according to the noisiness of the input data.
These weights are symmetric and simply mean that the object boundary is probably at im-
age intensity jumps. The effect of a low value of σβ is that the edge capacities βij quickly
approach zero already at moderate intensity jumps. The cut is then more susceptible to
noise, and also numeric problems can arise. If on the other hand σβ is set to a high value,
cuts at intensity jumps are more likely, and the surface of the cut becomes more impor-
tant. As a result, the method is more prone to the small cut problem. Unless mentioned
otherwise, we use a value of σβ = 16 HU, which is a good compromise.
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Hierarchical watershed segmentation

The watershed transformation [Beuc 92] is another popular low level method for image
segmentation.

In order to enhance relevant edges, the input image is windowed with a soft tissue
window (center: 16 HU, width: 400 HU). An edge image E is generated by computing
the gradient magnitude of the windowed image IW . To reduce the susceptibility to noise,
the gradients are computed by convolving the image with the first derivatives of a 3-D
Gaussian g with a standard deviation of 2 mm in each direction:

E(t) = ‖∇g(t) ∗ IW (t)‖2 with∇g(t) ∈ R3. (6.40)

The convolution in (6.40) is carried out component-wise.
In this work, we use an hierarchical segmentation method [Beuc 94]. In the first step, it

generates a very oversegmented mosaic image using the standard watershed transform of
the edge image E. In order to reduce the number of watershed regions that are generated
in this first step, E is thresholded: Voxels below a threshold θWS are set to θWS. Local
minima of E serve as seeds in the watershed transform, and the effect of the thresholding
is that seeds are merged if they are close to each other and have a low absolute value. The
threshold θWS is set to 0.01emax, where emax is the maximum value that occurs in the edge
image E.

In the next step, segmentations with different “flooding levels” lWS are generated by
merging neighboring watershed regions. The higher lWS is, the more regions are merged,
and the less oversegmented is the resulting segmentation. lWS is a relative value in the
range of [0, 1]. A value of zero means that no regions are merged, and one means that all
regions are merged into a single one. It corresponds to an absolute flooding level LWS with

LWS = lWSemax. (6.41)

Region A floods region B of the edge image (i. e. A and B are merged) at level LWS if the
relative depth of region A is lower than LWS and region B is across the lowest part of the
boundary of region A. The relative depth of a region in the edge image is here the lowest
value on the region boundary minus the lowest value in the region. In this work, we use two
levels with lWS = 0.1 and lWS = 0.2. Example segmentations can be seen in Figure 6.11.

The segmentation based features D(t) are now extracted from the region that contains
the center t of the detected lymph node that is to be verified. Note that, in contrast to the
graph cuts method, neither the segmentation nor the segmentation based features as de-
scribed in section 6.6.3 depend on the location of t within the region, apart from the three
features that capture the relative position of t inside the bounding box of the segmenta-
tion. Therefore, the segmentation of the whole image region of interest is precomputed.
Furthermore, the computed features of a region are cached. Thus, they do not need to be
recomputed if another lymph node is verified whose center falls into the same region.

6.6.5 Combining clues from alternative segmentations
Instead of only using different segmentation methods alternatively, we also explored if the
performance of the system can be improved by combining different segmentations. Even
though our proposed segmentation method described in section 6.6.2 is already tuned to
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(a) (b)

(c) (d)

Figure 6.11: Example of a slice of a 3-D hierarchical watershed segmentation. (a): An axial
slice of a CT volume. (b): Manual ground truth segmentations of lymph nodes (green). (c-
d): Slices of two 3-D watershed segmentations with flooding levels lWS of 0.1 (c) and 0.2
(d). The image intensity of each region is randomly chosen.
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the problem of lymph nodes segmentation, it is possible that segmentations generated with
simpler methods still contain valuable information that helps to distinguish true lymph
nodes from false alarms.

Here, different segmentation methods are initialized with the center of a lymph node
detection. The features described in section 6.6.3 are extracted from all segmentations and
added to a common feature pool. For instance, if the proposed graph cuts segmentation
method is combined with two hierarchy levels of the hierarchical watershed segmentation,
three alternative segmentations are generated, and the number of features will be three
times larger compared to when only a single segmentation is used. It can also be viewed
as treating the type of the segmentation method as a feature.

If NS different segmentation methods are combined, the new feature vector

Dcombined(t) = (D1(t), . . . ,DNS(t)) (6.42)

is simply the concatenation of the vectors extracted form the single segmentations. The
classifier is then trained on the joint feature pool to learn

p(m = 1|Dcombined(t)) (6.43)

the probability of whether there is a true lymph node given the joint features of the seg-
mentations initialized with the presumed lymph node center t.

6.6.6 Integrating the prior

Section 6.5.2 already explained how the score of the detectors in branch A of the detection
pipeline is combined with the spatial prior probability p(m = 1|t) of observing lymphatic
tissue at a certain location t. The prior can be integrated into branch B of the pipeline in a
similar way.

In contrast to method A where the scale was detected directly, now our object param-
eters are simply the center t of a lymph node, and the search space of all detectors in the
detection pipeline is t. As the scores of the different translation detectors are very depen-
dent, and the scores of the first detectors are implicitly contained in the scores of the later
ones because weak candidates are rejected at early and intermediate levels, we only use the
score of the last detector to compute the final score. This final score is then the probability

p(m = 1|D, t) (6.44)

of observing a lymph node given the segmentation based features D and the position t.
Similar as in section 6.5.2, we make the simplifying assumption that the segmentation
based features D are statistically independent from the position t. Under this assumption,
(6.44) can be rewritten as in (6.14) and is

p(m = 1|D, t) =
p(m = 1|D)p(m = 1|t)

p(m = 1)
(6.45)

proportional to the product of the spatial prior and the segmentation feature based detection
score p(m = 1|D).
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6.7 Results

The proposed methods have been evaluated on 54 CT datasets showing the chest area. All
scans were taken from patients suffering from lymphoma. The slice spacing was 1 mm,
and the intra-slice resolution was typically in the range between 0.7 mm and 0.9 mm. The
images were reconstructed using a soft-tissue kernel.

All datasets were resampled to an isotropic 1 × 1 × 1mm3 resolution. The mediasti-
nal lymph nodes were manually segmented by a medical student and the author, and the
segmentations were reviewed by a radiologist.

The detection performance was evaluated using threefold cross-validation. For each
fold, the spatial prior, the classifiers and the graph cuts weights for the segmentation were
trained on the training data and evaluated on the test data. The classifiers were only trained
on lymph nodes that have a minimum size of 10 mm in at least two dimensions. Smaller
lymph nodes are usually not pathologic [Lang 06] and were therefore neglected. The set of
manual segmentations contained six huge cases with a size exceeding 5 cm. These were
mostly not single nodes but a cluster of lymph nodes that were densely packed so that the
boundaries became invisible in the acquired CT scan. Such cases were removed from the
training set in order not to distract the detector with few extreme examples. Among the
segmented lymph nodes, 289 were used for training. In order to achieve a better gener-
alization and to avoid overfitting, the training data was mirrored by all three coordinate
planes, resulting in 23 = 8 times more training examples. For testing, only the original
data was used.

In the testing phase, a lymph node is considered as detected if the center t of a detection
is inside the tight axis-aligned bounding box of the lymph node. This criterion for a true
positive detection is referred to as “in box”. A lymph node is considered as a false negative
(FN) if its size is at least 10 mm and it is not detected.

Occasionally, two or more detections are close together. In order to reduce the number
of such double detections, the detected centers are spatially clustered and merged. Two
detections are merged if their distance is below a distance threshold θd. The confidence
value of the merged detection is set to the sum of the original ones. In method A, the
threshold θd was set to 12 mm. Method B performed better with a lower threshold of
6 mm.

The way positive and negative training samples are generated considerably affects the
detection performance. The problem with positive training examples is that the manual
lymph node segmentations are often not convex. The main reason is that it is often not
decidable where one lymph node ends and another one begins because there is no visible
boundary. The straightforward approach would be to take the point of gravity or the center
of the bounding box as positive example. However, this point is often close to the lymph
node boundary or even outside the actual node. As a solution, a depth map is computed for
each ground truth lymph node. The map contains the shortest distance to the surface for
each voxel. Local maxima of the depth map that have a minimum distance of 2 mm from
the surface are selected as positive training samples.

The negative training samples of the first stage are generated by randomly sampling the
training images, but no candidates are generated inside ground truth lymph nodes and in
regions where the spatial prior has a value of zero because these regions are not considered
during test. This avoids confusing the detector with data it will never see in the testing
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Classifier features tree levels weak class. candidates
Stage 1 Haar 2 20 not fixed
Stage 2 Haar 2 20 2000
Stage 3 A Steerable 2 20 400
Stage 3 B Gradient aligned 1 270 200
Stage 4 B Segmentation based 1 270 100

Table 6.1: Features and parameter settings of the classifiers of the detection pipeline: The
number of levels in the PBT classifier, the number of weak classifier per AdaBoost node,
and the number of detection candidates generated at each stage. In stage three and four of
method B, only a single AdaBoost classifier is used.

phase. In later stages, the negative training examples always come from the false posi-
tive detections of the previous stage. Thus, the classifiers get specialized on the difficult
examples.

Table 6.1 lists the parameter settings and the feature types of the classifiers in the de-
tection pipeline that were used in the experiments, unless otherwise mentioned.

Comparing method A and method B. The detection performance of method B is
visualized in Figure 6.12 (a) as a free-response receiver operating characteristic (FROC)
curve (green). Segmentation based features were extracted from a graph cuts segmentation
with edge weights adapted to lymph nodes as described in section 6.6.2. Each voxel in the
graph was directly connected to six neighbors (6 nb.). This was compared to method A,
where the last two stages of the detection cascade, the gradient-aligned and segmentation
based detectors, are replaced with a scale detector that used steerable features (red curve).
When a fixed amount of false alarms is allowed, method B reaches a higher recall. For four
false positives per volume, the detection rate of method B is 0.57 and by 33% better than
the detection rate of 0.43 of method A. For seven false positives per volume, the detection
rate of method B is 0.61 and by 20% better than method A.

Influence of the graph neighborhood size. Next, we examined how the size of
the graph neighborhood in the segmentation step affects the detection performance (Fig-
ure 6.12 (b)). The two curves show the detection performance with a 6-neighborhood and
a 26-neighborhood. The performance is very similar, indicating that the neighborhood size
does not significantly affect the detection rate. However, we noticed that a larger neighbor-
hood leads to smoother segmentations.

Influence of the number and the type of alternative segmentations. Figure 6.12 (c)
shows how the segmentation method used in stage four of the cascade affects the detection
performance. The performance of our proposed graph cuts segmentation method is shown
in red. The blue curve shows the performance of a graph cuts segmentation with stan-
dard weights as described in section 6.6.4. Apart from evaluating alternative segmentation
methods, we also did experiments with combined segmentations (see section 6.6.5). First,
we use two watershed segmentations with different flooding level thresholds lWS = 0.1 and
lWS = 0.2 (see section 6.6.4). Given a detected lymph node center candidate t, the segmen-
tation based features are extracted two times, once for each segmentation. The resulting
feature vectors are called D

(0.1)
WS (t) and D

(0.2)
WS (t). In both cases, the features are extracted
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Figure 6.12: Detection performance of different methods and different parameter settings.
(a): Comparison of method A with method B with the proposed graph cuts (GC) segmenta-
tion method and a 6-neighborhood. (b): Influence of the neighborhood size. (c): Influence
of the segmentation method that is either the proposed one (red), watershed (green), graph
cuts with standard weights (blue), or both watershed and the proposed graph cuts method
(violet). (d): Performance at different stages of the cascade of method B. (e): Effect of
using different prior types. (f): Influence of the threshold used for clustering. See text for
further details.
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from the region that contains t. The green curve shows the performance of a detector that
is trained on the combined feature pool

DWS(t) =
(
D

(0.1)
WS (t),D

(0.2)
WS (t)

)T
. (6.46)

Next, we combined the features DWS(t) of the two watershed segmentations with features
DGC(t) extracted from our proposed graph cuts segmentation into a feature vector

DWS,GC(t) = (DWS(t),DGC(t))T . (6.47)

The resulting detection performance is shown as pink curve. Results indicate that the detec-
tion performs better if the features are extracted from the proposed graph cuts segmentation
instead of a standard graph cuts segmentation or a hierarchical watershed segmentation.
But surprisingly, the detection performance does not further increase if both the graph cut
and the hierarchical watershed segmentation are taken into account, indicating that the wa-
tershed segmentation does not contain a significant amount of additional information if the
graph cuts segmentation is known.

Performance at different pipeline stages. Figure 6.12 (d) shows the detection per-
formance at different levels of the cascade (see Figure 6.2). When four false alarms per
volume image are allowed, the detection rates at stages one to four are 0.15, 0.31, 0.43 and
0.57. The performance improves considerably from stage to stage. In particular, the final
segmentation based verification step clearly improves the detection performance.

Influence of the spatial prior. In order to examine how the type of the spatial prior
affects the overall detection performance, the system was evaluated with the four different
variants explained in section 6.2. The results are shown in Figure 6.12 (e). If no spatial
prior is used (red curve), there is a large amount of false alarms among the detections, lead-
ing to a poor performance. Using a binary spatial prior (see eq. (6.2)) that excludes organs
and regions filled with air from search slightly improves the detection performance (green
curve). Using the “global” prior (see eq. (6.4)) that is a product of the binary prior and a
probabilistic atlas greatly reduces the amount of false alarms (blue curve). When compared
to using no spatial prior, the detection rate rises from 0.21 to 0.57 at four false alarms per
volume, which corresponds to an increase of 171%. This demonstrates the importance of
including prior anatomical knowledge in order to solve this challenging detection problem.
When the more complicated “combined” prior is used (violet curve) that is a combination
of multiple probabilistic atlases (see eq. (6.8)), the detection performance does not further
increase. We therefore propose using the simpler “global” prior in order not to introduce
unnecessary complexity.

Effect of clustering. In Figure 6.12 (f), the detection performance of our proposed
method is shown for different values of the parameter θd that is the distance threshold up
to which close detection candidates are merged. Each curve in Figure 6.12 (f) corresponds
to a different number of allowed false alarms and therefore to a certain point on the FROC
curve. It can be seen that when three or more false alarms are allowed, a moderate value of
θd in the range of 2 mm to 10 mm leads to a better detection performance. The performance
degrades for higher values of θd because then more and more detections are merged that
belong to different lymph nodes.

Table 6.2 lists image databases that were used for evaluation in prior and this work,
and Table 6.3 shows a comparison of the detection performances reported in prior work
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Database Body region num. vol. size/mm
Kitasaka et al. [Kita 07] Abdomen 5 > 5.0

Feuerstein et al. [Feue 09] Mediastinum 5 > 1.5
Dornheim [Dorn 08] Neck 1 > 8.0
Barbu et al. [Barb 10] Axillary 101 >10.0

This work Mediastinum 54 >10.0
Intra-obs. var. Mediastinum 10 >10.0

Table 6.2: Databases used for evaluation in prior and this work along with minimum size
of a false negative lymph node.

Method TP crit. TP FP FN TPR FP per vol.
Kitasaka et al. [Kita 07] overlap 126 290 95 57.0% 58

Feuerstein et al. [Feue 09] overlap 87 567 19 82.1% 113
Dornheim [Dorn 08] unknown 29 9 0 100% 9
Barbu et al. [Barb 10] in box 298 101 64 82.3% 1.0

This method in box 153 167 136 52.9% 3.1
This method in box 176 332 113 60.9% 6.1

Intra-obs. var. in box 23 8 19 54.8% 0.8

Table 6.3: Detection results compared to state of the art methods. The second column lists
the criterion for a true positive detection. See text for details.

along with the performance of our method. The comparability, however, is limited because
of different data, different criterions for a detection, different body regions and different
minimum lymph node sizes used for evaluation. In [Kita 07] and [Feue 09], a lymph node
is considered as detected if there is overlap between the segmentation and the detection.
Here, this criterion is called “overlap”. This error measure is however a suboptimal choice
because a single huge detection covering the whole volume would result in a true posi-
tive rate (TPR) of 100% with zero FP, although the detection is obviously meaningless.
Therefore, we measured the performance with the “in box” criterion mentioned earlier in
this section (section 6.7). Both [Kita 07] and [Feue 09] report a very high number of false
alarms. In [Dorn 08], very good results are reported, but the method was evaluated on a
single dataset. In [Barb 10], good results are reported for the axillary region. Lymph nodes
in the axillary regions are however easier to detect because they are mostly isolated in fat
tissue and less surrounded by clutter as in the mediastinal region.

In order to compare the automatic detection results with the performance of a human,
we did an experiment on the intra-human observer variability. Ten of the CT volumes were
annotated a second time by the same person a few months later. The first segmentations
served as ground truth, and the second ones were considered as detections. TPR and FP
were measured in the same way as for the automatic detection. The TPR was 54.8% with
0.8 false positives per volume on average. While 0.8 FP is very low, a TPR of 54.8% shows
that finding lymph nodes in CT is quite challenging also for humans. Figure 6.13 shows
the first and the second segmentations for one of the ten datasets.

The computational requirements of the proposed methods are shown in Table 6.4. They
were measured on a standard dual core PC with 2.67 GHz. Detecting the landmarks takes
7.0 s, and segmenting the heart and the esophagus takes 20.7 s. The proposed “global”
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Figure 6.13: Two manual segmentations from the same person. Segmentations of a color
were done in one session, and the second session took place several months after the first.

Landmark detection 7.0

organ segmentation 20.7

computing the prior
2.9 / 34.4

(„global“, eq. (6.4) / “combined“, eq. (6.8))

detection (method A) 19.1

detection and segmentation (method B,
26.0 / 75.2

6-neighborhood / 26-neighborhood)

total (method A / method B, 6-neighborhood / 56.6 / 105.8 / 49.7
method B, 26-neighborhood)

Table 6.4: Computational requirements of the single steps of the presented methods in
seconds
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prior (type 3) takes 2.9 s to compute and is computationally far less expensive than com-
puting the more complicated “combined” prior (type 4) that takes 34.4 s. Detecting and
segmenting the lymph nodes takes 26.0 s if method B and the proposed graph cuts seg-
mentation with a 6-neighborhood system is used. With a 26-neighborhood, this step takes
considerably longer (75.2 s). Detecting the lymph nodes using method A takes 19.1 s.
Here, no segmentation is performed. In total, detecting and segmenting the lymph nodes
from a CT volume image using method B takes less than a minute (56.6 s) or 1 min 46 s
depending on the neighborhood system. Detection using method A is faster (49.7 s) but
less accurate, and the lymph nodes are not segmented.

Figure 6.14 shows example detections on unseen data. The second column shows de-
tection results of method B along with the corresponding segmentations that were gen-
erated using the proposed graph cuts method and a 26-neighborhood. The small boxes
indicate the center of a detected lymph node. Some segmentations do not have a visible
detection because it lies in another slice. Bounding boxes detected by method A are shown
in the third column for comparison. The manual ground truth segmentations are shown in
the fourth column. In rows (a-e), method B properly detected and segmented the lymph
nodes (second column). Row (f) shows examples of false positive detections. False posi-
tives lie especially on vessels, which can look similar to lymph nodes. Method A detects
the clearly visible lymph nodes and some of the less clearly visible ones (fourth column).
There are generally more false alarms compared to method B, even though the false alarms
mostly have a lower detection score than the true positives.

Figure 6.15 shows 2-D slices of three example segmentations that were manually ini-
tialized with the same seed. In subfigure (a) and (b), the segmentation was done using graph
cuts and standard weights (see eq. (6.38) and (6.39)). In (a), the parameter σβ was set to
32 HU, and in (b), it was set to σβ = 16 HU. A high value of σβ allows voxel pairs across
the object boundary that have a more similar attenuation coefficient. Thus, the surface of
the cut becomes more important, and the segmentation is more likely to collapse. If, on the
other hand, σβ is set to a high value, the image is more likely to be cut at locations with a
high gradient magnitude. However, the surface of the cut becomes less important, which
can cause the segmentation to leak into neighboring structures. Subfigure (c) shows the
segmentation result of our proposed segmentation method. The radial weighting prevents
the segmentation from collapsing. But rugged segmentations are still penalized because of
their larger surface. Thus, blob-like cuts are preferred, and the segmentation is less likely
to leak into other structures. The neighborhood size is 26 in all three cases.

6.8 Conclusion
We have presented a method that automatically detects mediastinal lymph nodes in 3-D
CT image data, which is a challenging problem due to low contrast to surrounding struc-
tures and clutter. We approach the problem from two sides: First, we heavily rely on prior
anatomical knowledge, which is modeled as a spatial prior probability and learned from
annotated data. A simpler “global” prior that makes use of a single probabilistic atlas is
compared to a more complex “combined” prior that is a mixture of local and global atlases
and designed to be less susceptible to anatomical variations. Next, this is combined with
a discriminative model of the lymph node appearance. A detector is trained that consists
of multiple classifiers that are used in a cascade. In the first stages of the cascade, a set of
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.14: Detection and segmentation examples on unseen data shown in 2-D. First
column: Plain CT slices. Second column: Detections (small colored boxes) and resulting
segmentations (red) of method B. Third column: Bounding boxes detected by method A. In
both columns, the detection score is color coded in HSV color space. Violet means lowest,
red means highest score. Fourth column: Manual ground truth segmentations (green).
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(a) (b) (c)

Figure 6.15: Manually initialized segmentations with different edge capacities. (a): Stan-
dard graph cuts weights with σβ = 32 HU. (b): σβ = 16 HU. (c): Proposed graph cuts
segmentation method.

lymph node center candidates is generated. Two variants for the later stages are compared:
In method A, a classifier is trained using regularly sampled point features (“steerable fea-
tures”) to detect the bounding box of a lymph node given its center point. In method B,
the detected center point serves as seed for segmenting the lymph node. A feature set is
proposed that is extracted from the segmentation. It is used to train a classifier to learn
whether the detected lymph node is a true or a false positive. Thus, the segmentation helps
to improve the detection performance by rejecting false alarms. We propose to segment the
lymph nodes using a graph cuts based semiautomatic segmentation method for blob-like
structures that requires a single seed point as input. This is compared to standard graph
cuts and also to a watershed segmentation.

Evaluation on 54 datasets showed that the spatial prior greatly improves the detection
performance. When a fixed number of false alarms is allowed, the detection rate is well
more than doubled when a prior is used. It also turned out that the simpler “global” prior
leads to a similar detection performance as the more complicated “combined” prior. We
therefore propose using the simpler one that can also be computed about twelve times
faster. The experiments further showed that the segmentation based verification step of
method B considerably reduces the number of false alarms. Compared to method A, the
detection rate of method B is 33% better if four false alarms per volume image are allowed.
The best detection performance was achieved using the proposed graph cuts based segmen-
tation method. Interestingly, the detection performance could not further be improved by
generating additional watershed candidate segmentations for a detected lymph node center
and joining the features from all segmentations. This indicates that the additional segmen-
tations do not contain additional information about whether the detection is a true lymph
node or not.

The proposed method B can detect and segment lymph nodes with a TPR of 52.0% at
the cost of 3.1 FP per volume image and with a TPR of 60.9% at 6.1 FP per volume within
56.6 s. This TPR is similar to the intra-observer variability of a human that has a TPR of
54.8% with, however, only 0.8 FP per volume.
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Outlook

In this work, we solved various discriminative learning problems with boosting techniques.
We either employed AdaBoost directly, or in the form of a probabilistic boosting tree that
consists of multiple AdaBoost classifiers. Even though AdaBoost is a very powerful clas-
sification technique that is not very prone to overfitting, it is known that overfitting can
occur if there are incorrectly labeled samples among the training data, or if the posi-
tive and negative samples are very similar in the space of the features used for training
[Diet 00, Rtsc 01, Serv 03]. This is especially a problem for lymph node detection because
of similar looking other structures. At the later stages of the detection cascade, the positive
and the negative training samples are already very similar. Probabilistic boosting trees are
more prone to overfitting than simple AdaBoost [Tu 05] and have furthermore the problem
that differences in the detection scores often tell little about differences in the quality of
the actual detections. It is therefore worth considering to replace some of the classifiers
in this work with other classifiers, for instance random forests. Another option is using
regularization techniques for AdaBoost as proposed in [Rtsc 01].

We currently rely on supervised learning techniques. Even though they work well, a
major disadvantage is that they require a large amount of labeled training data. Dozens,
better hundreds of training examples need to be labeled manually to achieve a good de-
tection performance. In future work, it is worth exploring semi-supervised learning tech-
niques [Chap 06, Zhu 09] to reduce the need for a large amount of manual annotations, even
though this introduces the risk of generating wrong training examples that can confuse the
detector.

Another promising research direction in future work is online learning techniques. On-
line learning means that a classifier is not trained once and then used for testing without
further modifications, but can be modified. New training examples can be inserted at any
time. While this is typically used to save training time when new training data becomes
available, or to adapt a classifier to a special environment, for instance, a speaker in auto-
matic speech recognition, it can also be used to adapt a detector to a certain person and a
particular disease of that person. Currently, a major problem of supervised learning tech-
niques for medical image analysis is the performance on pathologic data. Automatic object
detection works well if different instances of the object of interest look similar. In case of
pathologies, this is typically not the case. The reason is that there is a very wide spectrum
of possible pathologies in the human body. For instance, a healthy esophagus is typically
small in diameter, and occasionally appears filled with air and small amounts of contrast
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agent. In case of achalasia, the esophagus is however greatly dilated. On CT images, it can
appear completely filled with orally given contrast agent. It may also appear differently
due to an intervention. A common therapy of esophageal cancer includes resecting parts
of the esophagus. The resected tissue is then replaced with intestine tissue or parts of the
stomach. The result may appear differently in CT images depending on which portion is
resected and how it is replaced. However, parts of the same pathologic esophagus often
look similar. Once a part of a pathologic esophagus has been detected with a sufficient
confidence, the detector can be trained online with this part and look for similar sections in
the same volume image. The same technique can also be applied for lesion detection. For
instance, while there is a broad spectrum of different liver lesions, the lesions within a cer-
tain image often look similar. A detected lesion can be used to retrain the detector, which
then would have a better performance on the remaining lesions in that image. Conceivable
is also an interactive setting with a suitable user interface, where the user manually labels
a few lesions in an image, and the detector is retrained to find similar ones.

In chapter 4, we proposed an N -dimensional SURF descriptor. In future work, this
descriptor can be applied to other imaging problems. A possible application is finding
point correspondences in volumetric data. Many image registration methods only work
if the images to be registered are already approximately aligned. The descriptors can be
used for an initial landmark based registration. They can also be used for finding point
correspondences and for a landmark based registration of 4-D image data, for instance in
3-D+t volumetric videos. An interesting application of quantized 3-D descriptors is finding
motion patterns in 2-D+t video data as done in [Scov 07] with 3-D SIFT descriptors. For
instance, it might turn out that a certain hand movement or a turn of the head correspond
to certain visual words. This could be used for motion recognition, but also for improving
body part recognition in videos. Again, the same can be done with 3-D+t video data, like,
for instance, 3-D cardiac ultrasound videos. It might turn out that pathologies that are
correlated with certain motion patterns correspond to a particular set of visual words.

Concerning esophagus segmentation, the method presented in chapter 5 approximates
the esophagus contour in cross-sectional slices first using ellipses. Then, the ellipse as-
sumption is abandoned, and the first estimate of the esophagus surface is non-rigidly re-
fined. In the refinement step, the only shape knowledge that is incorporated is that the
esophagus surface is smooth. In future work, this smoothness assumption can be replaced
with a statistical shape model.

In the path inference step of the esophagus segmentation method, shape knowledge
is modeled using a Markov chain. However, it models the ellipse transitions between
neighboring slices and therefore only the local shape. The lower part of the esophagus is
usually curved in ventral direction, while the upper part is less curved. This information
cannot be captured with a local model. Future work on esophagus segmentation could
replace this local shape model with a global one to include this kind of knowledge, even
though this can increase the computational requirements because Markov models can be
solved very efficiently. To keep the computational requirements tractable, the global shape
model could be combined with a voting scheme: Esophagus segments detected in an initial
step can vote for one or multiple instances of global esophagus shapes that fit to the detected
segment.

The esophagus segmentation method presented in this work is not very specific to the
esophagus. Apart from the explicit model of esophageal air, it is a method for detecting and
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segmenting a relatively straight tubular structure. It can also be applied to other problems in
medical imaging, for instance, segmenting non-bifurcated sections of vessels or the spinal
channel.

Concerning the presented lymph node detection method, an option for future work
would be to better handle size differences by training a single detector on multiple image
scales such that the positive training examples always appear to the detector in the same
size. During test, a resolution hierarchy is generated form an input image, and the detector
is run on each hierarchy level. A detection at the coarsest level indicates a detected big
lymph node, and a detection at the finest level a small lymph node. This technique was, for
instance, used in [Chen 09]. Its effect is this that the class of the positive samples becomes
more compact in the sense that is covers a smaller volume in the feature space, which
simplifies the learning problem.

A further interesting research direction concerns the segmentation step of the presented
lymph node detection method. In a variant of the detection method, a number of alternative
segmentations are generated for each detection candidate. The purpose of these multiple
segmentations, however, is only to improve the detection performance. We observed that
the graph cuts segmentation with special weights (see section 6.6.2) generally produces the
best results that are therefore selected as final segmentations. But it is also on option to
compute the final segmentation S from multiple candidate segmentations S1, . . . , SNS , for
instance, by learning a function

f : S1, . . . , SNS 7→ S (7.1)

from the ground truth, which is taken as S, and the candidate segmentations.
The segmentation of a lymph node itself is valuable, but it is also of interest whether

a lymph node is malignant or not. This, however, is a very difficult classification problem
because the only relevant features available in CT images are the size, the shape and the
attenuation coefficients, and there is overlap of the malignant and the non-malignant class
in these features [Baze 02]. The classification problem can be simplified by also consider-
ing the change of these features over time, which would require to examine a sequence of
images taken at different times and registering the detected lymph nodes.

Physicians are also interested in lymph nodes in other body regions than the medi-
astinum, for instance the neck, the abdomen, the groin and the axillary regions. In future
work, the method presented in this work can be extended to these body regions. Applying
the presented discriminative model to lymph nodes of other body regions is straightfor-
ward. Adapting the spatial prior is more effort because it requires automatic segmentation
methods of anatomical structures that are close to lymph nodes or can easily be confused
with lymph nodes. Only adapting the “global” probabilistic atlas (6.3), however, is easier
and just requires a set of anatomical landmarks in the body region of interest that can be
detected automatically. Once lymph nodes in all body regions can be detected, it is possible
to automatically stage the progress of a lymphoma disease based on the affected regions,
for instance according to the Ann-Arbor classification [List 89].

Parts of the presented lymph node detection method can be reused in other detection
problems. Similar spatial priors can, for instance, be used to capture anatomical knowledge
that supports detecting pathologies like lung nodules, bone lesions or, in general, blob-like
structures in medical image data. But the idea is also applicable to non-medical computer
vision problems like pedestrian or car detection if the viewpoint of the camera remains
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fixed. When a camera observes a street scene, pedestrians are more likely to appear in
the image region of the sidewalk than the region of the driveway. The segmentation based
features that are used in the verification step of the lymph node detection pipeline can also
be applied to similar detection problems such as detecting blob-shaped lesions.

The main goal of the Medico research project (section 1.2) that will presumably end
in 2012 is to enable semantic search on medical image databases. The methods presented
in this thesis can be used to automatically generate a number of labels from CT images,
and these labels can afterwards be used for search. The method presented in chapter 4 can
provide a label with the body region. High level features that are of interest to a physician
and can be generated by the lymph node detection and segmentation method include the
number of nodes and shape features such as the volume and the sphericity.



Chapter 8

Summary

Introduction

This work presents different methods for the automatic analysis of computed tomog-
raphy (CT) image data. It is embedded into the German research project Theseus Medico
that was initiated to create an intelligent search engine for medical images. The idea of this
project is to generate a formal textual semantic description of each image in a database.
These textual descriptions can afterwards be searched. A special focus of the project is
the lymphoma disease, which is a cancer of the lymphatic system. The lymph nodes of
affected patients are enlarged. In order to assess the progress of the disease and to verify
that the treatment is effective, physicians are interested in statistics such as the number of
enlarged nodes, their spatial distribution and shape features like the volume and sphericity.

In this work, a top-down approach is presented for automatically detecting and seg-
menting lymph nodes from CT data. The focus is on the body region of the mediastinum
that is of particular interest to physicians because mediastinal lymph nodes need to be
considered during oncological examinations related to all kinds of cancer.

Boosting techniques for discriminative learning

Discriminative learning techniques, and in particular boosting techniques, have become
very popular for computer vision applications. An overview and theoretical background of
classification techniques used in this thesis is given in chapter 2.

The theory of boosting is closely connected with probably approximately correct learn-
ing (PAC), which is a framework proposed in [Vali 84] for the mathematical analysis of
machine learning. The framework defines a strong and a weak PAC learning algorithm. In-
formally, given enough independently drawn labeled random samples of a distribution with
two classes, a strong PAC learning algorithm is, with an arbitrarily high probability, able to
learn a decision rule that has an arbitrarily low generalization error, if the class distribution
is PAC learnable. This in turn means, informally, that the probability distributions of the
two classes are non-overlapping. A weak PAC learning algorithm has the same properties
as a strong PAC learning algorithm, with the only difference that the generalization error
only needs to be slightly better than chance. It has been shown in [Scha 90] that any weak
PAC learning algorithm can be transformed into a strong PAC learning algorithm, and this
transformation is called „boosting“.
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A number of different boosting algorithms have been proposed, with the most pop-
ular one among them being AdaBoost [Freu 95], which stands for „adaptive boosting“.
AdaBoost greedily searches for a weighted subset within a (possibly large) pool of weak
classifiers. Each of the training samples is furthermore associated with a weight. In each
iteration, the weak classifier that minimizes the weighted misclassification error is added
to the subset. The weight of misclassified samples is afterwards increased, and the weight
of correctly classified samples is decreased. As shown in [Frie 00], AdaBoost optimizes an
exponential loss function using Newton updates, and the classification score has a proba-
bilistic interpretation.

In [Viol 01], a cascade of AdaBoost classifiers was very successfully used for object
detection. In [Tu 05], this idea was extended, and the cascade was generalized into a bi-
nary decision tree with an AdaBoost classifier at each node, which is called probabilistic
boosting tree (PBT). The time complexity of the PBT training and testing algorithm is
analyzed, to the best of our knowledge for the first time.

Features for 2-D and 3-D image analysis

The performance of a classifier is bounded by the quality of the features. In chapter
3, state of the art features are presented that are used in this thesis. Haar-like features
were introduced in [Viol 01] and gained considerable popularity. They compute integrals
of the image intensity over axis aligned rectangular regions, and multiple integral values
are weighted and summed to generate a single scalar feature. Although being simple, these
features are powerful because they can be computed very efficiently with the help of an
integral image. In [Tu 06], these features were extended to 3-D.

A major disadvantage of Haar-like features is that it is not efficiently possible to com-
pute rotated versions. While computing rotated versions of the integral image is a possible
workaround in 2-D, this is prohibitively computationally expensive in 3-D. A set of fea-
tures that can be easily rotated and also scaled in 3-D are the so-called steerable features
proposed in [Zhen 07]. These are simple point features such as the image intensity, the
gradient magnitude, and the components of the gradient. These features are evaluated on
a sampling pattern that can simply be a regular grid, or, for instance, reflect the shape of
an object being sought. Scaled and rotated versions can be computed by transforming the
sampling pattern accordingly.

Another set of features popular in computer vision are speeded-up robust features
(SURF) [Bay 06, Bay 08]. They are similar to the older SIFT features [Lowe 99] and have
a similarly high descriptive power, but have the advantage that they can be computed faster.
A SURF descriptor is a 64 dimensional vector that contains statistics of the image gradients
in a local neighborhood.

Estimating the visible body region

CT scans containing the chest area often also show other body regions, for instance the
abdomen or the neck. In chapter 4, a method is proposed that estimates the visible body
region of a CT scan. This can be used for finding the region of the mediastinum and thus
for pruning large portions of the image when searching for mediastinal lymph nodes.

In order to quantify the body region, a body coordinate (BC) axis is used that runs
in longitudinal direction. Its origin and unit length are patient-specific and depend on
anatomical landmarks. The body region of a test volume is estimated by registering it
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only along the longitudinal axis to a set of reference CT volume images with known body
coordinates. During these 1-D registrations, an axial image slice of the test volume is
compared to an axial slice of a reference volume by extracting a descriptor from both slices
and measuring the similarity of the descriptors. A slice descriptor consists of histograms
of visual words. Visual words are code words of a quantized feature space and can be
thought of as classes of image patches with similar appearance. A slice descriptor is formed
by sampling a slice on a regular 2-D grid and extracting a Speeded Up Robust Features
(SURF) descriptor at each sample point. The codebook, or visual vocabulary, is generated
in a training step by clustering SURF descriptors. Each SURF descriptor extracted from a
slice is classified into the closest visual word (or cluster center) and counted in a histogram.
A slice is finally described by a spatial pyramid of such histograms. An extension of the
SURF descriptors to an arbitrary number of dimensions (N -SURF) is introduced. In this
work, 2-SURF and 3-SURF descriptors are used. Cross-validation on 84 datasets shows
the robustness of the results. The body portion can be estimated with an average error of
15.5mm within 9s.

Apart from finding body regions in large CT volumes, this method can also be used for
automatic labeling of images with their body region. This additional application fits well
into the Theseus Medico project as it allows to search for images in a database that contain
a particular body region.

Automatic segmentation of the esophagus

A structure that can easily be confused with lymphatic issue in CT data due to a similar
distribution of attenuation coefficients is the esophagus. At the same time, the esophagus
is often surrounded with lymph nodes because it is a natural gateway into the body. The
problem of detecting mediastinal lymph nodes is therefore considerably simplified when
the outline of the esophagus is known. However, its versatile shape and appearance and its
low contrast in CT make the segmentation a challenging problem.

In chapter 5 of this work, a multi-step method for automatic esophagus segmentation
is presented: First, a detector that is trained to learn a discriminative model of the appear-
ance. It consists of a cascade of binary classifiers. For each axial slice, it generates a set
of candidates of the esophagus contour. At this stage, the contour within an axial slice is
modeled as an ellipse, which is already a good approximation with only five degrees of
freedom. The discriminative model relies on local features to detect the esophagus, which
is occasionally filled with air. This air can confuse the model because locally, air inside
the esophagus looks similar to respiratory air. Globally, they can however be easily dis-
tinguished. Therefore, the detector is combined with an explicit model of the distribution
of respiratory and esophageal air. In the next step, prior shape knowledge is incorporated
using a Markov chain model. We follow a “detect and connect” approach to obtain the
maximum a posteriori estimate of the approximate esophagus shape from the hypothesis
about the approximate esophagus contour in axial image slices. Finally, the surface of this
approximation is non-rigidly deformed along its normals to better fit the boundary of the
organ.

The method is compared to an alternative approach that uses a new particle filter variant
instead of a Markov chain to infer the approximate esophagus shape, to the performance
of a human observer and also to state of the art methods, which are all semiautomatic.
Cross-validation on 144 CT scans showed that the Markov chain based approach clearly
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outperforms the particle filter. It segments the esophagus with a mean error of 1.80 mm in
less than 16 s on a standard PC. This is only 1 mm above the inter observer variability and
can compete with the results of previously published semiautomatic methods.

Lymph node detection and segmentation

Finally, chapter 6 of this work presents a method that fully automatically detects and
segments lymph nodes in 3-D computed tomography images of the chest.

Lymph nodes can easily be confused with other structures, it is therefore vital to incor-
porate as much anatomical prior knowledge as possible in order to achieve a good detection
performance. Here, a learned prior of the spatial distribution is used to model this knowl-
edge. Different prior types with increasing complexity are proposed and compared to each
other. The simplest one serves as a baseline. It corresponds to the assumption that the spa-
tial distribution of lymphatic tissue is constant, meaning that no prior is used. The second
one is a a binary mask that marks organs and regions filled with air. These regions can
be excluded from search because lymph nodes always lie in fat tissue. Next, a non-binary
prior of lymphatic tissue is proposed that uses a probabilistic atlas learned from manually
annotated data in the space of a reference patient. Finally, a variant is explored that addi-
tionally uses multiple local probabilistic atlases to better handle anatomical variations in
the chest.

This is combined with a powerful discriminative model that detects lymph nodes from
their appearance. It first generates a number of candidates of possible lymph node center
positions. Two model variants are compared to each other. The first one directly detects
the bounding box of a lymph node given its detected center point. In the second variant, a
segmentation method is initialized with a detected candidate.

The graph cuts method is adapted to the problem of lymph nodes segmentation. A
setting is proposed that requires only a single positive seed and at the same time solves the
small cut problem of graph cuts. Furthermore, a feature set is proposed that is extracted
from the segmentation. A classifier is trained on this feature set and used to reject false
alarms.

Cross-validation on 54 CT datasets showed that for a fixed number of four false alarms
per volume image, the detection rate is well more than doubled when using the spatial prior
and is increased by 33% when using the segmentation based verification variant instead of
the simple bounding box detector. In total, our proposed method detects mediastinal lymph
nodes with a true positive rate of 52.0% at the cost of only 3.1 false alarms per volume
image and a true positive rate of 60.9% with 6.1 false alarms per volume image.

Outlook

This work uses boosting techniques to solve various learning problems. Especially
the probabilistic boosting tree has known issues and it is therefore worth considering to
replace some of the classifiers with different ones, for instance with random forests. Future
work could also explore using semi-supervised and online learning techniques to reduce
the required amount of labeled training data, and to adapt a classifier to a particular patient
or pathology.

It would be interesting to see if the N -SURF descriptors proposed in this work are of
use for analyzing 4-D data, such as 3-D+t videos, for instance for finding point correspon-
dences or certain motion patterns.
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The final refinement step of the esophagus segmentation method presented in this work
iteratively deforms and smoothes the previously detected surface. In future work, the
smoothing could be replaced with a shape model. As it is, the method is furthermore
fairly generic, and can also be applied to different straight tubular structures.

The performance of the lymph node detector could be further improved by training a
single detector on multiple scales such that the lymph nodes seen during training all have
a similar size, as this makes the learning problem simpler. The segmentation performance,
in turn, can potentially be improved by generating candidate segmentations with different
methods and learning a function that combines the candidate segmentations to produce
the final one. Apart from segmentations, clinicians are also interested in whether a lymph
node is malignant or not. This problem is simplified by also considering earlier scans of a
particular patient. Finally, it would be interesting to adapt the presented method to other
body regions, or to other blob-like lesion types.
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Appendix A

Proof of N -D integral image theorem

This work proposes an extension of integral images to an arbitrary number of dimensions.
Below, theorem 1 is repeated and afterwards proven.

Let I denote an N -dimensional image. An axis aligned N -D (hyper-)cuboid within
the image region is described by its upper bounds p and lower bounds q with pi ≥ qi, i =
1 . . . N . Both pi and qi are voxel indices of the i-th dimension. Let the sum of voxels inside
the (hyper-)cube be denoted by

C(p, q) =

p1∑
i1=q1+1

p2∑
i2=q1+1

. . .

pN∑
iN=qN+1

I(i). (A.1)

Let further II denote the integral image of I

II(p) =

{ ∑p1
i1=1

∑p2
i2=1 . . .

∑pN
iN=1 I(i) if ij > 0 ∀j ∈ {1 . . . N}

0 else,
(A.2)

let T (N, d)

T (N, d) =

{
t ∈ {0, 1}N

∣∣∣∣ N∑
i=1

ti = d

}
(A.3)

denote the set of permutations of a N -dimensional vector that contains d ones and N − d
zeros, and let CN(t,p, q) be

CN(t,p, q) = II

 (1− t1)p1 + t1q1
...

(1− tN)pN + tNqN

 , (A.4)

where II denotes the integral image of image I , then the sum C(p, q) of the images values
inside a hyper-box with upper bounds p and lower bounds q is

C(p, q) =
N∑
d=0

(−1)d
∑

t∈T (N,d)

CN(t,p, q). (A.5)

Proof. We prove the theorem by complete induction over the dimension N .
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Basis (N = 1): In this case, p = (p1) and q = (q1) are 1-D vectors and (A.5) becomes

C(p, q) =
1∑
d=0

(−1)d
∑

t∈T (1,d)

C1(t,p, q) (A.6)

=
∑

t∈{(0)}

C1(t,p, q)−
∑

t∈{(1)}

C1(t,p, q) (A.7)

= II ((1− 0)p1 + 0 · q1)− II ((1− 1)p1 + 1 · q1) (A.8)
= II (p1)− II (q1) (A.9)

=

p1∑
i=1

I(i)−
q1∑
i=1

I(i) (A.10)

=

p1∑
i=q1+1

I(i), (A.11)

which proves the theorem for N = 1.
Induction step: Let

T (N − 1, d)× {x} =

{
t ∈ {0, 1}N

∣∣∣∣N−1∑
i=1

ti = d, tN = x

}
(A.12)

denote the set of N -D vectors that have x ∈ {0, 1} as last component, and whose N − 1
first elements are d zeros and N − 1− d ones. We start now by splitting the sum over the
permutations T (N, d) in two parts. First, we sum over all elements in T (N, d) that have a
zero as last component, and then over the elements that have a one as last component:

C(p, q) =
N∑
d=0

(−1)d

 ∑
t∈T (N−1,d)×{0}

CN(t,p, q) +
∑

t∈T (N−1,d−1)×{1}

CN(t,p, q)

 .
(A.13)

After expanding CN(t,p, q), we get

C(p, q) =
N∑
d=0

(−1)d

 ∑
t∈T (N−1,d)×{0}

II


(1− t1)p1 + t1q1

...
(1− tN−1)pN−1 + tN−1qN−1

pN

 (A.14)

+
∑

t∈T (N−1,d−1)×{1}

II


(1− t1)p1 + t1q1

...
(1− tN−1)pN−1 + tN−1qN−1

qN


 . (A.15)

Now we define p′ and q′ as

p′ = (p1 . . . pN−1)
T (A.16)

q′ = (q1 . . . qN−1)
T (A.17)
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the N − 1-D vectors that contain the first N − 1 entries of p and q, respectively, and

II iN−1(p
′) =

{ ∑p1
k1=1 . . .

∑pN−1

kN−1=1 I(k1, . . . , kN−1, i) if kj > 0 ∀j ∈ {1 . . . N − 1}
0 else

(A.18)
as the N − 1-D integral image of the i-th slice of image I , where “slice” refers to the
outermost dimension N , and let further a ◦ b be the Hadamard (element-wise) product of
two vectors a and b. Then, we can rewrite (A.14) as

C(p, q) =
N∑
d=0

(−1)d

 ∑
t∈T (N−1,d)

pN∑
i=1

II iN−1 ((1− t) ◦ p′ + t ◦ q′) (A.19)

+
∑

t∈T (N−1,d−1)

qN∑
i=1

II iN−1 ((1− t) ◦ p′ + t ◦ q′)

 . (A.20)

After expansion, we get

C(p, q) =
N∑
d=0

(−1)d
∑

t∈T (N−1,d)

pN∑
i=1

II iN−1 ((1− t) ◦ p′ + t ◦ q′) (A.21)

+
N∑
d=0

(−1)d
∑

t∈T (N−1,d−1)

qN∑
i=1

II iN−1 ((1− t) ◦ p′ + t ◦ q′) . (A.22)

By using that T (N − 1, N) = T (N − 1,−1) = ∅ are both the empty set, this can be
rewritten as

C(p, q) =
N−1∑
d=0

(−1)d
∑

t∈T (N−1,d)

pN∑
i=1

II iN−1 ((1− t) ◦ p′ + t ◦ q′) (A.23)

+
N∑
d=1

(−1)d
∑

t∈T (N−1,d−1)

qN∑
i=1

II iN−1 ((1− t) ◦ p′ + t ◦ q′) . (A.24)

After adapting the limits of the outer sum in (A.24) and changing the order of summation,
we get

C(p, q) =

pN∑
i=1

N−1∑
d=0

(−1)d
∑

t∈T (N−1,d)

II iN−1 ((1− t) ◦ p′ + t ◦ q′) (A.25)

−
qN∑
i=1

N−1∑
d=0

(−1)d
∑

t∈T (N−1,d)

II iN−1 ((1− t) ◦ p′ + t ◦ q′) . (A.26)
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Now we use that (A.1) holds for N − 1-D integral images. If we define Cj
N−1(p

′, q′) as the
sum over the voxels in the j-th slice of image I inside the (hyper-)box with bounds p′ and
q′, it is

Cj
N−1(p

′, q′) =

p1∑
i1=q1+1

. . .

pN−1∑
iN−1=qN−1+1

I(i1 . . . iN−1, j) (A.27)

=
N−1∑
d=0

(−1)d
∑

t∈T (N−1,d)

IIjN−1 ((1− t) ◦ p′ + t ◦ q′) . (A.28)

By inserting (A.28) into (A.26), we obtain

C(p, q) =

pN∑
i=1

Ci
N−1(p

′, q′)−
qN∑
i=1

Ci
N−1(p

′, q′). (A.29)

Since the sums over the slices 1 . . . qN cancel out, this is equal to

C(p, q) =

pN∑
i=qN+1

Ci
N−1(p

′, q′) (A.30)

=

pN∑
iN=qN+1

p1∑
i1=q1+1

. . .

pN−1∑
iN−1=qN−1+1

I(i1 . . . iN), (A.31)

which proves the theorem.
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Notation

B.1 Boosting techniques for discriminative learning

y class variable
Y set of class variables
K number of classes
x feature vector
X feature space
C(k, j) cost of deciding for the class yj if the true class is yk
E(C) expected costs
yopt class that minimizes the expected costs
T number of weak classifiers to train
N number of labeled training samples
wn weight of sample n
ht tth weak classifier
H set of all possible weak classifiers
εt weighted classification error of weak classifier ht
[a 6= b] equals 1 if a 6= b and 0 otherwise
αt weight of weak classifier ht
Z normalization term
H strong classifier
J(H) expected exponential costs of strong classifier H
Ht strong classifier after the tth AdaBoost iteration
w

(t)
n weight of sample n after the tth AdaBoost iteration

L number of layers in the PBT
∆p minimum absolute difference the score of a sample must have

from 1
2

in order not to be passed to both children during PBT
training and testing

N a PBT node
FN classification score of PBT node N
S set of labeled training samples
εmax maximum weighted classification error
Sleft, Sright training set of left/right child node
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a sample growth factor during PBT training
l current PBT tree layer

B.2 Features for 2-D and 3-D image analysis

p1 voxel index along the horizontal axis
p2 voxel index along the vertical axis
I image
II integral image of I
x, y, z 3-D world coordinates
p point in voxel coordinates
r point in world coordinates
ci Haar filter response that approximates the directional derivative

of the smoothed image along the ith coordinate axis
s scale of the SURF descriptor that equals the spacing of the sam-

ple pattern and half the size of the Haar filters
v 4-D feature vector of a bin of the SURF sampling pattern

B.3 Estimating the visible body region of 3-D CT scans

ND dimension of the slice descriptor of [Dick 08]
x, y, z 3-D world coordinates
N number of image dimensions
I image
II integral image
p, q points in voxel coordinates
T (N, d) set of permutations of an N -dimensional vector that contains d

ones and N − d zeros
t N -dimensional vector containing zeros and ones
C(p, q) sum of voxels inside an axis aligned cuboid with opposite cor-

ners p and q
b number of bins per dimension the SURF sampling pattern is

partitioned into
σ standard deviation of the Gaussian centered at the interest point

that is used to weight the Haar filter responses
v 2N -D feature vector of a bin of the SURF sampling pattern
r radius of sphere-shaped sampling pattern used to determine the

canonical orientation
G number of points in this sphere-shaped sampling pattern
R rotation matrix
c(i) ith gradient vector used to determine the canonical orientation
u(i) ith eigenvector of the PCA of the gradient vectors
c mean gradient vector
u

(i)
a ith eigenvector of the PCA with canonical direction
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u
(i)
b normalized u

(i)
a

c
(i)
p vector c(i) that is projected into the plane orthogonal to c and

transformed into a N − 1-D basis
X, Y two sets of n dimensional features
n dimension of the feature space
l current pyramid level
L maximum pyramid level
Dl number of bins in the histogram at level l
H l
X , H

l
Y histograms of the features in X and Y at level l

I(Ha, Hb) intersection of histograms Ha and Hb

I l short for I(H l
X , H

l
Y )

κL pyramid match kernel
M number of feature classes („visual words“)
Xi, Yi sets of 2-D vectors of the image coordinates of the features of

class i in X and Y , respectively
KL spatial pyramid match kernel
ns minimum number of consecutive non-air voxels that are needed

to trigger the patient detector
j, k two image slices taken from the 3-D volume images Ij and Ik
zj, zk vertical level where slices j and k where extracted
d(j, k) dissimilarity measure for slices j and k
Hj concatenated histograms of visual words of slice j
J,K two lists of subsequent axial slices
f(z) objective function for rigid registration
C set of candidate z offsets
ci ith z candidate
wi weight of ith z candidate
gs 1-D convolution kernel at scale s that both smoothes and com-

putes the second derivative
fd(z1, z2) objective function for non-rigid registration using dynamic time

warping
∆z height of the test stack in world coordinates
etop, ebottom registration error at the top and bottom of the test volume
e averaged registration error

B.4 Automatic segmentation of the esophagus in 3-D CT
scans

e ellipse parameter vector
t ellipse center
θ ellipse rotation angle
s = (a, b)T semi major and semi minor axis of the ellipse
N number of ellipse candidates
m binary class variable
H(t) 3-D Haar-like feature vector extracted at position t
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CT1 first set of translation candidates
NT1 number of candidates in CT1
CT2 second set of translation candidates
NT2 number of candidates in CT2
S(t, θ) vector of steerable features extracted at position t and angle θ
S(t, θ, s) vector of steerable features extracted at position t, angle θ and

scale s
NTR number of rotation and translation candidates
C set of ellipse candidates
B(t) value of binary mask of respiratory air at position t
E(t) value of binary mask of esophageal air at position t
p point of gravity of a 2-D region of esophageal air
g(r) 1-D filter function, similar to a Gaussian with a standard devia-

tion of σa but with limited support
w support of the filter g
A(t) map of the esophagus probability at position t estimated from

esophageal air
C(t) model of the overall esophagus probability at position t given

the global distribution of air
θd distance threshold in the clustering step
c(i) ith center after candidate clustering
γ(i) score of c(i)

vt observed axial image slice t
Φt clique potential of observation clique t in the Markov model
Ψt clique potential of transition clique t → t + 1 in the Markov

model
Σp covariance matrix of the normal distribution of the translation

transition
mp mean of the normal distribution of the translation transition
Σs covariance matrix of the normal distribution of the scale transi-

tion
ms mean of the normal distribution of the scale transition
σr(l) standard deviation of the normal distribution of the rotation

transition at circularity level l
mr(l) mean of the normal distribution of the rotation transition at cir-

cularity level l
ĉ
(MAP)
1:T maximum a posteriori estimate of the esophagus path, parame-

terized as a sequence of T ellipses
Σp2 covariance matrix of the normal distribution of the second order

translation transition
mp2 mean of the normal distribution of the second order translation

transition
T number of slices
St set of particles at slice t
e
(i)
t ellipse parameters (state vector) of particle i at slice t
P

(i)
t weight of particle i at slice t
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I number of particles
δ Dirac delta function

B.5 Lymph node detection and segmentation from chest
CT

t lymph node center
B(t) binary mask of organs evaluated at position t
G(t) global probabilistic atlas of the spatial lymph node distribution

evaluated at position t
Li(t) ith local probabilistic atlas evaluated at position t
M number of local probabilistic atlases
L(t) combination of all M local probabilistic atlases at position t
wi(t) weight of local probabilistic atlas i at position t
Z(t) normalization term at position t
di(t) distance of t to the surface of organ i
θ maximal distance from the organ surface up to that the corre-

sponding probabilistic atlas still has support
wmax(t) weight of most influential local probabilistic atlas at position t
H(t) 3-D Haar-like feature vector extracted at position t
CH1, CH2 sets of lymph node center candidates generated by first and sec-

ond Haar feature based detector, respectively
b axis aligned bounding box parameters
S(t, s) vector of steerable features extracted at position t and scale s
CS set of lymph node bounding box candidates
A(t) gradient aligned feature vector extracted at position t
CA set of lymph node center candidates generated by the gradient

aligned feature based detector
s the source node
t the sink node
λi unary weight of voxel i
βij binary weight (capacity) of the edge from voxel i to voxel j
cij capacity from node i to node j in the graph
xi binary label of voxel i that is either “foreground” or “back-

ground”
B set containing the source s and all voxels labeled as “fore-

ground”
W set containing the sink t and all voxels labeled as “background”
C cost of a cut that separates the source s from the sink t
δ(a, b) Kronecker delta
N number of image voxels
rij distance of the edge from voxel i to voxel j to the positive seed
Ii image intensity of voxel i
u normalization constant
K(r) set of edges intersected by a sphere with radius r
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K(r) integrated capacities of edges intersecting a sphere with radius
r

dij Euclidean distance of voxels i and j
αij angle between the edge from voxel i to voxel j and the line from

the positive seed to the center of the edge
p(outij) probability that the edge i→ j is pointing in outward direction
D(t) segmentation based features extracted at position t
σβ parameter of standard graph cuts weights that is set according

to the noisiness of the data
g zero-mean 3-D Gaussian
IW windowed image
E edge image
θWS threshold of the edge image E
emax maximum value of the edge image E
lWS relative watershed flooding level
LWS absolute watershed flooding level
NS number of segmentations
Di(t) segmentation based features extracted from segmentation i at

position t
Dcombined(t) features extracted from different segmentations at position t

concatenated into a single vector
D

(lWS)
WS (t) segmentation based features extracted at position t from a wa-

tershed transform with a relative flooding level of lWS

DWS,GC(t) concatenation of features extracted at position t from a water-
shed and a graph cuts segmentation
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