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Abstract

A stroke is a medical emergency which requires immediate diagnosis and treatment.
For several years, image-based stroke diagnosis has been assisted using perfusion
computed tomography (CT) and perfusion magnetic resonance imaging (MRI). A
contrast agent bolus is injected and time-resolved imaging, at typically one frame per
second, is used to measure the contrast agent flow. However, these two modalities
are not accessible in the interventional suite where catheter-guided stroke treatment
actually takes place. Thus, interventional perfusion imaging, which could lead to
optimized stroke management, is currently not available.

In this thesis, a novel approach is developed that makes interventional perfusion
imaging possible. It uses a C-arm angiography system capable of CT-like imaging
(C-arm CT). This system can acquire projection images during a rotation around the
object which are then used to reconstruct 3-D data sets. The comparably low C-arm
rotation speed (typically 3–5 seconds per 200◦) is the main technical challenge of this
approach.

One of the major contributions of this thesis lies in the development and eval-
uation of a novel combined scanning and reconstruction method. It uses several
interleaved scanning sequences to increase the temporal sampling of the dynamic
perfusion signals. A dedicated reconstruction scheme is applied to process the data
from this protocol. For the first time, in vivo C-arm CT perfusion studies have been
carried out and the results have been compared to those from a reference perfusion
CT exam. Promising correlation values ranging from 0.63 to 0.94 were obtained.

An additional contribution was made in the field of image reconstruction theory
by deriving a theoretical model for image reconstruction artifacts due to time-varying
attenuation values. The attenuation values in C-arm CT perfusion imaging vary due
to the contrast agent flow during the long C-arm rotation time. It was shown that
the magnitude of these artifacts can be reduced when using optimized reconstruction
parameters.

Furthermore, investigations regarding special injection protocols were carried out
and fundamental image quality measurements were made.

Through the methods developed, the measurements conducted and results ob-
tained, this thesis made a number of significant and original contributions, both on
a practical and on a theoretical level, to the novel and highly relevant research field
of interventional C-arm CT perfusion imaging.



Kurzfassung

Der Schlaganfall ist ein medizinischer Notfall, der eine sofortige Diagnose und Ther-
apie erfordert. Seit einigen Jahren werden die Perfusions-Computertomographie
(CT) sowie die Perfusions-Magnetresonanztomographie (MRT) zur Unterstützung
der bildbasierten Schlaganfalldiagnostik eingesetzt. Dabei wird ein Kontrastmittel-
bolus injiziert und eine zeitaufgelöste Aufnahme mit typischerweise einem Bild pro
Sekunde durchgeführt, um den Kontrastmittelfluss zu messen. Allerdings stehen
diese beiden Modalitäten nicht in Angiographieräumen zur Verfügung, in denen die
kathetergestützte Schlaganfalltherapie durchgeführt wird. Daher ist interventionelle
Perfusionsbildgebung, welche zu verbesserter Schlaganfallbehandlung führen kann,
gegenwärtig nicht möglich.

In dieser Arbeit wird ein neuartiger Ansatz entwickelt, der interventionelle Per-
fusionsbildgebung ermöglicht. Dieser Ansatz verwendet ein C-Bogen-Angiographie-
system, mit dem CT-ähnliche Bildgebung durchgeführt werden kann (C-Bogen-CT).
Mit diesem System werden Projektionsbilder während einer Rotation um das Objekt
aufgenommen, aus denen dann 3-D-Datensätze rekonstruiert werden. Die vergleichs-
weise langsame Rotationsgeschwindigkeit des C-Bogens (typischerweise 3–5 Sekunden
pro 200◦) stellt bei diesem Ansatz die größte technische Herausforderung dar.

Ein Hauptbeitrag dieser Arbeit liegt in der Entwicklung und Evaluation einer
neuartigen, kombinierten Aufnahme- und Rekonstruktionsmethode. Dabei werden
mehrere, ineinander verschachtelte Aufnahmesequenzen akquiriert, um die zeitliche
Abtastung der dynamischen Perfusionssignale zu erhöhen. Die Daten werden dann
mit einer angepassten Rekonstruktionsmethode verarbeitet. Zum ersten Mal wur-
den in vivo C-Bogen-CT-Perfusionsstudien durchgeführt und deren Ergebnisse mit
denen einer Perfusions-CT-Untersuchung verglichen. Dabei sind vielversprechende
Korrelationswerte im Bereich von 0.63 bis 0.94 erzielt worden.

Ein weiterer Beitrag wurde im Bereich der Bildrekonstruktionstheorie geleistet,
indem ein theoretisches Modell für Bildrekonstruktionsartefakte durch zeitlich verän-
derliche Schwächungswerte hergeleitet wurde. Die Schwächungswerte ändern sich in
der Perfusions-C-Bogen-CT durch den Kontrastmittelfluss während der langandau-
ernden C-Bogen-Rotation. Es wurde gezeigt, dass sich das Ausmaß dieser Artefakte
mit optimierten Rekonstruktionsparametern reduzieren lässt.

Darüber hinaus wurden Fragestellungen hinsichtlich besonderer Injektionspro-
tokolle untersucht und grundlegende Bildqualitätsmessungen durchgeführt.

Durch die entwickelten Methoden, die durchgeführten Messungen und erziel-
ten Ergebnisse leistet diese Arbeit, in theoretischer als auch in praktischer Hin-
sicht, mehrere wesentliche, neue Beiträge zu dem neuartigen und hochrelevanten
Forschungsgebiet der interventionellen C-Bogen-CT-Perfusionsbildgebung.
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Chapter 1

Introduction

1.1 Motivation: Enhancing Stroke Treatment

Nowadays, a significant amount of research is conducted to improve prevention and
treatment of stroke. Often research is concerned with clinical aspects of stroke but
also many research projects in engineering exist that contribute to this topic.

This thesis comes from a technical discipline and aims to find solutions to a
particular technical challenge in order to enhance stroke treatment. For several years,
perfusion imaging is used by physicians for stroke diagnosis and treatment planning.
The term perfusion refers to the blood flow at the capillary level. Due to technical
constraints perfusion imaging is, however, not available in the interventional suite
yet, i.e. the room where certain kinds of stroke treatment actually take place.

The motivation of this thesis is to examine the feasibility of perfusion imaging
in the interventional suite. This new application could enhance stroke treatment by
providing additional perfusion information immediately before or during the treat-
ment. The practical benefits of this application and the related technical challenges
will be explained in the following two sections of this introductory chapter.

1.2 Clinical Background

1.2.1 Stroke Diagnosis and Treatment

According to the world health organization (WHO), stroke is one of the leading
causes of death worldwide [1]. Estimations show that stroke and other cerebrovascu-
lar diseases have accounted for 5.6% (low-income countries), 14.2% (middle-income
countries) and 9.3% (high-income countries) of deaths in 2004 [1]. The risk of stroke
approximately doubles for each decade of life after the age of 55 [2]. Thus, with an
increasing life expectancy, the global number of strokes is expected to further increase
in the future. There are two types of stroke.

1. Ischemic strokes, which constitute about 85% of all stroke cases, and which will
be the focus in the following explanations, occur if a cerebral artery is blocked
and certain areas of the brain do not receive sufficient blood supply [3].

1
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Figure 1.1: Typical stroke management protocol (adapted from [6]).

Figure 1.2: Potential stroke management protocol in the interventional suite.

2. Hemorrhagic strokes are caused by a ruptured cerebral vessel allowing blood to
leak into the brain.

For ischemic stroke there are two main treatment options.

1. During intra-venous (IV) thrombolysis a pharmaceutical is injected intra-venously
to dissolve the blocking of the artery [3].

2. The second therapeutic option is intra-arterial (IA) therapy which requires the
patient to be in the interventional suite where a catheter can be guided to
the cerebral arteries. Using this catheter, either a pharmaceutical can be ad-
ministered locally near the blocking (IA thrombolysis) or the blocking can be
dissolved mechanically (mechanical thrombolysis), see [3] for details.

The effectiveness of IV thrombolysis and IA therapy strongly depends on the elapsed
time after the onset of stroke. According to [4], the time window for considering IA
therapy is 0–6 hours after onset whereas for IV thrombolysis it is 0–3 hours after
onset. Note, during every minute in which a typical ischemic stroke is untreated the
average patient loses 1.9 million neurons [5]. For comparison, the average number
of neurons in the human forebrain is reported to be 22 billion [5]. Thus, fast stroke
treatment is mandatory.

Figure 1.1 shows a flow chart, adapted from [6], of a typical stroke management
protocol for patients which present to the hospital less than 6 hours after onset of
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symptoms. First, a non-contrast-agent-enhanced CT exam is performed to rule out
intra-cranial hemorrhage which is a contraindication for IV thrombolysis or IA ther-
apy. If the onset of symptoms is less than 3 hours ago IV thrombolysis can be per-
formed. Otherwise further diagnosis with CT angiography (CTA) and perfusion CT
(PCT) is necessary to determine the risk-to-benefit-ratio of IA therapy. Equivalent
diagnostic exams could also be conducted using MRI.

Generally, a stroke is characterized by an infarct core which can be surrounded by
a region of potentially salvageable tissue known as the penumbra. With PCT various
cerebral perfusion parameters can be measured which help to decide if a penumbra
exists that may actually benefit from IA therapy [3]. If the decision for IA therapy is
made the patient must be relocated from the CT scanner room to the interventional
suite and prepared for IA therapy.

Note, the perfusion scan in the CT scanning room is necessary but causes a delay
before the start of IA therapy [7]. Furthermore, the state of perfusion may change
between the CT perfusion scan and the start of IA therapy.

1.2.2 Benefits of Interventional Perfusion Imaging

Assuming perfusion imaging directly in the interventional suite would be possible,
using a modality known as C-arm CT (Section 1.3.1), for example, then IA therapy
could be enhanced by providing additional perfusion scans immediately before or
during the intervention. The following potential advantages exist.

1. Re-assessment of perfusion immediately before IA therapy: As previ-
ously mentioned, the state of perfusion may change between the initial perfusion
scan and the start of IA therapy. Therefore, re-assessment of perfusion in the in-
terventional suite immediately before the start of the therapy could provide the
physicians with more precise information about the current state of perfusion.
If necessary, the treatment plans could be adapted.

2. Monitoring of perfusion during IA therapy: With interventional perfu-
sion imaging the treatment success of IA therapy could be directly determined
in the interventional suite during the procedure. This could support therapeu-
tic decisions, e.g. to determine the treatment endpoint, and therefore make IA
therapy more effective.

3. Faster start of IA therapy: In selected cases, when a stroke is suspected
and the stroke onset is estimated to be 3–6 hours ago, the patient could be
brought directly to the interventional suite. Unenhanced CT (also denoted as
native CT), CTA and perfusion CT (the latter two if hemorrhage is excluded)
could be acquired in the interventional environment using C-arm CT. Here, it
is assumed that the image quality of unenhanced interventional CT is sufficient
to exclude hemorrhage. If the patient would be assessed suitable for IA therapy
then no relocation would be necessary which would make the overall workflow
faster compared to the standard workflow. A flow chart of this workflow is
shown in Figure 1.2. A recent study has suggested that IA thrombolysis may
provide better results in reopening occluded vessels also in the 0–3 hours window
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(a) monoplane system
(Artis zee ceiling-mounted)

(b) robotic, monoplane system
(Artis zeego)

(c) biplane system
(Artis zee biplane)

Figure 1.3: Clinical C-arm angiography systems (Siemens AG, Healthcare Sector,
Forchheim, Germany) capable of CT-like imaging (images courtesy of Siemens AG).

after onset of symptoms where normally IV thrombolysis is preferred [8]. Thus,
this workflow may also apply to patients where the onset of stroke is estimated
to be less than 3 hours ago.

1.3 Interventional Imaging with C-arm CT

1.3.1 Basics

The main application for an X-ray C-arm angiography system is to provide real-time,
time-resolved (typically 1–30 frames per second) 2-D images of the organ of interest
during interventional procedures. Figure 1.3 shows different state-of-the-art clinical
C-arm angiography systems equipped with flat-panel detectors. With the C-arm at
a fixed position, X-ray radiation is emitted from the X-ray source and recorded using
the detector. The organ of interest is located between the source and the detector
and attenuates the X-ray radiation.

The 2-D images may be used to navigate a catheter inside an artery, for example.
Another well-established application is digital subtraction angiography (DSA) where
images acquired after the injection of a contrast agent are processed by subtraction
of a mask image of the same region without contrast agent. This technique is used
to evaluate the blood flow in vessels or pathological structures like aneurysms [9].

This 2-D imaging method provides high temporal resolution and high spatial
resolution (typically 0.3–0.6 mm pixel side length). However, since the images are
projections of the 3-D organ of interest onto a 2-D plane certain disadvantages arise.

1. 3-D organs with a complex geometry are difficult to interpret using these 2-D
projections only.

2. It is generally not possible to recognize low contrast differences between cer-
tain structures of the 3-D organ. As an example, the bleeding visible in the
tomographic image shown in Figure 1.4(b) would not be obvious in a projection
image as shown in Figure 1.4(a).
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(a) X-ray projection image (b) reconstructed C-arm CT image

Figure 1.4: (a) X-ray projection image of a human head acquired with a C-arm
angiography system and (b) transaxial C-arm CT reconstruction showing a bleed-
ing in the right hemisphere (images courtesy of (a) Dr. T. Struffert, Department of
Neuroradiology, University of Erlangen-Nuremberg, Germany and (b) Siemens AG).

To overcome these limitations of projections-based 2-D imaging, it is possible for
several years to acquire tomographic, CT-like images in the interventional suite by
using C-arm CT, also known as flat-detector CT (FD-CT) or 3D rotational angiogra-
phy (3DRA) [10, 11, 12, 13]. While the C-arm rotates around the patient (typically
through 200◦) hundred to several hundreds of 2-D projection images are acquired. Us-
ing a cone-beam image reconstruction algorithm, a 3-D volume can be reconstructed
from this data set [14, 15].

With C-arm CT, 3-D images of complex-shaped objects like the heart, for example,
can be obtained for pre-procedural treatment planning or intra-cranial bleedings can
be recognized. Depending on the object size, a state-of-the-art C-arm CT system can
resolve objects with a contrast difference of 5–10 Hounsfield units (HU) [13]. Thus,
it can significantly enhance the functionality of C-arm angiography systems during
interventional procedures.

The principle of C-arm CT is closely related to that of conventional multi-slice
CT (MSCT), but there are also some differences. As an example, the time needed to
acquire one full set of projection data over an angular range of 200◦ typically takes
3–5 s with C-arm CT while it takes only 0.3–0.5 s per 360◦ with MSCT. Due to
mechanical constraints and for the sake of patient safety, the C-arm rotation speed is
restricted to a certain maximal value. Furthermore, current C-arm CT systems are
not capable of performing uni-directional, continuous C-arm rotations as in MSCT.
Instead, the C-arm can only perform alternating forward and backward rotations in
order to sequentially acquire several reconstructed volumes.

Usually analytical image reconstruction algorithms such as Feldkamp-type algo-
rithms [16] are used to reconstruct the large C-arm CT volume data sets (typically
ranging from 2563 to 5123 voxels) [13]. These analytical algorithms assume a station-
ary object of interest during the acquisition of the projection data. For the human
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heart, for example, this assumption is not valid and sophisticated C-arm CT image
reconstruction algorithms have been developed to compensate for the cardiac motion
[17, 18, 19].

Recently, quantitative imaging of cerebral blood volume with C-arm CT has been
introduced [20, 21]. Using a specialized injection and scanning protocol, two recon-
structed 3-D volumes are acquired before and after a contrast agent bolus injection,
respectively. Cerebral blood volume describes a static parameter of cerebral perfu-
sion. There are also dynamic perfusion parameters, such as cerebral blood flow and
mean transit time (Chapter 2). Currently, these parameters cannot be measured
using C-arm CT. The next section will provide a description of the challenges to
measure (dynamic) perfusion parameters with C-arm CT.

1.3.2 Challenges of C-arm CT Perfusion Imaging

In perfusion CT imaging the flow of an injected contrast agent bolus is imaged at
short intervals, typically one reconstructed image per second, and the time-resolved
data is analyzed on a voxel-by-voxel basis to compute various perfusion parameters,
see Chapter 2 for details.

Thus, perfusion-CT-like imaging could be implemented with C-arm CT by ac-
quiring reconstructed images using alternating forward and backward C-arm rota-
tions after a contrast agent bolus injection. However, there are two major challenges
with respect to this approach which will be discussed next. Both of these challenges
are related to the comparably long acquisition time for a complete set of projections
which is about one order of magnitude greater in C-arm CT compared to MSCT.

1. Due to the longer sample period in C-arm CT — which is typically 3–5 seconds
rotation time plus 1 second wait time between two rotations in alternating
direction — temporal undersampling of the dynamic contrast agent flow can
occur which in the following image analysis can lead to incorrect perfusion
values.

2. In PCT the acquisition time for one set of projection data is sufficiently short
such that the (intentional) change of attenuation values due to the contrast
agent flow in the organ of interest can be assumed to be constant during this
interval. However, in perfusion C-arm CT this assumption is not appropriate
due to the longer acquisition times and image reconstruction artifacts can arise.
These artifacts can also cause incorrect perfusion values.

1.4 Scope and Original Contributions of this The-

sis

This thesis covers several topics from the field of medical image processing that are
practically relevant for C-arm CT perfusion imaging. Generally, the two main steps in
C-arm CT perfusion imaging — from an image processing point of view — are image
reconstruction of a dynamic object due to contrast agent flow and image analysis of
the reconstructed data.
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Both of these steps were addressed in this thesis and, additionally, algorithms
for the analysis of contrast agent bolus injection protocols were developed and fun-
damental image quality measurements (measurement of iodine concentration) were
carried out. Furthermore, a software program was implemented as part of the work
on this thesis to investigate a complete C-arm CT perfusion imaging workflow under
realistic conditions.

The original contributions of this thesis are summarized below along with the corre-
sponding publications.

1. Novel Scanning Protocol and Reconstruction Approach: In order to
compensate the low temporal sampling of the reconstructed C-arm CT data
(Section 1.3.2) an interleaved scanning (IS) protocol was developed. In com-
bination with a specialized reconstruction approach, denoted as partial recon-
struction interpolation (PRI), also the artifacts due to data inconsistencies can
be reduced. This novel combined approach (IS-PRI) was investigated using
numerical simulations and in vivo C-arm CT data from a pre-clinical study.
Methods and results were also presented in journal articles and at conferences
which were focused on technical applications, see [22, 23], and clinical appli-
cations, see [24, 25], respectively. Furthermore, results from physical phantom
measurements were published in [26] but are not presented in this thesis.

2. Novel Model for Reconstruction Artifacts: Image reconstruction artifacts
arise if the X-ray attenuation values vary during the acquisition of the projection
data. This topic is of particular concern in perfusion C-arm CT imaging due to
the intentional contrast agent flow and the low scanning speed, cf. Section 1.3.2.
A novel mathematical model based on the concept of derivative-weighted point
spread functions was developed in order to better understand this kind of recon-
struction artifact. Using this model, the impact of this reconstruction artifact
and suitable reduction strategies can be investigated. Methods and results were
also presented in a journal article [27] and at a conference [28].

3. Review of Perfusion Image Analysis: Diagnostic CT and MR brain per-
fusion imaging is available for several years already and well-established image
analysis methods exist. A review of both the theoretical model and the practi-
cal implementation of these methods was carried out. A particular novel aspect
of this review was to outline the simplifications of the model that is necessary
in order to apply it to real data. This review has been published as a journal
article [29].

4. Novel Approach for Contrast Agent Bolus Measurement: Since perfu-
sion C-arm CT imaging is conducted in the interventional suite, alternative IA
contrast agent bolus injection strategies compared to a conventional IV injection
could be applied. In order to investigate these alternative injection protocols,
a novel approach to segment the carotid arteries and to measure the contrast
agent bolus distribution has been developed. The segmentation technique is
based on a suitable weighting of a temporal maximum intensity projection of a
DSA sequence. This approach has also been presented at a conference [30].
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Figure 1.5: Graphical overview of the chapters of this thesis and how they are related
to the workflow of C-arm CT perfusion imaging.

5. Measurement of C-arm CT Image Quality: An underlying assumption
in CT perfusion imaging is that the measured X-ray attenuation values are
proportional to the local contrast agent concentrations. Measurements with a
physical phantom were carried out to verify this assumption for a clinical C-arm
CT system. These measurements were also presented at a conference [31]

In summary, the results of this thesis were published in four journal articles [23,
25, 27, 29] and were presented at five conferences [22, 24, 28, 30, 31].

1.5 Organization of this Thesis

In this section, the organization of this thesis will be explained in order to provide a
better orientation for the reader. A graphical overview of the chapters of this thesis
and how they are related to the C-arm CT perfusion imaging workflow is provided in
Figure 1.5. The depicted perfusion imaging workflow consists of the image acquisition
(injection and scanning), image reconstruction and image analysis steps. Note, the
first chapter (Introduction) and the last chapter (Summary and Conclusion) are not
displayed in this figure. Furthermore, a short description of each chapter will be given
next.

Chapter 1 — Introduction

This chapter introduces the reader to the necessary clinical and technical background
of this thesis. In particular, the benefits of interventional perfusion imaging and the
related technical challenges are discussed. An overview of the scope and the original
contributions as well as the organization of this thesis is presented.
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Chapter 2 — Review of Image Analysis for Brain Perfusion Measurement

In this chapter, a review of existing work on image analysis techniques for CT and MR
brain perfusion data is provided. Since CT and MR brain perfusion is available for
several years, well-established image analysis techniques exist. These techniques are
used to process the C-arm CT data obtained using the novel reconstruction methods
described in Chapter 4. They are also implemented in the software program that is
described in Section 6.2.

Chapter 3 — A Model for Filtered Backprojection Reconstruction Arti-
facts due to Time-Varying Attenuation Values

The intention of this theoretically oriented chapter is to provide a detailed under-
standing of filtered backprojection reconstruction artifacts when the attenuation val-
ues vary during the data acquisition. A short summary of FBP image reconstruction
is given and a novel spatio-temporal model is derived. This model is used to ana-
lyze artifact reduction techniques. Measurements using C-arm CT were compared to
predictions of the artifact model.

Chapter 4 — C-arm CT Perfusion Imaging Using Interleaved Scanning
and Partial Reconstruction Interpolation

This chapter presents the main practical contribution of this thesis which is a novel
approach for C-arm CT perfusion imaging. This approach is a combined scanning
protocol and reconstruction technique that increases temporal sampling of the recon-
structed data. It also provides a mean to reduce the reconstruction artifacts that
were described in Chapter 3. The approach is described in detail and is evaluated
using numerical simulations and in vivo data.

Chapter 5 — Evaluation of Contrast Agent Bolus Injection at the Aortic
Arch: Automatic Measurement of Bolus Distribution

In this chapter, methods and results of a novel approach to measure the contrast agent
bolus distribution in the carotid arteries using 2-D DSA are presented. In the pre-
clinical studies presented in Chapter 4 the contrast bolus was injected at the aortic
arch. To verify that equal amounts of contrast agent flow into both carotid arteries,
this automated segmentation and image analysis method was actually developed.
The method is evaluated using real data from a clinical C-arm angiography system.

Chapter 6 — Practical Aspects Regarding C-arm CT Perfusion Imaging

This chapter covers two aspects that have been identified to be practically relevant
when CT-like perfusion imaging is to be implemented using C-arm CT.

1. The first part of this chapter addresses fundamental C-arm CT image quality
measurements. In order to investigate the feasibility of C-arm CT for perfu-
sion imaging, the linearity of contrast agent concentration and measured X-ray
attenuation was verified. The measurements were performed using the same
C-arm CT system as for acquiring the in vivo data in Chapter 4.
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2. As part of this thesis, a software program was developed to implement a com-
plete perfusion imaging workflow with C-arm CT. In the second part of this
chapter, this program is described and an overview of the corresponding work-
flow is given. The program implements the algorithms from Chapters 2 and 4.

Chapter 7 — Summary and Outlook

This chapter summarized the work presented in this thesis, provides general conclu-
sions, and gives an outlook for future work.



Chapter 2

Review of Image Analysis for
Brain Perfusion Measurement

Overview:
In this chapter, a review of the theory and the practical implementation of image
analysis algorithms for CT and MR brain perfusion measurement is provided. It fo-
cuses on deconvolution-based image analysis algorithms which are the most commonly
applied algorithms for this purpose. In particular, the deconvolution methods that
utilize the regularized singular value decomposition are described. First, a detailed ex-
planation of the underlying physiological model will be provided (Section 2.2). Then
the practical implementations are described (Section 2.3) and relevant pre-processing
steps are explained (Section 2.4).

The algorithms presented in this chapter will be used to analyze the C-arm CT
perfusion data reconstructed with the methods described in Chapter 4 and they are
implemented in the software program described in Chapter 6.2.

This chapter is based on “Deconvolution-based CT and MR brain perfusion measure-
ment: theoretical model revisited and practical implementation details”, by A. Fiesel-
mann, M. Kowarschik, A. Ganguly, J. Hornegger, and R. Fahrig. International Jour-
nal of Biomedical Imaging, vol. 2011, article ID 467563, 20 pages [29].

11
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2.1 Introduction

CT and MR brain perfusion imaging is commonly used for image-based stroke di-
agnosis. It is conducted by injecting a contrast agent bolus into a vein followed by
repeated scanning of the brain. Typically, one reconstructed image per second is
obtained over an interval of about 40–50 s [3]. A different application for perfu-
sion imaging is to evaluate the blood flow in tumors, for example, which also uses a
contrast agent bolus injection and repeated scanning [32].

A time-concentration curve (TCC) can be extracted at each voxel position of this
time-resolved data set. This TCC describes the change of contrast agent concentra-
tion over time after the contrast agent bolus injection. Various perfusion parameters
can be computed from each TCC. Thus, a parameter map can be obtained that pro-
vides information about the local state of tissue perfusion at different voxel positions.

As an example, Figure 2.1 shows common parameter maps based on a brain perfu-
sion CT exam (Somatom Definition AS+, Siemens AG, Healthcare Sector, Forchheim,
Germany) of a 69-year-old male stroke patient. The patient presented to the hospital
with an acute high grade hemiparesis on the right side. A CT angiography scan
indicated an occlusion of the left middle cerebral artery. The time-to-peak (TTP)
image shows a large lesion that illustrates the maximum involved tissue. In addition,
the cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time
(MTT) images exhibit perfusion deficits in a smaller brain territory.

These perfusion parameters will be explained in Section 2.2, where a detailed
derivation of the underlying model of the tissue perfusion will be presented.

2.2 Theoretical Model

In this section, the theoretical physiological model of tissue perfusion for intravascular
tracer systems will be introduced and the derivation of a deconvolution-based mathe-
matical approach for the estimation of diagnostically important perfusion parameters
will be presented.

2.2.1 Model of the Microcirculation at the Tissue Level

For computing the tissue perfusion, a physiological model of the blood supply to the
tissue is assumed. Figure 2.2 shows this model that consists of a volume of interest
Vvoi covering the organ-specific parenchyma, the interstitial space, as well as the
capillary bed. The volumes of the parenchyma and the interstitial space are denoted
by V∗

voi, while the volume of the capillary bed is referred to as Vcap. The entire volume
of interest Vvoi = V∗

voi ∪ Vcap shall be supplied with blood by a single arterial inlet
and correspondingly drained by a single venous outlet. In general, it may have a
different shape than the cuboid shown in Figure 2.2. A blood cell can take various
paths through the capillary bed. The transit time t it needs to pass through the
capillary bed depends on the chosen path. A stationary probability density function
hcap(t) of transit times is assumed.
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Figure 2.1: CT perfusion parameter maps of cerebral blood flow (CBF), cerebral
blood volume (CBV), mean transit time (MTT), and time-to-peak (TTP). The is-
chemic stroke lesion is marked with arrows (images courtesy of Dr. T. Struffert,
Department of Neuroradiology, University of Erlangen-Nuremberg, Germany).
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Figure 2.2: Physiological model of the tissue perfusion. A blood cell can take several
paths through the capillary bed. The variables are defined in Table 2.1.
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Figure 2.3: Examples of the time-concentration curves (TCC) cart(t), cvoi(t), and
cven(t) given in arbitrary units (a.u.). The right figure (b) represents a zoomed view
of the left figure (a) with a rescaled ordinate.

Once a contrast agent bolus has been injected, it enters the volume Vvoi under
consideration via the arterial inlet and is then diluted into the capillary bed. The
local contrast agent concentrations cart(t) and cven(t) are measured directly adjacent
to the capillary bed on the arterial and venous sides, respectively. Furthermore, the
average contrast agent concentration cvoi(t) within the volume of interest can also be
measured. In perfusion CT an iodinated contrast agent is used, whereas in perfusion
MRI the measured signal difference is created by a paramagnetic contrast agent based
on gadolinium (Gd). The contrast agent concentration is defined as mass of iodinated
contrast agent per volume (unit: g/ml) or amount of Gd-based contrast agent per
volume (unit: mol/ml), respectively [33]. For the following analysis, the contrast
agent concentration is assumed to be measured as mass per volume, which can easily
be related to amount per volume.

Figure 2.3 illustrates TCCs cart(t), cvoi(t), and cven(t) that may be measured in
brain tissue, for example. For the sake of simplicity, the maximum contrast agent
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concentration has been normalized to one. Note, the (average) enhancement within
the volume of interest is commonly more than an order of magnitude below the
enhancements of the feeding artery and the draining vein.

An additional, important assumption is that the contrast agent remains in the
intravascular space. For our case of cerebral perfusion, it should therefore not cross
the blood-brain barrier (BBB). As a consequence, this means that all contrast agent
entering from the arterial inlet will eventually leave the volume of interest at the
venous outlet. A breakdown of the BBB may occur in tumor patients, in stroke
patients, and in patients that suffer from inflammations or infections, for example.
In these cases, the methods presented in this chapter may lead to inaccurate perfusion
estimates and particularly to an overestimation of the blood volume [34, 35]. Note,
there exist other modeling approaches which do not assume that the contrast agent
remains in the intravascular space. These models can be used for measuring tumor
perfusion, for example [32, 33, 36].

Finally, it is supposed that the contrast agent mixes perfectly with the blood and
that the physical properties of the blood (its flow behavior, in particular) are not
influenced by the contrast agent.

In fact, only knowledge of the functions cart(t) and cvoi(t) is needed to compute the
blood flow within the volume under consideration. In practice, the function cart(t)
— also known as the arterial input function (AIF) — is not measured directly at
the respective volume of interest, but in a larger feeding artery in order to achieve a
reasonable signal-to-noise ratio (SNR) (see Section 2.3.1).

As a first diagnostically relevant perfusion parameter, the mean transit time
(MTT) of the volume under consideration is defined as the first moment of the prob-
ability density function hcap(t) of the transit times; i.e.,

MTT =
∫ ∞

0
τ hcap(τ) dτ , (2.1)

considering that hcap(t) = 0 ∀ t < 0. Furthermore, the residue (or residual) function
r(t) — cf. [37] — represents an intermediate quantity of interest and is defined as

r(t) =







1−
∫ t

0 hcap(τ) dτ for t ≥ 0 ,

0 for t < 0 .
(2.2)

The (dimension-less) residue function thus quantifies the relative amount of con-
trast agent that is still inside the volume Vvoi of interest at time t after an (idealized)
delta-shaped contrast agent bolus has entered the volume at the arterial inlet at time
t = 0; i.e., cart(t) = δ(t). Due to the various transit times within the capillary bed, the
contrast agent will not leave the volume instantaneously, but gradually over time. In
particular, this means that the residue function decreases continuously from r(0) = 1
to 0. Figure 2.4 shows typical examples of a probability density function hcap(t) of
transit times as well as the corresponding residue function r(t). In this example, the
PDF hcap(t) is modeled by a gamma PDF [38].
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Variable Unit Description

Vvoi ml total volume under consideration

Vcap ml volume of the capillary bed within the volume Vvoi

V∗
voi ml volume Vvoi without the volume of the capillary bed,

V∗
voi = Vvoi \ Vcap

ρvoi g/ml mean density of the volume Vvoi

ρ∗
voi g/ml mean density of the volume V∗

voi

mc,voi(t) g total mass of contrast agent in volume Vvoi

mc,voi,in(t) g in-flown accumulated mass of contrast agent in Vvoi at time t

mc,voi,out(t) g out-flown accumulated mass of contrast agent from Vvoi at time t

cart(t) g/ml local contrast agent concentration at the arterial inlet,

cart(t) = dm
d|V|

∣

∣

∣

t
, measured at the arterial inlet

cven(t) g/ml local contrast agent concentration at the venous outlet,

cven(t) = dm
d|V|

∣

∣

∣

t
, measured at the venous outlet

cvoi(t) g/ml average contrast agent concentration in the total volume Vvoi,
cvoi(t) = mc,voi(t) / |Vvoi|

ccap(t) g/ml average contrast agent concentration in the capillary bed,
ccap(t) = mc,voi(t) / |Vcap|

c∗
voi(t) g/ml average contrast agent concentration corresponding to V∗

voi,
c∗

voi(t) = mc,voi(t) / |V∗
voi|

F ml/s volume flow at the arterial inlet and at the venous outlet

hcap(t) 1/s probability density function of the transit times

Table 2.1: Summary of parameters used to derive the indicator-dilution theory and
to define clinically relevant tissue perfusion quantities.
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Figure 2.4: Examples of the probability density function (PDF) hcap(t) of transit
times (the mean transit time is 4 s) and the corresponding residue function r(t).



2.2. Theoretical Model 17

2.2.2 Derivation of the Indicator-Dilution Theory

Using the parameters defined in Table 2.1, the accumulated masses of contrast agent
that have entered and left the volume of interest during the time interval [0, t],
denoted as mc,voi,in(t) and mc,voi,out(t), respectively, can be expressed as

mc,voi,in(t) = F
∫ t

0
cart(τ) dτ , (2.3)

mc,voi,out(t) = F
∫ t

0
cven(τ) dτ . (2.4)

The volume flow F (unit: ml/s) is assumed to be constant over time. The contrast
agent concentrations cart(t) and cven(t) at the arterial inlet and the venous outlet,
respectively, are time-dependent functions which are assumed to be 0 for t < 0.
These functions primarily depend on the parameters of the contrast agent injection
and the patient’s cardiac cycle.

The mass mc,voi(t) of a contrast agent within the volume of interest at time t can
be computed using the principle of conservation of mass as

mc,voi(t) = mc,voi,in(t)−mc,voi,out(t) = F
∫ t

0
(cart(τ)− cven(τ)) dτ . (2.5)

The contrast agent concentration cven(t) at the venous outlet can be computed
from the contrast agent concentration cart(t) at the arterial inlet by convolving it with
the probability density function hcap(t). One therefore obtains

cven(t) =
∫ +∞

−∞
cart(ξ) hcap(t− ξ) dξ . (2.6)

Note, throughout this chapter, all integrals with infinite integration endpoints
shall be interpreted as the limit of the integral when the respective endpoint ap-
proaches ±∞. Using Equation (2.6), Equation (2.5) can be rewritten, by applying
the Dirac delta function δ(t), as

mc,voi(t) = F
∫ t

0

(∫ +∞

−∞
cart(ξ) δ(τ − ξ) dξ −

∫ +∞

−∞
cart(ξ) hcap(τ − ξ) dξ

)

dτ . (2.7)

Changing the order of integration and re-arranging this equation leads to

mc,voi(t) = F
∫ +∞

−∞
cart(ξ)

(∫ t

0
(δ(τ − ξ)− hcap(τ − ξ)) dτ

)

dξ . (2.8)

By applying the substitution τ ′ = τ − ξ, one obtains

∫ t

0
(δ(τ − ξ)− hcap(τ − ξ)) dτ =

∫ t−ξ

−ξ
(δ(τ ′)− hcap(τ ′)) dτ ′ = r(t− ξ) . (2.9)

For the last step it is useful to recall that, for t ≥ 0, it holds

r(t) = 1−
∫ t

0
hcap(τ) dτ =

∫ t

0
(δ(τ)− hcap(τ)) dτ , (2.10)
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and that hcap(t) = 0 for t < 0. Equation (2.8) thus eventually reads

mc,voi(t) = F
∫ +∞

−∞
cart(ξ) r(t− ξ) dξ . (2.11)

The cerebral blood flow (CBF) is introduced as the blood volume flow normalized by
the mass of the volume Vvoi,

CBF =
F

|Vvoi| · ρvoi

. (2.12)

Here, |Vvoi| denotes the absolute value of the volume Vvoi. The normal value for CBF
in humans is between 50 and 60 ml/100g/min for grey matter [39]. Inserting this
definition into Equation (2.11) yields

mc,voi(t)

|Vvoi|
= CBF · ρvoi ·

∫ +∞

−∞
cart(ξ) r(t− ξ) dξ . (2.13)

According to Table 2.1, the contrast agent concentration cvoi(t) within the volume
Vvoi of interest is defined as

cvoi(t) =
mc,voi(t)

|Vvoi|
, (2.14)

which finally leads to the following formulation of the indicator-dilution theory,

cvoi(t) = CBF · ρvoi ·
∫ +∞

−∞
cart(ξ) r(t− ξ) dξ

= CBF · ρvoi · (cart +× r)(t) , (2.15)

where +× denotes the convolution operator as usual, see also [34, 40]. An alternative
derivation of the same mathematical result is presented in [33]. A historical overview
of the development of the indicator-dilution theory with numerous references to math-
ematical aspects can be found in [41]. Note, the solution of Equation (2.15) with
respect to CBF and other clinically important perfusion parameters will be discussed
in Section 2.2.3.

From a physiological point of view, it would be more meaningful to normalize CBF
by the mass of the volume V∗

voi. This volume V∗
voi contains the mass of the parenchyma

(and the interstitium) only. In that case, CBF would be a local measure for the blood
volume flow per mass of parenchyma (and interstitium) that actually requires blood
supply for oxygen and nutrient delivery. In Equation (2.12), however, the volume
Vvoi also contains the mass of the blood-filled capillary bed itself. Another aspect to
consider is that the mean density ρvoi of the volume, which influences the CBF value,
actually depends on the (varying) mass of the contrast agent in the capillary bed.
The alternative definition of CBF,

CBF∗ =
F

|V∗
voi| · ρ

∗
voi

, (2.16)

would then lead to a corresponding alternative formulation of the indicator-dilution
theory,

c∗
voi(t) = CBF∗ · ρ∗

voi · (cart +× r)(t) . (2.17)
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From a practical perspective, however, it is more convenient to use the definition of
CBF given by Equation (2.12), see Section 2.3.1.

The derivation of the indicator-dilution theory in this section was focused on brain
perfusion imaging. This theoretical model can be used in stroke patients if the BBB
is intact — cf. Section 2.2.1 — but it is not suited for semi-permeable tumors, for
example. With slight adaptations, this theoretical model can also be applied in other
applications of perfusion imaging such as pulmonary perfusion imaging. See [42] for
detailed discussions. A discussion of models in hepatic and renal perfusion imaging
is given in [43] and [44], respectively.

In the context of perfusion measurement, the term recirculation refers to the
physiological phenomenon that, due to the patient’s cardiac activity, the contrast
agent passes through the volume under consideration multiple times. It can easily be
shown, however, that there is no need to correct for recirculation when deconvolution
methods are applied to determine perfusion parameters [45].

2.2.3 Computation of Perfusion Parameters Using Deconvo-
lution

In Equation (2.15), the variables cart(t) and cvoi(t) can be measured and have known
values whereas the values of CBF, r(t), and ρvoi are unknown. In order to compute
CBF as well as other diagnostically relevant tissue perfusion parameters, first an
intermediate quantity of interest is introduced, the flow-scaled residue function k(t),

k(t) = CBF · ρvoi · r(t) , (2.18)

which is given in units of 1/s and can be determined directly from the measured data
cart(t) and cvoi(t). Using Equation (2.18), Equation (2.15) can be written as

cvoi(t) = (cart +× k)(t) . (2.19)

Hence, k(t) can be obtained from the measured data cart(t) and cvoi(t) using a de-
convolution method. Since a fundamental property of the residue function r(t) is
r(0) = max

t
(r(t)) = 1, one may then determine CBF as

CBF =
1

ρvoi

·max
t

(k(t)) . (2.20)

Using max
t

(k(t)) instead of k(0) has particular practical advantages that will be dis-

cussed in detail in Section 2.3.1.

The flow-scaled residue function k(t) can further be used to determine the MTT
parameter of the tissue volume under consideration. From Equation (2.2), it follows
that, for t > 0, the following holds:

dr(t)

dt
= −hcap(t) . (2.21)
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Equation (2.1) can thus be rewritten, and then using integration by parts and Equa-
tion (2.18) and Equation (2.20), one obtains

MTT =
∫ ∞

0
τ

(

−
dr(τ)

dτ

)

dτ

=
∫ ∞

0
r(τ) dτ − lim

ξ→∞

(

τ r(τ)

∣

∣

∣

∣

∣

ξ

0

)

=
∫ ∞

0
r(τ) dτ

=
1

max
t

(k(t))
·
∫ ∞

0
k(τ) dτ . (2.22)

Note, it was assumed that there is a constant T > 0 such that r(t) = 0 for t > T .
This assumption ensures that

lim
ξ→∞

(

τ r(τ)

∣

∣

∣

∣

∣

ξ

0

)

= lim
ξ→∞

(

ξ r(ξ)

)

= 0 . (2.23)

The cerebral blood volume (CBV) corresponding to the tissue volume Vvoi repre-
sents another diagnostically relevant perfusion parameter and is defined as

CBV =
|Vcap|

ρvoi · |Vvoi|
. (2.24)

It quantifies the blood volume normalized by the mass of Vvoi and is typically mea-
sured in units of ml/100g. The quantity CBV can be computed from the parameters
CBF and MTT using the central volume theorem [35, 40], according to which

CBF =
CBV

MTT
(2.25)

holds for the perfused volume of interest. Interestingly, this theorem has been rec-
ognized for a long time and is already found in a historical publication from 1893
[46]. It states that the perfusion parameters CBV and CBF corresponding to the
volume Vvoi of interest are related by the respective temporal parameter MTT that
quantifies the mean time that a blood cell needs to pass through its capillary bed.
With Equation (2.20) and Equation (2.22), it follows from Equation (2.25) that

CBV = MTT · CBF =
1

ρvoi

·
∫ ∞

0
k(τ) dτ , (2.26)

which demonstrates that the CBV parameter can be derived from the flow-scaled
residue function k(t) as well. A healthy human brain exhibits a CBV of about
4 ml/100g for grey matter and a CBV of about 2 ml/100g for white matter [39].

Note, the definition of CBV that corresponds to the alternative definition of CBF
in Equation (2.16) is

CBV∗ =
|Vcap|

ρ∗
voi · |V

∗
voi|

. (2.27)
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Figure 2.5: Perfusion parameters that are measured directly using the time-
concentration curve. See Section 2.2.4 and Section 2.3.1 for explanations (BAT:
bolus arrival time, TTP: time-to-peak, FM: first moment, AUC: area under curve).

Accordingly, this alternative definition relates the blood volume to the mass of the
parenchyma (and the interstitium) only and explicitly omits the mass of the capillary
bed itself.

Furthermore, there are references in the literature that suggest measuring the
blood volume in units of ml/ml. This alternative dimensionless quantity may there-
fore be considered as a measure of blood (or vascular) volume fraction. When relating
the absolute volume |Vcap| of the capillary bed to the entire absolute volume |Vvoi|
of interest, a typical average ratio of about 4% will result for the human brain. The
reader is referred to [47] for both technical and clinical details.

2.2.4 Additional Perfusion Parameters

Besides the aforementioned quantities CBV, CBF, and MTT, there are additional
perfusion parameters such as the time-to-peak (TTP) of the TCC, the maximum
contrast agent concentration cmax, as well as the first moment (FM) of the TCC, for
example. The first moment can be computed by projecting the centroid of the area
under the curve (AUC) of the TCC onto the time axis.

Figure 2.5 illustrates the quantities cmax, TTP, and FM. The remaining parameter
bolus arrival time (BAT) will be explained in Section 2.3.1. In practical measure-
ments, the time point t = 0 represents the start of the scanning. A comparison
of several perfusion parameters and their clinical impact on the treatment of stroke
patients is given in [48].

In summary, Table 2.2 covers the definitions of the most common diagnostically
relevant perfusion parameters. Note, this chapter has focused on deconvolution-based
methods to determine perfusion parameters. There exist also nondeconvolution-based
methods to compute CBF, CBV and MTT. The reader is referred to [29] for the
nondeconvolution-based definitions of these parameters.
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Parameter Definition

CBV (1/ρvoi) ·
∫∞

0 k(τ) dτ

CBF (1/ρvoi) ·max
t

(k(t))

MTT
∫∞

0 k(τ) dτ / max
t

(k(t))

TTP arg max
t

(cvoi(t))

FM
∫∞

0 cvoi(τ) τ dτ /
∫∞

0 cvoi(τ) dτ

Table 2.2: Summary of perfusion parameters definitions.

2.3 Practical Implementation

This section is devoted to the practical implementation of algorithms for perfusion
image analysis. First, the necessary adaptations of the theoretical model from Sec-
tion 2.2 that are needed for its application to data from real CT and MR scanners
will be discussed. Afterwards, commonly used algebraic deconvolution methods will
be described and also an overview of alternative approaches will be given. The need
for suitable regularization will be motivated and the influence of the regularization
parameter on the resulting perfusion estimates will be discussed. For the sake of
completeness, also techniques for the pre-processing of the acquired perfusion data
will be addressed.

2.3.1 Adaptations of the Model of the Microcirculation

In Section 2.2.1, a model of microcirculation at the tissue level was presented. It was
assumed that the average contrast agent concentration cvoi(t) could be measured,
which corresponds to a volume Vvoi under consideration that is supplied by one single
capillary bed only. Furthermore, it was supposed that the contrast agent concen-
tration cart(t) could be measured locally at the arterial inlet into the capillary bed.
However, real CT and MR scanners are characterized by limited spatial (and contrast)
resolution and, in reality, one cannot rely on these two aforementioned assumptions.
Thus two major adaptations of the physiological model will be introduced which are
necessary once it is to be applied to data from real scanners.

First, during a standard CT and MR perfusion exam, a volume of interest is
scanned and the data is reconstructed on a grid of regularly spaced voxels. In the
object domain, each voxel volume Vvox (|Vvox| ≫ |Vvoi|) contains numerous capillary
beds as well as arterioles and venules that supply and drain these capillary beds,
respectively. For the particular case when the volume Vvox is located completely
within a larger artery or vein, there are of course no capillary beds located within
Vvox.

The measured signal (X-ray attenuation or MR relaxation rate) in a voxel is thus
a combination of the signals from both the capillary beds as well as the arterial and
venous vessels [49]. The perfusion parameters that are computed from the voxel’s
TCC are therefore not true parameters of the capillary perfusion. If no larger artery
or vein is located inside the volume Vvox, the model introduced in Section 2.2.1 may
be adapted as follows: the measured time-concentration curve cvoi(t) refers to the
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average perfusion from the arterioles through the capillary beds to the venules found
in Vvox.

The second adaptation of the model concerns the measurement of cart(t). In
reality, it is not possible to locally measure the concentration at the arterial inlet
into the volume Vvox. Instead, it is common practice that a global arterial input
function is chosen in a large arterial vessel. In brain perfusion imaging, for example,
the anterior cerebral artery is often selected [50].

This approach leads to a traveling time of the contrast agent bolus from where
the AIF is measured to the location of the tissue volume where cvoi(t) is measured.
This traveling time will be referred to as bolus delay. Another physical effect that
needs to be taken into consideration is bolus dispersion [51]. It appears as a widening
of the shape of the bolus that is caused during the flow from the remote AIF location
to the measurement site of cvoi(t).

The bolus delay has two implications. The curve cvoi(t) does not start to rise at
the same time point as cart(t) starts to rise. The difference between these two time
points can be defined as the bolus arrival time (BAT), which may be considered as
an additional perfusion parameter [52]. Alternatively, the BAT can be defined as the
time interval between the start of the scanning and the time when cvoi(t) begins to
rise, see Figure 2.5. The results obtained with this alternative definition differ from
the results obtained with the first definition by a constant value only.

Second, the flow-scaled residue function k(t) is equal to 0 from t = 0 to t = BAT.
In addition, due to the bolus dispersion, k(t) will not rise instantaneously to its
maximum at t = BAT, but it will have a finite rise time. The time-to-maximum
(TMAX) of the flow-scaled residue function, defined as

TMAX = arg max
t

(k(t)) , (2.28)

has also been suggested as an additional perfusion parameter [53, 54]. Since the
function k(t) can be 0 at t = 0 (due to bolus delay), it is reasonable and recommended
to estimate CBF as the maximum of k(t) — cf. Equation (2.20) — and not as the
value of k(t) at time t = 0.

Bolus delay and dispersion may lead to an underestimation of CBF [51]. In
order to correct for bolus delay and dispersion several methods have been proposed
[55, 56]. The use of local arterial input functions could also reduce the effect of bolus
dispersion, see Section 2.4.6. On the other hand, new perfusion parameters (BAT,
TMAX) are motivated by these two effects and can be defined accordingly. They
represent perfusion characteristics related to the flow of the contrast agent bolus
from the selected feeding artery to the respective tissue site.

2.3.2 Deconvolution Using Algebraic Methods

In this section, the robust numerical solution of the main equation of the indicator-
dilution theory — Equation (2.19) — by means of algebraic deconvolution methods
will be discussed. An overview of further deconvolution methods will then be given
in Section 2.3.3. The discretization of Equation (2.19) will be introduced and it will
be shown that its solution without regularization leads to nonphysiological results.
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Figure 2.6: Examples of measured time-attenuation curves in perfusion CT in (a) an
arterial vessel and (b) in tissue. The time curves have been pre-processed by baseline
subtraction and removal of the baseline time frames. The example data is measured
at N = 35 discrete time points.

Suitable regularization approaches will be explained and motivated by a singular-
value-decomposition-based analysis. To illustrate the mathematical concepts, exam-
ples will be provided using the time-attenuation curves (TAC) µart and µvoi shown in
Figure 2.6 that were extracted from a real perfusion CT scan.

It is assumed that the measured TACs can be converted to time-concentration
curves using a constant of proportionality of 1 g/ml/HU. Details about the conversion,
also discussing perfusion MRI data, will be explained in Section 2.4.4.

In practice, the TCCs cart(t) and cvoi(t) are sampled at discrete time points. These
time points are denoted as tj = (j − 1) ·∆t with j = 1, . . . , N . A typical value of the
sampling period ∆t is 1 s, for example. Equation (2.19) can be discretized as

cvoi(tj) =
∫ ∞

0
cart(τ) k(tj − τ) dτ ≈ ∆t

N
∑

i=1

cart(ti) k(tj−i+1) , (2.29)

see [57]. It is assumed that the values of cart(t) can be neglected for t > N∆t. Since
k(t) = 0 for t < 0, the end summation index could also be set to j instead of N . By
rewriting this expression using matrix-vector notation, one obtains

∆t ·













cart(t1) 0 . . . 0
cart(t2) cart(t1) . . . 0

...
...

. . .
...

cart(tN) cart(tN−1) . . . cart(t1)

























k(t1)
k(t2)

...
k(tN)













=













cvoi(t1)
cvoi(t2)

...
cvoi(tN)













, (2.30)

or shortly

A k = c (2.31)

where ∆t and cart(tj) are contained in the matrix A ∈ R
N×N , and k(tj) and cvoi(tj)

represent the entries of the vectors k ∈ R
N and c ∈ R

N , respectively. Different ways
to discretize Equation (2.19) are investigated in [58]. For example, it was suggested
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Figure 2.7: Least-squares solution vector kls of Equation (2.31) using the example
data from Figure 2.6. (kls)j denotes the j-th entry of the vector kls. The plot shown
in figure (a) illustrates the strong oscillations of (kls)j. The plot given in figure (b)
shows the absolute values |(kls)j| on a logarithmic scale.

in [59, 60] to use a discretization method with a block-circulant matrix A in order to
reduce the influence of the bolus delay. See Appendix A for details.

In order to solve Equation (2.31) for k, the least-squares solution kls could be
computed. It minimizes the squared Euclidean residual norm of the linear systems
given by Equations (2.30) and (2.31) and is defined as [61]:

kls = arg min
k∈RN

(

||A k − c||22
)

. (2.32)

Several numerical methods exist that can be used to compute kls. The reader is
referred to [62] for details. However, the least-squares solution kls does not represent a
suitable solution of Equation (2.31), if the matrix A is ill-conditioned. It can be shown
that a matrix A with a structure as shown in Equation (2.30) or Equation (A.3), also
known as a Toeplitz matrix, is in fact ill-conditioned [63, 64]. In that case, a small
change in c (e.g., due to projection noise) can cause a large change in kls. The rate at
which a change in c influences the solution kls is roughly proportional to the condition
number of A, defined as σ1/σr̂ where r̂ ≡ rank(A) [61].

As an example, Figure 2.7 shows the solution kls of the example data from Fig-
ure 2.6. The solution is strongly oscillating and even has a rising amplitude. It is
obvious that this solution has nothing in common with the real physiological behavior
of the flow-scaled residue function.

In order to get a better understanding of why kls is not a meaningful solution
and to motivate the regularization approach, the matrix equation Equation (2.31)
will be investigated. The singular value decomposition (SVD) which is a well-known
method for the analysis of matrix equations [61, 64] will be used for this purpose and
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Figure 2.8: SVD analysis of the matrix A constructed from the example data shown
in Figure 2.6. (a) Plot of the absolute values of the weighting factors (uT

i c)/σi and of
their individual components |uT

i c| and σi. (b) Plot of the entries of the right singular
vectors vi of A for i ∈ {32, 33, 34, 35}. (vi)j denotes the j-th entry of vi.

it will be described next. For the particular case of a square matrix A ∈ R
N×N with

r̂ linearly independent rows and columns2, it is defined as

A = U Σ V
T =

r̂
∑

i=1

ui σi v
T
i , (2.33)

where U = [u1, . . . , ur̂] and V = [v1, . . . , vr̂] are unique orthogonal matrices com-
posed of the left and right singular vectors ui and vi, respectively [61]. The diagonal
matrix Σ = diag ( σ1, . . . , σr̂ ) contains the singular values σi in non-increasing order
σ1 ≥ σ2 ≥ . . . ≥ σr̂ > 0. The least-squares solution kls of Equation (2.31) using the
SVD of A is actually given by

kls =
r̂
∑

i=1

uT
i c

σi

vi , (2.34)

see again [61].
The SVD will now be used to analyze Equation (2.31) with A and c which are

constructed from the data shown in Figure 2.6. Figure 2.8(a) represents a plot of
the absolute values of the expressions (uT

i c)/σi that occur in Equation (2.34). These
factors weight the right singular vectors vi of A. The entries of the right singular
vectors vi are shown in Figure 2.8(b) for i ∈ {32, 33, 34, 35}.

It is known from numerical analysis that the discrete Picard condition represents a
means to analyze discrete ill-conditioned problems [63, 64]. This condition is violated,
if the expressions uT

i c do not decay faster, on average, than the singular values σi

until a threshold value is reached where the singular values level off. The reader is

2The number of rows and columns in A that only contain zeros is determined by the number
Nlz of leading zeros in the series cart(tj), j = 1, . . . , N . Therefore, the rank of A is less or equal
N − Nlz. After the subtraction of the baseline, it may happen that the first entry cart(t1) is zero,
see Section 2.4.4, and that A thus becomes rank-deficient.
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referred to [64] for a more detailed explanation of the discrete Picard condition and
its relation to the Picard condition from which it is derived. A usual reason for the
violation of the discrete Picard condition is noise in the measured data that the matrix
A is based on. One can see that the discrete Picard condition is actually violated
in the example shown in Figure 2.8(a) [65]. Consequently, the absolute values of the
ratios (uT

i c)/σi — which represent the weighting factors of the right singular vectors
vi — become very large.

The absolute values of the entries of the right singular vectors vi shown in Fig-
ure 2.8(b) tend to be larger for higher vector indices j compared to lower indices j.
A similar trend can also be seen in the solution vector kls, see Figure 2.7(b).

To obtain a numerically stable result, a filter is used for regularization. The
filter should suppress the influences of small singular values σi or, equivalently, the
influences of high absolute values of the weighting factors (uT

i c)/σi. The regularized
solution kl, where l is a regularization parameter, is given by

kl =
r̂
∑

i=1

(

fl,i
uT

i c

σi

)

vi . (2.35)

Two common definitions of the filter factors fl,i will be introduced. First, the
filter factors f (tsvd) correspond to the truncated singular value decomposition (TSVD)
approach and are defined with a sharp threshold at l,

f
(tsvd)

l,i =







0 for σi < l ,

1 for σi ≥ l .
(2.36)

Second, the filter factors f
(tikh)

l,i are based on the Tikhonov regularization approach
and characterized by a smooth weighting function centered around l,

f
(tikh)

l,i =
σ2

i

σ2
i + l2

. (2.37)

The (absolute) regularization parameter l is usually computed relative to the
maximum singular value σ1, i.e.,

l = lrel σ1 . (2.38)

The relative regularization parameter lrel is supposed to lie in the interval between 0
and 1.

In order to illustrate the Tikhonov filter factors, Figure 2.9 shows a plot of the
function f

(tikh)
l (σ) = σ2/(σ2 + l2) which is — unlike Equation (2.37) — defined for

a continuous range of σ. For determining f
(tikh)

l (σ), σ1 = 1 was assumed. It can

be seen that, for increasing l (i.e., stronger regularization), the values of f
(tikh)

l (σ)
decrease for all σ.

Interestingly, the solution k
(tikh)
l of Equation (2.31) using the filter factors f

(tikh)
l,i

is equivalent to minimizing the weighted sum of the squared Euclidean residual norm
||A k − c||22 and the squared Euclidean solution norm ||k||22 [64]; i.e.,

k
(tikh)
l = arg min

k∈RN

(

||A k − c||22 + l2 ||k||22
)

. (2.39)
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Figure 2.10: Deconvolution with Tikhonov regularization: (a) Regularized solution
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l )j denotes the j-th entry of the vector k

(tikh)
l .
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Figure 2.10(a) shows the solution k
(tikh)
l computed for two different regularization

parameters. The solution for lrel = 0.1 still shows some nonphysiological oscilla-
tions. However, the solution for lrel = 0.3 can in fact be interpreted as a flow-scaled
residue function in the presence of bolus delay and dispersion, cf. Section 2.3.1.
Figure 2.10(b) illustrates a plot of max

j
((k

(tikh)
l )j), which is proportional to CBF

(see Section 2.2.3 and Table 2.2), as a function of lrel. Apparently, CBF depends
on the choice of regularization parameter. Choosing an optimal regularization pa-
rameter that will lead to physiologically reasonable estimates will be discussed in
Section 2.3.4.

Finally, Algorithm 2.1 summarizes the algorithm to compute perfusion parameters
based on the TSVD approach. This algorithm will actually be used in Chapter 4 to
compute the relevant perfusion parameters. Note, the factors 6000, 100, and 60 in
line 13–15 ensure that the output values have the desired units.

2.3.3 Alternative Deconvolution Approaches

The algebraic deconvolution approach from Section 2.3.2 is very commonly applied to
analyze perfusion data. Yet, deconvolution problems arise in many other applications,
and numerous alternative algorithms to solve these problems have been developed
[66]. This section will provide a brief overview of alternative deconvolution approaches
that have also been applied to perfusion data.

The Fourier transform (FT) represents a standard method to solve deconvolution
problems [62], and it has also been evaluated to analyze perfusion data [57, 67, 68, 69].
Interestingly, the FT-based deconvolution approach is mathematically equivalent to
the SVD-based deconvolution approach with a block-circulant matrix A, cf. Ap-
pendix A [59, 70, 71, 72]. However, results obtained with SVD-based and FT-based
deconvolution can be different because the chosen regularization approaches for these
two methods are usually not equivalent. The regularization in the context of the FT-
based deconvolution approach can be implemented by means of a modified Wiener
filter [67], for example. The reader is referred to [72, 73] for a detailed analysis of the
equivalence of SVD-based and FT-based regularization approaches.

In contrast to the model-independent deconvolution approaches also model-depen-
dent approaches exist. Model-dependent approaches assume a certain shape of the
residue function. For example, in [57, 75] a decaying exponential function was used
which makes the deconvolution more stable since it reduces the degrees of freedom
of the residue function [57]. However, if the underlying residue function is different
from the model the perfusion parameters may not be estimated correctly.

Deconvolution using orthogonal polynomials was investigated in [76]. An itera-
tive deconvolution algorithm based on maximum likelihood expectation maximization
(MLEM) algorithm was proposed in [77]. An approach using Gaussian processes was
evaluated in [78]. The deconvolution algorithm in [79] uses a nonlinear stochastic
regularization method.

A comprehensive comparison of all available deconvolution methods has not been
carried out yet. The SVD-based deconvolution approach, which is available in sev-
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Algorithm 2.1: TSVD algorithm to compute perfusion parameters.

Input: time-resolved data µ(xi, tj) (i = 1, . . . , Nvox where Nvox is the
number of voxels) with sample period ∆t,
AIF location xaif ≡ xiaif

where iaif ,
number B of baseline frames

Output: CBF parameter map Icbf(xi) (unit: ml/100g/min),
CBV parameter map Icbv(xi) (unit: ml/100g),
MTT parameter map Imtt(xi) (unit: s)

1 // constants suitable for CT brain perfusion data

2 lrel ← 0.2 // see Section 2.3.4

3 ρvoi ← 1.04 g/ml // typical density of brain tissue [74]

4 convert µart(tj) ≡ µ(xaif , tj) to cart(tj) according to Equation (2.40)

5 construct A using cart(tj) according to Equation (2.30)

6 compute SVD of A, cf. Equation (2.33)

7 compute f
(tsvd)

l,i according to Equation (2.36)

8 foreach voxel position xi do

9 convert µ(xi, tj) to cvoi(tj) ≡ c(xi, tj) according to Equation (2.40)

10 construct c using cvoi(tj) according to Equation (2.30)

11 compute k
(tsvd)
l according to Equation (2.35)

12 // compute perfusion parameters (Table 2.2)

numint: numerical integration applied to vector entries

13 Icbf(xi)← 6000 · (1/ρvoi) ·max
j

((k
(tsvd)
l )j)

14 Icbv(xi)← 100 · (1/ρvoi) ·∆t · numint
j

((k
(tsvd)
l )j)

15 Imtt(xi)← 60 · Icbv(xi) / Icbf(xi)

16 end
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eral software packages [80, 81, 82], is comparably simple to implement and can be
considered as the current standard method in perfusion image analysis.

2.3.4 Determination of the Regularization Parameter

Figure 2.10(b) demonstrated that (the maximum of) the solution k
(tikh)
l depends on

the regularization parameter lrel. Consequently, the computed perfusion values —
which can be derived from k

(tikh)
l according to Table 2.2 — vary for different lrel. As

an example, the CBF value will be underestimated systematically for large lrel.

Therefore, an optimal choice of lrel is crucial. A simple approach is to empirically
determine a fixed value lrel. This approach is often used in practice, and a typical
value in brain perfusion CT is, for example, lrel = 0.2 [81]. However, there exist more
sophisticated approaches as well to determine the values lrel independently for each
voxel position [83]. Since the required amount of regularization depends roughly on
the signal-to-noise ratio (SNR), these approaches can be more flexible when the SNR
is spatially variant.

In [57, 59, 60], an oscillation index (OI) was defined to determine the intensity of
oscillations of the flow-scaled residue function. The regularization can then be varied
until the OI value falls below a certain threshold.

The L-curve criterion represents a model-independent method to determine l (and
lrel) [45, 84, 85]. The L-curve is defined by a double logarithmic plot of the squared
Euclidean norm ||kl||

2
2 of the solution versus the squared Euclidean norm ||Akl−c||22

of the residual for a range of different l values. The optimal regularization parameter
lopt can be found at the location of the characteristic corner point of the L-curve.

Another method to determine an appropriate regularization parameter is gener-
alized cross validation as described in [63, 86]. An implementation of the L-curve
method and the generalized cross validation can be found in [65].

Furthermore, a parameter estimation method that uses a-priori knowledge of the
behavior of the residue function was proposed in [87].

Kudo et al. [81] reported that two manufacturers applied a fixed threshold value
lrel in their perfusion analysis software. Unfortunately, the clinical use of methods
with adaptive threshold values is rarely described in the current literature.

2.4 Perfusion Data Pre-processing

This section gives an overview of pre-processing techniques that can be applied in
order to enhance the quality of the estimated perfusion parameters. Pre-processing
occurs prior to the deconvolution step which may be implemented as described in
Section 2.3.2.

A simple, yet mandatory pre-processing step consists of the conversion to contrast
agent concentration values, see Section 2.4.4. Further pre-processing steps are used
to enhance the image quality (e.g., noise reduction) and to correct for artifacts (e.g.,
motion correction, partial volume correction) and specific properties of the blood
(e.g., correction of differences in hematocrit). There are also pre-processing steps
that can optimize the analysis of the perfusion value maps (e.g., segmentation of
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certain anatomical structures) and the application workflow (e.g., automated AIF
estimation).

The order of the pre-processing steps presented in this section can act as a guide-
line for their practical implementation. However, a different ordering can of course be
reasonable as well. Finally, this overview cannot include all details regarding suitable
pre-processing steps. The reader is referred to the available literature for in-depth
discussions.

2.4.1 Motion Correction

Patient motion (e.g., due to head movement or breathing) can result in a sudden
change of the attenuation values at the fixed (stationary) voxel positions. Since
this change in the attenuation value is caused by motion and not by contrast agent
flow, the computed perfusion values can be severely biased. A practical approach for
motion correction is to register all time frames of the reconstructed data set onto the
first time frame [88]. A 3-D registration should be used because it can also correct
motion that occurs perpendicular to the orientation of the reconstructed slices. For a
brain perfusion scan, a rigid registration may be sufficient. Conversely, in abdominal
perfusion imaging, a non-rigid registration may be better suited to compensate for
the deformations due to breathing.

As an alternative to registration, use of group-wise motion correction based on
an optimization of a global cost function has been suggested [89]. There are also
several approaches for motion correction in functional magnetic resonance imaging
(fMRI) data [90]. These approaches may be used for perfusion MRI data as well
since both types of data typically consist of T2*-weighted echo-planar imaging (EPI)
data [91]. However, the dynamic signal changes are relatively higher in dynamic
susceptibility contrast-MRI (DSC-MRI) data, i.e. MR perfusion imaging with T2*
weighting, when compared to fMRI data [91] which must be taken into account when
adapting fMRI-based motion correction algorithms to DSC-MRI data.

A related issue is streak artifact in reconstructed perfusion CT images that are
caused by patient motion that occurs while the projection data corresponding to a
single time frame is acquired. In perfusion MRI images, ghosting artifacts can arise
if the patient moves during the data acquisition. These kinds of artifact cannot
be corrected by inter-frame motion correction. Instead, dedicated reconstruction
algorithms would be required. As a practical alternative, time frames that exhibit
severe reconstruction artifacts may simply be removed from the data set (i.e., from
the series of successive time frames), which corresponds to the elimination of invalid
sampling points of the voxel-specific TCCs.

2.4.2 Noise Reduction

In the course of a perfusion exam, the measured signal in tissue that is caused by the
contrast agent flow can be very low. For the case of perfusion CT, for example, tissue
enhancements of less than 10 HU are measured. Hence, noise in the reconstructed
images can be of a similar order of magnitude as the signal in tissue itself. Conse-
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quently, noise reduction should be taken into consideration in order to improve the
accuracy of the estimated perfusion parameters.

Noise reduction can be implemented as a spatial smoothing of the data. Using
a basic approach, each time frame can be filtered independently of the other time
frames, and linear isotropic filters (e.g., based on a Gaussian filter kernel) may be
applied. Alternatively, anisotropic filters that preserve edges and avoid blurring of
large vessels can also be employed [92].

Both linear and nonlinear filtering in the temporal dimension — i.e., between
successive time frames — represent further methods for noise reduction [93]. It
should be noted, however, that the regularization during the deconvolution step is
equivalent to linear filtering in the temporal domain.

Recently, sophisticated 4-D filtering techniques have been proposed that perform
filtering in both the spatial and the temporal dimension and that are optimized for
perfusion data [94, 95]. Fitting of the TCCs to a model function such as a gamma-
variate function is also a means for noise reduction [88].

2.4.3 Segmentation

A segmentation of certain anatomical structures in the reconstructed data set can
optimize the perfusion image analysis [82, 96]. For example, the TCCs could then
be analyzed only in regions of interest where blood flow is actually expected [97].
Other regions such as air, bone, cerebrospinal fluid (CSF) and calcifications can be
neglected. A segmentation and the subsequent removal of vessels is useful in order
to optimize the quantitative analysis of perfusion parameters in tissue. Such a vessel
segmentation can be performed prior to the deconvolution step, but it can also be
implemented as a post-processing step as described in [98].

2.4.4 Conversion to Contrast Agent Concentration

Neither for the case of CT imaging nor for the case of MR imaging can the TCCs
cart(t) and cvoi(t) be measured directly. Instead, the measurement is a superposition
of the signal from the tissue itself and the contrast agent. Since the deconvolution
approach presented in Section 2.3.2 expects that the functions cart(tj) and cvoi(tj) only
refer to the signal caused by the contrast agent, the tissue signal must be subtracted.
Furthermore, the measured signal must be converted to a contrast agent concentration
value.

In perfusion CT, it is assumed that the (underlying) contrast agent concentration
value is proportional to the (measured) X-ray attenuation value [99, 100]. Since
deconvolution is a linear operation, the constant of proportionality does not influence
the computed flow-scaled residue function. It can also be seen that the additional
perfusion parameters from Section 2.2.4 are independent of this constant. Therefore,
this constant is usually set to Kct = 1 g/ml/HU for the sake of simplicity. The
baseline value µ0 can be computed as the mean of µ(tj) during the B acquired time
frames before the contrast agent bolus arrives in the arterial input function. The
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conversion formula from an attenuation value µ(tj) (corresponding to a particular
voxel) into the respective contrast agent concentration value c(tj) then reads as

c(tj) = Kct · (µ(tj+B−1)− µ0) , (2.40)

µ0 =
1

B

B
∑

i=1

µ(ti) . (2.41)

In perfusion MRI, however, the contrast agent concentration value is not propor-
tional to the received signal smr(tj) (in one voxel). Instead, it can be determined
using the following formula:

c(tj) = −
Kmr

TE
ln

(

smr(tj+B−1)

smr,0

)

, (2.42)

smr,0 =
1

B

B
∑

i=1

smr(ti) , (2.43)

see [34]. Here, Kmr is a constant of proportionality which — with a similar argument
as for Kct — can have a norm of one and TE is the echo-time of the MR sequence. It
must be noted, however, that the constant Kmr can be different for blood and tissue
due to differences in T2* relaxivities [49, 101]. This complicates absolute quantifica-
tion of cerebral perfusion as discussed in [102]. Furthermore, studies have shown that
fully oxygenated blood, for example, demonstrates a nonlinear relationship between
the measured difference in T2* relaxation rate and contrast agent concentration [103].

Note, if only one time frame is considered as the baseline (i.e., if B=1), then
c(0) = 0, and the matrix A defined by Equations (2.30) and (2.31) will be rank-
deficient, cf. Section 2.3.2.

2.4.5 Correction of Hematocrit Differences

Hematocrit (Hct) is a value that describes the proportion of the blood that consists
of red blood cells. Hct is higher in arteries than in capillaries. Consequently, the
proportion of the plasma in the blood, given by the difference (1−Hct), has a higher
value in capillaries than in arteries. Since the contrast agent is distributed in the
plasma only, the amount of plasma has a direct influence on the measured Hounsfield
value or MR relaxation rate.

If the Hct difference is not corrected, it may bias the absolute quantification of the
contrast agent concentration. A constant dimension-less correction factor κ, derived
from the known Hct values in arteries and capillaries (often set to κ = 0.73) has been
proposed [35, 98]. The measured TCCs cvoi(t) is then multiplied with κ to avoid the
bias due to different Hct values.

2.4.6 Automated Arterial Input Function Estimation

The total time for the perfusion image analysis can be shortened and the analysis can
be made user-independent by an automated estimation of the arterial input function.
Several methods have been proposed that detect one global AIF [104, 105, 106].
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An interesting alternative approach is to estimate several local AIFs, which would
be better suited to the theoretical model that was introduced in Section 2.2 [107,
108, 109]. Since the local arteries are often small, this approach can have several
disadvantages [102]. For example, partial volume effects — cf. Section 2.4.7 —
can be more severe when compared to choosing one global AIF in a larger vessel.
Perfusion analysis using local AIFs was actually investigated in [110] and the authors
state that it produced more useful CBF maps.

Besides the arterial input function cart(t) the venous outflow function cven(t) could
also be detected automatically. Knowledge about the venous outflow function could
be used to automatically correct for partial volume effects which are described next.

2.4.7 Correction of Partial Volume Effects

Due to limited spatial resolution in reconstructed perfusion CT and MR data, the
AIF can suffer from partial volume effects [40]. This effect can lead to an underes-
timation of the AIF and consequently to incorrect perfusion values. To correct for
partial volume effects in the AIF, several methods have been proposed [111, 112, 113].
Commonly, the peak concentration value within a larger venous vessel or the area
under the curve of a large venous vessel is used to rescale the AIF [45].



36 Chapter 2. Review of Image Analysis for Brain Perfusion Measurement



Chapter 3

A Model for Filtered
Backprojection Reconstruction
Artifacts due to Time-varying
Attenuation Values

Overview:
In this chapter, a theoretical analysis of a certain kind of image reconstruction ar-
tifact that is relevant in C-arm CT perfusion imaging is carried out. Namely, FBP
reconstruction artifacts arise if the attenuation values vary, e.g. due to contrast agent
flow, during the acquisition of the projection data.

A novel spatio-temporal model based on the concept of derivative-weighted point
spread functions is derived. This model leads to a better understanding of this kind
of artifacts. For validation, the model is compared to results from numerical simu-
lations and to C-arm CT measurements of a flow phantom. The model can also be
applied to systematically investigate artifact reduction strategies. In this chapter,
the influence of the angular interval length, which is used for the data acquistion, on
these artifacts is investigated.

This chapter is based on “A model for filtered backprojection reconstruction artifacts
due to time-varying attenuation values in perfusion C-arm CT”, by A. Fieselmann,
F. Dennerlein, Y. Deuerling-Zheng, J. Boese, R. Fahrig, and J. Hornegger. Physics
in Medicine and Biology, 56(12):3701–3717, 2011 [27].

37
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3.1 Introduction

3.1.1 Motivation

Analytical image reconstruction algorithms based on the FBP are usually employed to
reconstruct the large-volume data sets acquired with state-of-the-art C-arm CT sys-
tems [13]. Using general-purpose computing on graphics processing units (GPGPU),
FBP-based algorithms (e.g., Feldkamp-type algorithms [16]) can be implemented
such that they are computationally very fast [114]. Thus, they can be used for im-
age reconstruction during interventional procedures such as catheter-guided stroke
treatment where time is a critical factor (Sections 1.2.1 and 4.1.1).

There exist also alternative CT image reconstruction approaches such as algebraic
and statistical methods [15]. However, currently these approaches are not frequently
employed for (C-arm) CT reconstruction [115]. In general, the time that is needed
for image reconstruction is longer with these approaches when compared to the FBP.

The FBP reconstruction assumes constant attenuation values of the object during
the acquisition of the projection data. Reconstruction artifacts arise if this assump-
tion is violated. As it has been mentioned in Section 1.3.2 already, contrast agent flow
in perfusion imaging with C-arm CT systems, which have acquisition times of several
seconds per C-arm rotation, can cause this violation (Figure 3.1). For the analysis
and optimization of FBP-based reconstruction algorithms, a good understanding of
artifacts due to time-varying attenuation values is essential. Note, in CT perfusion
imaging the duration of the data acquisition is sufficiently short to assume constant
attenuation values.

In this chapter, a novel spatio-temporal model for this kind of artifact will be
presented. This model can be applied to estimate the magnitude of artifacts and to
optimize reconstruction parameters. It could also be used to develop new FBP-based
dynamic reconstruction algorithms that are based on an inversion of this model.

3.1.2 Previous Work

There exists some previous work that concerns FBP reconstruction artifacts due to
time-varying attenuation values.

In [116] a mathematical formalism is presented to describe these artifacts in
parallel-beam geometry CT scanning and it is validated using computer simulations.
But this formalism assumes periodic changes of the contrast agent concentration
and is therefore not suitable to describe artifacts in perfusion imaging with time-
attenuation curves that are non-periodic.

The work presented in [117] and [118] also show reconstruction results using com-
puter simulation of objects with time-varying attenuation values during the scanning
but no mathematical analyses of the artifacts were carried out.

Similar reconstruction problems as mentioned above arise in dynamic single-
photon emission computed tomography (SPECT) when the tracer concentration
changes during one camera rotation. In [119] and [120] the FBP reconstruction is
used for dynamic SPECT and the resulting artifacts were investigated qualitatively
and quantitatively but without derivation of a model.
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Figure 3.1: Illustration of the change of attenuation value in one voxel during one
C-arm rotation.

FBP reconstruction artifacts due to the time-varying opacification of a vessel,
when using a C-arm mounted X-ray image intensifier (XRII) for 3-D imaging, are
investigated in [121] but no mathematical model was developed.

Artifacts due to time-varying contrast agent concentration in perfusion CT with
a slowly rotating CT scanner are investigated in [122]. The reconstruction error of
a time-attenuation curve is formulated as a low-pass filtering process. However, it is
not studied how artifacts propagate into other reconstructed voxel attenuation values
in the image, which is the focus of this chapter.

3.2 Background of FBP Reconstruction

In this section, the notation will be presented with a brief description of the direct
2-D fan-beam FBP reconstruction. A more detailed description of these methods can
be found in [14].

The X-ray source rotates with a constant angular velocity ωs on a circular path
of radius R around the origin of the coordinate system (Figure 3.2). The location
a(λ(t)) of the source at time t is given by

a(λ(t)) = (R cos(λ(t)), R sin(λ(t)))T (3.1)

λ(t) = ωs t + λ0 (3.2)

where λ(t) is the view-angle and λ0 is the starting view-angle at t = 0. In this chapter,
the variable λ always depends explicitly on t although this is not always indicated
for simplicity. The following unit vectors are defined:

eu(λ) = (− sin(λ), cos(λ))T (3.3)

ew(λ) = (cos(λ), sin(λ))T . (3.4)
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Figure 3.2: Illustration of the (simplified) C-arm CT acquisition geometry.

The function u∗(x, λ) gives the coordinate where a ray from source location a(λ)
passing through x intersects the detector. It can be computed as

u∗(x, λ) =
D xTeu(λ)

R− xTew(λ)
(3.5)

where D is the source-to-detector distance. It is assumed that the attenuation values
µ(x, λ) at locations x = (x, y)T have view-angle-dependent values. Furthermore, it is
assumed that no truncation of the projection images occurs and that the attenuation
values are zero in the region x2 + y2 ≥ R2.

The projection p(λ, u), which is measured at the detector coordinate u, can be
written using the usual definition of the delta function:

p(λ, u) =
∫∫

µ(x, λ) δ(u∗(x, λ)− u) dx dy . (3.6)

In this chapter, all integrals without explicit integration endpoints should be inter-
preted as the limit value when the lower and upper endpoints approach −∞ and +∞,
respectively. The pixel value µrec(r, trec) at location r corresponding to the state at
time trec can be reconstructed using the FBP reconstruction with an angular sliding
window function wΛ(λ, γ):

µrec(r, trec) =
∫ R D

(R− rTew(λ(t)))2

∫

p(λ(t), u) hramp

(

u∗(r, λ(t))− u
)

·
D

(u2 + D2)1/2
wΛ

(

λ(t)− λ(trec), arctan(u/D)
)

du dt . (3.7)

Here hramp(u) denotes the usual ramp filter kernel and γ = arctan(u/D) is the fan-
angle. This reconstruction formula assumes a consistent data set of projection images,
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i.e. there is no change of the attenuation values over time. The function wΛ(λ, γ) is
zero outside an angular interval of size Λ:

wΛ(λ, γ) =







mΛ(λ + Λ/2, γ) for −Λ/2 ≤ λ ≤ Λ/2

0 otherwise .
(3.8)

The minimum interval for Λ is the short-scan range π + γm where γm is the full
fan-angle. The function mΛ(λ, γ) compensates for redundant data inside the angular
interval due to the fan-beam acquisition geometry. An example for mΛ(λ, γ) is the
weighting function proposed in [123],

mΛ(λ, γ) =































sin2
(

π
4

λ
Γ/2+γ

)

for 0 ≤ λ < Γ + 2γ

1 for Γ + 2γ ≤ λ < π + 2γ

sin2
(

π
4

π+Γ−λ
Γ/2−γ

)

for π + 2γ ≤ λ < π + Γ

0 otherwise .

(3.9)

with Γ = Λ − π. With the definition of the FBP from Equation (3.7) that uses
the window wΛ(λ, γ), an image corresponding to a certain time point trec can be
reconstructed. The time point could be flexibly chosen if the C-arm system could
perform continuous C-arm rotations. With current C-arm systems the C-arm rotates
in alternating directions (Section 1.3.1) therefore the choice for trec is restricted to
the time point at the center during one short-scan rotation. The artifact model in
Section 3.3 is actually applicable to both scenarios, continuous and bi-directional
C-arm rotations.

3.3 Spatio-temporal Artifact Model

In this section, a novel artifact model will be derived and interpreted. The key idea
of this model is to separate the artifact into two components, one that depends on
the dynamic process, i.e. the change of attenuation values, and one that depends on
the acquisition geometry and the reconstruction algorithm parameters.

3.3.1 Derivation

The expression from Equation (3.6) is substituted into Equation (3.7) and by changing
the order of integration one obtains:

µrec(r, trec) =
∫∫∫∫ R D2

(R− rTew(λ(t)))2
µ(x, λ(t)) hramp

(

u∗(r, λ(t))− u
)

·
(

u2 + D2
)−1/2

wΛ

(

λ(t)− λ(trec), arctan(u/D)
)

· δ(u∗(x, λ(t))− u) du dt dx dy . (3.10)

The delta function is evaluated and the result is re-arranged into the following two
functions (see Appendix B for details):

µrec(r, trec) =
∫∫

χ(r − x, x, trec) dx dy (3.11)
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χ(s, x, trec) =
∫ R D2

(R− (s + x)Tew(λ(t)))2
hramp

(

u∗(s + x, λ(t))− u∗(x, λ(t))
)

· µ
(

x, λ(t)
)(

(u∗(x, λ(t)))2 + D2
)−1/2

· wΛ

(

λ(t)− λ(trec), arctan(u∗(x, λ(t))/D)
)

dt . (3.12)

The function χ(s, x, trec) can be interpreted as the reconstruction associated with
a point object located at x which has time-varying attenuation values µ(x, λ(t)).
The variable s = (sx, sy)T denotes the distance vector from the point object in the
reconstructed image and trec is the temporal center of the sliding window used in
the FBP reconstruction. A detailed interpretation of χ(s, x, trec) will be given in
Section 3.3.2.

Now the focus will be on the time dependence of µ(x, λ(t)). It will be assumed
that it is a smooth function without discontinuities. If the contrast agent bolus is
injected into the antecubital vein, for example, the bolus will pass through the heart
and lungs. Thus, when it arrives in the brain it has been low-pass filtered and is a
smooth curve. Using this assumption µ(x, λ(t)) can be represented as a Taylor series
around λ(trec):

µ(x, λ(t)) =
∞
∑

n=0

dnµ(x, λ(t))

dλn

∣

∣

∣

∣

∣

λ(t)=λ(trec)

(λ(t)− λ(trec))
n

n!
. (3.13)

According to Equation (3.2) the second-order derivative of λ(t) is zero. Therefore,
the following total derivative exists (the proof is given in Appendix C):

dnµ(x, λ(t))

dtn

∣

∣

∣

∣

∣

t=trec

=
∂nµ(x, λ(t))

∂λn

∣

∣

∣

∣

∣

λ(t)=λ(trec)

(

dλ(t)

dt

∣

∣

∣

∣

∣

t=trec

)n

=
dnµ(x, λ(t))

dλn

∣

∣

∣

∣

∣

λ(t)=λ(trec)

ωn
s . (3.14)

Equation (3.14) and Equation (3.13) are combined and the new expression for µ(x, λ(t))
is plugged into Equation (3.12). Then the order of summation and integration is
changed and the result is split into these two functions

χ(s, x, trec) =
∞
∑

n=0

dnµ(x, t)

dtn

∣

∣

∣

∣

∣

t=trec

ω−n
s Pn(s, x, λ(trec)) (3.15)

Pn(s, x, λrec) =R D2
∫ (λ− λrec)

n

n!

(

R− (s + x)T
ew(λ)

)−2

· hramp

(

u∗(s + x, λ)− u∗(x, λ)
)

·
(

(u∗(x, λ))2 + D2
)−1/2

· wΛ

(

λ− λrec, arctan((u∗(x, λ))/D)
)

dλ (3.16)
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Figure 3.3: Spatio-temporal artifact model: a point object at x with time-varying
attenuation value µ(x, t) creates an artifact around x in the reconstructed image.
The artifact is described by χart(s, x, trec) where s is the distance vector from x.
This function is the sum of the functions Pn(s, x) that are each weighted with the
n-th derivative of µ(x, t), which is evaluated at the central time point trec of the set
of projection data, and a C-arm-angular-velocity-(ωs)-dependent factor. The final
reconstruction χ(s, x, trec) is a superposition of the artifact χart and the product
µ(x, trec)P0(s, x) where P0 denotes the (conventional) point spread function due to
the scanning and reconstruction process.

where λrec ≡ λ(trec). Substituting λ by λ+λrec and using Equation (3.8) to determine
the integration interval yields:

Pn(s, x, λrec) =R D2
∫ +Λ/2

−Λ/2

λn

n!

(

R− (s + x)T
ew(λ + λrec)

)−2

· hramp

(

u∗(s + x, λ + λrec)− u∗(x, λ + λrec)
)

·
(

(u∗(x, λ + λrec))
2 + D2

)−1/2

· wΛ

(

λ, arctan((u∗(x, λ + λrec))/D)
)

dλ . (3.17)

Equations (3.11), (3.15) and (3.17) constitute the artifact model that will be inter-
preted in the following section.

3.3.2 Interpretation

According to Equation (3.11) the reconstructed image µrec(r, trec) is the superposition
of the functions χ(s, x, trec). In a theoretically exact reconstruction with µrec(r, trec) =
µ(r, trec) this function would be:

χtheoretical(s, x, trec) = δ(s) µ(x, trec) . (3.18)

However, in reality due to the finite detector pixel width not all spatial frequencies
in the projections can be measured and the ramp filter kernel has to be adapted.
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The reconstruction of a point object will then lead to a slightly blurred point object
with a smooth edge. The point spread function (PSF) provides a description of the
blurring [124]. With the parameter Pstatic(s, x) denoting the PSF that characterizes
the scanning and reconstruction process of a static, time-independent point object at
x, one gets:

χstatic(s, x, trec) = Pstatic(s, x) µ(x, trec) . (3.19)

Equation (3.19) and Equation (3.11) can be interpreted as transformations of the
true attenuation values µ into the reconstructed attenuation values µrec. The function
Pstatic(s, x) is shift-variant because it depends explicitly on x. In the fan-beam FBP
this property is evidenced by a non-uniform noise propagation [125], for example.

In Equation (3.15) the variable λ(trec) is a system parameter that is determined by
the start and end scan angle. For a time-independent object, i.e. when dµ(x, t)/dt =
0, Equation (3.15) reduces to Equation (3.19). However, Equation (3.15) is more
general because it has been derived for dynamic, time-dependent objects. In this
equation, the function χ(s, x, trec) is a superposition of weighted functions which are
denoted by Pn(s, x). The weights are the n-th order derivative values of µ(x, t),
evaluated at trec, and the n-th power of 1/ωs. Because the functions Pn with n ≥ 1
have a similar character as P0 they will be denoted as n-th order derivative-weighted
point spread functions (DWPSF).

The function χ(s, x, trec) can be split into a term corresponding to the static case
as in Equation (3.19) and into terms that depend on first or higher order derivatives
of µ(x, t):

χ(s, x, trec) = µ(x, trec) P0(s, x, λ(trec)) + χart(s, x, trec) (3.20)

χart(s, x, trec) =
∞
∑

n=1

dnµ(x, t)

dtn

∣

∣

∣

∣

∣

t=trec

ω−n
s Pn(s, x, λ(trec)) . (3.21)

The artifact function χart(s, x, trec) results from a time-varying attenuation value
µ(x, λ(t)) at x. The artifact is centered around x and the vector s gives the distance
from the center. Figure 3.3 shows an illustration of the artifact model where for
simplicity the scan geometry variable λrec has been omitted. Furthermore, in this
illustration the infinite sum is approximated by the finite sum from n = 1 to n = N .

Each term in the artifact model consists of two components. The first component
is the rate-of-change of the time-attenuation curve — given by its temporal deriva-
tive value — relative to the C-arm rotation speed. The second component is the
function Pn(s, x, λrec) that depends only on the scan geometry (R, D, Λ, λrec) and on
the reconstruction parameters (hramp(u), mΛ(λ, γ)). Changing the speed of the time-
attenuation curve and the rotation speed of the C-arm by the same factor a > 1,
i.e.

µfast(x, t) = µ(x, at) (3.22)

ωfast
s = a ωs , (3.23)

does not change the artifact function χart(s, x, trec). However, if only the C-arm
rotation speed is increased while the time-attenuation curve remains constant then
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Figure 3.4: Plot of the derivative-weighted point spread functions Pn(s, (0, 0)T, 0)
computed from the parameters given in Table 3.1. The variable Πn is the absolute
amplitude of Pn. The images have a windowing from−Πn/2 (black) to +Πn/2 (white)
and their dotted grids have a spacing of 1 mm.

the artifact function changes. The change is non-linear and the weights of the higher-
order DWPSFs is less than when compared to the weights of the lower-order DWPSFs.
It can also be seen that

lim
ωs→∞

χart(s, x, λrec) = 0 (3.24)

which means that the artifact disappears if the acquisition time interval becomes
very short. Figure 3.4 shows the n-th order DWPSFs computed for typical scan and
reconstruction parameters (Table 3.1). For better visualization, the windowing is set
relative to their absolute amplitudes Πn defined as

Πn(x, λrec) = max
s

( |Pn(s, x, λrec)| ) . (3.25)

The 0-th order DWPSF describes the normal blurring of a point object due to the
scan and reconstruction process. The integral value over the function P0 is close to
unity whereas the integral values over Pn with odd n are close to zero. Interestingly,
the DWPSFs with odd values for n and even values for n have similar patterns,
respectively.

The pattern can be explained by investigation of Equation (3.17). In this equation
only the factor ζn(λ) ≡ λn/n! depends on n. For n = 0 this factor is a constant and
all view-angles contribute equally to the integral value. For n > 0 the function ζn(λ)
introduces a non-uniform view-angle-dependent weighting. If n is odd then ζn(λ) is
an odd function and the values at the integral endpoints have different signs. If n is
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Parameter Symbol Value

starting view-angle λ0 –100◦

view-angle increment ∆λ 1◦

number of views per rotation Nviews 201

angular range per rotation Λ = (Nviews − 1) ·∆λ 200◦

angular velocity of the C-arm ωs 60 ◦/s

time per rotation Trot = Λ/ωs 3.33 s

source-to-isocenter distance R 800 mm

source-to-detector distance D 1200 mm

number of detector pixels Ndetpix 600

detector pixel size ∆u 0.6 mm

total detector width U = Ndetpix ·∆u 360 mm

full fan-angle γm = 2 arctan(U/(2 D)) 17.1◦

redundancy weighting function mΛ see Equation (3.9)

ramp filter kernel hramp Shepp-Logan, see [14]

number of reconstructed pixels — 301 · 301

reconstructed pixel size — 0.015 · 0.015 mm2

Table 3.1: C-arm CT scan and reconstruction parameters used for the numerical
examples with the artifact model.

even then the values of ζn(λ) are equal at the integral endpoints. These properties
cause similar functions Pn(s, x, λrec) for even and odd n, respectively.

Now the variable λrec will be investigated. If x = (0, 0)T then Pn(s, x, λrec)
depends on λrec only by sTeu(λ + λrec) and sTew(λ + λrec). By expressing s in polar
coordinates as s = (r cos(φ), r sin(φ))T and using common trigonometric identities
one gets:

s
T
eu(λ + λrec) = r sin(φ− λ− λrec) (3.26)

s
T
ew(λ + λrec) = r cos(φ− λ− λrec) . (3.27)

It can be seen that a change of the variable λrec by a certain angle can be com-
pensated by a rotation of the coordinate system by the same angle in the opposite
direction of rotation. Therefore, changing λrec results in a rotation of the function
Pn(s, (0, 0)T, λrec) around the origin. Generally, i.e. also for x 6= (0, 0)T, one can see
that Pn(s, x, λrec) is 2π periodic with respect to λrec.

3.4 Numerical Example

In this section, the artifact model will be used to predict artifacts from typical tempo-
ral changes of attenuation values in perfusion imaging. For validation, the predictions
from the model will be compared with numerical simulations. Finally, the model will
be used for an analysis of different reconstruction parameter values.
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Figure 3.5: Examples for artifacts due to inconsistent data: (1st row) view-angle-
dependent attenuation value inside the modeled origin-centered artery with radius
1 mm, (2nd row) predicted reconstruction using the artifact model, (3rd row) recon-
struction using numerical simulations, (4th row) plot of attenuation values along the
circular paths shown in the above images (µmdl ——, µsim - - - -). The images have
a windowing from –5 HU (black) to +5 HU (white) and their dotted grids have a
spacing of 2.5 mm.
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3.4.1 Methods

A mathematical phantom µpha(x, t) is defined to model a large cerebral artery inside
the human head. It consists of two circles that are centered in the origin: a smaller
circle with radius rpha,art = 1 mm and a larger circle with radius rpha,head = 100 mm.
In order to simulate contrast agent flow, the attenuation values inside the smaller
circle vary over time t according to a function µpha,art(t) proposed in [57]:

µpha(x, t) =















µw + µpha,art(t) for x2 + y2 ≤ r2
pha,art

µw for r2
pha,art < x2 + y2 ≤ r2

pha,head

0 otherwise

(3.28)

with

µpha,art(t) =
A

(α β exp(−1))α
τ̂α exp(−τ̂ /β) H(τ̂) . (3.29)

H(τ̂) is the unit step function, µw = 0.18 cm−1 is the X-ray attenuation of water,
A = 0.25 µwater is the maximum enhancement, α = 3.0 and β = 1.5 are shape
parameters and τ̂ = t/s is a dimensionless quantity where s denotes seconds.

The image µmdl(x, trec) is computed using the artifact model. According to Equa-
tion (3.11) the final 2-D reconstruction µrec is a superposition of the 2-D functions χ
which can be thought of as individual reconstructions of (theoretical) point objects.
To apply the artifact model, the point objects are first approximated by discrete
pixels. Then χ is computed for each pixel and µrec is determined using a discretized
version of Equation (3.11), see Algorithm 3.1.

In order to compute χ, only the first four functions Pn (n = 0, . . . , 3) are consid-
ered assuming 4-th and higher order derivative values can be neglected due to the
smoothness of µpha,art(t). The parameters for the model are taken from Table 3.1.
The reconstruction time points trec are 2.25 s, 4.50 s and 6.75 s. These time points
were chosen to investigate the reconstruction from data acquired during the inflow,
plateau and outflow phase of the time curve (see first row in Figure 3.5). It was
assumed that the data was acquired from three individual C-arm rotations which all
started at the same starting angle to allow for better comparison.

For the numerical simulation the scan parameters from Table 3.1 are used to
simulate C-arm CT scanning of the central slice of the phantom during the time
interval t ∈ [trec − Trot/2, trec + Trot/2]. The reconstruction time points trec are the
same as for the artifact model. A FBP reconstruction µsim(x, trec) is generated from
the simulated projections by applying the reconstruction parameters from Table 3.1.

3.4.2 Results and Discussion

In Figure 3.5 each column corresponds to a different time trec. The first row shows a
plot of the view-angle-dependent attenuation value inside the artery. The second and
third rows show the images µmdl and µsim respectively. The last row shows values of
µmdl and µsim evaluated along a circular path (radius 2.5 mm) around the origin of
the coordinate system. This path is also depicted in the images in the second and
third row. The windowing of the images was chosen from –5 HU to +5 HU. Because
the contrast agent enhancement in tissue is about 5 to 10 HU — given an arterial
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Algorithm 3.1: Algorithm to model a FBP reconstruction from data with
time-varying attenuation values. Note, for simplicity all variables are de-
noted as continuous variables whereas in a practical implementation the
variables can take discrete values only.

Input: time-varying (true) attenuation values µ(x, t),
time point trec (central time point of the C-arm rotation),
scan and reconstruction parameters (R, hramp, . . .)

Output: modeled FBP reconstruction µrec(r)

1 µrec(r)← 0 ∀ r

2 foreach x do

3 // χ̃(s) describes the artifact that arises from a point

object at x with time-varying attenuation values µ(x, t)
4 χ̃(s)← 0 ∀ s

5 // consider N DWPSFs (e.g., N = 4)

6 for n = 0 toN − 1 do

7 compute P̃n(s) ≡ Pn(s, x, λ(trec)) according to Equation (3.17)

8 compute d̃n ≡
dnµ(x,λ(t))

dtn |t=trec

9 χ̃(s)← χ̃(s) + d̃n · ω
−n
s · P̃n(s) // cf. Equation (3.15)

10

11 end

12 // add artifact caused by this point object to the modeled

reconstruction (see Equation (3.11))

13 foreach r do
14 µrec(r)← µrec(r) + χ̃(r − x)
15 end

16 end

enhancement of 250 HU and a blood volume fraction in cerebral tissue of 2% to 4%
— this windowing is useful to estimate the areas where the artifact values have the
same magnitude as the peaks of the tissue time-attenuation curves.

The results from the model (µmdl) and the simulation (µsim) show excellent agree-
ment. The curves in the last row of Figure 3.5 have root mean square deviations
of 1.1 HU (trec = 2.25 s), 0.3 HU (trec = 4.50 s) and 0.5 HU (trec = 6.75 s). From
the results one can see that only a small number of DWPSFs of the model must be
considered in order to predict the artifacts from typical perfusion time-attenuation
curves. The small differences between model and simulation are primarily due to
discretization effects.

3.4.3 Analysis of Reconstruction Parameters

The model can be used to systematically analyze the effect of different scan and
reconstruction parameters on the artifacts from inconsistent data. Parameters that
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Figure 3.6: Derivative-weighted point spread functions Pn of the artifact model com-
puted for different sliding window lengths Λ. The window center is 0 and the window
widths are constant for each n (see Section 3.4.3 for details). The color map range is
from black to white. The dotted grid has a spacing of 1 mm.
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Figure 3.7: (a) Sliding windowing function wΛ(λ, 0) corresponding to the central ray
for different Λ. (b) Weighted spatial spread Sn of Pn depending on Λ.
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could be investigated include, for example, the filter kernel hramp(u), the type of the
redundancy weighting function mΛ(λ, γ) and the sliding window length Λ.

As an example, the DWPSFs computed for different sliding window lengths Λ are
presented. The parameters from Table 3.1 are used, the value for Nviews is changed
and Λ is adapted accordingly. The windowing function wΛ(λ, 0) for different Λ is
shown in Figure 3.7(a) and Figure 3.6 shows Pn (n = 1, 2, 3) computed for different
Λ. The window width is constant for each n for better comparison of the change
due to different Λ. The window widths are set to the maximum absolute amplitude
values Πn computed for Λ = 200◦ as shown in Figure 3.4.

For quantitative evaluation the weighted spatial spread Sn of Pn is introduced
which is defined as

Sn(x, λrec) =
∫∫

|Pn(s, x, λrec)| (s2
x + s2

y)1/2 dsx dsy . (3.30)

This heuristic definition takes into account both the absolute HU value of the artifact
and its distance from the center of the point object and can be used for relative
comparison of different Λ values. The absolute value of Pn is computed in order
to avoid the possibility that positive and negative contributions of Pn cancel each
other out. Because artifacts which propagate farther into the tissue area can have a
more negative impact on the clinical interpretation of the perfusion maps a distance
weighting has been included as well.

Figure 3.7(b) shows that increasing the sliding window length reduces S1 from
4.84 mm3 (Λ = 200◦) to 1.48 mm3 (Λ = 360◦). Interestingly, S3 increases from
0.26 mm3 (Λ = 280◦) to 1.06 mm3 (Λ = 360◦). The behavior of the functions Pn

with respect to Λ and other reconstruction parameters could be explained by further
investigation of Equation (3.17).

The artifact model can be used to optimize reconstruction parameters for the
expected temporal variation of the attenuation values. The spatial spread of the linear
component of the time-attenuation curve, defined by S1, decreases by about 70% when
using Λ = 360◦ compared to Λ = 200◦. Typically, one can find an approximately
linear change of attenuation values inside an arterial vessel during the inflow phase.

Therefore, with respect to the spatial spread of the FBP artifacts the parameter
value Λ = 360◦ is more optimal than Λ = 200◦ if the dynamic changes of the atten-
uation values are approximately piecewise linear. On the other hand, for temporal
dynamics that are not expected to be piecewise linear, different Λ values may be
more optimal. Note, a larger window length would not increase the total X-ray dose
during the exam if continuously rotating C-arm CT systems could be used.

Higher Λ values lead to a lower temporal resolution of the reconstructed time-
attenuation curves. Although the full width at half maximum (FWHM) is the same
for all windows wΛ(λ, 0), see Figure 3.7(a), the full width at quarter maximum, for
example, increases for higher Λ. Finally, it should be noted that there is a trade-
off between the reduction of the spatial spread of the artifacts and the temporal
resolution of the reconstructed time curves.
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(a) reference (b) forward rotation (c) backward rotation

Figure 3.8: Reconstructions of a flow phantom: (a) reference reconstruction of data
with constant attenuation values and (b-c) reconstructions of data acquired during a
forward and backward C-arm rotation while the attenuation values inside the plastic
tube were linearly increasing. The windowing is from –250 HU (black) to +250 HU
(white).

3.5 Experimental Data from a Clinical C-arm CT

In this section, reconstruction results of a flow phantom will be presented. The
phantom has time-varying attenuation values and was scanned using a clinical C-arm
CT system.

3.5.1 Methods

In order to investigate reconstruction artifacts due to time-varying attenuation values
under realistic conditions a simple flow phantom was built. A small plastic tube (inner
diameter 2.0 mm) was placed into a water-filled container (volume of water about
22·8·25 cm3) that was placed on the patient table of a clinical C-arm CT system (Artis
dTA with syngo DynaCT, Siemens AG, Healthcare Sector, Forchheim, Germany).
The tube was connected to a double head contrast agent injector (Accutron HP-D,
Medtron AG, Saarbrücken, Germany) that had the syringes filled with water and
contrast agent (Oxilan 300, Guerbet Group, Villepinte, France), respectively. During
injection into the tube (injection rate 10 ml/s) the mixing ratio of the two syringes
was linearly changed from 0% to 50% contrast agent using an increase of 12.5%
contrast agent per second.

A total of 191 projections was acquired with a view-angle increment of 1.0◦, a
detector pixel spacing of 0.616 · 0.616 mm2 after 4 · 4 binning and a C-arm rotation
time of 4.3 s. The phantom was scanned using a forward and a backward C-arm
rotation and one 3-D volume was reconstructed for each rotation with the standard
reconstruction filter kernel. For reference, the phantom filled with a constant amount
(about 15%) of contrast agent was also scanned and reconstructed.

3.5.2 Results and Discussion

Figure 3.8 shows the reference reconstruction of the static phantom data and the
two reconstructions of the dynamic phantom data from the forward and backward
C-arm rotation, respectively. The axial images were reconstructed using 150 · 150
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pixels with 0.1 mm pixel spacing. Thus, the side length of each image is 15 mm. The
reconstructions show a similar pattern when compared with the reconstruction of
the numerical phantom during the inflow or outflow phase (Figure 3.5, left and right
columns) which also resulted from an approximately linear change of attenuation
values during the data acquisition.

Using the artifact model, the reconstruction results in Figure 3.8(b)–(c) can be
interpreted as the superposition of the weighted DWPSFs of zeroth (P0) and first
(P1) order. It is assumed that second and higher order DWPSFs receive zero weights
due to the approximately linear change of attenuation values. The different signs of
the streaks in Figure 3.8(b)–(c), which are contributions of P1, are well explained by
the different directions of the C-arm rotation, i.e. different signs of ωs. Note, the
weight of P0 is independent of ωs, see Equation (3.15).

This experiment provides a qualitative evaluation and interpretation of the recon-
struction artifacts of the flow phantom. A more detailed, quantitative analysis could
be carried out in the future. For example, different angular sliding window lengths up
to 360◦ could be investigated. With potential future C-arm CT systems that could
perform continuous C-arm rotations this investigation would be of high interest in
order to validate the predictions from the numerical example in Section 3.4.3.

3.6 Discussion and Summary

The aim of this chapter was to derive and interpret a model for FBP reconstruction
artifacts due to time-varying attenuation values. The FBP algorithm was analyzed
because it is computationally very fast and can be applied to reconstruct large-volume
data sets in C-arm CT perfusion imaging during stroke treatment.

The novel spatio-temporal model describes the variation of attenuation values
by their temporal derivative values. To model the spatial spread of the artifacts
time-derivative-weighted point spread functions were introduced which are computed
from the scan and reconstruction parameters. With this formalism the reconstruction
artifacts can be separated into a component that depends on the dynamic process
and a component that purely depends on system parameters. The model is opti-
mized for contrast agent flow in perfusion imaging where the dynamic process can be
approximated by a few temporal derivative values.

This model gives a detailed understanding of these FBP reconstruction artifacts.
It can be used to predict the magnitude of artifacts for different temporal dynamics
if the scan and reconstruction parameters are known. The model can also be applied
to further investigate different reconstruction parameters in a systematic way. As an
example, a comparison of different reconstruction sliding window lengths Λ has been
conducted. It could be shown that the optimal value for Λ depends on the expected
temporal dynamics of the attenuation values.

A limitation of the model is that artifacts due to sudden changes of the local
attenuation values, caused for example by patient motion cannot be well described.
These artifacts, which are most prominent at regions that have a high spatial gradient
of attenuation values, can degrade the image quality in a similar manner as the
artifacts due to contrast agent flow. In order to model these artifacts a higher number
of DWPSFs would be required to consider more terms of the Taylor series, which
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would, however, not be practical. Alternatively, if the artifact model was adapted
such that it would use a parameterization of the time-attenuation curves which allows
sudden changes of the attenuation values it may be possible to adequately describe
these artifacts as well.

Noise in projection images was not considered in the artifact model. It can be
treated by separating the noise from the signal and then making a normal FBP
reconstruction of the noise. The artifact model is applied to the signal only. The
final result of the model is the sum of the prediction from the noise-free signal and
the reconstruction of the noise.

In this chapter, the model has been derived for the direct 2-D fan-beam FBP.
To derive it for reconstruction algorithms that use 3-D cone-beam data, like the
Feldkamp-Davis-Kress (FDK) algorithm [16], the equations in Section 3.2 must be
extended to the 3-D geometry and the equations in Section 3.3 must be derived in a
similar approach using this new geometry.

All terms in the artifact model are linear and this model could be written as
a matrix equation if Equations (3.11), (3.15) and (3.17) were discretized and the
derivatives were approximated by discrete derivative operators. Hence, a numerical
inversion of this model could used to reduce the artifacts in the reconstructed images.
Considering only those terms corresponding to n = 1 and n = 2 would make the
inversion approach robust against noise while still including the most relevant terms.

To summarize, the novel model provides a comprehensive method to describe
FBP artifacts from time-varying attenuation values in perfusion imaging. It is a
mathematically exact analysis of the FBP reconstruction algorithm. This model
can lead to enhanced reconstruction approaches in interventional perfusion imaging,
such as sliding-window reconstruction approaches for continuously rotating C-arm CT
systems, in order to optimize patient treatment during stroke therapy procedures.



Chapter 4

C-arm CT Perfusion Imaging
Using Interleaved Scanning and
Partial Reconstruction
Interpolation

Overview:
In this chapter, a novel combined scanning and reconstruction approach for C-arm
CT perfusion imaging is presented. This approach increases temporal sampling of
the reconstructed data by using several interleaved scan sequences. It also provides a
mean to reduce the reconstruction artifacts that are described in Chapter 3 by using
an interpolation-based reconstruction technique. The approach is described in detail
and it is evaluated using numerical simulations and in vivo data.

This chapter actually presents the main practical contribution of this thesis and
it has several links to the previous chapters. The image analysis methods from Chap-
ter 2 are applied to the simulated data and the in vivo data and the theoretical model
from Chapter 3 is considered for explanations of the artifacts. The following chap-
ters will also have links to this chapter. In Chapter 5, an injection protocol that is
optimized for the interleaved scanning approach will be investigated. Furthermore,
in Chapter 6.2 a software program will be described which processes data acquired
using this approach.

This chapter is based on “Interventional 4-D C-arm CT perfusion imaging using
interleaved scanning and partial reconstruction interpolation”, by A. Fieselmann,
A. Ganguly, Y. Deuerling-Zheng, M. Zellerhoff, C. Rohkohl, J. Boese, J. Hornegger,
and R. Fahrig. IEEE Transactions on Medical Imaging (in press).
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4.1 Introduction

In this section, first two major requirements for image reconstruction algorithms
concerning perfusion imaging using C-arm CT will be presented. Then an overview
of previous work in this field will be given.

4.1.1 Requirements Concerning Image Reconstruction

Image reconstruction algorithms concerning perfusion imaging in the interventional
suite must fulfill certain clinical and technical requirements. Two major requirements
that have been identified are described next.

1. Short image reconstruction time: Since time is a critical factor for the
success of stroke treatment (Section 1.2.1) a short image reconstruction time
is an important clinical requirement. Therefore, a computationally fast image
reconstruction algorithm is needed to process the large-volume data sets which
are acquired with C-arm CT. For example, reconstructing a volume with 512 ·
512 · 200 voxels at 40 different time points using 2 bytes for storing each voxel
value will result in 4000 MB of reconstructed image data. In [126] it is estimated
that about 10 minutes are the upper limit for the reconstruction time that is
clinically acceptable for diagnostic flat-detector perfusion CT imaging in an
acute stroke setting3. If perfusion imaging is used during the intervention,
e.g. for monitoring the treatment success (Section 1.2.2), then even shorter
reconstruction times are expected to be necessary.

2. Reconstruction of tissue TACs which have a low CNR: In perfusion
(C-arm) CT imaging the TACs measured in tissue are generally characterized
by a lower CNR when compared to TACs measured in arteries, for example
(Figure 2.6). It is a technical requirement that an image reconstruction algo-
rithm should not only process dynamic data with a high CNR correctly but it
must also process the dynamic data with a low CNR correctly.

4.1.2 Previous Work

There exists some previous work that concerns image reconstruction for dynamic
perfusion imaging using slowly rotating (C-arm) CT systems. This work can be
classified and summarized as follows.

1. Iterative model-based reconstruction: An iterative model-based recon-
struction algorithm is presented in [127]. The authors used a parameterization
of the TACs based on Gaussian or gamma-variate basis functions. The model
parameters were estimated in an iterative manner by using forward projection
and backprojection operations. However, the high dimensionality of the pro-
posed optimization leads to very long reconstruction times and therefore it is

3Note, in a typical ischemic stroke event, on average, 19 million neurons will die during these 10
minutes (Section 1.2.1) [5]. Therefore, the reconstruction time has a direct impact on the health
of the patient: every minute of reconstruction time that can be saved will, on average, rescue 1.9
million neurons.



4.2. Specialized Scanning Protocol and Reconstruction Method 57

currently not possible to use this approach with real data during interventional
stroke therapy (Section 4.1.1).

2. Iterative limited-angle-based reconstruction: In order to increase the
temporal sampling frequency and the temporal resolution, a method is pre-
sented in [128] that uses a limited view-angle interval and a prior image for
image reconstruction. However, since this is also an iterative reconstruction
approach, longer reconstruction times — which would make this approach cur-
rently not applicable for use during interventional stroke treatment — when
compared to an analytical approach are to be expected. Furthermore, it has
not been investigated how this method would perform with realistic tissue TACs
that have a low CNR (Section 4.1.1).

3. Analytical interpolation-based reconstruction: In [122] a method for per-
fusion imaging using a slower continuously rotating CT scanner based on a dy-
namic Feldkamp-type reconstruction algorithm has been presented. The actual
motivation for this method was to reduce X-ray dose by operating the CT scan-
ner at a slow rotation speed. Unknown projection data at certain time points
is interpolated by using polynomial splines. To increase computational speed,
it was suggested to perform the interpolation using partially backprojected vol-
umes. Note, this algorithm is based on the Feldkamp algorithm [16] which can
be implemented such that it is computationally very fast when using modern
graphics hardware, for example [114]. However, this algorithm would require a
continuous uni-directional C-arm rotation which is currently not possible (Sec-
tion 1.3.1).

A straightforward extension of this algorithm which works with data acquired
using bi-directional C-arm rotations is presented in [129]. Instead of using
polynomial splines it is suggested to interpolate the missing projection data
individually for each view angle by least-squares curve fitting with Fourier basis
functions. The interpolation accuracy is, however, limited by the low number
of sample points that are acquired with one single bi-directional C-arm CT
scanning sequence (e.g., 5 samples points distributed non-uniformly over a 30 s
interval [129]).

Due to the limitations of the current approaches in terms of their practical applicabil-
ity and performance, a novel approach will be presented in this chapter. In contrast
to the previous work listed above, it will be evaluated using simulated data and in
vivo data acquired using a real C-arm CT system.

4.2 Specialized Scanning Protocol and Reconstruc-

tion Method

In this section, first the technical challenges will be explained that have been identified
when CT-perfusion-like imaging is to be implemented using C-arm CT. This explana-
tion is more detailed than the previous explanation given in Section 1.3.2. Then two
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approaches will be presented: a specialized scanning protocol and an interpolation-
based 4-D reconstruction method, which are the technical solutions that have been
developed as part of this thesis project.

4.2.1 Challenges in C-arm-CT-based Perfusion Imaging

This section starts with a description of 4-D imaging using C-arm CT. In order
to obtain Nrot reconstructed 3-D volumes the C-arm has to be rotated Nrot times,
each time through approximately 200◦, in a bi-directional manner. Note, current
C-arm CT systems are not capable of continuous, uni-directional C-arm rotations
(Section 1.3.1). During each rotation 2-D projection data are acquired. The time
period for one rotation (typically 3–5 s) will be denoted Trot. A short waiting time
Tw (typically 1 s) is required between two rotations. Figure 4.1(a)(top) shows the view
angle λ(t) ∈ [0, Λ] of such a multi-rotational scan sequence plotted against time t. A
multi-rotational scan sequence is also used in cardiac C-arm CT with retrospective
electrocardiogram (ECG)-gating, for example [17].

Low Temporal Sampling Frequency

In perfusion CT the sample period is typically 1 s but it may be increased to up to
3 s and similar diagnostic quality of the computed perfusion parameter maps may
still be provided [130, 131]. However, in perfusion imaging with a C-arm CT the
temporal sample period, given by Trot + Tw, obtained with such a 4-D scan protocol,
is typically longer than 3 s and may not be sufficient for adequate sampling of the
reconstructed time-attenuation curve. The temporal sampling frequency is defined
as the inverse value of the temporal sample period and, in this case, it is less than
1/3 reconstructed images per second. In particular, arterial time-attenuation curves,
which are used for normalization of the perfusion values (Section 2.2), have relatively
fast contrast agent dynamics and may be undersampled [131].

Inconsistent Projection Data

The acquired projection data is inconsistent due to the (intentional) time-varying
contrast agent concentration in the region of interest during one C-arm rotation.
Two kinds of FBP reconstruction artifacts will be described that can occur. In order
to explain these artifacts one single point object with time-varying attenuation values
will be considered that is approximated by a discrete voxel. Note, due to the linearity
of the FBP the explanations can be easily generalized to an arbitrary number of voxels
with time-varying attenuation values.

First, the reconstructed time-attenuation curve measured at this voxel position is
not a sampled version of the true time-attenuation curve. In fact, the relatively long
acquisition process leads to a low-pass filtering of the true curve. By investigation
of the FBP algorithm it can be shown that this process can be approximated by a
convolution of the true curve with a rectangular function of temporal width Trot before
it is sampled [122]. Due to the low-pass filtering the peak value of a reconstructed
time-attenuation curve will be underestimated even if the sample time point, i.e. the
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central time of the C-arm rotation, coincides with the time of the peak value of the
curve.

Second, streak artifact in the reconstructed 3-D volumes can appear around the
voxel with time-varying attenuation values. A detailed description of this kind of arti-
fact is actually provided in Chapter 3. The magnitude of this kind of artifact depends
on the slope of the time-attenuation curve during the C-arm rotation. Therefore, this
artifact will be most prominent around arterial vessels in which the attenuation values
change rapidly and thus the time-attenuation curve has a high slope.

4.2.2 Interleaved Scanning (IS)

In order to improve the low temporal sampling (Section 4.2.1) an interleaved scanning
protocol with Nseq different multi-rotational sequences is proposed. Each of the Nseq

multi-rotational sequences consists of Nrot C-arm rotations, each of which provides a
full set of projection data. In total Nseq ·Nrot datasets are acquired. The interleaved
scanning protocol has two important features. First, a new bolus with identical
injection parameters will be injected before each multi-rotational sequence. Second,
for each multi-rotational sequence there will be a different delay time between the
start of the bolus injection and the start of the scanning.

This interleaved scanning approach increases the sampling density of the projec-
tion data space and consequently the sampling density of the reconstructed time-
attenuation curves extracted from each voxel. Figure 4.1(b) shows an example with
two multi-rotational sequences.

One can determine the temporal delay τn between the start of the injection and
start of the n-th multi-rotational sequence (n = 0, . . . , Nseq − 1) by

τn = (Trot + Tw) ·
n

Nseq

+ tc (4.1)

where tc is a constant temporal offset. This definition of τn leads to a regular sampling
of the central view angle Λ/2. Other definitions of τn with non-uniform sampling
periods are also possible. For tc ≤ −Trot one or several baseline volumes without
contrast agent are acquired before the acquisition of the contrast-agent-enhanced
volumes. In perfusion imaging at least one baseline volume is needed which will then
be subtracted from the following contrast-agent-enhanced volumes (Section 2.4.4).
Thus, a practical choice would be tc = −Trot.

A method that is similar to this interleaved scanning approach was recently ap-
plied to lung perfusion imaging in rodents using a micro-CT [132]. The authors used
several consecutive small volume injections of iodinated contrast agent, performed at
a series of different starting view angles, in order to increase the temporal sampling
density.

4.2.3 Partial Reconstruction Interpolation (PRI)

With interleaved scanning as described in Section 4.2.2 the temporal sampling den-
sity of the perfusion time-attenuation curves can be increased. Nevertheless, the
projection data for each reconstructed 3-D volume is acquired over a time interval
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(a) one scan sequence (Nseq = 1)

(b) two interleaved scan sequences (Nseq = 2)

Figure 4.2: Partial reconstruction interpolation with M = 4 angular interpolation
intervals to create a reconstructed volume at t = test. In (b) the data from two
interleaved scans is actually combined to yield better interpolation results.
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Trot. In order to compensate for the inconsistent projection data, and to reduce the
two kinds of artifacts that were described in Section 4.2.1, an interpolation-based 4-D
reconstruction approach is proposed. It is motivated by a method that was previously
investigated using a slowly rotating CT scanner (Section 4.1.2) [122]. This method
has been adapted to the C-arm CT scanning approach which, in contrast to the
method in [122], uses several interleaved sequences each having alternating directions
of C-arm rotations. In order to describe this reconstruction approach, at first only
one multi-rotational scan sequence, i.e. Nseq = 1, will be considered. Thereafter, the
case with multiple scan sequences will be described.

During one C-arm rotation there are Nviews different view angles, starting at λ0,
with angular intervals ∆λ. For each individual view angle λl,

λl = λ0 + l ·∆λ (l = 0, . . . , Nviews − 1) , (4.2)

a discrete sequence of cone-beam projections pl,k(u, v) is acquired, where u and v are
the usual coordinates on the flat-panel detector, at time points tl,k (0 ≤ k ≤ Nrot−1)
that refer to the time when the projection under the angle λl was acquired during
the k-th rotation.

In order to estimate an unknown projection value p̃l,test
(u, v) at a certain time

point test with tl,0 ≤ test ≤ tl,Nrot−1 one can apply temporal interpolation using the
known projection values:

p̃l,test
(u, v) =

Nrot−1
∑

k=0

pl,k(u, v) ϕl,k (test − tl,k) . (4.3)

Possible interpolation functions ϕl,k : R 7→ R for non-uniformly sampled projection
data, caused by the alternating directions of C-arm rotations, will be discussed in
Section 4.2.4. In order to approximate a consistent data set this interpolation can
be applied to estimate projections for all necessary combinations of l, u and v at a
certain time point test.

However, during C-arm CT scanning the projections may not be acquired at
exactly the same angular position in forward and backward rotations due to lim-
ited accuracy of the mechanical C-arm motion. This would negatively impact the
projection-based interpolation. To take this into account and to increase the com-
putational speed, the interpolation can also be applied using partially backprojected
volumes. In order to describe this concept the projection data of the k-th C-arm
rotation will be denoted as

Pk = {p0,k(umin, vmin), . . . , p0,k(umax, vmax), . . . ,

pNviews−1,k(umin, vmin), . . . , pNviews−1,k(umax, vmax)} (4.4)

where the subscripts min and max indicate the minimum and maximum detector
coordinate, respectively.

The operator PFBPl2
l1

(x) {Pk} for partial filtered backprojection is introduced
in order to partially reconstruct an attenuation value at position x using only the
projections from Pk with l ∈ [l1, l2] . This operator includes all steps of a normal
FBP reconstruction including the fan-beam redundancy weighting, for example, but
backprojects the data over a limited angular interval only.
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The PFBP operator can be implemented using a Feldkamp-type algorithm [16]
as

PFBPl2
l1

(x) {Pk} =
l2
∑

l=l1

mΛ(λl, u∗
λl

(x))

ŵλl
(x)2

· p̂l,k(u∗
λl

(x), v∗
λl

(x)) . (4.5)

Here, the functions u∗
λl

(x) and v∗
λl

(x) give the detector coordinates where a beam
from the view angle λl passing through x intersects the detector, mΛ(λl, u) is a fan-
beam redundancy weighting function [123] (cf. Equation (3.9) where it is defined for
γ instead of u) and ŵλl

(x) is a distance weighting function, see [114] for details. The
function p̂l,k(u, v) is a bi-linear interpolation of the pre-processed (e.g., ramp-filtered)
projection pl,k(u, v).

Illustrations for these partial backprojections are shown in Figure 4.2(a). An
important property of the PFBP operator is that a normal reconstruction of the value
µrec(x, k) at x during the k-th C-arm rotation, here assuming a time-independent
object, is given by the sum of all partial filtered backprojections, i.e.

µrec(x, k) =
M−1
∑

j=0

PFBP
(j+1)L−1
jL (x) {Pk} , (4.6)

where L = Nviews/M and M is the number of angular interpolation intervals. In
general, the number L of view angles per partial backprojection could also be non-
uniform and angular windowing functions could be applied. For simplicity, it is
assumed that L is an integer value. Note, the partial reconstruction interpolation
approach is generic and can also be based on reconstruction algorithms other than
the FDK algorithm as long as these algorithms fulfill the condition in Equation (4.6).

One can now apply the interpolation to the partial backprojections in order to
reconstruct a value µ̃rec(x, test) corresponding to the time point test:

µ̃rec(x, test) =
M−1
∑

j=0

Nrot−1
∑

k=0

PFBP
(j+1)L−1
jL (x) {Pk}

· ϕ(j+0.5)L,k

(

test − t(j+0.5)L,k

)

. (4.7)

Next, the use of this approach with data from an interleaved scanning protocol, i.e.
Nrot ≥ 2, will be described. In order to optimize the accuracy of the interpolation the
data from different multi-rotational sequences can be combined. Mathematically, one
changes the summation endpoint of the inner sum in Equation (4.7) from Nrot− 1 to
Nrot·Nseq−1 and interprets k as an index that can refer to C-arm rotations from differ-
ent multi-rotational sequences. This combined interleaved scanning (IS) and partial
reconstruction interpolation (PRI) approach is also illustrated in Figure 4.2(b) and
summarized in Algorithm 4.1. The combination of both methods (IS-PRI) increases
the temporal sampling density and can yield better approximations for consistent
projection data sets.

In the IS-PRI approach the change of contrast agent concentration in an projection
interval with L view angles is assumed to be negligible. Furthermore, the contrast-
agent-induced temporal enhancement function is assumed to be sufficiently smooth
between two data time points in order to obtain accurate interpolation results.
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Algorithm 4.1: Algorithm for partial reconstruction interpolation with in-
terleaved scanning data.

Input: projection data of Nseq ·Nrot C-arm rotations,
number M of angular interpolation intervals,
interpolation time points test,i (i = 0, . . . , Ntp − 1)

Output: reconstructed data µ̃rec

1 // step 1: generation of PFBP data

2 for q2 = 0 toNseq − 1 do
3 for q1 = 0 toNrot − 1 do

4 k ← q1 + q2 ·Nrot

5 let Pk denote the set of projetion data of the q1-th C-arm rotation
in the q2-th interleaved sequence (cf. Equation (4.4))

6 for j = 0 toM − 1 do

7 compute X(j, x, k) ≡ PFBP
(j+1)L−1
jL (x) {Pk} according to

Equation (4.5) for all (pre-defined) voxel positions x and store
this data to the memory or file system

8 end

9 end

10 end

11 // step 2: interpolation of PFBP data

12 foreach voxel position x do

13 µ̃rec(x, test,i)← 0 ∀ i

14 for j = 0 toM − 1 do

15 X̂(k) ≡ X(j, x, k) // intermediate variable

16 sort X̂(k) such that the corresponding acquisition time points
t(j+0.5)L,k are in ascending temporal order

17 for i = 0 toNtp − 1 do

18 µ̃rec(x, test,i)← µ̃rec(x, test,i) + interpolated value of X̂(k) at test,i

19 end

20 end

21 end



4.2. Specialized Scanning Protocol and Reconstruction Method 65

4.2.4 Interpolation of Non-uniformly Sampled Data

Due to the alternating directions of C-arm rotations the projection data is sampled
using non-uniform time intervals. This has to be considered when choosing suitable
interpolation functions ϕl,k in Equation (4.7). There are various interpolation meth-
ods for non-uniformly sampled data and an overview of 5 different methods will be
provided next.

Nearest neighbor (NN) and linear (LIN) interpolation are robust against noisy
data and they preserve the monotonicity of the data that is being interpolated. I.e.
the interpolated values between two adjacent sample points are either strictly in-
creasing or strictly decreasing. Cubic spline (CS) interpolation generates smooth
curves which can be non-monotonic but it can lead to unintended overshoots or un-
dershoots when interpolating noisy data [62]. Another class of interpolation methods
are piecewise cubic Hermite interpolating polynomials (HIP) [133]. They also pre-
serve the monotonicity of the data but they generate smoother curves when compared
to linear interpolation. Radial basis function (RBF) interpolation computes an inter-
polated value by using a distance-dependent weighting of the known sample values
[134]. For example, in [17] a Gaussian function has been used as weighting function.

4.2.5 Complexity Analysis

In this section, the computational complexity of the IS-PRI algorithm is investigated.
This algorithm is composed of two main steps, cf. Algorithm 4.1. The first step
consists of the generation of the PFBP data (Equation (4.5)). The second step
involves the interpolation of this data in order to obtain the time-attenuation curves
(Equation (4.7)).

The PFBP data is generated using the FDK algorithm [16]. The backprojection
step, which represents the most time-consuming part of this algorithm, has a com-
plexity of O(Nviews n3), cf. [135], where n denotes the side length of the reconstructed
volume and Nviews denotes the number of projections used for the reconstruction of
one volume.

The complexity of the PFBP generation is independent of the number M of
angular interpolation intervals. However, the memory that is required to store the
PFBP data scales linearly with M . The computational complexity to generate the
PFBP data from all Nseq ·Nrot C-arm rotations is therefore

O(Nseq Nrot Nviews n3) . (4.8)

Before the interpolation can be performed the data from the interleaved scanning
protocol must be arranged in ascending temporal order. The sorting has to be done
for all M angular intervals individually and the typical complexity of each sorting
step is O(Nseq Nrot log(Nseq Nrot)).

The interpolation is conducted for the time series at each voxel position and
at each angular interpolation interval; thus, a number of M · n3 time series to be
interpolated exist. Therefore, the interpolation step has a complexity of

O(M Ntp n3) (4.9)
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Value, set 1 Value, set 2
Parameter Symbol (simulations) (in vivo study)

view-angle increment ∆λ 0.5◦ 1◦

number of views per rotation Nviews 401 191

angular range per rotation Λ 200◦ 190◦

time per rotation Trot 4.30 s 4.30 s

time between rotations Tw 1.25 s 1.25 s

number of rotations Nrot 9 6

total scanning time — 48.7 s 32.05 s

source-to-isocenter distance R 800 mm 785 mm

source-to-detector distance D 1200 mm 1198 mm

area of quadratic detector pixel (∆u)2 0.6 · 0.6 mm2 0.616 · 0.616 mm2

number of detector pixels Ndetpix 800 · 1 616 · 480

(no binning) (after 4 · 4 binning)

total detector size — 480 · 0.6 mm2 ≈ 380 · 296 mm2

Table 4.1: Scan parameters for the numerical simulations and the in vivo study. The
angular range per rotation is computed as Λ = (Nviews − 1) ·∆λ. The total scanning
time is computed as Nrot · Trot + (Nrot − 1) · Tw. The total detector size is computed
as Ndetpix · (∆u)2.

where Ntp is the number of interpolation time points. Assuming that

M Ntp ≤ Nseq Nrot Nviews , (4.10)

the complexity of the complete algorithm is finally given by

O(Nseq Nrot Nviews n3) . (4.11)

Thus, the interpolation step can be neglected in this asymptotic analysis and the
computational complexity of the whole IS-PRI algorithm is approximately that of
individual FDK reconstructions of each C-arm rotation. A similar result was obtained
for the interpolation-based algorithm that is presented in [136], which is designed for
a continuously rotating CT scanner without interleaved scanning.

4.3 Numerical Simulations

In this section, numerical simulations were performed to investigate the properties of
the acquisition and reconstruction scheme described in Section 4.2.

4.3.1 Phantom Description

Three different time-attenuation curves were generated to model the flow of con-
trast agent through a large artery, a region of normally-perfused tissue and a region
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(a) time-attenuation curves (b) dynamic head phantom

Figure 4.3: (a) Synthetic time-attenuation curves, here without noise, corresponding
to a large artery (∆µart(t), left scale), to healthy, normally-perfused tissue (∆µtis,h(t),
right scale) and to pathological, hypoperfused tissue (∆µtis,p(t), right scale). The
plots show the dynamic enhancement (above the static baseline value) relative to the
attenuation µw of water. (b) Locations of the artery and the tissue regions in the
dynamic head phantom.

of hypoperfused tissue. The arterial enhancement ∆µart(t) was modeled using the
following gamma-variate function (cf. Section 3.4.1) [57]:

∆µart(t) =
A

(α β exp(−1))α
τ̂α exp(−τ̂ /β) H(τ̂) . (4.12)

Here, H(τ̂) is the unit step function, A = 0.5 µw is the maximum dynamic enhance-
ment (above the static baseline value), µw = 0.18 cm−1 is the X-ray attenuation of
water and α = 3.0 and β = 1.5 are shape parameters that were also suggested in
[57]. The dimensionless quantity τ̂ = (t− t0)/η depends on the bolus arrival time t0

and the time scaling factor η which are both measured in s. The factor η controls
the FWHM of the curve. The initial values were t0 = 0 and η = 1 but as will be
explained in Section 4.3.2 in more detail these values were varied to obtain several
different curves.

Using these parameter values, arterial time curves were generated that were rep-
resentative of the curves that were actually measured in the in vivo perfusion studies
(Section 4.4). Note, in the studies a bolus injection at the aortic arch was used
which resulted in a higher enhancement A when compared to a conventional intra-
venous bolus injection into the antecubital vein which is typically 0.25−0.30 µw. The
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time-attenuation curves ∆µtis(t) in tissue were computed using the indicator-dilution
theory (cf. Equation (2.15)),

∆µtis(t) = CBF ρvoi

∫ t

0
∆µart(τ) r(t− τ) dτ (4.13)

r(t) =







1, for t < T0

exp
(

−(t−T0)
MTT−T0

)

, for t ≥ T0 ,
(4.14)

with ρvoi = 1.04 g/ml. The shape of the residue function r(t) and the value T0 =
0.632 ·MTT were chosen as suggested in [137]. According to Equation (2.25), MTT
can be computed as

MTT = CBV/CBF . (4.15)

The values CBF = 60 ml/100g/min and CBV = 4 ml/100g were chosen to gen-
erate a time-attenuation curve ∆µtis,h(t) for healthy, normally-perfused tissue and
CBF = 20 ml/100g/min and CBV = 4 ml/100g were chosen to generate a time-
attenuation curve ∆µtis,p(t) for pathological, hypoperfused tissue. A plot of all three
time-attenuation curves is shown in Figure 4.3(a).

A dynamic Shepp-Logan-type head phantom [138] µpha(x, t) was created that
contained three circular regions of interest (ROI) with varying attenuation values,
see Figure 4.3(b). The first ROI (radius 1 mm) modeled an artery with attenuation
values µw + ∆µart(t). The second and third ROIs (radius 2 mm each) modeled tissue
regions with attenuation values µw + ∆µtis,h(t) and µw + ∆µtis,p(t), respectively.

The constant attenuation values of the elliptical skull (outer radii 62 mm and
92 mm) and the brain tissue were 2 µw and µw, respectively. The constant attenuation
values of the two inner ellipses were chosen to be 0.95 µw. In order to improve the
reproducibility of the results, a more detailed description of this phantom along with
relevant source code is available online [139].

4.3.2 Investigations

C-arm CT scanning of the 2-D phantom was simulated with a linear detector array
using the scan parameters from set 1 in Table 4.1. Poisson-distributed noise was
added to the projection values of µpha(x, t) assuming an emitted X-ray flux density
of 2.1 · 106 photons per mm2 at the source-to-detector distance as in [127].

Different numbers Nseq ∈ {1, 2, 3, 4} of scan sequences and different numbers
M = {1, 2, 3, 4, 5, 6, 12, 18} of angular interpolation intervals were used. The five
interpolation functions from Section 4.2.4 were applied and the interpolation time
step was set to 0.5 s. These 160 different combinations of IS-PRI parameters were
used to simulate scanning of the phantom µpha(x, t). For each instance the scanning
was repeated ten times each time having a different noise realization and different
values for t0 and η. These values were uniformly distributed in the intervals t0 ∈
[0, (Trot + Tw)[ and η ∈ [0.85, 1.15], respectively. This was done in order to take
into account variations due to different, relative shifts between start of the scanning
and the bolus arrival and also variations due to different shapes of the curves. The
thickness of the reconstructed slices was 9.6 mm which is a typical value for neuro
perfusion CT data. The reconstruction of thick slices was realized by averaging 16
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Figure 4.4: Simulation with noisy, synthetic data corresponding to (a–c) healthy and
(d–f) pathological tissue. The graphs show mean and standard deviation of differ-
ent measures with known ground truth (GT; dashed line) for different interpolation
methods (abbreviations explained in Section 4.2.4) and numbers Nseq ∈ {1, 2, 3, 4}
of interleaved sequences. The different colors of the bars correspond to values from
Nseq = 1 (dark) to Nseq = 4 (bright).
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noisy projections, i.e. the slice thickness divided by the detector pixel size, for each
view angle. The in-plane voxel spacing was 0.2 mm.

In order to analyze the reconstructed data, the focus was put on the following two
aspects. First, the accuracy of measured perfusion values (CBF, CBV, MTT, TTP)
was investigated for the healthy and pathological tissue. Second, the reconstruction
artifacts due to inconsistent data around the simulated artery were investigated, cf.
Section 4.2.1.

The perfusion parameters CBF, CBV and MTT were computed using the TSVD
algorithm (Algorithm 2.1) with a fixed threshold value of 20% of the maximum sin-
gular value. Recall that in this algorithm the arterial time curve µart(t) and the
tissue time curve µtis are deconvolved and the peak value and the integral of this
deconvolved function give the CBF and the CBV, respectively, whereas MTT is the
ratio of both (Equation (4.15)). TTP was determined directly from the tissue time
curves.

The reconstruction artifact around the artery was quantified by measuring the
average absolute deviation from the ground truth value in an annular region around
the artery. The following expression defines the pixel positions xi (i = 0, . . . , Ni− 1)
that lie within this annular region:

r2
art ≤ x2

i + y2
i ≤ (3 rart)

2 . (4.16)

The outer radius was set to 3 rart after initial evaluation of different radii in order to
have the majority of the artifact within the annulus ring. The measure χ̄art of the
mean reconstruction artifact for a given time point test is defined as

χ̄art(test) =
1

Ni

Ni−1
∑

i=0

|µ̃rec (xi, test)− µpha (xi, test)| . (4.17)

4.3.3 Results

Figure 4.4 shows the mean and standard deviation of the computed perfusion pa-
rameters CBF, CBV and TTP from reconstructions with a constant number M = 6
of angular interpolation intervals and different interpolation methods. Results with
different numbers M will be discussed later. According to the central volume theo-
rem, see Equation (4.15), only two of the three parameters CBF, CBV and MTT are
independent and, for brevity, the MTT plots which show similar qualitative results
as the CBF and CBV plots were omitted.

Generally, the standard deviation of the computed parameter values, which is a
measure for the variability, decreases when the number Nseq of interleaved sequences
increases. Especially the standard deviation of CBF and TTP (healthy tissue) de-
creases significantly when Nseq is increased from 1 to 2. For example, with linear
interpolation the standard deviation of CBF in healthy tissue decreases from 14.3
ml/100g/min to 3.6 ml/100g/min when two interleaved sequences instead of one se-
quence are used. For pathological tissue these values are 2.9 ml/100g/min and 1.5
ml/100g/min.

The mean TTP values get closer to the ground truth value for increasing Nseq

and the mean CBF and mean CBV values tend to get overestimated, especially for
pathological tissue.
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Figure 4.5: Simulation with noisy, synthetic data: Mean and standard deviation
of estimated CBF, CBV and TTP with known ground truth (GT; dashed line) de-
pending on different number Nseq of interleaved sequences and different numbers
M ∈ {1, 2, 3, 4, 5, 6, 12, 18} of angular interpolation intervals (the bars are ordered in
increasing numbers of M) investigated using pathological tissue and applying linear
interpolation as interpolation method.



72 Chapter 4. C-arm CT Perfusion Imaging using IS-PRI

NN LIN HIP CS RBF
0

0.002

0.004

0.006

0.008

0.01

0.012

χ
ar

t(9
 s

) 
[µ

w
]

N
seq

(a) M = 1, Nseq = 3, fixed time: t = 9 s

NN LIN HIP CS RBF
0

0.002

0.004

0.006

0.008

0.01

0.012

χ
ar

t(9
 s

) 
[µ

w
]

N
seq

(b) M = 6, Nseq = 3, fixed time: t = 9 s

0 2 4 6 8 10 12 14
0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

t [s]

χ
ar

t(t
) 

[µ
w

]

 

 
M=1, N

seq
=1

M=1, N
seq

=2

M=1, N
seq

=3

M=6, N
seq

=1

M=6, N
seq

=2

M=6, N
seq

=3

(c) χ̄art(t) as a function of time, LIN interpola-
tion

Figure 4.6: Simulation with noisy, synthetic data: (a–b) Mean and standard deviation
of the reconstruction artifact χ̄art(t) around the simulated arterial vessel at time point
t = 9 s for different numbers Nseq ∈ {1, 2, 3, 4} of interleaved sequences (the bars are
ordered in increasing numbers of Nseq) and interpolation methods (abbreviations
explained in Section 4.2.4). µw is the X-ray attenuation of water. (c) Plot of χ̄art(t)
computed with linear interpolation (LIN) as a function of time. The dashed lines
indicate the value for the component of χ̄art that is purely due to noise. Optimal
results should be close to the value of this dashed line.
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(a) M = 1 (b) M = 6 (c) M = 12 (d) M = 18

(e) M = 1 (f) M = 6 (g) M = 12 (h) M = 18

Figure 4.7: Reconstruction of a simulated arterial vessel with time-varying attenua-
tion values from (a–d) noisy and (e–h) noise-free input data using Nseq = 3 interleaved
sequences. M is the number of angular interpolation intervals. The windowing is from
–10 HU (black) to +10 HU (white).

Figure 4.5 shows the CBF, CBV and TTP of the simulated pathological tissue
as a function of different number M of interpolation intervals when using linear
interpolation. For Nseq ∈ {3, 4} the mean of the estimations of CBV and TTP
varies with increasing M values while the CBF estimation is nearly unaffected by
different M values. It can be observed that the results with M ∈ {12, 18} are similar
to the results with M = 6. Generally, the estimation of the perfusion parameters
does not improve significantly when increasing M for neither the pathological tissue
(Figure 4.5) nor for the healthy tissue (data omitted for brevity).

Results for the reconstruction artifact around the simulated artery are shown in
Figure 4.6. Figure 4.6(c) shows χ̄art(t) for different time points t when using the
linear interpolation method. If Nseq > 1 then the value of χ̄art(t) decreases for M = 6
when compared to M = 1. For comparison of different interpolation methods, in
Figure 4.6(a)–(b) the mean and standard deviation is plotted for a reconstruction time
point during the arterial outflow phase (test = 9 s, see Figure 4.3(a)). The value of
χ̄art(9 s) from a reconstruction without any simulated contrast agent flow is indicated
with a dashed line, this value is purely due to the noise in the projection images and
thus also the reconstructed images, cf. definition of χ̄art in Equation (4.17).

As a visual example Figure 4.7 shows reconstructions of the simulated arterial
vessel at the time point test = 9 s for different numbers M , here with an in-plane
voxel spacing of 0.1 mm. Additionally, also the results obtained from noise-free input
data are presented in this figure.
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4.3.4 Discussion

The results show that perfusion parameters can be measured with less variability, i.e.
lower standard deviation, when several (Nseq > 1) interleaved sequences are used. A
few exceptions exist that could be explained due to the specific sampling pattern,
see Equation (4.1) and the shape of the synthetic curves which could be optimal for
specific values of Nseq. The mean value estimation of the perfusion parameters is not
generally improved with an increased number Nseq of interleaved sequences.

In brain perfusion imaging the relative comparison of perfusion values in the
healthy and diseased hemispheres is more significant than absolute perfusion values
[3]. Therefore, the variability of the measurements is a more important aspect than
the mean values.

For Nseq ≥ 2 the performance of the different interpolation methods is comparable.
Linear and nearest neighbor interpolation may be favored in practice because they
can be implemented such that they are computationally very fast. Of these two
methods, linear interpolation shows slightly better results (e.g., lower variability of
CBF, CBV and TTP measurements for Nseq = 2). With two interleaved sequences
the variability for the measured perfusion parameters may already be low enough for
application in brain perfusion imaging.

For Nseq > 1, the variability of the parameters CBF and CBV does not decrease
for increasing M . This effect can be explained by the deconvolution-based perfusion
analysis. If M = 1 then the reconstructed time curves have been low-pass filtered
before sampling and interpolation. The low-pass filtering can be approximated by
a convolution with a rectangular function of temporal width Trot (Section 4.2.1).
Note, both the arterial and the tissue curves are low-pass filtered with a similar filter
kernel. Mathematically, the deconvolution operation of two functions is invariant to
a preceding convolution of each function with the same filter kernel.

It should be noted that other measures of the tissue time curves which do not
depend on the normalization with the arterial time curve, such as peak value, can
improve for increasing M as has been shown in [22]. However, the investigation of
clinically relevant parameters such as CBF is more significant.

The major advantage of using M > 1 can be seen in Figures 4.6 and 4.7. When
using the PRI approach it is possible to approximate a consistent data set of projec-
tion values and to reduce the reconstruction artifacts due to data inconsistencies. It
can be seen that for t = 9 s, for example, the artifact is reduced almost completely if
Nseq ≥ 2. This can be explained by the linear slope of the arterial time-attenuation
curve at this time point which enables accurate estimation of the unknown data by
means of linear interpolation. Choosing higher numbers M of angular interpola-
tion intervals than M = 6 does not significantly improve the results, although small
changes can be seen in the noise-free data of Figure 4.7. Therefore, it is suggested
setting M to 6 in order to reduce the computational complexity.
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4.4 In Vivo Study

In order to show the clinical feasibility of the novel IS-PRI approach and to validate
it under realistic conditions, an in vivo brain perfusion study with 5 healthy pigs has
been conducted where perfusion CT was used as reference for the validation.

4.4.1 Material and Methods

The following procedure was performed under institutional review board approval
for each of the 5 perfusion-normal pigs (mean weight 54 ± 4.7 kg). The pig was
sedated and placed on a respirator. A 5-French diffusion catheter (Vanguard, Medrad
Inc, Idianola, PA, USA) was placed at the root of the aortic arch under fluoroscopic
guidance. During the study iodinated contrast agent (Omnipaque, 350 mg iodine/ml,
Nycomed, Princeton, NJ, USA) was injected — which was diluted with an equal
amount of saline — using a programmable dual head power injector (Accutron HP-D,
Medtron AG, Saarbrücken, Germany). Using this injector, delay times could be
programmed with 0.1 s precision. Each bolus was injected at a rate of 6 ml/s for 8 s,
resulting in 24 ml of pure contrast agent per injection.

A number Nseq = 6 interleaved sequences were acquired with a clinical C-arm
CT system (Axiom Artis dTA with syngo DynaCT, Siemens AG, Healthcare Sector,
Forchheim, Germany) using the C-arm CT scan parameters from set 2 of Table 4.1.
Retrospectively, three additional subsets of sequences with Nseq = 1 (1st sequence
of the superset), Nseq = 2 (1st and 4th sequence of the superset) and Nseq = 3 (1st,
3rd and 5th sequence of the superset) were created. The size of each reconstructed
volume was 256 · 256 · 256 isotropic voxels with a voxel side length of 0.5 mm and the
interpolation sampling interval was 1 s. Based on the experience from the simulations
the number M of interpolation intervals was set to 6 and linear interpolation was used.

For validation, a perfusion CT (first 2 animals: Somatom Sensation 64, Siemens
AG, Healthcare Sector, Erlangen, Germany; last 3 animals: LightSpeed 16, GE
Healthcare, Milwaukee, WI, USA) was acquired for each of the 5 animals with the
same injection parameters as for the C-arm CT scans. The data from the perfusion
CT exam was reconstructed with a pixel size of 0.39 · 0.39 mm2, a slice thickness of
9.6–10.0 mm and a temporal sampling interval of 0.5–1.0 s. For the C-arm CT data
reconstructions were created which had with similar slice thicknesses by applying a
moving average filter (kernel size 9.5–10.0 mm) perpendicular to the orientation of
the reconstructed slices.

After reconstruction of the 4-D C-arm CT data set the time-attenuation curves in
an arterial and a venous vessel and in a tissue region were evaluated qualitatively. A
quantitative evaluation was carried using the computed perfusion parameter maps.

For this evaluation, at first the 3-D C-arm CT perfusion maps were registered onto
the 2-D perfusion maps (2–3 slices per animal) obtained with CT. A rectangular grid
with a line spacing of 10 pixels was used to subdivide the whole brain area into square
ROIs. For each ROI the mean perfusion values (CBF, CBV, MTT) were computed
using software based on the TSVD algorithm (Algorithm 2.1).

The linear correlation rcorr [62] between the perfusion CT map and the (registered)
perfusion C-arm CT map was determined by using the data from all ROIs. In order
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Figure 4.8: Transversal C-arm CT image of a pig head that shows the locations
of the extra-cranial arterial (A) and intra-cranial venous (V) vessels and the tissue
(T) region that were selected for plotting of the time-attenuation curves shown in
Figure 4.9. The windowing range is from –75 HU to +375 HU.

to decrease the influence of large vessels a vascular pixel elimination (VPE) was
additionally applied; similar to the method described in [98]. If the mean CBV
value from perfusion CT in a certain square ROI was above the threshold value of
8 ml/100g (this value was suggested in [98] for human data and it was assumed that
it also applies to the data from the in vivo pig studies because of the similarities of
the human brain and the pig brain [140]) then the data from this ROI was not used
for the correlation analysis.

An alternative evaluation method would be to manually select ROIs in different
gray and white matter regions as done in [25]. The evaluation conducted in this
chapter does not require manual selection of ROIs and is therefore user-independent.

4.4.2 Results

Figure 4.8 shows the locations of the arterial and venous vessels and the tissue re-
gions that were selected for investigation of the time-attenuation curves. The time-
attenuation curves from one animal are shown in Figure 4.9. With increasing Nseq

the FWHM of the reconstructed curves decreases and gets closer to the value from
the reference CT. The curves obtained with IS-PRI are generally smoother than the
curves from CT. The smoothest curves are obtained with Nseq = 1. These qualitative
findings also hold for the results of the other 4 animals of the study.

A representative 3-D CBF data set of one animal is given in Figure 4.10 by
displaying 3 orthogonal planes through the volume. No severe asymmetry can be
seen in the transversal and coronal planes as would be expected from a healthy
animal. Figure 4.11 shows a comparison of the CBF maps of one animal obtained
with perfusion CT and with perfusion C-arm CT using IS-PRI (Nseq = 2, M = 6).
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Figure 4.9: Reconstructed time-attenuation curves obtained from one pig in the in
vivo studies using different numbers Nseq ∈ {1, 2, 3, 4} of interleaved sequences and
M = 6 angular interpolation intervals. The data from a perfusion CT (PCT) exam
is given as reference. For each curve the first sample point value was subtracted to
allow for better comparison.
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Figure 4.10: 3-D CBF data (unit: ml/100g/min) of a perfusion-normal pig computed
from 4-D data acquired using the IS-PRI approach. The color bar applies to all three
images.
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Parameter VPE Nseq A B C D E Mean± SD

CBF [ml/100g/min] no 1 0.97 0.92 0.91 0.87 0.95 0.92± 0.04

CBF [ml/100g/min] yes 1 0.79 0.80 0.58 0.54 0.62 0.67± 0.12

CBV [ml/100g] no 1 0.98 0.96 0.92 0.87 0.96 0.94± 0.05

CBV [ml/100g] yes 1 0.75 0.73 0.52 0.42 0.49 0.58± 0.15

CBF [ml/100g/min] no 2 0.97 0.95 0.93 0.88 0.94 0.94± 0.03

CBF [ml/100g/min] yes 2 0.79 0.82 0.74 0.55 0.63 0.71± 0.11

CBV [ml/100g] no 2 0.98 0.96 0.93 0.89 0.96 0.94± 0.04

CBV [ml/100g] yes 2 0.78 0.77 0.59 0.46 0.53 0.63± 0.14

CBF [ml/100g/min] no 3 0.93 0.95 0.94 0.89 0.93 0.93± 0.02

CBF [ml/100g/min] yes 3 0.80 0.83 0.78 0.59 0.65 0.73± 0.10

CBV [ml/100g] no 3 0.98 0.96 0.94 0.91 0.95 0.95± 0.03

CBV [ml/100g] yes 3 0.77 0.76 0.71 0.51 0.61 0.67± 0.11

Table 4.2: Linear correlation coefficient rcorr between perfusion parameters that were
measured with CT and C-arm CT in 5 healthy pigs (labeled from A to E). VPE:
vascular pixel elimination, SD: standard deviation.

Table 4.2 shows the linear correlation coefficients rcorr between perfusion CT and
perfusion C-arm CT parameters for the results with and without VPE. For brevity,
the detailed results for MTT have been omitted. The mean correlations for MTT
were generally lower (rcorr = 0.12 with VPE, rcorr = 0.35 without VPE for Nseq = 2)
but also showed an increase for increasing Nseq (rcorr = 0.31 with VPE, rcorr = 0.51
without VPE for Nseq = 3).

4.4.3 Discussion

The results from Figure 4.9 show that the time-attenuation curves measured with the
IS-PRI approach are comparable to those measured with CT. The smoothness of the
curves with IS-PRI could be explained by the potential undersampling, especially at
low numbers Nseq, and the interpolation, both of which act as a low-pass filtering.

Compared to conventional multi-slice perfusion CT it is possible to measure vol-
umetric perfusion with the IS-PRI approach (Figure 4.10). A detailed discussion of
the advantages of volumetric perfusion measurement for stroke diagnosis is provided
in [141].

The mean correlation of the computed C-arm CT perfusion values with perfusion
CT increases for increasing Nseq regardless of whether vascular pixels are kept or
eliminated. While the mean correlation is highest when vascular pixels are included
in the analysis, it is also very high if the vascular pixels are removed. In that case the
improvement when using increasing numbers Nseq is most prominent. The standard
deviation of the mean correlation decreases for increasing Nseq. The evaluation with
VPE may be clinically more significant, in order to evaluate tissue perfusion, than the
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evaluation without VPE. Nevertheless, the results without VPE show the correlation
between perfusion CT and perfusion C-arm CT values on a broader range of values.

Higher numbers M of angular interpolation intervals were not evaluated as the
results from the simulations did not show a significant improvement for M > 6.
The simulations showed that reconstruction artifacts could be reduced with M = 6
compared to M = 1. With in vivo data these reconstruction artifacts were difficult
to evaluate due to the lack of ground truth data.

In order to increase the CNR of the measured tissue time-attenuation curves a
contrast agent bolus injection at the aortic arch was used (Chapter 5). With this in-
jection, which is feasible during stroke therapy procedures in the interventional suite,
the fraction of contrast agent that actually reaches the brain is increased compared
to an intra-venous contrast agent bolus injection (Section 5.1).

The interleaved scanning with multiple contrast agent bolus injections is based
on the assumption that similar contrast agent flow patterns can be generated in
the patient’s brain for each bolus injection. With contrast agent bolus injections
at the aortic arch the bolus travel time to the brain is very short which improves
the reproducibility of the contrast agent flow pattern. ECG-triggered contrast agent
bolus injections, which were not performed in this study due to hardware constraints,
could reduce the influence of the cardiac cycle [132] which could further increase the
reproducibility.

The necessity for two separate injections could be relaxed if a biplane C-arm
angiography system was used where both planes could acquire projections simulta-
neously during the C-arm rotation. In that case two interleaved sequences could be
acquired with only one contrast agent bolus injection.

The study was not optimized for X-ray dose reduction. When used in clinical
practice the applied dose of a protocol with two interleaved scan sequences may be
similar to the applied dose of current volume perfusion CT protocols [142].

A more detailed analysis of the clinical data focusing on clinical aspects such
as different injection protocols and a differentiation of gray and white matter was
carried out in [25]. In [25] the correlation between perfusion CT and perfusion C-arm
CT was computed using manually selected circular ROIs and a linear correlation of
rcorr = 0.88 was obtained with two interleaved sequences. Also with the automatic,
user-independent ROI selection approach as carried out in this chapter the correlation
of CBF and CBV is very high (ranging from rcorr = 0.63 to rcorr = 0.94 for Nseq = 2).

4.5 Summary and Conclusion

A novel combined scanning and reconstruction approach was presented in this chapter
that allows for tissue perfusion measurement in the interventional suite. Emphasis
was put on computational speed of the methods, e.g. by using a modified FDK-based
reconstruction algorithm, so that this technique could be used for intra-operative
imaging during stroke therapy procedures (Section 4.1.1).

Using numerical simulations it has been shown that with two interleaved sequences
the variability of estimated perfusion values is sufficiently low such that this method
could be used for clinical decision making. These simulations were carried out with
C-arm CT scan parameters that are representative of current systems (Table 4.1).



82 Chapter 4. C-arm CT Perfusion Imaging using IS-PRI

The results are expected to improve with faster C-arm rotation speeds accompa-
nied by faster detector readout rates and shorter waiting times between rotations,
e.g. realized with robotic C-arm CT systems such as the Artis zeego (Siemens AG,
Healthcare Sector, Forchheim, Germany). Furthermore, with new biplane C-arm
angiography systems the two interleaved sequences could be acquired using a single
contrast agent bolus injection only.

The in vivo studies were based on a healthy pig model and the perfusion parameter
maps computed from data acquired with the novel IS-PRI approach showed promising
correlations with those from a reference perfusion CT. Further validation in stroke
cases and human patient studies is necessary and should be carried out in the future.



Chapter 5

Evaluation of Contrast Agent
Bolus Injection at the Aortic Arch:
Automatic Measurement of Bolus
Distribution

Overview:
In this chapter, a novel algorithm for time-resolved 2-D DSA image data is presented.
It is used to evaluate a contrast agent injection protocol that applies an injection at
the aortic arch for C-arm CT perfusion imaging. The algorithm performs an au-
tomatic segmentation of both common carotid arteries (CCA) based on dedicated
spatio-temporal weighting functions. Then it computes the relative distribution of
the contrast agent bolus between the CCAs. A uniform distribution of the contrast
agent is actually desirable for comparison of perfusion between the left and right
hemispheres. The algorithm can be used for retrospective evaluation of the bolus
distribution to assess new injection protocols or for intra-procedural optimization of
the injection catheter location.

This chapter is based on “Automatic Measurement of Contrast Bolus Distribution
in Carotid Arteries Using a C-arm Angiography System to Support Interventional
Perfusion Imaging”, by A. Fieselmann, A. Ganguly, Y. Deuerling-Zheng, J. Boese,
J. Hornegger, and R. Fahrig. In Proc. SPIE Medical Imaging 2011: Visualiza-
tion, Image-Guided Procedures, and Modeling, volume 7964, pages 79641W1–6, Lake
Buena Vista, USA, 2011 [30].
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(a) aortic arch and CCAs (b) right CCA

Figure 5.1: (a) Anteroposterior view onto the heart with labeled aortic arch and
right and left common carotid artery (CCA). (b) View onto the right CCA. Original
images taken from [146].

5.1 Introduction

In CT and MR brain perfusion imaging the contrast agent bolus is injected intra-
venously. Usually a large vein of the arm (antecubital vein) is chosen [143, 144]. After
an IV injection the bolus travels through the heart and the lung and it is well-mixed
with the blood when it arrives in the brain. This type of contrast agent bolus injection
can also be used in perfusion C-arm CT imaging. However, for this application,
also alternative contrast agent bolus injection strategies would be possible since the
patient is located in the interventional suite and already catheterized for vascular
therapy (Section 1.2).

For example, the contrast agent bolus could be injected directly into an artery
using an injection catheter. A selective injection into one of the two common carotid
arteries (CCA, Figure 5.1) would be possible. This approach is already applied for
the acquisition of DSA data [9, 145], for example. However, when using this kind of
injection approach, the bolus would flow into one of the hemispheres of the brain only.
Therefore, no comparison of the perfusion between the left and right hemispheres
could be carried out which is actually desirable in perfusion imaging.

A different approach would be to inject the contrast agent bolus at the root of
the aortic arch (Figure 5.1(a)). This would allow the bolus to flow into both CCAs.
This kind of bolus injection has two potential advantages.
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1. The fraction of the contrast agent that actually reaches the brain is expected
to be higher when compared to an IV injection. Note, after an IV injection a
significant fraction of the contrast agent bolus will flow directly to the trunk and
lower extremities after leaving the heart. A higher fraction of the contrast agent
bolus that reaches the brain results in a higher SNR of the measured TACs,
which is desirable for the subsequent image analysis. Alternatively, instead of
increasing the SNR, the amount of injected contrast agent could be reduced
while providing a similar SNR when compared to an IV injection.

2. Because the traveling time from the aortic arch to the brain is relatively short,
physiological variations (e.g., heart rate) during the traveling time will have a
smaller influence when compared to an IV injection. This can lead to more
reproducible contrast bolus injections which are required for the interleaved
scanning approach presented in Chapter 4.

In order to compare perfusion values between the left and right hemispheres,
equal amounts of contrast agent are required to flow into both CCAs. However, the
exact location of the injection catheter at the aortic arch and potentially also further
injection parameters can influence the distribution of the contrast agent bolus in the
CCAs.

In this chapter, an automatic algorithm will be presented to quantify the contrast
agent bolus distribution in the CCAs based on time-resolved 2-D DSA data. The
algorithm will be applied to data acquired as part of a C-arm CT perfusion study
(Section 4). The aim is to investigate if a uniform contrast agent distribution is
possible when using an injection at the aortic arch. The algorithm could also be
used during the intervention in order to optimize the injection catheter position by
providing additional quantitative information.

5.2 Description of the Algorithm

Figure 5.2 and Algorithm 5.1 depict an overview of the algorithm. After pre-processing
of the raw data (step 1), the CCAs are segmented fully automatically (step 2). Then
the end of the contrast agent wash-in phase is determined from the time-intensity
curves of the CCAs (step 3). This information is necessary to compute the so-called
contrast agent volume map (step 4). Finally, the contrast agent volume map and
the segmentation result of the CCAs are used to compute the carotid contrast agent
distribution ratio (CCDR) parameter (step 5).

5.2.1 Pre-processing

The first step of the algorithm is the pre-processing of the measured data. The
variable psub(u, v, t) is introduced in order to denote the baseline-subtracted projection
values at the detector coordinates (u, v) and at time t. In this chapter, all variables
are denoted as continuous variables for simplicity. In a practical implementation they
can only take discrete values, of course. The baseline subtraction is accomplished by
subtraction of the projection value before contrast agent enters the field of view.
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Figure 5.2: Overview of the algorithm to measure the contrast agent bolus distribu-
tion (CCDR) in the common carotid arteries (CCA).

(a) wspt (b) wtmp (c) wcmb (d) ptMIP (e) pw
tMIP

Figure 5.3: (a–c) Spatial (wspt), temporal (wtmp) and combined (wcmb) weighting
functions. The windowing is from 0 (black) to 1 (white). (d–e) Unweighted tMIP
(ptMIP) and tMIP weighted with wcmb (pw

tMIP). Both tMIPs have the same windowing
from 0 (black) to the half maximum of the image data corresponding to (d) (white).

Note, to convert the measured photon flux density into line integrals of attenuation
values, i.e. projection values, a logarithmic transform and a change of sign must be
applied first. To reduce noise, a 2-D spatial Gaussian filter with standard deviation
of 2.5 mm is applied to all time instances of psub(u, v, t).

5.2.2 Segmentation of Carotid Arteries

The common carotid arteries are segmented from a temporal maximum intensity
projection (tMIP) of psub(u, v, t) which will be denoted as ptMIP(u, v). First, a spatio-
temporal weighting of ptMIP(u, v) is applied in order to increase the intensity of the
CCAs relative to other structures. The combined weighting function wcmb ∈ [0, 1] has
a factor wspt ∈ [0, 1] that uses prior knowledge of the spatial position of the CCAs
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and a factor wtmp ∈ [0, 1] that uses prior knowledge of the expected temporal contrast
agent dynamics. The weighted tMIP, denoted by pw

tMIP(u, v), is then given by

pw
tMIP(u, v) = wcmb(u, v) · ptMIP(u, v)

= wspt(u) · wtmp(u, v) · ptMIP(u, v) . (5.1)

The weighting functions wspt(u) and wtmp(u, v) will be described next. The spatial
weighting assumes that the CCAs can be found near the center of the image. To
mathematically define wspt(u), the 1-D Gaussian-type function Gf (x) is introduced
as

Gf (x) = ς1 ·
1

(2π ς2
2 )0.5

· exp

(

−
x2

2 ς2
2

)

= exp



−

(

2 (ln(2))0.5

f
x

)2


 . (5.2)

It has the amplitude scaling factor ς1 and the standard deviation ς2,

ς1 = (2π ς2
2 )0.5 (5.3)

ς2 = (8 ln(2))−0.5 · f , (5.4)

and the parameter f which controls the FWHM. Then, wspt(u) is defined as

wspt(u) = 2 GU(u− u0) − 1 . (5.5)

Here, U is the total width of the detector and u0 is the center coordinate of the
detector, both with respect to the u-coordinate. See Figure 5.3(a) for an example of
wspt(u). Different smooth weighting functions would of course also be possible.

The temporal weighting assumes that the contrast agent arrives earlier in the
arteries than in the draining veins. The expected time-to-peak value of the time-
intensity curve measured in the CCAs is denoted by tmax,e. This value can be chosen
relative to the duration Tinj of the contrast agent injection. For example, it can be
set to tmax,e = 1.2 Tinj. The temporal weighting function wtmp(u, v) is then defined as

wtmp(u, v) =







1 , for tmax(u, v) < tmax,e

Gtmax,e
(tmax(u, v)− tmax,e) , for tmax(u, v) ≥ tmax,e

(5.6)

tmax(u, v) = arg max
t

(psub(u, v, t)) , (5.7)

where tmax is the time-to-peak at position (u, v). An example for wtmp(u, v) is shown
in Figure 5.3(b).

For the following analysis of the bolus distribution, a complete segmentation of
the CCAs is not required. Thus, the CCAs are only segmented in a ROI where
v ∈ [vc − vw/2, vc + vw/2]. The parameters vw = 60 mm and vc = vmax,cran − vw

are used where vmax,cran is the v-coordinate at the cranial end of the image. These
parameters have been chosen empirically and work well for typical DSA data sets
acquired at the aortic arch. In the future, a more adaptive ROI selection may be
used. See Figure 5.4 for a graphical visualization of the boundaries of the ROI.

Next, the centerlines of the two CCAs can be segmented in the ROI of the im-
age pw

tMIP(u, v). To this end, a simple technique is used that looks for the 2 highest
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intensity values, separated by a minimum distance of 5 mm, along the line in the
u-direction for a given v-coordinate. Two paths are created by connecting the coordi-
nates of these maxima starting from a maximum at the left and right side respectively
(Algorithm 5.1). One may introduce further prior knowledge by requiring that the
centerlines are allowed to have a certain maximum curvature only. Figure 5.4 shows
an example of the segmentation. Note, different 2-D vessel centerline segmentation
methods exist as well and are described in [147, 148], for example.

5.2.3 Computation of Contrast Agent Volume Map

The contrast agent volume map (CVM) is introduced as a relative measure to estimate
the amount of contrast agent that has flowed through a certain region. In particular,
the CVM is used to compute the carotid contrast agent distribution ratio (CCDR)
in Section 5.2.4. Due to the linearity of the iodinated contrast agent and the X-ray
attenuation value (Section 6.1), the measured baseline-subtracted projection value
psub(u, v, t) is proportional to the total mass of contrast at time t that is intersected
by the X-rays from the source to the pixel centered at (u,v) [99].

First, the duration Twash,in of the contrast agent wash-in phase is determined
relative to the average time-to-peak tmax,cca measured inside the (segmented) CCAs.
For example, it can be set to Twash,in = tmax,cca + 1 s where s denotes seconds. Then,
the CVM, denoted by pcvm(u, v), is computed as

pcvm(u, v) =
∫ Twash,in

0
psub(u, v, t) dt . (5.8)

The integration interval is limited to the wash-in phase to fulfill the condition that
the measured data psub(u, v, t) has only contributions from a single vessel. The CVM
can be displayed for a visual assessment of relative contrast agent bolus distribution.
A quantitative evaluation of the CVM is done by computing the CCDR, as described
in Section 5.2.4.

5.2.4 Computation of Bolus Distribution

The carotid contrast agent distribution ratio (CCDR) is computed using the seg-
mented centerlines of the CCAs and the contrast agent volume map (CVM). For
each v-coordinate in the ROI, v ∈ [vc − vw/2, vc + vw/2], there is a u-coordinate for
the segmented centerline of the left CCA (uleft) and the right CCA (uright). For a
given v-coordinate, the v-specific CCDR can be approximated as

CCDRv ≈ pcvm(uleft(v), v) / pcvm(uright(v), v) . (5.9)

The final CCDR value is computed by averaging over the values obtained using the
different v-coordinates.
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Algorithm 5.1: Algorithm to compute the carotid contrast agent distribu-
tion ratio (CCDR) from a 2-D DSA sequence.

Input: pre-processed projection data psub(u, v, t) (see Section 5.2.1)
Output: CCDR value

1 ptMIP(u, v)← max
t

(psub(u, v, t)) ∀ u, v

2 compute pw
tMIP(u, v) according to Equations (5.1), (5.5) and (5.6)

3 // extract centerlines of left and right CCA

4 forall the v ∈ [vc − vw/2, vc + vw/2] (see Section 5.2.2) do

5 ζ(u)← pw
tMIP(u, v) ∀ u // intermediate variable

6 // get location of first maximum

7 uleft(v)← arg max
u

(ζ(u))

8 ζ(uleft(v))← 0

9 // get location of second maximum

10 repeat
11 uright(v)← arg max

u
(ζ(u))

12 ζ(uright(v))← 0

13 until |ζ(uleft)− ζ(uright)| ≥ 5 mm

14 // by convention, the u-coordinate of right CCA must be

lower than the u-coordinate of left CCA

15 if uright(v) ≥ uleft(v) then
16 swap values between uleft(v) and uright(v)
17 end

18 end

19 compute pcvm(u, v) according to Equation (5.8)

20 compute v-specific CCDR value (CCDRv) according to Equation (5.9)

21 compute final CCDR value by averaging CCDRv over all v-coordinates
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5.3 Experimental Evaluation

5.3.1 Material and Methods

The algorithm was tested using DSA sequences from 5 anesthetized healthy pigs. The
data was acquired as part of the perfusion studies which are described in Chapter 4.
The DSA sequences, acquired at 7.5 frames per second, were analyzed retrospec-
tively to compute quantitative parameters. For future patient studies only slight
adaptations of the algorithm to the human anatomy are expected [140].

A contrast agent bolus (Iohexol, 350 mg iodine per ml) was delivered intra-
arterially at the root of the aortic arch using a 5-French diffusion catheter at dif-
ferent injection rates (3, 6, 9 ml/s). Contrast agent concentrations (33%–100%)
were adjusted for each injection rate to provide a similar total contrast agent vol-
ume. Furthermore, different catheter positions were investigated for one injection
rate (3 ml/s).

5.3.2 Results

The centerline segmentation of the CCAs succeeded in all data sets as determined by
visual assessment. Hence, quantitative information about the contrast agent distri-
bution could be computed in all data sets.

For different injection rates (IR), the mean and standard deviation of the CCDR
values were 0.99±0.14 (3 ml/s IR), 1.10±0.13 (6 ml/s IR) and 1.06±0.10 (9 ml/s IR).
When the catheter was pulled backward by 5–10 mm from its original position, it
was 0.26 ± 0.10 (3 ml/s IR). Catheter positions that were rated optimal during the
perfusion studies (Chapter 4) had, in this retrospective analysis, CCDR values closer
to one.

Figure 5.4 shows segmentations of the CCA and extracted time-intensity curves
from one pig with different injection catheter locations. Quantitative results for this
example were CCDR = 1.03 (top row) and CCDR = 0.36 (bottom row). While
the catheter position in the upper image provides uniform contrast agent bolus dis-
tribution, the catheter position in the bottom image results in a non-uniform bolus
distribution.

5.4 Discussion and Conclusion

A novel algorithm has been presented for automatic quantitative evaluation of con-
trast agent distribution in the CCAs after a test bolus injection using time-resolved
2-D DSA images. This algorithm includes an automatic segmentation of the CCAs
and an automatic image analysis to compute relevant parameters of the contrast
agent volume distribution. The results of this study show that the contrast agent is
uniformly distributed (mean relative difference ≤ 10%) into the CCAs if the injection
location is selected properly. Additional evaluations that will contribute to a larger
sample size may be necessary to further validate this hypothesis.

Therefore, IA injections at the root of the aortic arch can be considered as a
potential injection approach in perfusion C-arm CT imaging. It can provide higher
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Figure 5.4: Segmentation of the two common carotid arteries (CCA) and plot of the
time-intensity curve extracted from the CCAs. The segmentation is overlayed on
a temporal maximum intensity projection of the 2-D DSA data set. The top im-
ages correspond to an optimal injection catheter position whereas the bottom images
correspond to a non-optimal position.



92 Chapter 5. Evaluation of Contrast Agent Bolus Injection at the Aortic Arch

contrast agent enhancement levels in the brain, thus a higher SNR of the measured
TACs, compared to an IV injection. Alternatively, the amount of injected contrast
agent can be reduced while providing a similar SNR as an IV injection.

Beside a retrospective evaluation, this novel method could also help to optimize
the catheter placement for arterial injections in perfusion C-arm CT imaging during
stroke therapy by providing additional quantitative parameters. In fact, the method
is robust, fast, user-independent and would not require extra X-ray or iodine dose
compared to the current protocols which already use a test bolus injection with a
pure visual assessment of the contrast agent flow.



Chapter 6

Practical Aspects Regarding
C-arm CT Perfusion Imaging

Overview:
This chapter covers two aspects that have been identified to be practically relevant
when CT-like perfusion imaging is to be implemented using C-arm CT. The first
part of this chapter addresses fundamental C-arm CT image quality measurements.
In order to investigate the feasibility of C-arm CT for perfusion imaging, the linearity
of contrast agent concentration and measured X-ray attenuation was verified. The
measurements were performed using the same C-arm CT system as for acquiring the
in vivo data in Chapter 4. As part of the work on this thesis, a software program
was developed to implement a complete perfusion imaging workflow with C-arm CT.
In the second part of this chapter, this program is described and an overview of
the corresponding workflow is given. The program implements the algorithms from
Chapters 2 and 4.

Section 6.1 of this chapter is based on “Using a C-arm CT for interventional per-
fusion imaging: a phantom study to measure linearity between iodine concentration
and Hounsfield values”, by A. Fieselmann, A. Ganguly, Y. Deuerling-Zheng, J. Boese,
R. Fahrig, and J. Hornegger. In Proc. Annual Meeting DGMP 2010, Freiburg i. Br.,
Germany, 2010. [31].

93
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(a) drawing of the phantom (b) C-arm CT scan of the phantom

Figure 6.1: (a) Drawing of the phantom used for the measurements. (b) Axial C-
arm CT scan of the phantom with circular ROIs drawn around the contrast-filled
containers (the bottom left ROI is a reference ROI in water).

6.1 Quantification of Iodine Concentration Using

C-arm CT

6.1.1 Introduction

This chapter is concerned with fundamental C-arm CT image quality measurements
regarding the image-based quantification of iodine concentration. As it has been
explained in Section 2.4.4, a linear relationship between the underlying iodine con-
centration and the measured X-ray attenuation value is assumed for CT perfusion
imaging. This linearity has been verified for conventional MSCT scanner [99]. In this
chapter, investigations were carried out in order to verify this linearity for a clini-
cal C-arm CT system; the linearity is a necessary pre-condition for C-arm-CT-based
perfusion imaging with the standard image analysis methods.

6.1.2 Material and Methods

A cylindrical phantom was built using perspex which contained smaller cylindrical
containers of about 3 cm diameter (Figure 6.1(a)). It was similar to a phantom
previously described in [100] that was used for image quality measurements using
CT. The diameter of the phantom was about 20 cm and its height was about 25 cm.
The containers were filled with different dilutions of deionized water and contrast
agent (350 mg iodine per ml). Water was filled into the phantom body such that all
containers were submerged.

In order to study the relationship of HU values and iodine concentrations in the
low concentration range, ten containers were filled with dilutions containing 0.1%
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(b) low and high concentration range

Figure 6.2: Plot of the measured attenuation value in the ROI as a function of the
contrast agent concentration.

to 1.0% (in steps of 0.1%) of contrast agent using milliliter syringes. The phantom
was scanned in four different orientations, obtained by rotation of the phantom by
90◦ around its longitudinal axis, using a clinical C-arm CT system (Artis dTA with
syngo DynaCT, Siemens AG, Healthcare Sector, Forchheim, Germany). This was the
same system which was also used for the investigations in Chapter 4. Note, it had
undergone routine calibration before conducting the measurements. A protocol with
a fast C-arm rotation speed (4.3 seconds per 190◦) was chosen which was also used
for experimental perfusion studies, see again Chapter 4. This protocol acquired 191
projection images using a X-ray tube voltage of 83 kV.

Mean HU values were determined inside circular ROIs that were drawn around
the containers in a central slice of the reconstructed volume (Figure 6.1(b)). Finally,
the mean HU values were averaged over the measurements from the four different ori-
entations. The C-arm CT phantom measurement were compared with measurements
using a clinical CT scanner (Somatom Definition, Siemens AG, Healthcare Sector,
Forchheim, Germany).

To study the relationship of HU values and iodine concentrations in the high
concentration range the ten original containers were replaced with six containers
that were filled with dilutions containing 1.0% to 6.0% (in steps of 1.0%) of contrast
agent. The measurements with the six containers were repeated as described above.

6.1.3 Results

The results from the C-arm CT and CT measurements of the low concentration
range are shown in Figure 6.2(a). There is a very high linear correlation (C-arm
CT: rcorr = 0.993, p < 0.001; CT: rcorr = 0.996, p < 0.001) between the contrast
concentration and the measured attenuation values. The slopes of the regression lines
are very similar (121 HU/% in C-arm CT and 120 HU/% in CT). The regression line
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of the C-arm CT data has an initial offset of 39 HU with respect to the regression
line of the CT data. Figure 6.2(b) shows the measurements of the low and high
concentration range using C-arm CT. The linear correlation between the contrast
agent concentration and the measured attenuation value is again very high (rcorr =
0.999, p < 0.001).

6.1.4 Discussion and Conclusion

The measured data show very high linear correlation. For comparison, similar mea-
surements were carried out in [149] using a micro-CT system and a correlation value
of rcorr = 0.9998 has been obtained. This linear relationship is a pre-requisite when
using the standard mathematical models to compute perfusion parameters (Chap-
ter 2). The actual slope and the offset of the concentration-attenuation curve do
not influence the computed perfusion values due to the normalization of the tissue
time curves with the arterial time curve and the subtraction of baseline time frames
(Section 2.4.4).

Generally, the results shown in this chapter may also be of interest for other
potential applications of contrast-enhanced imaging with a C-arm CT system. For
example, various CT applications in tumor diagnosis based on measurement of iodine
concentrations have been described [100]. An application of C-arm CT to measure
iodine concentration in the liver was suggested in [150].

To conclude, the results for the given clinical C-arm CT system show that the
assumption of linearity between iodine concentration and measured attenuation val-
ues holds. Thus, no pre-correction of the measured data is necessary and standard
mathematical models can be used to compute tissue perfusion parameters from the
reconstructed C-arm CT data.

6.2 Description of a Software Program for C-arm

CT Perfusion Imaging

In this section, a software program will be described that was developed as part of
the work on this thesis. This program was designed for two tasks.

1. It should be used for experimental evaluation of the algorithms from Chapters
2 and 4 with real C-arm CT data. For example, different reconstruction and
post-processing strategies can be implemented and evaluated by a technical
expert user.

2. This program should also be used for evaluation of C-arm CT perfusion imag-
ing in a realistic clinical environment, where it will be used by biomedical
researchers or physicians.

6.2.1 Workflow

The two aforementioned tasks lead to different requirements for this software pro-
gram. For experimental evaluations, the program is required to be designed such that
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Figure 6.3: Workflow for processing the perfusion C-arm CT data.

it is flexible and user-configurable. On the other hand, for its evaluation in a realistic
clinical environment — during the work on this thesis, in vivo animal studies were
performed but patient studies are expected to be conducted in the future — a minimal
amount of user interaction is desirable [151]. In order to fulfill both requirements, the
program has been designed such that almost each step of the workflow (Figure 6.3)
can be automated but, nevertheless, user interaction to change various parameters
is also possible. The program runs on a dedicated workstation (syngo X-Workplace,
Siemens AG, Healthcare Sector, Forchheim, Germany) for post-processing of medical
imaging data. For processing the data, the C-arm CT projection data from an in-
terleaved scanning protocol must be transfered to the workstation first. This data is
stored in the DICOM (digital imaging and communications in medicine) file format.
These files can be sent directly from the C-arm CT system to the workstation. The
workflow for processing the perfusion C-arm CT data is described next.

Step 1a: Import of projection data

The program automatically scans a pre-defined import directory for C-arm CT pro-
jection data files. Using the DICOM information, it can identify the order of the
data within the IS scanning protocol. Currently, the scanning delay τn of the n-th
interleaved sequence (Equation (4.1)) is not stored in these files and it must be en-
tered manually using a graphical user interface (GUI). However, in the future this
information could be stored in the DICOM file as well; thus, no user interaction
would be necessary. The imported projection data are stored in a local database of
the software program.
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Step 2: Selection of a VOI for reconstruction

In this step, the user may define a VOI (number of voxels, voxel spacing, center
of VOI) for the image reconstruction. To this end, two multi-planar reconstruction
(MPR) views of an initial reconstruction of one volume at a low spatial resolution
are displayed where the VOI can be placed interactively. The selection of a smaller
VOI can reduce the processing time while focusing on the actual volume of interest.
If no user interaction is desired, default values for the VOI can be used.

Step 3: Image reconstruction

The user can select various reconstruction parameters (e.g., number M of angular
interpolation intervals) before starting the reconstruction. In order to examine re-
constructions from different sets of parameters, several reconstruction tasks can be
defined before these tasks are executed as a batch process. If no user interaction is
desired, a set of default parameters can be used.

Step 4: Registration with CT data

This step is optional. The software program offers the possibility to register the
reconstructed C-arm CT data to a CT data set. This allows for better comparison of
the perfusion C-arm CT parameter maps with those from a perfusion CT scan which
was acquired before the intervention or study. In order to conduct the registration,
the CT data must be imported into the program first (step 1b in Figure 6.3) using a
graphical user interface.

Step 5: Image Analysis

In this step, the user can inspect the reconstructed time-attenuation curves using a
dedicated GUI (Figure 6.4(b)). Both, the reconstructed perfusion C-arm CT data
and the perfusion CT data, can be analyzed. For comparison of perfusion C-arm CT
parameter maps with those from perfusion CT scan, it is actually desirable to use
the same processing software for the image analysis [81]. When moving the mouse
cursor inside the image area (left side of the GUI), then the time-attenuation curve
at the corresponding voxel position is plotted (right side of the GUI). This GUI is
also used to select the position of the AIF that is necessary for the computation
of the parameter maps (Section 2.3.1). In the future the AIF position may also be
determined automatically to further automate this step; thus, no user interaction
would be necessary (Section 2.4.6).

After the image analysis, the computed parameter maps can be exported without
any user interaction from the software program to the workstation (X-workplace).
This workstation offers various means to visualize the perfusion parameter maps.
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6.2.2 Implementation

The software program is implemented in the C++ programming language. It uses
several open source software libraries. The most relevant libraries are listed below.

• Insight Toolkit (ITK) [152, 153]: This library is used for various medical
image processing tasks in the image reconstruction step (Chapter 4) and the
image analysis step (Section 2.3) such as data interpolation, noise reduction
and segmentation.

• Visualization Toolkit (VTK) [154]: This library is used for visualization of
the reconstructed C-arm CT data. For example, MPR views can be displayed
for the selection of the VOI or reconstructed time-attenuation curves can be
inspected in a dedicated GUI (Figure 6.4(b)).

• DICOM Toolkit (DCMTK) [155]: This library is used for handling of the
DICOM files. For example, the dicom tags of the reconstructed 4-D C-arm CT
data must be set correctly such that it can be exported to the workstation.

• Fox Toolkit [156]: This library is used for the implementation of the GUI
(Figure 6.4).

Furthermore, the software program uses a few libraries that, for example, implement
common C-arm CT pre-processing routines [13] which are property of Siemens AG
and are not publicly available.

The backprojection step during the image reconstruction [15] is implemented on
the graphics card using the compute unified device architecture (CUDA) [157] to
achieve a higher computational speed when compared to an implementation on the
central processing unit (CPU) [114]. The motion correction step (Section 2.4.1) is im-
plemented using an image registration algorithm that is based on mutual information
(MI) [158].

Figure 6.3 shows two examples of the GUI of the software program. In Fig-
ure 6.4(a) the patient browser is depicted. This browser acts as an interface to the
database of the program. For a given VOI definition, several reconstruction can exist
which were generated using different sets of reconstruction parameters. This is useful
to, for example, compare different reconstruction parameters such as the number M
of angular interpolation intervals or the number Nseq of interleaved sequences (Sec-
tion 4.3). In the patient browser, the different reconstructions are organized as child
nodes of the VOI definition.

The GUI for displaying the reconstructed time-attenuation curves of the 4-D data
set is shown in Figure 6.4(b). The user can select different visualization options. For
example, baseline frames can be subtracted or a temporal MIP can be displayed.
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(a) patient browser

(b) time curve viewer

Figure 6.4: Examples of the graphical user interface of the software program.



Chapter 7

Summary and Outlook

7.1 Summary

Functional imaging modalities for brain perfusion measurement, such as perfusion
CT and perfusion MRI, have been around for many years already. However, they are
restricted to purely diagnostic imaging and cannot be used for perfusion measurement
during an intervention; for example, when ischemic stroke is treated.

In this thesis, a promising new functional imaging modality — perfusion C-arm
CT — was investigated that overcomes this limitation and provides technical means
for a more effective stroke treatment. It is conducted using an interventional C-arm
angiography system. Nowadays, these systems constitute an integral part of catheter-
guided stroke therapy procedures. Their main application is to provide 2-D images for
catheter guidance, but also 3-D imaging (C-arm CT) is possible using these systems.
Using C-arm CT for 4-D imaging of dynamic perfusion had, in fact, been suggested
prior to the start of this thesis already. However, only basic theoretical simulations
had been carried out at that time.

As part of the work on this thesis, the first in vivo measurements of dynamic
perfusion (cerebral blood flow) using C-arm CT were conducted and the feasibility of
this new functional imaging modality could be demonstrated. Since perfusion C-arm
CT imaging is still a novel field of research, this thesis could address several differ-
ent new scientific topics which are relevant for perfusion C-arm CT imaging. Image
reconstruction and image analysis topics were covered, but also new injection proto-
cols were investigated and fundamental image quality measurements were carried out.

In the introduction of this thesis (Chapter 1), a description of the state-of-
the-art stroke management workflow and a new stroke management protocol using
interventional perfusion imaging were presented. This protocol could lead to faster
and also more reliable stroke treatment. Next, a summary of C-arm CT imaging and
a brief overview of the two major challenges of perfusion C-arm CT imaging that had
been identified were given. First, the comparably long C-arm rotation time causes a
low temporal sampling frequency and, second, since the acquired data is inconsistent
due to the time-varying attenuation values caused by the contrast agent flow, image
reconstruction artifacts can arise.
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The following chapter (Chapter 2) provided a review of the state-of-the-art im-
age analysis methods for perfusion quantification using CT or MRI. This review was
focused on deconvolution-based methods which are employed most frequently. The
existing methods from perfusion CT and perfusion MRI can be applied in an equiv-
alent way to the reconstructed data from perfusion C-arm CT imaging. Therefore,
these image analysis methods were also used to compute the perfusion parameters
from the simulated and measured C-arm CT data that have been presented in this
thesis. Compared to previous reviews in this field, this chapter established a direct
link between the theoretical physiological model of capillary blood flow and the ac-
tual practical computer implementation. In particular, the necessary simplifications
of the model such that it can be used with real data were highlighted.

Chapter 3 was concerned with one of the two major challenges that had been
stated before: image reconstruction artifacts can arise due to the varying attenuation
values during the time of one C-arm rotation (typically 3–5 seconds for 200◦). For
example, if the contrast agent concentration inside an arterial vessel varies while the
projection data are acquired, an artifact around this vessel will appear in the recon-
structed image. This artifact can lead to incorrectly computed perfusion parameters
in the tissue region around the artery. In this chapter, this kind of artifact was in-
vestigated for the particular case of the filtered backprojection (FBP) reconstruction.
This analytical and computationally fast image reconstruction method is the most
commonly employed method in (C-arm) CT imaging. Interestingly, this kind of re-
construction artifact has already been described in the late 1970s, at a time when
CT scanners used lower rotation speeds, but no dedicated model of these artifacts
had existed so far.

The intention of this theoretically oriented chapter is to better understand these
artifacts and to systematically investigate corresponding artifact reduction strategies.
A novel spatio-temporal artifact model was derived by a mathematical analysis of
the FBP algorithm. The novel concept of derivative-weighted point spread functions
(DWPSF) — these are computed from the scanning and reconstruction parameters —
was introduced in order to describe the spatial spread of the artifacts. The DWPSFs
are weighted with the derivative values of the time-attenuation curve and the C-arm
rotation speed. The model was validated quantitatively using numerical simulations
(0.3–1.1 HU root mean squared deviations) and qualitatively using data of a flow
phantom that had been scanned using a clinical C-arm CT system. The measured
artifacts could be explained very well by the artifact model.

Furthermore, artifact reduction strategies were investigated for future C-arm CT
systems that would be able to perform continuous, uni-directional C-arm rotations.
It could be shown that with optimized redundancy weighting function parameters
the spatial spread of the artifacts around a typical arterial vessel can be reduced by
about 70%. Finally, an inversion of the artifact model could be used as the basis for
novel dynamic reconstruction algorithms that further minimize these artifacts.

The main practical contribution of this thesis was presented in Chapter 4. This
chapter dealt with a novel combined scanning and reconstruction approach for C-arm
CT perfusion imaging. Using this approach, both challenges in perfusion C-arm CT
imaging, the low temporal sampling frequency and the image reconstruction artifacts,
can be tackled. The temporal sampling frequency is increased by using interleaved
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scanning (IS) which involves several multi-rotational scan sequences, each being ac-
companied by a new contrast agent bolus injection. Each sequence has a different
temporal delay between the start of injection and the start of scanning. Thus, for each
interleaved sequence, samples of the time-attenuation curve are acquired at different
relative time points after the injection.

The reconstruction artifacts due to inconsistent data can be reduced by partial
reconstruction interpolation (PRI). To this end, a complete and consistent set of pro-
jection data, which corresponds to a particular time point, is estimated by temporal
interpolation of the available projection data at earlier and later time points. The
interpolation is not done in projection space but partially backprojected volumes are
considered in order to increase the computational speed. A Feldkamp-type image re-
construction algorithm is applied to generate these partially backprojected volumes.
This analytical algorithm can be implemented such that it is computationally very
fast, which is inevitable for its use in interventional perfusion imaging during stroke
treatment.

The combination of IS and PRI, denoted as IS-PRI, was evaluated with simula-
tions and an in vivo study in 5 healthy pigs. In the simulations, the cerebral blood
flow values (unit: ml/100g/min) were 60 (healthy tissue) and 20 (pathological tis-
sue). For one scan sequence the values were estimated with standard deviations of
14.3 and 2.9, respectively. For two interleaved sequences the standard deviations
decreased to 3.6 and 1.5, respectively. Perfusion CT was used to validate the in
vivo results. With two interleaved sequences promising correlations ranging from
rcorr = 0.63 to rcorr = 0.94 were achieved. The results suggest that C-arm CT tissue
perfusion imaging is feasible with two interleaved scan sequences already.

The IS-PRI approach assumes that consecutive contrast agent bolus injections
lead to similar contrast agent flow patterns in the brain. In order to promote that
this assumption is valid, a contrast bolus injection at the aortic arch has been applied
during the in vivo studies. The shorter traveling time to the brain, when compared
to an intra-venous injection, reduces the influence of physiological variations such as
the heart rate. Additionally, the contrast-to-noise ratio in the reconstructed images
is increased because a higher fraction of contrast agent actually arrives in the brain.
It is, however, required that equal amounts of contrast agent flow into both common
carotid arteries (CCA) in order to compare perfusion between the left and right
hemispheres.

To address this requirement, in Chapter 5 a novel method to quantify the con-
trast agent bolus distribution between the two CCAs was presented. It is a fully auto-
matic method that uses 2-D digital subtraction angiography (DSA) images following
a test bolus injection. Both CCAs are segmented using a dedicated spatio-temporal
weighting and the relative contrast agent distribution is computed. The method was
tested on DSA data sets from 5 healthy pigs, the same that were used for the in-
vestigations in the previous chapter, and it achieved successful segmentation of both
CCAs in all data sets. The results showed that the contrast agent is uniformly dis-
tributed (mean relative difference less or equal than 10%) if the injection location is
properly chosen.

The following chapter of this thesis, Chapter 6, addressed two further topics in
perfusion C-arm CT imaging that were identified to be practically relevant. In Sec-
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tion 6.1, image quality measurements were conducted to verify the linearity between
the measured X-ray attenuation values and underlying contrast agent concentration.
The results showed a very high linear correlation (rcorr ≥ 0.993) which, in fact, is a
requirement when standard image analysis methods are to be applied to the measured
data. In Section 6.2, a software program was described that had been developed as
part of the work on this thesis. It implements the workflow of a complete perfusion
C-arm CT examination including image reconstruction and image analysis. Further-
more, it can be used for clinical studies and it has, for example, the capability to
perform 4-D image registration with a reference perfusion CT scan.

In summary, through the methods developed, the measurements conducted and
results obtained, this thesis made a number of significant and original contributions,
both on a practical and on a theoretical level, to the novel and highly relevant research
field of interventional C-arm CT perfusion imaging. For the first time, the feasibility
of perfusion C-arm CT imaging could be demonstrated using in vivo data. Based on
this work, optimized stroke treatment in the interventional suite could be available
in a few years and provide better care for stroke patients.

7.2 Outlook

This thesis is the first comprehensive work on C-arm CT perfusion imaging. Natu-
rally, further research in this field is possible and will be conducted in the future.

Future research may focus on reducing the amount of contrast agent and X-ray
radiation that is applied to the patient. This could be accomplished by new im-
age reconstruction algorithms or new C-arm CT system technologies. New iterative
model-based image reconstruction algorithms (Section 4.1.2) could potentially be
used for perfusion imaging. With these algorithms, the computational complexity
is currently the main limiting factor, but advances in computer hardware may make
this approach become feasible. New iterative approaches based on compressed sensing
with a prior image [159, 160] could be used to lower the radiation dose by acquir-
ing less projections and exploiting correlations between the individual time frames.
When considering only projection data from a limited angular interval, the temporal
resolution of the reconstructed data could be improved (Section 4.1.2). However, it
is required that small attenuation value changes due to contrast agent flow in tissue
are still noticeable when considering less projection data.

Besides algorithmic advances, new C-arm CT system hardware could lead to
new scanning approaches. The sliding-window reconstruction approach with opti-
mized windowing function, presented in Chapter 3, could be implemented with a
(quasi-)continuously rotating C-arm CT system. Such a device could be realized if
a robotic C-arm CT system (Figure 1.3(b)) was equipped with slip-ring technology
[161], mainly to accomplish the electrical power supply, or a device for winding the
supply cable around one axis [162]. A biplane C-arm CT system (Figure 1.3(c)) that
was capable of acquiring projection data with both planes could be used to conduct
an interleaved-scanning-type protocol with only one contrast agent bolus injection
(Section 4.4.3).
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Finally, also different applications for interventional perfusion imaging — besides
cerebral perfusion imaging for stroke diagnosis — are possible. Perfusion C-arm
CT imaging of the liver, for example, could enhance certain hepatic interventional
procedures, such as intra-arterial embolization [9, 163].
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Appendix A

Algebraic Deconvolution with a
Block-circulant Matrix

The matrix A in Equation (2.31) can be replaced by a block-circulant matrix Acirc

to reduce the influence of the bolus delay, cf. Section 2.3.1, and thus to become
independent of time shifts in the tissue TCC. Several studies actually exhibited an
improvement of the accuracy of the perfusion estimates when using this alternative
discretization method compared to the approach given by Equation (2.29) [59, 60,
164]. On the other hand, in a receiver operating characteristics analysis — concerning
infarct prediction in acute stroke patients — both discretization methods led to almost
equal results [48].

The elements ai,j of A ∈ R
N×N — with i denoting the row index (i = 1, . . . , N)

and j denoting the column index (j = 1, . . . , N) as usual — are defined as

ai,j =







∆t cart(ti−j+1) for j ≤ i ,

0 for j > i ,
(A.1)

see Equation (2.30). In order to assemble the block-circulant matrix Acirc, the size of
the time series cart(tj) must be increased from N to M (M ≥ 2N) using zero-padding.
The the new zero-padded time series is denoted as cart,pad(tj) The size of cvoi(tj) must
be changed accordingly in order to retain consistency in Equation (2.31).

The elements (acirc)i,j of the block-circulant matrix Acirc ∈ R
M×M can then be

defined as

(acirc)i,j =







∆t cart,pad(ti−j+1) for j ≤ i ,

∆t cart,pad(tM+i−j+1) for j > i .
(A.2)
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As an example, for M = 2 N , the matrix Acirc has the following structure:

Acirc =

∆t



































cart(t1) 0 . . . 0 0 cart(tN) . . . cart(t2)
cart(t2) cart(t1) . . . 0 0 0 . . . cart(t3)

...
...

. . .
...

...
...

. . .
...

cart(tN) cart(tN−1) . . . cart(t1) 0 0 . . . 0
0 cart(tN) . . . cart(t2) cart(t1) 0 . . . 0
0 0 . . . cart(t3) cart(t2) cart(t1) . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 cart(tN) cart(tN−1) . . . cart(t1)



































. (A.3)

The horizontal and vertical lines drawn in Equation (A.3) subdivide the matrix
into four quadrants. As can be seen, the matrix A is a submatrix of Acirc, and it
appears in the upper left and lower right quadrant.



Appendix B

Derivation of Equations (3.11) and
(3.12)

To derive Equation (3.11) and Equation (3.12), first the delta function in Equa-
tion (3.10) is evaluated using the identity

∫

f(u) δ(u∗(x, λ(t))− u) du = f(u∗(x, λ(t))) (B.1)

and then the result is split into the following two functions:

µrec(r, trec) =
∫∫

χ̂(r, x, trec) dx dy (B.2)

χ̂(r, x, trec) =
∫ R D2

(R− rTew(λ(t)))2
hramp

(

u∗(r, λ(t))− u∗(x, λ(t))
)

· µ
(

x, λ(t)
)(

(u∗(x, λ(t)))2 + D2
)−1/2

· wΛ

(

λ(t)− λ(trec), arctan(u∗(x, λ(t))/D)
)

dt . (B.3)

By re-writing χ̂(r, x, trec) such that it depends on the distance vector s = r − x the
expressions shown in Equation (3.11) and Equation (3.12) are obtained.
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Appendix C

Derivation of Equation (3.14)

It shall be proven that the n-th order total derivative of a function µ(λ(t)), which
has the property d2λ/dt2 = 0, is given by

dnµ

dtn
=

∂nµ

∂λn

(

dλ

dt

)n

. (C.1)

Using the following definition

Dk ≡
∂kµ

∂λk

(

dλ

dt

)k

. (C.2)

and by applying the product rule of differentiation one gets

d

dt
Dk =

d

dt

∂kµ

∂λk

(

dλ

dt

)k

+
∂kµ

∂λk

d

dt

(

dλ

dt

)k

. (C.3)

The first term in Equation (C.3) can be re-arranged to

d

dt

∂kµ

∂λk

(

dλ

dt

)k

=
∂k

∂λk

dµ

dt

(

dλ

dt

)k

=
∂k

∂λk

(

∂µ

∂λ

dλ

dt

) (

dλ

dt

)k

=
∂k+1µ

∂λk+1

(

dλ

dt

)k+1

= Dk+1 . (C.4)

Re-writing the second term in Equation (C.3) gives

∂kµ

∂λk

d

dt

(

dλ

dt

)k

=
∂kµ

∂λk



k

(

dλ

dt

)k−1
d2λ

dt2



 = 0 . (C.5)

In the last equation it was used that the second order derivative of λ(t) is zero.
Combining Equation (C.3), Equation (C.4) and Equation (C.5) yields

d

dt
Dk = Dk+1 . (C.6)

111



112 Appendix C. Derivation of Equation (3.14)

The n-th order derivative of Dk can be expressed by applying Equation (C.6) itera-
tively:

dn

dtn
Dk = Dk+n . (C.7)

Now, it can be shown that for n ≥ 1 one gets

dnµ

dtn
=

dn−1

dtn−1

dµ

dt
=

dn−1

dtn−1
D1 = D1+(n−1) =

∂nµ

∂λn

(

dλ

dt

)n

, (C.8)

which is the same expression as in Equation (C.1).
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List of Symbols and Abbreviations

In this section, first a description of the notation will be provided followed by a list
of the symbols and abbreviations.

In this thesis, scalars and scalar-valued functions are written in italic lower or
upper case letters (e.g., µ, F ). As an exception, if the variable is an abbreviation
(e.g., CBF) then it is not written in italic letters. Vectors and vector-valued functions
are written in italic bold lower case letters (e.g., k). Matrices and matrix-valued
functions are written in italic bold upper case letters (e.g., A).

Symbols
a X-ray source location (Equation (3.1))
A maximum enhancement (Section 3.4)
A matrix containing arterial input function values (Equation (2.31))
Acirc A constructed as a block-circulant matrix (Equation (A.3))
cart contrast agent concentration at arterial inlet (Table 2.1)
cart,pad zero-padded function cart (Appendix A)
cmax maximum contrast agent concentration (Section 2.2.4)
cven contrast agent concentration at venous outlet (Equation (2.6))
cvoi average contrast agent concentration within VOI (Equation (2.14))
c vector containing time-concentration curve values (Equation (2.31))
D source-to-detector distance (Section 3.2)
eu, ew unit vectors (Equations (3.3) and (3.4))
f (tikh) filter factors for Tikhonov regularization (Equation (2.37))
f (tsvd) filter factors for TSVD regularization (Equation (2.36))
F volume flow (Table 2.1)
G Gaussian-type function (Equation (5.2))
hcap PDF of transit times in capillary bed (Table 2.1)
hramp ramp filter kernel (Section 3.2)
H unit step function (Section 3.4)
k flow-scaled residue function (Equation (2.18))
k vector containing flow-scaled residue function values (Equation (2.31))
kl k computed using regularization (Tikhonov or TSVD) (Equation (2.35))
kls k computed using least-squares approach (Equation (2.34))
Kct constant of proportionality between contrast agent concentration and

X-ray attenuation values (Section 2.4.4)
Kmr constant of proportionality between contrast agent concentration and

received MR signal (Section 2.4.4)
l absolute regularization parameter (Equation (2.38))

119



120 List of Symbols and Abbreviations

lrel relative regularization parameter (Equation (2.38))
L number of view angles per partial backprojection (Section 4.2.3)
mc,voi mass of contrast agent within VOI (Equation (2.5))
mc,voi,in accumulated mass of contrast agent that entered VOI (Equation (2.3))
mc,voi,out accumulated mass of contrast agent that left VOI (Equation (2.4))
mΛ redundancy weighting function for interval length Λ (Equation (3.9))
M number of angular interpolation intervals (Section 4.2.3)
Ndetpix number of detector pixels (Table 3.1)
Nlz number of leading zeros in a time series (Section 2.3.2)
Nrot number of C-arm rotations (Section 4.2.1)
Nseq number of interleaved sequences (Section 4.2.2)
Ntp number of interpolation time points (Algorithm 4.1)
Nviews number of views per C-arm rotation (Table 3.1)
Nvox number of voxels (Algorithm 2.1)
p measured projection value (Section 3.2)
p̃ estimated projection value (Equation (4.3))
p̂ bi-linear interpolation of pre-processed projection values (Section 4.2.3)
pcvm contrast agent volume map (Equation (5.8))
psub baseline-subtracted projection value (Section 5.2.1)
ptMIP temporal maximum intensity projection of psub (Section 5.2.2)
pw

tMIP ptMIP weighted with wcmb (Section 5.2.2)
Pn n-th order DWPSF (Equation (3.17))
Pstatic PSF characterizing scanning and reconstruction of a static point object

(Section 3.3)
P set of projection data (Equation (4.4))
r residue function (Equation (2.2))
r̂ rank of A (Section 2.3.2)
rcorr linear correlation coefficient (Section 4.4.1)
rpha,art radius of artery in mathematical phantom (Section 3.4.1)
rpha,head radius of head in mathematical phantom (Section 3.4.1)
R source-to-isocenter distance (Section 3.2)
smr received MR signal (Section 2.4.4)
smr,0 baseline value of smr (Equation (2.43))
Sn weighted spatial spread of Pn (Section 3.30)
t0 bolus arrival time (Section 4.3.1)
tc constant temporal offset (Equation (4.1))
test interpolation time point (Section 4.2.3)
tmax time-to-peak value (Section 5.2.2)
tmax,cca measured average time-to-peak of TACs inside CCAs (Section 5.2.3)
tmax,e expected time-to-peak value (Section 5.2.2)
trec time point associated with reconstruction (Equation (3.7))
Tinj duration of contrast agent bolus injection (Section 5.2.2)
Trot time per C-arm rotation (Table 3.1)
Tw waiting time between C-arm rotations (Section 4.2.1)
Twash,in duration of contrast agent wash-in phase (Section 5.2.3)
TE echo-time of MR sequence (Section 2.4.4)
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u, v coordinates on flat-detector(Section 3.2)
u∗ u-coordinate of intersection of X-ray and detector (Equation (3.5))
u0 center coordinate of detector along u-coordinate (Section 5.2.2)
ui, vi i-th singular vector contained in U and V (Equation (2.33))
U width of detector (Section 5.2.2)
U , Σ, V matrices corresponding to SVD of A (Equation (2.33))
v∗ v-coordinate of intersection of X-ray and detector (Section 4.2.3)
vmax,cran v-coordinate at the cranial end of projection image (Section 5.2.2)
Vcap volume of capillary bed (Table 2.1)
Vvoi volume of VOI (Table 2.1)
V∗

voi volumes of parenchyma and interstitial space (Table 2.1)
Vvox volume of voxel (Section 2.3.1)
ŵ distance weighting function (Section 4.2.3)
wΛ angular sliding window function of length Λ (Equation (3.8))
wcmb combined weighting function (Section 5.2.2)
wspt spatial weighting function (Section 5.2.2)
wtmp temporal weighting function (Section 5.2.2)
α, β shape parameters of gamma-variate function (Section 3.4)
γ fan-angle (Section 3.2)
γm full fan-angle (Section 3.2)
δ Dirac delta function (Section 2.2.1)
∆λ view-angle increment (Table 3.1)
∆µart difference of attenuation value in an artery (Equation (4.12))
∆µtis difference of attenuation value in tissue (Equation (4.13))
∆t sampling period (Section 2.3.2)
∆u detector pixel size (Table 3.1)
η time scaling factor (Section 4.3.1)
κ hematocrit correction factor (Section 2.4.5)
λ view-angle (Equation (3.2))
λ0 starting view-angle (Equation (3.2))
λrec view-angle associated with reconstruction (Section 3.3)
Λ angular interval length (Section 3.2)
µ X-ray attenuation value (Section 2.4.4)
µ0 baseline value of X-ray attenuation (Equation (2.41))
µart arterial time-attenuation curve (Section 2.3.2)
µmdl reconstruction of µpha using artifact model (Section 3.4.1)
µpha attenuation values of mathematical phantom (Section 3.4.1)
µpha,art change of attenuation values inside artery in mathematical phantom (Sec-

tion 3.4.1)
µrec reconstructed pixel value (Equation (3.7))
µsim FBP reconstruction of µpha (Section 3.4.1)
µvoi time-attenuation curve measured in VOI (Section 2.3.2)
µw X-ray attenuation value of water (Section 3.4)
ϕ interpolation function (Section 4.2.3)
Πn absolute amplitude of Pn (Equation (3.25))
ρvoi mean density of the volume Vvoi (Table 2.1)
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ρ∗
voi mean density of the volume V∗

voi (Table 2.1)
σi i-th singular values corresponding to SVD of A (Equation (2.33))
τ temporal delay of scanning w.r.t. injection (Equation (4.1))
χ reconstruction of point object (Equation (3.12))
χart component of χ describing artifact due to time-varying attenuation values

(Equation (3.21))
χ̄art measure for mean reconstruction artifact due to time-varying attenuation

values (Equation (4.17))
χstatic χ for a static object (Equation (3.19))
χtheoretical χ for a theoretically exact reconstruction (Equation (3.18))
ωs angular velocity of the C-arm (Section 3.2)

Abbreviations
3DRA 3-dimensional rotational angiography (Section 1.3.1)
AIF arterial input function (Section 2.2.1)
AUC area under curve (Section 2.2.4)
BAT bolus arrival time (Section 2.2.4)
BBB blood-brain barrier (Section 2.2.1)
CBF cerebral blood flow (Section 2.2.1)
CBV cerebral blood volume (Section 2.2.1)
CCA common carotid artery (Section 5.1)
CPU central processing unit (Section 6.2.2)
CS cubic spline (Section 4.2.4)
CSF cerebrospinal fluid (Section 2.4.3)
CT computed tomography (Section 1.2)
CTA computed tomography angiography (Section 1.2)
CUDA compute unified device architecture (Section 6.2.2)
CVM contrast agent volume map (Section 5.2.3)
DCMTK Dicom Toolkit (Section 6.2.2)
DICOM digital imaging and communications in medicine (Section 6.2.2)
DSA digital subtraction angiography (Section 1.3.1)
DSC-MRI dynamic susceptibility contrast – magnetic resonance imaging (Section 2.4.1)
DWPSF derivative-weighted point spread function (Section 3.3.2)
ECG electrocardiogram (Section 4.2.1)
EPI echo-planar imaging (Section 2.4.1)
FD-CT flat-detector computed tomography (Section 1.3.1)
FDK Feldkamp-Davis-Kress (Section 3.6)
FM first moment (Section 2.2.4)
fMRI functional magnetic resonance imaging (Section 2.4.1)
FT Fourier transform (Section 2.3.3)
FWHM full width at half maximum (Section 3.4.3)
Gd gadolinium (Section 2.2.1)
GPGPU general-purpose computing on graphics processing units (Section 3.1.1)
GT ground truth (Section 4.3.2)
GUI graphical user interface (Section 6.2.1)
Hct hematocrit (Section 2.4.5)
HIP Hermite interpolating polynomial (Section 4.2.4)
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HU Hounsfield unit (Section 1.3.1)
IA intra-arterial (Section 1.2)
IR injection rate (Section 5.3.2)
IS interleaved scanning (Section 4.2.2)
IS-PRI interleaved scanning – partial reconstruction interpolation (Section 4.2.3)
ITK Insight Toolkit (Section 6.2.2)
IV intra-venous (Section 1.2)
LIN linear (Section 4.2.4)
MI mutual information (Section 6.2.2)
MLEM maximum likelihood expectation maximization (Section 2.3.3)
MPR multi-planar reconstruction (Section 6.2.1)
MR magnetic resonance (Section 1.2)
MRI magnetic resonance imaging (Section 1.2)
MSCT multi-slice computed tomography (Section 1.3.1)
MTT mean transit time (Section 2.2.1)
NN nearest neighbor (Section 4.2.4)
OI oscillation index (Section 2.3.4)
PCT perfusion computed tomography (Section 1.2)
PDF probability density function (Section 2.2.1)
PFBP partial filtered backprojection (Section 4.2.3)
PRI partial reconstruction interpolation (Section 4.2.3)
PSF point spread function (Section 3.3.2)
RBF radial basis function (Section 4.2.4)
ROI region of interest (Section 4.3.1)
SD standard deviation (Section 4.4.2)
SNR signal-to-noise ratio (Section 2.2.1)
SPECT single-photon emission computed tomography (Section 3.1.2)
SVD singular value decomposition (Section 2.3.2)
TAC time-attenuation curve (Section 2.3.2)
TCC time-concentration curve (Section 2.1)
TMAX time-to-maximum (of flow-scaled residue function) (Section 2.3.1)
tMIP temporal maximum intensity projection (Section 5.2.2)
TSVD truncated singular value decomposition (Section 2.3.2)
TTP time-to-peak (Section 2.2.4)
VOI volume of interest (Section 2.2.1)
VPE vascular pixel elimination (Section 4.4.1)
VTK Visualization Toolkit (Section 6.2.2)
WHO world health organization (Section 1.2)
XRII X-ray image intensifier (Section 3.1.2)
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