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Abstract—The first part deals with general considerations on
the evaluation of both human raters and automatic systems,
employed for pronunciation assessment: How can we come closer
to an unbiased, realistic estimate of their reliability, given the
fallibility of human annotators and the nature of machine-
learning algorithms (and researchers) that adapt, and inevitably
overfit to a given training set. In the second part, we will present
concrete models for the assessment of the overall rhythmic quality
of the learner’s speech. The methods are evaluated in detail
on read and semi-spontaneous English data from the German
research projects C-AuDiT and AUWL.

I. INTRODUCTION

A. Motivation

Non-native prosodic traits limit proficiency in a second
language (L2) and by that, mutual understanding. Prosodic
phenomena, located on word level and above, encompass word
accent position, syntactic-prosodic boundaries, and rhythm,
and help listeners to structure the speech signal and to process
segmental, syntactic, and semantic content successfully. Non-
native prosodic traits are therefore not mere idiosyncrasies, but
often seriously hamper mutual understanding. Thus, they have
to be modelled in computer-assisted pronunciation training
(CAPT).

A few studies deal with non-native accent identification
using prosodic parameters [1]–[3]. In [4], the automatic de-
tection of erroneous word accent positions in English as L2
is addressed. Suprasegmental native traits have been, e. g.
investigated recently in basic when trying to model language-
specific rhythm [5], [6]. Maybe the most important general
factor to be modelled in CAPT is non-native rhythm: the
English prosody of, e. g. French, Spanish, or Hindi native
speakers can sound ‘strange’. The reason is a difference in
rhythm that has been noted amongst others by [7], p. 97,
who speaks about syllable timed languages such as French
(“the syllables [...] recur at equal intervals of time – they
are isochronous”), and stress-timed languages such as English
(“the stressed syllables [...] are isochronous”). [5] and [6] chal-
lenge this traditional terminology because in empirical studies,
such an isochrony could not be observed; they claim that it
is rather a more complicated constellation where especially
syllables not carrying the word accent, that are weak (schwa)
in ‘stress-timed’ languages, are produced stronger in ‘syllable-
timed’ languages. Thus we might expect such differences to

show up in L2 learners whose native language L1 does not
display the native structure of L2.

To cope with these traits, L2 teachers can use explicit
feedback, i. e. denote the very pronunciation error, or implicit
feedback, i. e. repeat (parts of) lessons which proved to be
difficult for the learner. The same strategies are available for
Computer-Assisted-Pronunciation-Training (CAPT) programs.
Explicit feedback should be used – but only if there is a high
recall and a low false alarm rate. However, we are still far from
any ‘perfect’ localization of pronunciation errors; other things
being equal, a global assessment (of sentences, paragraphs,
or whole sessions) has higher chances to correctly indicate
(types of) coarse errors the learner tends to make. If any
localised assessment is available, we can use this information
for giving both explicit and implicit feedback, whereas a global
assessment implies the sole use of implicit feedback. Rhythm
is insofar special as it is often difficult to pinpoint exactly
what’s wrong with a given utterance that sounds unnatural,
and even more difficult to convey to the learner what exactly
to improve. Thus, implicit feedback to the learner’s rhythm
in CAPT programs, e.g. in a say-after-me or speak-with-me
(shadowing) manner may be a good option for pedagogical
reasons, too.

B. Machine Learning: Evaluation

The pattern recognition approach – i. e. collect annotated
data, extract suitable features, and train a supervised classi-
fication or regression module using machine learning – is a
universal and powerful tool in CAPT. However, great care has
to be taken when estimating the accuracy of such an approach:
If the collected data are not representative of the intended
application, a strict division into training and test set has
to be used during evaluation. Otherwise, the used algorithms
and choices taken by the researcher may overfit to the data
and yield optimistic estimates of the accuracy [8, p. 19]. In
CAPT research (and many other fields), the data are usually far
from being representative, as there is no running application
(yet) to draw data from, and eliciting, collecting and especially
annotating is expensive. Moreover, linguistic data are per se
an open set.

Even if the manifold pitfalls of overfitting to the data1

1feature selection, accidentally tuned to the whole dataset, may stand as a
popular example



are avoided, and the evaluation is technically sound in so
far as all items (instances) used for testing have never been
used for training/tuning, the estimated accuracy may still be
meaningless. The reason is that just keeping training and test
set disjunct w. r. t. the instances, and mixing everything else2,
is not enough. In fact, each partition into training and test
has to be designed in such a way that the test reflects the
conditions in the eventual application. For example, in the
speech recognition community it is widely recognized that
train and test have to be disjunct w. r. t. speakers in order to
arrive at realistic estimates of the accuracy.

Depending on the application, there may be other conditions
that should be different, too. When there is more than one
condition that needs to be different in training and test, the
evaluation gets wasteful: either time-consuming nested cross-
validation schemes have to be used or only a fraction of
the hard-won data can be utilized. This becomes a problem
when organizing competitions such as the INTERSPEECH
2009 Emotion Challenge [9] where cross-validation is not a
practicable option. A way to avoid this problem from the start
would be to collect data in (at least four) partitions that are
designed in such a way that they are mutually independent
w. r. t. all conditions.

For CAPT, one usually wants to employ a module that
works well not only for unseen speakers, but also for unseen
material [10]. We will therefore include in our evaluation not
only speaker-independent settings, but also a setup where train
and test is disjunct w. r. t. both speakers and sentences – this
will have dramatic consequences on the resulting accuracy.

C. Generative vs. Discriminative Approaches

For evaluating the accuracy of a CAPT method, we will
always need a body of data from non-native speakers that
includes annotated examples of both good and bad speaking
performance. For modelling, however, two basic approaches
can be identified:

Generative or indirect: The model only describes what is
acceptable, and a distance measure is used to derive a score
or to decide for ‘correct’ or ‘error’. The advantage is that
data collection is far easier: we can use native speech, and
more importantly, when neglecting the few errors that native
speakers make as well, we do not need error annotations. For
example, when applying the Goodness of Pronunciation (GOP)
measure [11] to identify mispronounced phonemes, we can use
just transcribed native speech to build models for correctly
produced phonemes, and use (an approximation of) the a
posteriori probability of the target phonemes as a similarity
measure.

Discriminative or direct: The model describes both accept-
able and unacceptable pronunciations, and the pronunciation
score or the decision ‘correct’ or ‘wrong’ is a direct output of
the classification or regression module. This approach has the
potential for optimal accuracy but data collection is much more

2as is commonly done when doing cross-validation with machine learning
packages

expensive, as enough annotated non-native speech comprising
both good and bad pronunciations is needed, i. e. much much
more than for the evaluation of generative approaches. For
the example of detecting mispronounced phonemes, this is
practically infeasible in the general case due to data sparsity
resulting from coarticulation effects and the different L1s of
the targeted learners. For modelling frequent errors of certain
target speaker groups however, it may be the method of choice,
e. g. /T/ → /s/ e. g. /T/ → /s/ for German learners of English
as L2.

In practice, both approaches are often mixed to reach
satisfying accuracy with feasible effort, e.g. a generative model
for correct phonemes is used but a priori probabilities for
mispronunciations of the target group of speakers are included.

Assuming that modelling pronunciation quality w. r. t.
rhythm is less complex than modelling segmental pronunci-
ation, we followed the discriminative approach in the present
work.

D. Annotation: General Considerations

As discussed above, we need to establish reference scores
for evaluating, and possibly also for training our pronunciation
scoring method. Apart from the speech data that should
be annotated – type, size, (balanced, stratified) sub-samples
such as male/female, degree of proficiency, etc. – the main
alternatives to be chosen from is a choice between experts and
‘naı̈ve’ subjects for annotation and/or perceptive evaluation,
and the decision on how many people to employ for the
annotation task.

1) Labeller Agreement and Multiple Labellers: The vari-
ability between labellers can be traced back to at least two
main factors: first, labeller-specific traits such as gender,
dialect, sociolect, talent for assessing speech, etc., and second,
speaker-specific states such as boredom, interest, tiredness,
illness, etc. Together, all these factors can be modelled as
error whose variability is higher if less subjects are employed.
Following this logic, we can define the ground truth as the
average over infinitely many labellers (for a certain group of
labellers).

How many labellers to actually employ is foremost a matter
of time and money – as long as some rules of thumb are fol-
lowed: if there are three or more labellers, we can use majority
decisions. If there are five or more labellers, we are more safe
when establishing quasi-continuous judgements from ordinal
ones, based on the average score of all annotators. Intuitively,
around 10 is a good figure; more than 20 are employed rather
rarely. In our own experience, we found that for the task of
rating prosody of L2 English speech on a continuous scale,
10 labellers already yield a very good reference: A reference
AN created by averaging over the (normalised) annotations of
N labellers with an average pairwise Pearson correlation of c
can be expected to be correlated to the ground truth as follows
[12]:

Corr(AN , A∞) =

√
c/(

1

N
+

N − 1

N
c). (1)



Thus, despite of a low pairwise correlation of 0.3, averaging
over 10 labellers already yielded a reference with a correlation
of 0.90 to the ground truth.

2) Expert vs. Naı̈ve Labellers: Experts being able to do a
detailed annotation are rare and more expensive than naı̈ve
raters; moreover, they may be biased in some way towards
their own theoretical preferences. Naı̈ve subjects are less
expensive, thus more of them can be employed, and they
are less biased, but care has to be taken that the task is
well-defined; moreover, we cannot expect them to be as
consistent and competent as the experts. Normally, less experts
are employed than naı̈ve subjects. So far, however, there are
no strict guidelines for that; recently, there seems to be a
trend towards low-cost (non-expert) crowdsourcing using, for
example, Amazon Mechanical Turk [13]: Snow et al. conclude
that for the task of affect recognition in speech, using non-
expert labels for training machine learning algorithms can be
as effective as using gold standard annotations from experts.
Also in [14], it was shown that a large number of annotators
(‘Vox Populi’) creates reliable annotations.

In our experiments on rating L2 German speech with respect
to prosody, we compared three groups of native labellers
with different expertise: naı̈ves, phoneticians, and phoneticians
with extensive labelling experience with the actual database
(‘real’ experts) [15]. As expected, the consistency rose with
the level of expertise: Regardless of whether we aim at the
ground truth of experts, phoneticians or naı̈ves, when only one
labeller is employed, an expert is always the best choice and
a naı̈ve labeller the worst choice. However, when employing
more labellers, good correlations to any of the three ‘ground
truths’ can be achieved by all labeller groups. If c is d are
the average pairwise correlation within two groups A and B,
respectively, and e the average pairwise correlation between
a pair of labellers from the two groups, the correlation of N
averaged labellers AN from A with the ground truth B∞ of
B can be expected to be

Corr(AN , B∞) =
e√

1
N + N−1

N c ·
√
d
. (2)

Thus, we observed in our German data when employing at
least five labellers of any of the three groups, very good
references result that can be expected to be correlated to the
ground truth of any of the three groups with at least 0.94.

3) Different L1 Dialect Backgrounds: Another aspect that
may influence the perception and thus the rating of non-native
speech is the background of the labellers with respect to their
L1 variety. For our English data, we compared native speakers
of American, British and Scottish English [16]. We observed
slight differences in the perception of non-native accent, but
practically no difference in scores for intelligibility or prosody.
Thus we can speculate that irrespective of their own dialect
or regional accent, annotators have internalised a common
standard of their own L1.

4) Correlated Scores: When collecting labels for different
scales such as intelligibility and prosody, one will usually
find that the ratings are correlated among themselves to

some extent. In this context, it is desirable to abstract from
individual labeller variability. We can do this by estimating
the correlation between the ground truths of the scales: if c
and d are the average pairwise correlations within the labels for
each of the two scales, and e the average correlation between
one labeller’s first scale with another labeller’s second scale,
we can use Equation 2 with N →∞, i. e. e/

√
cd.

5) Weighting Labellers: Even within a homogeneous group
of labellers there will be individual differences regarding
talent, diligence, time spent on task etc. which will have
an impact on the quality of the annotations. Therefore an
obvious possibility to improve the quality of the reference
is to assign weights when averaging multiple annotations. A
basic and robust approach is choosing the correlation to the
other labellers as a weight [17]. In [18], a maximum likelihood
estimator is derived that estimates weights and the combined
reference in an iterative manner. In our own experiments, we
use a similar but simplified, and more stable approach: using
initially uniform weights, we estimate the mean square error
of the labeller w. r. t. the ground truth, and set the weight
indirectly proportional. On our German and English prosody
scores, however, we did not see a big improvement by using
weights, with neither of the three mentioned methods. For
example on our new semi-spontaneous dialogue data (see
below), we could improve the expected correlation to the
ground truth just a little bit from 0.85 to 0.86. A reason for
this may be that we hired our labellers in the traditional way
with personal contacts, and paid them well, so we did not
encounter problems that are reported for using e. g. Amazon
Mechanical Turk where one has to check for ‘spammers’ who
try to get the money without doing any real annotation.

6) Paying Labellers: When planning the annotation of a
database, it is very convenient to pay piece-work (i. e. per
annotated time, and not per annotation time). Often the money
available for annotation is fixed, and then one can calculate
what portion of the data one can afford to have annotated with
how many labellers. To be ethically acceptable, the payment
should not be too low; still, the quality of the annotation may
suffer because some labellers may try to finish the job as
quickly as possible. Other labellers take more time; paying
them the same is unfair twice, as the slower labellers tend
to deliver higher quality. Another possibility would be to pay
per quality, where a quality measure could be derived in the
same way as the weights when creating a combined reference
by weighted averaging. In the annotation during the AUWL
project, we observed a correlation of 0.87 between weights
(assigned for intelligibility, non-native accent and prosody) and
the time spent by the labellers. Although we cannot call this
significant (only five labellers for this task), this is a strong
trend. Nevertheless, it is still questionable to use that as a basis
for payment: if the quality measure is normalized with respect
to all labellers, labellers will effectively compete against each
other, and if the quality measure is absolute, payment will
be less when the task is difficult. Summing up, the best way
still seems to pay an hourly wage, if organisational constraints
allow for that.



In the annotation for the AUWL project, we could only pay
piecework. However, after completion, we realized that one
labeller – the best – took

almost twice as much time as the rest, so we decided to pay
an extra compensation.

7) Comparing Humans and Machines: For judging the
estimated accuracy of an automatic system, it is instructive
to compare with human performance. In order to do that in a
fair manner, one should be aware that the correlation of the
system with the reference is at best an optimistic estimate of
accuracy. In the end, we want to know how well a system
predicts a certain (abstract) score, not the collected imperfect
reference, so we can for example not claim that any system
performs better than the combined labellers. In fact, the final
accuracy of a system should be estimated as the correlation
between system output Y and ground truth A∞:

Corr(Y,A∞) = Corr(Y,AN ) · Corr(AN , A∞). (3)

Consider for example a hypothetical system that is trained with
the average of five labellers with a pairwise correlation of 0.5.
Using Equation 1, this yields a reference with an expected
correlation to the ground truth of ≈ 0.91. At the first glance,
an automatic system that correlates with the reference with
0.6 seems better than the average human. However, as argued
above, the correlation of the system with the ground truth
can only be expected to be 0.6 · 0.91 ≈ 0.55. On the other
hand, a single labeller can be expected to correlate with the
ground truth with

√
0.5 ≈ 0.71. Thus, we should be careful

not to underestimate human performance or overestimate the
performance of our systems.

II. DATABASES

For the present work, we use two databases: Read English
material from our German research project C-AuDiT and the
EU project ISLE [19], and new semi-spontaneous English data
from research project AUWL, collected with the help of our
dialogue training tool Dialogue of the Day (dod).

A. C-AuDiT

Read material is, of course, less naturalistic than sponta-
neous one; however, it has two advantages: First, it is easier
to process, and second, it allows incorporation into existing
automatic training software which still builds upon written and
read data. Thus, it is a relevant object of study, also from the
point of view of an commercial applicant of CAPT.

1) Material and Speakers: We recorded 58 English L2
speakers: 26 German, 10 French, 10 Spanish, 10 Italian and
two Hindi speakers, and additionally 11 native American
English (AE) ‘reference’ speakers. They had to read aloud
329 utterances shown on the screen display of an automated
recording software, and were allowed to repeat their pro-
duction in case of false starts etc. The data to be recorded
consisted of two short stories (broken down into sentences to
be displayed on the screen), sentences containing, amongst
other, different types of phenomena such as intonation or
position of phrase accent (This is a house. vs. Is this really

a house?), or tongue-twisters, and words/phrases such as
Arabic/Arabia/The Arab World/In Saudi-Arabia, ...; pairs such
as ’subject vs. sub’ject had to be repeated after the prerecorded
production of a tutor. Where applicable, an expert annotated a
likely distribution of primary and secondary phrase accents and
B2/B3 boundaries [20] of a prototypical, articulate realisation.

When designing our recordings, we took 30 sentences from
the ISLE database [19], which contains non-native English
from 26 German and 26 Italian speakers. From this intersec-
tion, we defined the subset of the following five sentences that
were judged as ‘prosodically most error-prone for L2 speakers
of English’ by three experienced labellers [4]:

We’re planning to travel to Egypt for a week or so.
Can I have soup, then lamb with boiled potatoes,
green beans and a glass of red wine?
They will have to transport the components overland.
The referee needed a police escort after the match.
The company expects to increase its workforce next
year.

2) Annotation: Taking all speakers from C-AuDiT and
ISLE that spoke all five sentences, we arrived at approx. one
hour of speech from 94 speakers. Using the tool PEAKS
[21], the annotation was conducted as a web-based perception
experiment. Twenty-two native AE, 19 native British English
(BE), and 21 native Scottish English (SE) speakers with
normal hearing abilities judged each sentence in random order
regarding different criteria, answering questions on intelligi-
bility, non-native accent and the following two questions on
prosody on a five-point Likert-scale:
• THIS SENTENCE’S MELODY SOUNDS...

(1) normal (2) acceptable, but not perfectly normal
(3) slightly unusual (4) unusual (5) very unusual

• THE ENGLISH LANGUAGE HAS A CHARACTERISTIC
RHYTHM (TIMING OF THE SYLLABLES). HOW DO YOU
ASSESS THE RHYTHM OF THIS SENTENCE?
(1) normal (2) acceptable, but not perfectly normal
(3) slightly unusual (4) unusual (5) very unusual

As already mentioned above, we found no real difference
between the ratings from the AE, BE, or SE labeller, so we
lumped them all together to get a single combined score for
each utterance. It turned out that these combined ratings for
mel and rhy are highly correlated among themselves with 0.95.
So the question was whether the labeller were at all able to
distinguish between the two. To answer this, we estimated the
correlation between the ground truth of the scores as described
in Section I-D4. Thus, we can expect the ground truths of mel
and rhy to correlate with 0.97. Interestingly, we found the
British labellers to behave a bit different (0.95; AE: 0.98, SE:
0.99). Our conclusion is that there may be a small difference,
but too small to be considered for automatic assessment at
the current state of the art. Thus, we decided for the present
study to form a combined rating pros by averaging the 124
(normalized) annotations of both the mel and rhy scores. The
expected correlation of this combined score with its ground
truth is 0.99.



B. Dialogue of the Day (dod)

Reading leads to a special speaking style and can have a
disruptive effect on speech, especially for learners with low
L2 competence. Therefore, we took a different approach to
data collection in our research project AUWL and designed a
client-server tool for practising pre-scripted dialogues.

1) Training Tool: Before embarking on the dialogue train-
ing, the learner can first listen to the whole dialogue spoken
by reference speakers. Then the learner enacts the dialogue
with a reference speaker as a dialogue partner. In doing so,
he can either have his lines prompted by a reference speaker
and repeat afterwards, or directly read them off the screen
(karaoke), or speak simultaneously with a reference speaker
(shadowing). For facilitating shadowing, it can optionally be
combined with prompting. Taking into account less proficient
learners, one can choose between reference recordings spoken
in a normal or in a slow tempo, and longer dialog steps
can be subdivided. Options for choosing from different refer-
ence speakers, swapping roles, (re-)starting from an arbitrary
position, replaying the latest own version of a dialog step,
replaying the whole enacted dialog, or using own recordings
for the dialog partner, complete the versatile training tool
which is admittedly too complicated for end customers. Using
this tool, we were able to elicit application-relevant speech
which is considerably more spontaneous and less reading-
style.

2) Material: We created 18 dialogues on topics such as
business negotiations, shopping or holidays, with six for each
of the CEF [22] levels A2 (elementary), B1 (pre-intermediate),
und B2 (intermediate). Three female and three male profes-
sional native speakers spoke the material in both normal and
slow tempo, resulting in 1908 recorded reference utterances
or 2.2 hours of speech. As for the C-AuDiT material, we
annotated a likely distribution of primary and secondary phrase
accents and B2/B3 boundaries of a prototypical, articulate
realisation for each dialogue. Possible points for subdivisions
were annotated independently, because the presumptive B3
boundaries annotated were not suitable in some cases. The
audio tracks to be replayed for the subdivided mode were
created by automatically cutting the whole recordings, using
a speech recognizer for segmentation.

3) Speakers: We started with 85 volunteering learners, who
got a login for a web-based system where they could use the
training tool in a self self-dependent manner. The learners were
free in the choice of the dialogs and training modes such as
shadowing. All recordings and dialogue timing information
were stored at the server. Although we asked the learners to use
a headset, the resulting audio quality was quite heterogeneous.
At the end of the data collection, we got usable speech material
from 31 speakers. According to a self-assessment, CEF levels
are distributed as follows: 5×A2, 5×B1, 10×B2, and 11×C1.
In total, the material amounts to 5145 utterances in 1019 dialog
runs or 7.8 hours of speech. Each utterance was classified by
a single annotator into ‘clean’ (5.5h), ‘usable’ (mainly usable
content, but word editing and louder noise such as coughing;

1.7h), or ‘unusable’ (unusable content or dominant noise due
to wrong audio settings etc.; 0.6h).

4) Annotation: The clean and usable material was anno-
tated by five native post-graduate phoneticians. As with the
C-AuDiT material, we asked questions on intelligibility and
non-native accent on a five-point Likert scale, but according
to our experience with the mel and rhy scores, we just asked
one merged question regarding prosody (pros):

THE ENGLISH LANGUAGE HAS A CHARACTERIS-
TIC PROSODY (SENTENCE MELODY, AND RHYTHM,
I.E. TIMING OF THE SYLLABLES). THIS SEN-
TENCE’S PROSODY SOUNDS...
(1) normal (2) acceptable, but not perfectly normal
(3) slightly unusual (4) unusual (5) very unusual

We normalized and averaged the five annotations to get a sin-
gle score for each utterance; for pros its expected correlation to
the ground truth is 0.85. Additionally, the labellers had to mark
words or parts of a sentence with a particularly unusual/non-
native prosody. We measured the time the labellers took for
annotation: we observed real-time factors between 2.2 and 7.5
(average: 3.9). For the present evaluations we only use the
utterances classified as clean.

III. PROSODIC FEATURES

In order to obtain suitable input parameters for an automatic
prosody assessment system, we compute a prosodic ‘finger-
print’ of each utterance. All processing is done fully automatic;
however, we assume that the spoken word sequence is identical
with the utterance the speaker had to read. First, the recordings
are segmented by forced alignment of the target utterance
using a cross-word triphone HMM speech recognition system.
Then, various features measuring different prosodic traits are
calculated. They are an extension to those described in [16]
and adapted to utterance level instead of speaker level.

A. Specialized Rhythm Features

There is a body of research on modelling language-specific
(native) rhythm. These hand-crafted, specialized parameters
are promising candidates for our task.

1) Duration Features (Dur): A basic but fundamental prop-
erty of speech is how fast something is said. We compute
the average duration of all syllables of the utterance, and the
average duration of vocalic and consonantal intervals (two
features).

2) Isochrony Features (Iso): In order to capture possible
isochrony properties [7], we calculate distances between cen-
tres of consecutive stressed or consecutive unstressed syllables.
The centres are identified as the frames with maximal short-
time energy within a nucleus. We compute six features: mean
distances between stressed, and between unstressed syllables,
standard deviations of those distances, and the ratios of those
means and standard deviations.

3) Variability Indices (PVI): Following [5], we identify vo-
calic and consonantal intervals and calculate the raw Pairwise
Variability Index (rPVI) which is defined as the absolute dif-
ference in duration of consecutive segments and its normalised



version nPVI (rPVI divided by the mean duration of the
segments) for vocalic and consonantal segments. Additionally,
following [23], we compute the control/compensation index
(CCI) for vocalic and consonantal segments. This variant of
rPVI takes into account the number of segments3 composing
the intervals. In total, six PVI features are computed.

4) Global Interval Proportions (GPI): Following [6], we
compute the percentage of vocalic intervals (of the total du-
ration of vocalic and consonantal intervals), and the ‘Deltas’:
standard deviation of the duration of vocalic and consonan-
tal intervals. Additionally, we include variation coefficients
(‘Varco’) [24] for vocalic and consonantal intervals, i. e. nor-
malized versions of the deltas. Together, we compute five
Global Proportions of Intervals.

5) Combination of All Rhythm Features: Later in the exper-
imental evaluation, these feature groups will either be analysed
individually, or pooled (Rhy-All, 19 features).

B. General-Purpose Prosodic Features (Pros)

The expert-driven, specialized features described above are
all based on duration, so they might miss other relevant
information present in the speech data, such as pitch or
loudness.

Therefore, we tried to capture as much potentially relevant
prosodic information of an utterance as possible in an approach
somewhere between knowledge-based and brute-force.

1) Local Features: We first apply our comprehensive
general-purpose prosody module [25] which has proven suit-
able for various tasks such as phrase accent and phrase
boundary recognition [25] or emotion recognition [26]. The
features are based on duration, energy, pitch, and pauses,
and can be applied to locally describe arbitrary units of
speech such as words or syllables. Short-time energy and
fundamental frequency (F0) are computed on a frame-by-
frame basis, suitably interpolated, normalized per utterance,
and perceptually transformed. Their contour over the unit of
analysis is represented by a handful of functionals such as
maximum or slope. To account for intrinsic variation, we
include normalized versions of some of the features based on
energy and duration, e. g. the normalized duration of a syllable
based on the average duration of the comprising phonemes and
a local estimate of the speech rate. The statistics necessary for
these normalization measures are estimated on the native data
of each corpus (11 native speakers amounting to five hours for
C-AuDiT; 6 native speakers in two different tempi amounting
to 2.2 hours for dod).

2) Global Features: We now apply our module to different
units and construct global (utterance-level) features from that.
Trying to be as exhaustive as possible, we use a highly
redundant feature set (742 features) leaving it to data-driven
methods to find out the relevant features and the optimal
weighting of them. We compute:
• Average and standard deviation of the prosodic features

derived from all stressed syllables (context ‘0, 0’), from

3Usually a phoneme is one segment; exceptions are e. g. long vowels which
count as two segments.

all segments comprising stressed syllables and their direct
successor (context ‘0,+1’), from all syllables succeeding
stressed syllables (context ‘+1,+1’), and so on up to
contexts ‘−2,−2’ and ’+2,+2’. The same is done for
just the nuclei of stressed syllables. These features can
be interpreted to generically capture isochrony properties
inspired by [7].

• Average and standard deviation of the prosodic features
derived from all words (context ‘0, 0’), and from all
segments comprising two words (context ‘0, 1’). The
same is done for syllables and nuclei. These features
can be interpreted as generalizations of the deltas and
proportions proposed by [6], [24].

• Average of the absolute differences between the prosodic
features derived from consecutive units. This is done
for contexts ‘0, 0’ and ‘0, 1’ of all words, syllables and
nuclei. These features can be interpreted to generalize the
pairwise variability indices proposed by [5], [23].

C. Combination of all Global Features

The combination of Rhy-All and Pros will be referred to as
All in the evaluation.

IV. MODELLING

The collected Likert scores for prosody are discrete random
variables with five possible values. One option would therefore
be to formulate the automatic assessment task as a five-class
classification problem. However, we chose to automatically
assess the pronunciation on a continuous scale, i. e. regression
for the two reasons:
• When merging multiple labellers to get a reliable ref-

erence, information is lost, the more so as the ratings
‘unusual’/‘very unusual’ are chosen rarely. Averaging the
scores to get a quasi-continuous reference solves this
problem.

• Classification does not reflect the ordinal nature of the
labels.

A. Global Model

Our first approach was to take a number of utterance-level
features as described in Section III and feed them, together
with the reference values, to a suitable machine learning
algorithm for regression. We chose Support Vector Regression
(SVR), using WEKA [27]. With a suitably chosen complexity
parameter C and kernel function, one can achieve both linear
and non-linear models with good generalization ability even
in the presence of many features.

B. Local Model

Our alternative approach uses a divide-and-conquer strategy:
First, all syllables of an utterance are scored individually;
the resulting scores are then combined by averaging4. For
predicting a syllables score, we again apply SVR. Because we
do not have a syllable level annotation, we use the score for

4Our efforts to do a more intelligent, weighted fusion by estimating
confidences were unsuccessful so far.



the whole utterance as a target for each syllable. The following
features are used:

• The general purpose prosodic features as described in
Section III-B1 for the current syllable, for its nucleus, and
for the word the syllable belongs to, contexts ‘−2,−2’,
‘−2,−1’, . . . , ‘+2,+2’ (312 features),

• mostly binary features encoding primary/secondary word
accent and prototypical phrase boundaries in the neigh-
bourhood of ±2 syllables, position of the current syllable
witin the word and utterance (60 features),

• features encoding prototypical phrase accent, number of
syllables, position in utterance etc. of the word the current
syllable belongs to (10 features), and

• the number of words, and the sentence mood (statement,
exclamation, question) of the utterance (four features).

Again, we tried to capture all potentially relevant information,
accepting high redundancy within the feature set, and leaving it
to machine learning algorithms to find out the actually relevant
ones. We hope that this new divide-and-conquer may:

• Possibly provide a higher robustness because the SVR
is trained with more instances and less features than in
global model, and the final utterance score is an average
over many single scores;

• capture information that is lost when levelling down the
utterance to the global features as described in Sec-
tion III-B2, by the precise, chronological context of a
syllable represented by the features, and

A weak spot is definitely the use of utterance level scores. We
tried to obtain syllable scores by a bootstrapping approach;
we got promising but no conclusive results yet.

An obvious extension of the approach is to enrich each
syllable’s features with the global utterance features Pros or
All. Accordingly, the local models will be referenced as Local,
Local+Pros and Local+All in the evaluation.

V. EXPERIMENTS AND RESULTS

A. Nuisance Removal

As discussed, obtaining representative training/testing data
is difficult. Sometimes, however, there may be prior knowledge
that might help to make the data more representative, or the
evaluation more realistically, e. g. a known invariance that
can be taken into account. When rating rhythm, such an
invariance might be the speaking rate: Ideally, pronunciation
scores should be invariant against tempo (within reasonable
limits); after all, native speakers can speak fast or slow and
should get good scores always. On the other hand, good
learners (with good pronunciation scores) tend to speak faster
than poor learners (with worse pronunciation scores). Thus,
tempo is definitely a useful feature for automatic scoring.
So when building a system for application, one will want to
utilize tempo, but for judging the aptness of features, it can be
interesting to study what happens when ignoring it. In order
to do so, we estimate tempo by the average syllable duration
T , and alter the reference Y such that it is no more correlated

to T :
Y ′ = Y − Cov(Y, T )

Var(T )
· T. (4)

For the C-AuDiT data, the syllable duration correlated
indeed strongly (0.59) with the pros rating, which might partly
be explained by the reading style or reading-related difficulties
of the learners. Removing the correlation to duration from
the labels did not affect the reliability much: the expected
correlation of the combined labels to the ground truth fell from
0.99 to 0.98. For dod, duration is not correlated so strongly
with pros (0.23), but the expected correlation of the combined
labels to the ground truth suffered a bit because of fewer
available labellers (five): it dropped from 0.85 to 0.80.

B. Choice of Meta-Parameters

In order to get useful results with our model, it is vital to
choose suitable meta-parameters for SVR. All input features
are transformed to lie within [0; 1] as commonly done. As
kernel functions, we considered only the linear kernel and the
normalized polynomial kernel [28] with lower orders, i. e.

K̃(x ,y) =
K(x ,y)√

K(x ,x )K(y ,y)
(5)

with K(x ,y) = (〈x ,y〉+ 1)
p (6)

for exponent p ∈ {4, 8}. In our experience, this normalization
of the vectors in feature space tends to improve performance,
shorten training times and facilitate the optimization of the
complexity parameter C. We try all combinations of C ∈
{0.001, 0.01, 0.1, 1} and the three kernels and only report
the best result. Strictly speaking, we would have to optimize
these meta-parameters automatically inside a cross-validation
loop, but given the need to evaluate speaker- and utterance-
independently (see below), this would entail a 4-fold nested
cross-validation, i. e. prohibitive computational costs. Thus, we
effectively optimize the meta-parameters on the test set, but
the effect of overfitting should be small since we are only
optimizing two parameters, and only very coarsely.

C. Speaker-Independent Evaluation

In a first set of experiments, we calculate the accuracy of
different systems in a two-fold speaker-independent cross-
validation, i. e. in each of the two folds, half of the data is
used for training, and the other half – disjunct w. r. t. speakers
– is used for testing.

D. Speaker- and Utterance-Independent Evaluation

In a second set of experiments, we evaluate speaker- and
utterance-independently, i. e. each pair of training and test set
has to be disjunct with respect to speakers and utterances. For
C-AuDiT, we perform a five-fold utterance (i. e. leave-one-out)
cross-validation within a two-fold speaker cross-validation,
i. e. for each of the 2 × 5 = 10 folds, 4/5 × 1/2 = 40% of
the data can be used for training, 1/5× 1/2 = 10% for testing,
and 50% cannot be used. For dod, we perform just a two-
fold utterance cross-validation within a two-fold speaker cross-
validation, i. e. for each of the 2×2 = 4 folds, 1/2×1/2 = 25%



of the data can be used for training, the same amount for
testing, and 50% cannot be used.

E. Results

Results for different feature sets and models are given in
Table I.

1) C-AuDiT: The first row (not counting headlines) of
Table I refers to the most optimistic evaluation criteria: un-
changed reference scores, and just speaker-independent eval-
uation, i. e. estimated performance for an assessment task on
previously known sentences. Here, all feature sets and models,
apart from GPI already yield relatively high correlations ≥
0.58. Rhy-All (0.73) already scores almost the maximally
reached correlation (0.75: Pros, All, Local+Pros, Local+All).

We now study how the feature sets perform when the
plainest feature, the average syllable duration, is excluded from
competition by making the reference uncorrelated to it, see
the second row in Table I. For the Iso features (0.22) we now
see that the previous success (0.58) was largely owed to also
coding duration. The other rhythm features GPI (0.34) and
especially PVI (0.45) are more successful in coding rhythm
quality beyond tempo. The combination, Rhy-All yields no less
than 0.54. The ‘brute-force’ approach Pros now is a bit clearer
ahead of its ‘expert-tailored’ competitor Rhy-All with 0.58, and
Local+Pros and Local+All are in the lead by a whisker with
0.59.

When evaluating also sentence-independently, results gen-
erally drop quite dramatically (see third and fourth row of
Table I). When allowing the use of duration (third row),
i. e. estimate the performance for an assessment task on
arbitrary sentences, Rhy-All now only scores 0.58 (vs. 0.73
in sentence-dependent evaluation), and Pros and All drop
even further to 0.53 (vs. 0.75). Apparently, the high number
of features compared to the number of training instances
(50%×5∗94 = 235) presents a problem here for generalizing
to unknown sentences, otherwise All (which includes Rhy-All)
would not score worse (0.53) than Rhy-All and Local+Pros
and Local+All (0.54) would not be worse than Local (0.64).
This bring us to the best performing approach in this setting,
Local, which scores still 0.64 in this setting. Obviously, here
the efforts for more robustness IV-B bear fruit. Combining
Pros and Local by late fusion (not contained in Table I;
weights – very coarsely – optimized on test: 0.3 resp. 0.7),
we can further improve the correlation to 0.67.

Looking at the modelling power beyond duration (fourth
row), Rhy-All is almost at the top (0.33), clearly beating Pros
(0.26), presumably again caused by too few training instances
to take advantage of the feature set. At least, combining the
local with the global approach (Local+Pros) catches up (0.33
too), and Local+All just manages to be in the lead with 0.34.

2) dod: Here, results show a similar pattern, but sentence-
dependent performance (fifth and sixth row) is only a bit
better than sentence-independent performance (seventh and
last row) is much less pronounced, which is due to the fact
that dod contains much more different sentences (410 vs. 5).
This reduces the danger of overfitting to the sentences (or the

ability to adapt, for text-dependent tasks). Also, the difference
between original (rows five and seven) and duration-deprived
reference (sixth and last rows) is less clear, since we have seen
that duration is only correlated to pros with 0.23 on dod.

The relevant results for a sentence-dependent assessment
task (row five) show just a very slight preference for Pros
(0.57) when compared to Rhy-All (0.56). Also for a sentence-
independent assessment task (row seven), Pros (0.52) is only
a little ahead of Rhy-All (0.49). The divide-and-conquer ap-
proach was less successful: Local did not score more than
0.48 here. Late fusion of Pros with Local improved the result
by a fraction to 0.53 (not contained in Table I; weights: 0.3
resp. 0.7).

Regarding modelling power beyond duration, Pros (0.47)
could again be shown to be noticeably better than Rhy-All
(0.42). As for C-AuDiT , Local+All just manages to be in
the lead with 0.48. For this most difficult task, the best
results are clearly ahead of those of C-AuDiT (maximally
0.34, see Local+All in row four), which is owed to the better
representativeness of dod.

F. Discussion

1) Language Testing: The sentence-dependent results (up
to 0.75) for C-AuDiT are quite good; however, the applicabil-
ity for CAPT is limited. For language testing, however, where
only a finite set of test items is needed, it is perfectly feasible
only to use sentences already contained in the training set of
an automatic scoring method. Nevertheless, it is questionable
whether the discriminative approach pursued is best suited
for this task. After all, the needed data collection is very
costly, and some adaptations (calibration/partitioning of the
material) had to be employed because the method cannot adapt
to too many sentences at once (see the performance drop
for dod). However, as test items can be defined a priori, a
generative approach based on native templates along the lines
of [29] is much cheaper and may yield similar or even superior
results: the number of needed test items is – compared to a
CAPT application – much smaller, so one can afford to record
template utterances by many speakers, presumably leading to
meaningful distance measures.

2) CAPT: The best sentence-independent result for C-
AuDiT was a correlation of 0.67 to the reference. Taking
into account the quality of the reference using Equation 3,
this means that the system has an expected correlation of
0.67 · 0.99 = 0.66 to the ground truth of pros. This is clearly
better than the performance of the average individual labeller
(0.54) probably owed to the fact that C-AuDiT is a relatively
easy task due to the reading prosody/reading difficulties, which
allows the automatic system, naturally adapting to the given
domain, to take a ‘shortcut’ for rating prosody. For dod,
the corresponding best automatic result was 0.53. Given the
relatively low quality of the reference, this means that the
system has a correlation of 0.53 · 0.85 = 0.45 to the ground
truth. The average labeller on the other hand is clearly ahead
with 0.58. Our interpretation is that dod is the more difficult
task because reading difficulties play a smaller role, and the



TABLE I
RESULTS FOR DIFFERENT FEATURE SETS AND MODELS FOR C-AUDIT (UPPER HALF) AND DOD (LOWER HALF) IN TERMS OF PEARSON CORRELATION

COEFFICENT BETWEEN THE SYSTEM’S OUTPUT AND THE REFERENCE. ‘SPEAKER’ STANDS FOR A SPEAKER-INDEPENDENT EVALUATION,
‘SPEAKER+SENTENCE’ FOR A SPEAKER- AND SENTENCE-INDEPENDENT EVALUATION. ‘ORIG’ REFERS TO TAKING THE ORIGINAL COMBINED RATINGS

OF ALL LABELLERS AS A REFERENCE; FOR ‘W/O DUR’ THE CORRELATION TO THE AVERAGE SYLLABLE DURATION HAS BEEN REMOVED.

Corpus Evaluation Reference Dur Iso PVI GPI Rhy-All Pros All Local Local+Pros Local+All

C-AuDiT
Speaker Orig 0.60 0.58 0.59 0.45 0.73 0.75 0.75 0.69 0.75 0.75

w/o Dur 0.14 0.22 0.45 0.34 0.54 0.58 0.58 0.50 0.59 0.59

Speaker+Sentence Orig 0.54 0.50 0.42 0.19 0.58 0.53 0.53 0.64 0.54 0.54
w/o Dur -0.13 -0.15 0.25 0.16 0.33 0.26 0.28 0.21 0.33 0.34

dod
Speaker Orig 0.48 0.50 0.41 0.37 0.56 0.57 0.57 0.53 0.57 0.57

w/o Dur 0.40 0.43 0.38 0.34 0.50 0.52 0.52 0.50 0.53 0.53

Speaker+Sentence Orig 0.40 0.45 0.33 0.31 0.49 0.52 0.52 0.48 0.51 0.52
w/o Dur 0.32 0.37 0.31 0.28 0.42 0.47 0.47 0.44 0.47 0.48

speech sounds more spontaneous. Thus, with the ‘crutches’
no longer available, the automatic systems are revealed to still
perform with sub-human performance. However, we take some
comfort in the conviction that as soon as we hire some more
labellers, we will get somewhere near the performance of the
average human: the quality of the reference will be increased
by more labellers, and it is also likely that the system will show
a higher correlation to better labels. Thus, we can expect to
increase both factors of Equation 3.

VI. OUTLOOK

A. More Features

Promising approaches to feature extraction for the dis-
criminative approach are, e. g., the GMM-UBM super-vector
approaches [30] and prosodic contour features [31] developed
in the field of speaker identification, or the combination of
both approaches [32], [33].

B. Generative Approach

It remains to be answered whether the complexity of rhythm
is not too high for the chosen discriminative approach, given
the efforts required for collecting suitable data. Possibilities
for generative approaches would be a counterpart to the GOP
algorithm for discrete prosodic events such as boundaries and
accents which can be recognized or decoded with reasonable
accuracy [25], or using conditional densities to make do
without discrete prosodic classes.

C. Feedback

Up to now we have concentrated only on assessment and
have completely ignored feedback. It would be interesting
to study whether approaches based on machine learning can
contribute to giving useful feedback. An example could be
assessment modules that only use specific prosodic aspects
such as loudness or duration to derive more specific feedback
on what the learner should concentrate on in order to improve.
Another improvement would be more localized feedback; pos-
sibly, the Local approach could be extended by bootstrapping
to derive and predict syllable-level scores.

VII. CONCLUSION

The impact of suboptimal non-native prosody on under-
standing is well-known and has received some attention lately.
In this article, we wanted to contribute to some of the most
basic questions related to this topic; to this aim, we collected
and annotated two databases with English as L2, spoken by
speakers of different L1. The data were (1) read or prompted.
We implemented (2) specialized rhythm features suggested
in the phonetic literature as well as (3) a large feature set
comprising general-purpose prosodic features. We addressed
(4) the differences in employing different types of more or
less expert labellers and (5) different numbers of labellers,
and computed, based on comparing the labeller, (6) estimates
of the effective quality of averaged annotations and automatic
scores. Evaluation was done (7) speaker-independently and (8)
utterance-independently. We showed the relevance of steps (1)
to (8), based on correlations obtained for regression models
with the human reference. Eventually, we discussed the impact
of the single steps on performance and usability in real-life
CAPT application.
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