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Abstract

In earlier studies, we employed a large prosodic feature vec-
tor to assess the quality of L2 learner’s utterances with respect
to sentence melody and rhythm. In this paper, we combine
these features with two standard approaches in paralinguistic
analysis: (1) features derived from a Gaussian Mixture Model
used as Universal Background Model (GMM-UBM), and (2)
openSMILE, an open-source toolkit for extracting acoustic fea-
tures. We evaluate our approach with English speech from 94
non-native speakers perceptually scored by 62 native labellers.
GMM-UBM or openSMILE modelling alone yields lower per-
formance than our prosodic feature vector; however, adding in-
formation from the GMM-UBM modelling or openSMILE by
late fusion improves results.

Index Terms: computer-assisted language learning, non-native
prosody, rhythm, automatic assessment

1. Introduction

Non-native prosodic traits limit proficiency in a second lan-
guage (L2). Prosodic phenomena, located on word level and
above, encompass word accent position, syntactic-prosodic
boundaries, and rhythm, and help listeners to structure the
speech signal and to process segmental, syntactic, and semantic
content. Non-native prosodic traits are therefore not mere id-
iosyncrasies, but often seriously hamper mutual understanding.
Thus, they have to be modelled in computer-assisted pronunci-
ation training (CAPT).

A few studies deal with non-native accent identification
using prosodic parameters [1-3]. In recent basic research,
suprasegmental native traits have been investigated when try-
ing to model language-specific rhythm [4, 5]. Maybe the most
important general (prosodic) factor to be modelled in CAPT is
non-native rhythm: the English prosody of, e. g. French, Span-
ish, or Hindi native speakers can sound ‘strange’ and these
speakers are sometimes difficult to understand. We therefore
set ourselves the task of automatically assessing the quality of
L2 learner’s productions with respect to sentence melody and
rhythm on a continuous scale. Thus, our approach stands out
from studies that just deal with the binary classification prob-
lem native vs. non-native. Employing perceptual evaluations as
ground truth, we studied the impact of number and type [6] of
labellers, and computation of suitable prosodic features [7].

The present paper is motivated by the question: ‘Can we
improve performance by incorporating other features which are
less directly related to prosody, but nevertheless very successful
in related areas such as emotion identification?” Our assump-
tion is that the prosodic properties we are trying to assess are
reflected in other properties of the speech signal, which might
be easier to extract or more robust. A combination of these fea-

tures might add complementary information and improve accu-
racy. We compare three kinds of features:

(1) Purely prosodically motivated features based on [7]. The
modelling is based on the spoken words and the syl-
labic and phonetic structure. Using the segmentation of
a speech recognizer, different prosodic properties of the
segmented units are measured.

(2) Purely acoustic features capturing the distribution of
short-time spectral features (Universal Background
Model, UBM) with the help of a Gaussian Mixture
Model (GMM). In combination with Support Vector Ma-
chines, this is a well-known approach in the field of
speaker identification [8]. Even if not capturing prosodic
information directly, this approach might be able to
model other properties of speech that are correlated to
prosodic properties. The approach has been shown to
deliver competitive results in related tasks such as Emo-
tion Identification [9].

(3) openSMILE [10], a toolkit for computing general-
purpose acoustic and prosodic features. It is an estab-
lished standard for paralinguistic tasks (e.g. [11]). and
thus a promising candidate for our aims. We employ it
in the usual way, i.e. with a flat analysis structure mod-
elling the acoustics of the whole utterance, without addi-
tional information coming from transcription or ASR.

2. Material and Human Assessment

The data used in this paper is a combination of two datasets: the
English database from our German research projects C-AuDiT
[7] and the ISLE database [12]. Our database contains English
speech from 58 L2 speakers: 26 German, 10 French, 10 Span-
ish, 10 Italian and 2 Hindi speakers, and additionally 11 native
American English (AE) ‘reference’ speakers. The ISLE cor-
pus contains recordings of non-native English from German and
Italian speakers. When designing our recordings, we took 30
sentences from the ISLE database. From this intersection, three
experienced labellers chose five sentences judged as ‘prosodi-
cally most error-prone for L2 speakers of English’ [7].

Taking only speakers that spoke all 5 sentences, we arrived
at approx. one hour of speech from 94 speakers. By a web-based
perception experiment, 22 native American English (AE), 19
native British English (BE), and 21 native Scottish English (SE)
speakers with normal hearing abilities judged each sentence re-
garding different criteria, answering the following questions on
a 5-point Likert-scale (1 is best and 5 worst; for details see [7]):

int: DID YOU UNDERSTAND WHAT THE SPEAKER SAID?
acc: DID YOU HEAR A FOREIGN, NON-ENGLISH ACCENT?
mel: HOW DID THIS SENTENCE’S MELODY SOUNDS?
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Figure 1: Scatterplots for the annotated scores. For each pair of scores, Pearson correlation r and Spearman correlation p is given.

rhy: THE ENGLISH LANGUAGE HAS A CHARACTERISTIC
RHYTHM (TIMING OF THE SYLLABLES).
HOW DO YOU ASSESS THE RHYTHM OF THIS SENTENCE?

There was no significant difference between the labels of
AE, BE and SE listeners. To get a single score for each utter-
ance, we averaged the annotations on the Likert scales across
all 62 labellers. Although the correlation between a pair of in-
dividual labellers is low, by that, we obtain very reliable annota-
tions [6]. Figure 1 shows the distribution of resulting values and
correlation coefficients between the criteria. All four criteria
are highly correlated; this can be explained by the observation
that segmental and prosodic proficiency are closely related for
most L2 learners. Concerning the different ranges on the 1 to 5
Likert scales, we can speculate that the difference between acc
and mellrhy is due to additional segmental errors, and that the
lower (i. e., better) int value might be traced back to the listen-
ers’ language model which is not fully impaired by segmental
or suprasegmental errors.

Although we are primarily interested in the prosodic crite-
ria mel and rhy, we report results for int and acc, too, firstly,
because the labels are highly correlated, and secondly, because
it is interesting in itself to relate results for the first with results
for the latter.

3. Features
3.1. Prosodic Features (pros)

In order to obtain suitable input parameters for an automatic
prosody assessment system, we compute a prosodic ‘finger-
print’ of each utterance: First, the recordings are segmented by
forced alignment of the target utterance using a cross-word tri-
phone HMM speech recognition system. Then, various features
measuring different prosodic traits are calculated. They are an
extension to those described in [7] and adapted to utterance level
instead of speaker level.

We first apply our comprehensive general-purpose prosody
module [13] which has proven suitable for various tasks such as
phrase accent and phrase boundary recognition [13] or emotion
recognition [14]. The features are based on duration, energy,
pitch, and pauses, and can be applied to locally describe arbi-
trary units of speech such as words or syllables. Short-time en-
ergy and fundamental frequency (FO) are computed on a frame-
by-frame basis, suitably interpolated, normalized per utterance,
and perceptually transformed. Their contour over the unit of
analysis is represented by a handful of functionals such as max-
imum or slope. To account for intrinsic variation, we include
normalized versions of some of the features based on energy
and duration, e. g. the normalized duration of a syllable based
on the average duration of the comprising phonemes and a local
estimate of the speech rate. The statistics necessary for these

normalization measures are estimated on all speech data of the
11 native C-AuDiT speakers (approx. Sh).

We now apply our module to different segments and con-
struct global (utterance-level) features from that. Trying to be
as exhaustive as possible, we use a highly redundant feature set
(742 features) leaving it to data-driven methods to find out the
relevant features and the optimal weighting of them. We com-
pute:

(1) Average and standard deviation of the prosodic features
derived from all stressed syllables (context ‘0,0’), from
all segments comprising stressed syllables and their di-
rect successor (context ‘0, +1"), from all syllables suc-
ceeding stressed syllables (context ‘41, 41"), and so on
up to contexts ‘—2, —2’ and *+2, +2’. The same is done
for just the nuclei of stressed syllables. These features
can be interpreted to generically capture isochrony prop-
erties inspired by [15].
(2) Average and standard deviation of the prosodic features
derived from all words (context ‘0, 0’), and from all seg-
ments comprising two words (context ‘0, 1’). The same
is done for syllables and nuclei. These features can be in-
terpreted as generalizations of the deltas and proportions
proposed by [5].

(3) Average of the absolute differences between the prosodic
features derived from consecutive units. This is done for
contexts ‘0,0’ and ‘0,1’ of all words, syllables and nu-
clei. These features can be interpreted to generalize the

pairwise variability indices proposed by [4].

3.2. GMM-UBM Features (gmm)

Using the GMM-UBM approach in combination with Support
Vector Machine (SVM) classification can be regarded as stan-
dard approach for speaker identification [8] and classification
of speaker characteristics. We used this approach to detect the
degree of pathology (or speech intelligibility/voice quality) in
speakers with laryngeal cancer [16]. The system was motivated
by the idea that the acoustic space of the speaker, represented
by the GMM, differs from that of a healthy speaker in case of
a pathology. This difference has been shown to contain infor-
mation about the degree of deviation. We assume an analogue
behaviour for non-native speakers and hope that the acoustic
space populated by a speaker will yield contain information on
the (degree of) non-native deviation from native speech.
Short-time spectral features, so-called RPLP [17], a revised
variant of Hermansky’s Perceptual Linear Prediction (PLP) ap-
proach [18], are used in this study. By employing the Mel filter-
bank instead of the Bark filter-bank and other simplifications,
these features are very similar to Mel Frequency Cepstrum Co-
efficients (MFFCs). The sole difference is that RPLP performs



an additional spectral smoothing step that emphasizes the spec-
tral envelope, which possibly results in a better representation
of the vocal tract. This might be an explanation why we found
RPLP to be a trifle ahead of MFCC in previous tasks. We use a
25 msec Hann window and a step size of 10 msec. We compute
13 cepstral coefficients and add delta coefficients (as commonly
done, by regression over 5 cepstral coefficients) and accelera-
tion coefficients (regression over 9 delta coefficients, instead of
the commonly used 5), arriving at a total of 39 features. The
increased context for acceleration gave us some improvements
in previous tasks. We apply cepstral mean subtraction (per ut-
terance) and discard non-speech frames using a HMM-based
phoneme classifier.

A single, speaker-independent Gaussian Mixture Model
(GMM) with diagonal covariances is trained on the speech data
of the 11 native C-AuDiT speakers (approx. 5h), yielding the
so-called Universal Background Model (UBM)'. This model
acts as a reference model of correctly uttered speech. The model
parameters are estimated in an unsupervised iterative manner
by the Expectation-Maximization (EM) algorithm in 10 itera-
tion steps. The actual speaker model is derived by adapting
the parameters of the UBM to the data of the target speaker by
Maximum A Posteriori adaptation. This results in a speaker-
specific GMM with the parameters w;, pi, 5,1 = 1,..., K,
where K denotes the number of mixture components. In the
basic approach a speaker is represented by a concatenation of
the mean vectors p;, the so-called GMM supervector, with di-
mension 39 - K. Including weights and covariances into the
supervector, resulting in dimension 79 - K, might help to model
the variation/distance of an L2 learner from native speakers.

3.3. openSMILE Features (smile)

OpenSMILE [10] is a toolkit for computing general-purpose
acoustic and prosodic features proven successful for a variety of
paralinguistic tasks. A multitude of low-level descriptors such
as loudness, pitch or energy in spectral bands is modelled by
many different functionals such as mean, standard deviation or
quantiles. In the default configuration, which we use, no addi-
tional information such as a transcription is necessary; segments
are determined automatically based on energy (or voicing, for
pitch related features). Given this out-of-the-box functionality,
and its success in related areas, openSMILE suggested itself as a
‘must-try’ candidate for our task. We employ the official feature
set used in the 2011 Interspeech Speaker-State-Challenge [11]
resulting in 4368 features per utterance.

4. Modelling and Fusion

Prediction of the continuous target scores is done by Support
Vector Regression (SVR), using WEKA [19]. We use a lin-
ear kernel; the complexity parameter C' was optimized (up to a
power of ten) for each feature set on the whole database (0.01
for pros, 1 for gmm, 0.001 for smile). System performance
is estimated in leave-one-speaker-out cross-validation and re-
ported in terms of Pearson correlation r. For lack of space, we
omit Spearman — the values are similar except for int where
Spearman exceeds Pearson a bit. For combining two or more
of the pros, gmm and smile feature sets, we use late fusion,
i. e. combine the outputs of separately trained SVR-Systems lin-
early. The weights for the combination are tuned for best perfor-
mance within {0.0,0.1, ..., 1.0}, again on the whole database.

IThis is relatively few data for a UBM, but to start with and to keep
things simple, we wanted to work with our available in-domain data.
More native material can, at a later stage, be added easily as no annota-
tion is needed here.

Table 1: Performance (Pearson correlation) of the GMM-UBM-
System for the different target scores when employing differ-
ent GMM-parameters and different numbers of mixture compo-
nents K. The last column averages performance across all four
criteria.

Supervector K | int acc mel rhy ‘ o] ‘
i 64 | 520 .566 .522 567 | 544
i 128 | 503 583 559 549 | 548
i 256 | 495 582 551 .552 | 545

Wi, Wi, i 32 | 515 618 596 591 | .580
Wi, Wi, i 64 | .603 618 .620 .639 | .620
Wi, Wi, i 128 | 568 .635 .613 .605 | .605

Table 2: Performance (Pearson correlation) of the different fea-
ture sets and of their combination via late fusion.

pros gmm smile‘ int acc mel rhy

. 590 595 735 793
. 603 618 .620 .639

. 436 428 524 538

) ° 683 .693 .771 .822
. . .608 .611 739 793
° . 605 .621 .642 .659

Optimizing C' and the weights on all data is effectively tuning
on the test set; however, the effect of overfitting should be small
since only 2 to 3 parameters are fitted, and only very coarsely.
It proved however crucial to apply leave-one-speaker-out cross-
validation for SVR parameter selection, as especially the gmm
and smile systems showed a considerable tendency to overfit to
the speakers in train when just using standard cross-validation
across all instances (i. e. utterances).

5. Results

As this is the first time we applied the GMM-UBM-supervector
approach to this data, we first run a set of experiments to find
out suitable parameters. Table 1 lists the results. We got the best
overall performance when using all parameters of the GMM
(wi, pi and ;) with 64 mixture densities, cf. the penultimate
row of Table 1. For the example of riy, the system’s output and
reference are correlated with 7=0.639.

Table 2 compares these best gmm results (replicated in
row 3) with the performance of pros (row 2) and smile (row 4).
For the more segmental scores int and acc, the pros and gmm
features perform similar, e. g. for acc, r=0.595 and 0.618, re-
spectively. For the prosody-related scores mel and rhy, however,
the pros features are considerably better, e. g. 7=0.793 vs. 0.639
for rhy. The system using smile features behaves similar to
pros in so far as it can model the more supra-segmental mel
and rhy scores better than int/acc, e.g. r=0.538 vs. 0.428 for
rhy vs. acc. However, in absolute terms, performance is much
lower: for mel, for instance, smile only reaches r=0.524 while
pros achieves 0.735.

Rows 57 show the performance when combining two fea-
ture sets (cf. Section 4). All sets benefit from this ‘collabora-
tion’: the fusion of two sets always yields better results than
each of the sets alone.”> For example, for rhy, the combina-
tion of grmm and smile (last row) yields 7=0.659, better than the

2 An alternative way of putting this is: when combining two feature
sets, the weight 0.0 was never chosen.



stand-alone performances 0.639 and 0.538. The combination
of pros and gmm is clearly best for all target scores, cf. row 5
(the results in bold face). The chosen weights for this fusion are
0.5/0.5 for int and acc, while for mel and rhy, pros is weighted a
bit higher (0.6 vs. 0.4 for gmm). Depending on one’s choice of
«, this fusion can be considered significantly better (one-sided
test) than the best stand-alone systems:

int: r=0.683 > the gmm system’s 0.603 (p=0.008),
acc: r=0.693 > the gmm system’s 0.618 (p=0.02),
mel: r=0.771 > the pros system’s 0.735 (p=0.1), and
rhy: r=0.822 > the pros system’s 0.793 (p=0.1).

Combining all three feature sets did not yield further improve-
ment over the combination of pros and gmm®.

6. Discussion

As standalone systems, neither the gmm features nor the smile
features reach a performance comparable to the prosodic feature
set pros. This can be explained by the fact that only the latter is
provided with information on the syllabic and phonetic structure
of the utterances, but it can also be taken as a proof that we are
on the right track with our present approach.

However, the fact that each combination of two feature sets
leads to an improvement over the stand-alone performances in-
dicates that all three feature sets contain useful, complementary
information. Combining pros and gmm worked best by far; this
can be explained partly by their better stand-alone performance,
but it also reveals a relatively high complementarity. For all
target scores, this combination yields pronouncedly better re-
sults than any of the feature sets alone. For the case of rhy, we
could thus improve our performance from r=0.793 to r=0.822
by adding the GMM-UBM-system to our prosodic feature anal-
ysis, a 3.7% relative improvement (mel: 0.735 — 0.771, 4.9%
rel.). Thus it can be useful for prosodic assessment to ‘combine
the best of two worlds’ — incorporating rather ‘alien’ techniques
such as the GMM-UBM approach which is solely based on the
short-time spectral representation of speech and could therefore
be expected to be independent of and irrelevant for prosody.

The fact that smile—i.e. openSMILE in the ‘blind’, out-
of-the-box mode—doesn’t work so well indicates that for the
assessment of non-native prosody, putting in meta-information
such as syllabic/phonetic structure, or position of stresses is (as
might be expected) indeed vital. In future work, we will there-
fore combine the two approaches and hope for additional im-
provements through the comprehensiveness of the feature com-
putation of openSMILE.

A clear limitation of our work so far is that we have only
shown its usefulness on known sentences. Thus, it is perfectly
applicable, e. g., for language testing, but for CAPT one usually
wants to employ a module that works well for unseen mate-
rial. In the future, we will therefore study the presented ap-
proaches not only in speaker-independent but also in sentence-
independent evaluation setups.
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