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Abstract
The complex movement sequences of golf require

supporting tools for players and coaches alike. We de-
veloped a system that classifies the experience level and
trained it with data from an inertial sensor on the club
head. Based on 315 golf putts from eleven subjects the
system differentiated between experienced and unexpe-
rienced players with a classification rate of 86.1%. To
improve the classification system and obtain discrimi-
nant features we additionally integrated a feature selec-
tion step. We compared different selection approaches
and concluded that a leave-subject-out feature selection
was the appropriate approach to predict the true perfor-
mance of a live system. The selected features can be fed
back to coaches and help them to guide players to a
better putting technique.

1. Introduction
In the last decade golf made its way to a popular

sport and drew even more attention since the accep-
tance for the olympic program for 2016. Golf is also
demanding complex movement sequences from players
in order for them to be successful. For this reason, sup-
porting tools for players and coaches on a professional
but also on a recreational level are required. This is a
challenging task due to the high amount of kinematic
parameters that have to be considered during a swing
or a putt. In this process, individual techniques of
different athletes have to be accounted for. The most
relevant but also generalizable parameters are therefore
of great interest.
Players need coaching systems to train effectively and
coaches need support tools for their coaching tasks. In
golf putting, many different modalities like ultra-sound
data [11], 3D motion data [3], pressure mat signals [13]
and camera-based golf club tracking [10] have been
successfully used for performance optimization and
biomechanical analysis. However, the largest drawback
of these systems is the stationary nature. This often
limits them to laboratory use and offline analysis.

In this paper, we will focus on golf putting in a natural
environment using mobile inertial sensors. Kinematic
and biomechanical aspects of putting are well studied
[10, 3, 8, 14, 13]. There has also been research on
inertial sensor data analysis in golf [1, 9]. Anyhow,
these systems are still in the evaluation phase. We are
also not aware of any research on classifying kinematic
golf putt sensor data and automated support in selecting
relevant parameters from these data.
Previously, we implemented a mobile coaching ap-
plication for putting that gives graphical and textual
coaching feedback for every putt [7]. However, this
expert-driven approach required prior knowledge
about the putt parameters and common errors in the
putting technique. We therefore present a data-driven
pattern recognition approach to classify the experience
level and select discriminant features to enhance the
coaching application. Our algorithms need to be well
generalizable for unknown subjects. We addressed this
need with an adapted approach in the feature selection
step to improve the classification rate and identify
discriminant features. This approach may be useful for
all live systems that deal with unknown subjects.
The obtained features can be further interpreted by golf
coaches to pinpoint technique shortcomings.

2. Methods
We used the same hardware, data collection, prepro-

cessing and feature extraction as for the development of
our mobile coaching application [7]. We will recapitu-
late the most important aspects.

2.1. Hardware
Our recording hardware comprised of SHIMMERTM

sensor nodes [12] and a laptop for data recording and
analysis. The sensor nodes were equipped with an inter-
nal three-axis accelerometer and a connected three-axis
gyroscope module. The firmware was set to a sampling
rate of 250 Hz to record kinematic data of six degrees
of freedom. Data were sent wirelessly to the recording



Figure 1. Placement and form factor of the
SHIMMER sensor used in our system.

laptop. We mounted a single sensor on each of the golf
clubs used in our study as illustrated in fig. 1.

2.2. Data collection

We collected data on an even outdoor training green
at the Golf Club Herzogenaurach, Germany. Eleven
right-handed subjects (1 female, 10 male) volunteered
for the study. They were either experienced golfers
(n=5, handicap 17 ± 12) or completely unexperi-
enced. Each subject performed five consecutive putts
from three distances (short = 1m, mid = 3m, long =
5m) in the common putting range to collect 15 putts
each. Moreover, we provided two mallet type put-
ters: the TaylorMadeTM Spider (TaylorMade Inc. Carls-
bad, USA) and the Pro AceTM 20704 (Pro Ace Ltd.,
London, UK) and two different ball types, the Taylor-
Made Noodle Longest and Burner LDP. We arbitrarily
chose an equipment variation for each subject so that
we recorded a second collection of 15 putts each with
either another ball or club. We had to eliminate three
sequences of five putts because of sensor malfunction
so that we could use 315 putts for our further analysis.

2.3. Preprocessing and feature extraction

We used a matched filter segmentation algorithm to
extract putts from the experiment data. This algorithm
considered a linear and a rotational movement in play-
ing direction according to a basic putt model.
This model also defined the main phases of a putt stroke
used in the feature extraction. See Tab. 1 for a summary
of the feature set for each putt. All features were nor-
malized for further processing.

2.4. Classification

The goal of the classification was to determine the
experience level prediction capability of a classifier us-
ing a single putt. The ”No-Free-Lunch” theorem states
that there is no classifier that outperforms others in ev-
ery classification problem [4]. We therefore tried a
range of classifiers with different paradigms. See Tab.
2 for an overview of classifiers that we used. All ex-
periments were conducted with custom MatlabTM (The

Table 1. Overview of complete features set
(BS: back swing, FS: forward swing,
FT: follow-through).

Nr. Description
1-4,7 Duration of {BS, FS, BS+FS, FT, putt}
5-6 Temporal ratio of {FS&FT, BS&FS}
8-10 Rotation in BS and FS (x-, y-, z-axis)
11-13 Rotation in pre impact phase (x-, y-, z-axis)
14-16 Rotation in post impact phase (x-, y-, z-axis)
17-19 Rotation angle in {BS, FS, FT}
20 Rotation angle ratio of FS and FT
21-22 Acceleration change in {pre, post} impact phase
23-24 Velocity on impact (rotation, horizontal)
25-26 Acceleration maximum in FS (position, value)
27-28 Velocity maximum in FS (position, value)

Mathwork Inc., Natick, USA) software. We used exist-
ing pattern recognition libraries for classifier evaluation.
These were PRTools (Version 4.1) [5], STPRtool (Ver-
sion 2.11) [6], LIBSVM (Version 3.0) [2] and the GML
AdaBoost Matlab Toolbox (Version 0.3) [16].
The kNN and SVM classifiers demand to choose pa-
rameters. We optimized them with an exhaustive search
strategy. We searched in the range of k = [1, 10] for the
kNN classifier and in the range of C = 2n, n ∈ [−1, 3]
for the SVM. In the case of the SVM-rbf kernel we used
γ = 2m,m ∈ [−4, 1] additionally.

2.5. Classifier evaluation
We evaluated the classifiers listed in Tab. 2 with a

leave-one-subject-out cross-validation. In this proce-
dure, classifiers were tested on all putts of a single sub-
ject. This made sure that we obtained a realistic value
for the classifier performance for the putt of an unknown
subject. We averaged the result of each subject evalua-
tion to determine the overall classification rate.
For the classifiers with free parameters, we repeated the
evaluation for each parameter. We selected the parame-
ter resulting in the best result. This procedure expanded
to a grid search for the SVM-rbf case.

2.6. Feature selection
There were three reasons why we used a feature se-

lection step in our system. First, a reduced feature set
decreases the computational cost in the classifier work-
ing phase. This is particularly important in the con-
text of embedded and mobile classification. Second,
selected features can increase the classification rate and
the generalization capabilities of a classifier [15]. Third,
discriminant features can support coaches in the func-
tional interpretation of class differences.
We applied a sequential forward feature selection [15],
a simple wrapper technique. We used the correspond-
ing classification rate as criterion for the evaluation of a
candidate feature set. We applied the feature selection
in each subject evaluation step.



Figure 2. Overview of the partitioning for
the feature selection approaches TT and
LSO in one subject evaluation step.

The classification procedure was the same in each of
the following experiments. We performed eleven cross-
validation steps for our dataset of eleven subjects. In
each step one subject was used as test subject while all
others were training subjects. We evaluated the influ-
ence of the feature selection on the classification perfor-
mance with three experiments that differed in the way
features were selected.

1. Complete Feature Set (ALL): We used the com-
plete feature set for classification and applied no
feature selection.

2. Training-Test Feature Selection (TT): Each can-
didate feature set was evaluated in a training-test
manner. The data partitioning was the same for
feature selection and classification. The test sub-
ject therefore influenced the feature selection as it
was used to evaluate a candidate set.

3. Leave-Subject-Out Feature Selection (LSO): Each
candidate feature set was evaluated with a leave-
subject-out cross-validation. In the feature selec-
tion, the training set determined the performance
of a candidate set with leave-subject-out cross-
validation. The test subject was not used in the
feature selection step. It only served as test subject
in the classification step.

See Fig. 2 for an overview of the different feature se-
lection approaches displayed for one subject. This pro-
cedure was repeated for each subject. The classification
step, which was identical for both approaches, is dis-
played to point out the different roles of the subjects in
feature selection and classification. Note that the clas-
sification test subject was not used during feature se-
lection in the LSO approach and therefore labeled as
hold-out subject.

2.7. Feature occurrence analysis

The feature selection delivered one feature set for
each subject evaluation. We analyzed the number of ap-
pearances of a feature in the eleven resulting sets for the
best performing classifier. We considered features with
more than six occurrences for further interpretation.

3. Results
The classification results are listed in Tab. 2. We

used k = 7 for kNN, C = 0.5 for SVM-linear and
C = 2, γ = 0.125 for SVM-rbf. We applied the same
parameters to all experiments.
The NB classifier performed best and outperformed
FLD in the ALL experiment. In the TT experiment,
all classifiers performed well with no prominent differ-
ences in performance. The kNN classifier performed
best in the LSO experiment and outperformed NB.
Regarding the influence of the feature selection ap-
proaches, we detected a rise in the classification rate for
all classifiers with the TT approach. With the LSO ap-
proach, kNN improved, Ada, SVM-linear and SVM-rbf
remained unchanged and FDA and NB degraded.
We performed a feature occurrence analysis of the kNN
classifier in the LSO experiment. Two features were
chosen most often by the feature selection algorithm.
These were the feature number 4 with eleven occur-
rences and feature number 9 with ten occurrences.

Table 2. Overview of classification rates
for different experiments in [%].
Classifier ALL TT LSO
AdaBoost (Ada) 76.7 98.6 76.6
Fisher-LDA (FLD) 82.4 100 66.6
k Nearest Neighbor (kNN) 68.4 99.3 85.5
Naive Bayes (NB) 86.1 97.5 80.2
SVM-linear 78.8 98.9 77.1
SVM-rbf 80.1 98.9 79.6

4. Discussion
The results revealed that our system was able to dif-

ferentiate between putts from experienced and unexpe-
rienced players with high classification rate. One has to
keep in mind that we performed the classification on a
putt basis. That means that our system was able to pre-
dict the class membership using a single putt from an
unknown subject.
The classification rates in the TT experiment implied
that every classifier was able to find a suitable feature
set for classification. As the knowledge of the test data
influenced the selection decision, this was not surpris-
ing and resulted in over-fitting of the decision boundary.
In the LSO experiment this was not the case. The classi-
fiers that improved or remained unchanged were able to
select feature sets and build classifier models that gener-
alized well. This fact was responsible for the good per-
formance on unknown data. Other classifiers degraded
without the knowledge of the test data in the feature se-
lection step. In our opinion, the LSO feature selection
reflected best the working phase of a coaching system.
A classifier with feature selection is trained offline on



a finite training set and has to classify unknown sub-
jects only with the knowledge of this training set. This
procedure was simulated with the LSO experiment and
therefore delivered more accurate predictions of the true
performance of the classifier.
Except kNN, all classifiers failed to improve their clas-
sification rate with the LSO feature selection approach.
However, the classifiers which remained unchanged
reached the same classification performance with a fea-
ture space of lower dimensionality and therefore with
less computational cost in the classifier working phase.
NB delivered the best results in the ALL experiment.
We suppose that the assumption that the likelihood
functions are normally distributed held in our dataset.
The improvement of the kNN classifier regarding the
ALL and LSO experiment was remarkable. We assume
that the euclidean distance separated patterns from dif-
ferent classes better in lower dimensions. This phe-
nomenon is described as the curse of dimensionality.
In the LSO case, feature selection lead to an easier
and more generalizable class prediction. However, the
working phase of the classifier is prone to high demands
in memory and computations as all training patterns
have to be saved and used for the distance computation.
This is especially important in the context of mobile and
embedded classification.
We found a decrease in the classification rate of clas-
sifiers based on statistical properties of the data (FLD,
NB) in the LSO experiment. We speculate that this was
due to the fact that an inaccurate estimation of statistical
parameters was compensated in higher dimensions and
had a more severe influence in lower dimensions. We
propose that a different feature selection procedure for
these classifiers is more suitable. Instead of our wrap-
per approach we recommend feature selection based on
statistical properties of the data in this particular case.
The occurrence analysis of individual features can be
used for a functional interpretation of the differences
between experienced and unexperienced players. The
features that appeared most often were the ones discrim-
inant for the specific classification problem and clas-
sifier. We chose to discuss the results for the kNN
classifier from the LSO experiment where we identi-
fied two parameters. These were the duration of the
follow-through (4) and the summed rotation in the main
rotation axis in back and forward swing (9). During
experiments we observed that all subjects used a pen-
dulum or body putting technique described in [13]. The
discriminant features proved a different follow-through
characteristic combined with a different relative loft an-
gle. Golf coaches can use this functional feedback for
further analysis. This can support their coaching and er-
ror analysis.

This classification system is a valuable analysis tool for
kinematic data from mobile inertial sensors and can fur-
thermore support coaches in efficient training.
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