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ABSTRACT

In recent years, graph-based methods have had a significant impact on
image segmentation. They are especially noteworthy for supervised
segmentation, where the user provides task-specific foreground and
background seeds. We adapt the power watershed framework to
multispectral and hyperspectral image data and incorporate similarity
measures from the field of spectral matching. We also propose a
new data-driven graph edge weighting. Our weights are computed by
the topological information of a self-organizing map. We show that
graph weights based on a simple L,,-norm, as used in other modalities,
do not give satisfactory segmentation results for multispectral data,
while similarity measures that were specifically designed for this
domain perform better. Our new approach is competitive and has an
advantage in some of the tested scenarios.

Index Terms— Multispectral imaging, Image Segmentation, Dis-
tance measurement, Distance Learning, Self organizing feature maps

1. INTRODUCTION

In an interactive analysis framework, input from the user is an im-
portant prior to the segmentation tasks. As the user explores the
multispectral data step-by-step, she may want to compare the spectra
of specific objects in the scene or examine reflectance properties of
acertain area in detail. Such a segmentation replaces tedious manual
labeling of this area. In Fig. 1 we show the results of an unsuper-
vised segmentation on a test image using the popular mean shift
algorithm [1] next to those of a manually seeded segmentation. We
believe that with the ability to guide the algorithm, the user can obtain
a segmentation that is much more helpful for a specific analysis task.
Many approaches for automated multispectral image segmenta-
tion exist. Often general clustering methods are applied, e.g. k-means,
or mean shift. Others are based on mixture models and/or minimum
spanning tree clustering, e.g. [2], or have a hierarchical design. These
methods have in common that they strive for a global segmentation,
often in combination with classification, being unsuitable for us.

2. GRAPH-CUT SEGMENTATION

In the recent years, several image segmentation algorithms based on
graph theory were introduced. In 1997, Shi and Malik proposed the
unsupervised normalized cuts algorithm [4]. In 2006, Leo Grady
introduced random walks to image segmentation [5]. Both create
a graph with a node for each pixel and edges between pixels in
a local spatial proximity, whereas the edge weights are based on
pixel dissimilarity. While the normalized cuts try to find a minimum
cut of the graph that separates foreground and background, Grady’s
method computes the likely destinations of a random walker. A third
paradigm to graph-based image segmentation are watersheds, where
the intensity image is considered as a topographic relief [6].

(a) Original image in SRGB (b) Mean-shift segmentation

(d) Power watershed segmentation

(c) User-provided seed points

Fig. 1. Illustration of the difference between unsupervised clustering
and seed-based segmentation on example multispectral image [3].

In 2009, Couprie etal. introduced the power watershed frame-
work, which integrates the aforementioned paradigms into a common
mathematical framework [7]. This framework becomes the basis for
developing a set of state-of-the-art supervised segmentation methods
for multispectral and hyperspectral data.

A graph consists of a pair G = (V, E) with vertices v € V and
edgese € EE C V x V. Anedge, e, spanning two vertices, v; and vj,
is denoted by e;;. Each pixel is associated with a node and the nodes
are connected locally via a 4-connected lattice in our implementation.
Each edge has a real value assigned to it, called the weight, w;;, of
the corresponding edge e;;. How edge weights are determined is
presented in detail in Section 3.

According to [7], in a two-class segmentation, we compute the
probability x for any pixel to belong to the foreground or background
class as follows:

x = argmin E wiy |z — 2|+
* e;;€EE
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s.t.z(F)=1,z(B)=0,



(a) Original image in SRGB (b) Lo (c) SA

(f) Seed points (g) Lo (h) SA

(d) SID (e) SOM

(i) SID (i) SOM

Fig. 2. Gradients according to different similarity measures in x-direction (top) and their segmentation results (bottom) on statue image.

where F' and B are the foreground and background seeds, respectively.
Then, a simple threshold leads to the binary segmentation s with
si = 1 (foreground pixel) if z; > % , 0 (background pixel) else.
Based on the selection of parameters p and g, this minimization
matches the graph cuts, random walker, or shortest paths algorithms.
With p = o0, ¢ > 1, the power watershed algorithm is obtained.

To adjust this framework to the domain of multispectral or hyper-

spectral data, we need to address the selection of edge weights.

3. EDGE WEIGHTING

So far the power watershed framework was applied on 2D intensity
images as well as 3D medical data [7]. In the original formulation,
edge weights were defined as

wi; = exp (—B(VI)?) , )

where V1 is the normalized gradient of the image /.

For color images, the authors relied on the L norm, or the L
norm (also known as the Chebyshev distance) instead of VI. This
gives reasonable results when computed in the 3-dimensional space
formed by the R, G, B triplets. With multispectral or hyperspectral
images, we obtain a high-dimensional space in a typical range of 7
to 200 dimensions. It is well-known that the L, norm is an ill-suited
metric for higher dimensions. In this paper we examine two solutions
to this problem. First, we examine several similarity measures that
were designed especially for the multispectral domain. Second, we
propose a novel data-driven similarity measure.

3.1. Spectral Mapping measures

Comparison of spectral vectors is a key part in the task of spectral
mapping, where an observed spectrum is to be mapped to known
material spectra. Several similarity measures have been designed for
this task (see [8, 9]). Since a common goal of supervised segmentation
is to discriminate specific objects in a scene, a similarity measure that
discerns materials is a fitting replacement of VI for edge weights.

e A popular measure of spectral similarity is the spectral angle

(SA) that was defined for the spectral angle mapper [10]. It
captures the angle between two spectra, disregarding pure
intensity changes. For two spectra x and y it is defined as

SA(x,y) = cos ! <&) 3
(ey) = cos I, v )

The spectral information divergence (SID) is another measure
that is often applied and was shown to work best for a certain
scenario [8]. It is based on the Kullback-Leibler information
measure and models a spectral vector x of length NV as a

random variable p® with pg’gl <N = ﬁ Then
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A combination of SA and SID was proposed by Du etal. in
2004 to enhance the spectral discriminatory probability [10].
It exists in two versions:

SIDSAM; (x,y) = SID(x,y) - sin (SA(x,y)) , (5)

SIDSAM;(x,y) = SID(x,y) - tan (SA(x,y)) .  (6)

As the difference in the results of SIDSAM; and SIDSAM,
is negligible, we only report results for SIDSAM;.

Robila et al. proposed the Normalized Euclidean Distance [8],

N z 2
Z(j_g) : )
Ty

=1

NED(x,y) =

that is invariant to scalar multiplication and stays in the range
[0, 1] regardless of the number of bands N.



3.2. Data-driven measure

We introduce a new data-driven spectral similarity measure based on
the concept of topological learning. A self-organizing map (SOM)
is an artificial neural network that converts the nonlinear statistical
relationship between high-dimensional data into simpler geometric
relationships. In other words, the SOM provides a topological repre-
sentation of the spectral vector distribution of a multispectral image.
In the example case of a 2-D SOM (also 3-dimensional SOMs were
tested), it consists of a 4-connected lattice of so-called model vectors
m; with location L(m;). Each spectral vector is assigned the corre-
sponding model vector that is nearest neighbor in L2. In 2011, we
showed that by using the topological distance inside the SOM, we
obtain valuable differential information between adjoining pixels [11].
The topological distance is given by the Lo distance between two
model vectors in the SOM lattice. We can also use this information
directly as a similarity measure,

SOM(x,y) = HL(argmm I, ml,) — L(argmin [ly, m;],)
7 J

2

As this measure is well-suited for edge detection, it is a natural
extension to also use it as a similarity measure for graph-cut based
segmentation methods. The particular strengths of a SOM-based
similarity measure are its flexibility (it can be fine-tuned) and its
generalizability, as it adapts itself to the present data.

Fig. 2 shows example gradient maps in the x-direction by com-
puting the similarity of each pixel with the pixel to its right. This is
half the data that is used for computing edge weights in a 4-connected
lattice resp. to (2).

4. EVALUATION

We compare the different edge weightings Lo, SA, SID, SIDSAM,
NED and SOM on the CAVE multispectral image database [3].
This is a set of high-quality multispectral images that depict ob-
jects of different materials in a laboratory setting. Images have a
spatial resolution of 512 x 512 pixels and cover the spectral range
of 400 nm — 700 nm in 31 bands. No ground-truth segmentation is
available for this data set. Thus we hand-labeled certain objects in
nine images from the dataset that cover a good variety in difficulties.
Labeling was performed within the Gerbil framework [12], using its
powerful visualization capabilities. In total we have 32 segmentation
tasks. We also provide seed point input for the specific tasks: We
place foreground seeds in the form of a circle with a 5-pixel radius in
the center of each object. Background seeds are placed as hand-drawn
lines on the top, left, bottom and right of each object with a distance
of 20 to 40 pixels to the object contour. See Fig. 1(c), Fig. 2(f),
Fig. 3(b) for examples. The seeds mimic a typical usage scenario.

4.1. Benchmark

Four different algorithms are tested that are included in the frame-
work of Couprie etal.. First is the graph cut based on a maximum
spanning forest computation, mfs. Second is the power watershed
algorithm with ¢ = 2, pw, that includes a random walker. The other
two algorithms are based on these, however they employ geodesic
reconstruction, ms fg and pwg, respectively. Parameters of these al-
gorithms are kept to the implementation defaults of [7], except for
the new edge weighting. For the SOM similarity, a 32 x 32 SOM is
trained on 15% of the image pixels (drawn randomly). Training takes
less than 5 seconds (included in reported running times).

Measure Algo. Prec. Recall F1-score Time
NED pwg 0.908 0971 0.929 + 0.073 6.0
SA pw 0.896 0.978 0.928 + 0.067 6.8
SA msf 0.892 0978  0.926 £+ 0.065 0.7
SA pwg 0.891 0979 0.923 + 0.071 6.8
NED pw 0911 0962 0.919 £+ 0.089 1.0
NED msf 0907 0962 0.917 £ 0.091 1.0
SOM pwg 0.897 0925 0.898 + 0.074 18.6
SOM pw 0.897 0.925 0.898 + 0.074 18.6
SOM msf 0.894 0.903 0.886 + 0.057 9.6
SID msf 0.846 0973 0.867 + 0.249 2.8
SIDSAM msf 0.819 0972 0.849 £+ 0.245 34
SID pwg 0.888 0.872 0.837 + 0.210 8.5
SID pw 0.889 0.872 0.837 +0.210 8.6
SIDSAM pw 0944 0.764 0.793 + 0.259 10.9
SIDSAM pwg 0.947 0.763  0.791 £ 0.266 10.7
Lo pw 0.937 0.588 0.659 + 0.214 8.9
Loo pwg 0.923 0.587 0.655 + 0.217 8.9
Lo msf 0927 0.538 0.598 + 0.291 0.9

Table 1. Average performance of measure/algorithm combinations.

From the difference between ground-truth and segmentation
result we compute precision, p, (the probability that a machine-
generated foreground pixel is a true foreground pixel), recall, r, (the
probability that a true foreground pixel is detected) and F;-score,
Fi = 2%. These quantities are suitable for our task as they do not
depend on image size, but only the number of machine-generated
foreground pixels and true foreground pixels.

In Table 1 the average performance over all images is reported.
Average running time (in seconds) includes training once per image
for SOM. As the geodesic reconstruction had little to no effects even
on the single results, mfsg is omitted. In Table 2, results per-image
are presented for each similarity measure in its overall best performing
algorithm combination. All experimental data including images,
ground-truth, seed points and segmentation results can be accessed
on the web at http://www5.cs.fau.de/research/data/msseg/.

4.2. Discussion

It can be observed that the power watershed algorithm performs well
for our application. The use of an edge weighting specific to our
domain is important. This is indicated by the bad performance of Lo,
which is a good choice for RGB images. The most successful similar-
ity measures SA and NED perform similarly, both qualitatively and
quantitatively. They share the property of scale invariance, but are
prone to noise in dark image regions. This explains their considerably
bad performance on the statue image shown in Fig. 2. Here, the
foreground object is not well separated from the background due to
being partly self-shadowed. SA (see Fig. 2(c)) and NED respond
more strongly to noise in the background than to the object boundary
in the shadowed region. This is a case where the SOM similarity
measure draws an advantage from being trained on the specific image.
The SID measure and its combinations with SA, SIDSAM; o,
do not perform as well in our experiment. While results are often on
a par with SA, they are not reliable, as revealed by the high standard
error. The measure poses specific problems to power watersheds,
which makes the less powerful graph cut algorithm perform better.



balloons/4  statue/1 food /4 lemons/2  peppers/3  feathers/6  flowers/5 toys /2 balls/5
Lo 097+ .04 0.51 072+ .24 046+ .40 050+£.35 0.82+.09 050+£.29 048+.04 0.97+.02
SA  0.97 £.03 0.84 099+.01 099+.01 099+£.01 083+.17 094+.04 094+.05 086=%.17
SID  0.96 +.03 0.21 098+.01 099+.00 099+.01 089+.06 090=+.13 0924+.02 0.96=£.05
SIDSAM  0.96 £ .03 0.21 098£.01 095+.05 099+.01 082£.17 089+.13 0.94+.04 090=+.12
NED 097 +.03 0.77 098£.01 099+.00 099+.01 0.89+.07 087+.15 094+.05 0.96=.03
SOM  0.98 £ .01 0.91 094+.05 098+.00 095£.05 083+£.17 0.89+.07 077+.03 0.83=£.13

Table 2. Average F;-scores per edge weighting method on each image (number of segmentation tasks next to image name).

The SOM-based similarity did not perform best in this exper-
iment. However, the results show that the SOM did indeed adapt
well to the application, purely based on the data presented to it in
training, while the other similarity measures tested where specifically
designed for material discrimination based on spectrum. The SOM
can be further adapted to a specific scenario by changing parameters
of training and read-out, while the other measures are fixed. Typically,
the right measure needs to be chosen based on application domain [9]
while the SOM approach is general by design.

Fig. 3 depicts one of the more challenging tasks in the benchmark
due to the object being partially occluded. Here SIDSAM performs
best. SA and NED produce very similar results.

5. CONCLUSIONS

In this paper we introduce supervised segmentation to multispectral
and hyperspectral images. We adapt the power watershed framework
by incorporating similarity measures known from the field of spectral

(a) Image in SRGB (b) Seed points

(c) SA (d) NED

(e) SIDSAM

() SOM

Fig. 3. Example segmentation results on foys image, one of two tasks.

matching as well as a novel data-driven approach to edge weight-
ing. Our results show that the straight-forward attempt of using the
Chebyshev distance does not yield satisfactory results. Both proposed
adaptations improve the segmentation performance significantly.
The implementation of this method was integrated into the Ger-
bil multispectral analysis framework [12] and will be released as
free software at http://gerbil.sf.net. In future work, we deem it
worthwhile to further examine data-driven measures for this applica-
tion as well as the bad performance of the pw, SID combination.
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