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Abstract— This paper focuses on monocular-video-based sta-
tionary detection of the pedestrian’s intention to enter the traffic
lane. We propose a motion contour image based HOG-like
descriptor, MCHOG, and a machine learning algorithm that
reaches the decision at an accuracy of 99 % within the initial
step at the curb of smart infrastructure. MCHOG implicitly
comprises the body language of gait initiation, especially the
body bending and the spread of legs. In a case study at
laboratory conditions we present ROC performance data and
an evaluation of the span of time necessary for recognition.
While MCHOG in special cases indicates detection of the
intention before the whole body moves, on average it allows
for detection of the movement within 6 frames at a frame rate
of 50 Hz and an accuracy of 80 %. Feasibility of the method
in a real world intersection scenario is demonstrated.

I. INTRODUCTION

Early detection of pedestrians entering a traffic lane in an
urban traffic environment is a current challenge in order to
increase vehicle safety. The worldwide traffic crash statistics
published by the World Health Organization in 2009 reports
that half of 1.27 million victims are vulnerable road users
(pedestrians, motorcyclists and cyclists) [1]. Even in Europe
and the U.S., which rank first in road infrastructure safety
and where fatal injuries decrease continuously, the number
of pedestrians involved in severe injuries is still high. Hence,
pedestrian detection is becoming an integral part of advanced
driver assistance systems (ADAS). Due to the ability of a
pedestrian at the sidewalk to suddenly start a motion or to
change the direction of motion towards the lane, a dangerous
situation may occur within some hundreds of milliseconds.
Therefore, an ADAS should not only issue a warning to the
driver but also initiate autonomous braking or maneuvering
for collision avoidance, when the driver is no longer able to
react in time. This requires early and reliable detection of
dangerous pedestrian movements which may be recognized
either vehicle-based or infrastructure-based.

Many dangerous situations due to occlusions, that cannot
be detected from a vehicle, occur at intersections. There-
fore, several research projects worldwide, e.g. the American
IntelliDrive program [2], the European SAFESPOT [3] and
INTERSAFE [4] projects or the German Ko-PER project
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of the Ko-FAS research initiative [5], address infrastructure-
based pedestrian perception aiming at an improvement of
road safety by combining infrastructure information with lo-
cal vehicle data. Video-sensors are commonly used for high-
speed and high-resolution data acquisition and pedestrian
recognition in urban traffic scenarios using machine learning
algorithms is in the focus of research since some decades.
Nevertheless, little is known about early indicators which
may lead to a quick decision, if a pedestrian at the curb starts
to enter the lane or not. Note, that already a gain of a few
hundred milliseconds may prevent severe injuries [6]. The
main contribution of this paper is to propose an appropriate
video-based descriptor extracted from the grayscale image
of a stationary monocular camera and a machine learning
technique for reaching the decision.

II. RELATED WORK

Video-based observation and interpretation of pedestrian
movement requires in a first step human detection. State-of-
the-art ADAS detectors often combine two complementary
sensors in order to provide features, range and region of
interest (ROI), as e.g. provided by stereo-video [7], [8], [9],
or by data fusion of a lidar sensor and a monocular camera
[10], [11]. Reviews of established video-based pedestrian
detectors comprising descriptors, classifiers and benchmarks
are presented in [12], [13], [14]; let us further refer to [15]
for a survey of state-of-the-art pedestrian detection. The
extraction of pedestrian descriptors for a complete frame, the
stereo vision and classification algorithms typically are com-
putationally intensive. Hence, some authors have presented
real-time detection systems using dedicated algorithms on
the CPU [16], or choosing FPGA or GPU hardware for
acceleration [17], [18], [19]. Multi-sensor systems for real-
time intersection monitoring have been proposed e.g. in [11],
[20], [21].

The parameters of gait are well known from human
biomechanics research. It has early been shown, that the
acceleration within the first stride already results in the
mean velocity of normal walking [22], which lies in the
scale of 1.4 m/s at intersection crosswalks [23]. The mean
velocity is proportional to the product of stride length and
stride frequency, for which medical gait analysis studies have
reported typical values of 1.2 m and 0.9 Hz, respectively. For
an analysis of basic gait parameters see [24], [25]. Vision-
based human motion analysis is reviewed e.g. by [26], [27].
Especially, for capture and classification of gait, motion
history images (MHIs) [28] of stride [29], gait [30] and
frame difference [31] have been proposed that emphasize



the weight of successive contours in gait recognition. For a
comprehensive review of these works, see [32].

In contrast to the application of these methods to gait
recognition and analysis, there is still few research on the
action intentions of pedestrians that aims at the development
of ADAS. Early approaches using Kalman filters (KF) are
trajectory-based, as e.g. in [33], including interacting multi-
ple model filters in order to account for the ability of humans
to suddenly change their type of motion [34]. Schmidt and
Färber, however, presented experimental studies, from which
they conclude that for a human observer parameters of body
language such as leg or head movements are indispensable
for the decision, if a pedestrian at the curb enters the
lane [35], [36]. They found that the sole consideration of
trajectories is insufficient. Though a technical system may
overcome the limits of human perception with respect to
spatial and temporal resolution, the study demonstrates that
there are early indicators beyond the physical parameters of
a trajectory. In [37] some indicators are proposed. Recently,
Keller, Hermes and Gavrila presented a probabilistic path
prediction for pedestrians walking towards the road curbside
[6]. Using learned motion features gathered from the dense
optical flow of a car-based stereo-system they obtained a
classification performance for walking vs. stopping better
than that of state-of-the-art KF systems. In [38] a complete
active pedestrian safety system is introduced.

In this paper we focus on scenarios, where a pedestrian
stands at the pavement and decides to enter the lane. As
his or her acceleration is generated predominantly by the
legs, we expect, motivated by the results of biomechanics,
that the essential information of the pedestrians movement
within the first stride is encoded in the legs’ movement within
the first step. However, bending of the upper trunk forward
may indicate the start of walking some hundred milliseconds
earlier [39] and a pedestrian at the curb may not stand still
before, even if a traffic light shows red. The younger the
person, the more dynamics might be expected. Thus, we
take into account the language of the whole body before
and during the first steps. On this basis, we propose a HOG-
like monocular-video-based descriptor in combination with
support vector machine (SVM) classification, that allows to
decide within the time slot of the first step of the initial stride,
if a person starts walking. Our algorithm is solely based on
the body poses of the initial movement which are encoded in
motion contour based features. The algorithm is designed for
stationary intersection monitoring. In a case study at labora-
tory conditions we evaluate its performance with respect to
classification and response time. We demonstrate feasibility
of the method in a real world intersection scenario.

The paper is organized as follows: in Section III we
describe the processing chain of the proposed method and
we present our implementation. Both performance character-
istics evaluated on a case study and feasibility in a real world
scenario are presented in Section IV before we summarize
the main conclusions and discuss open issues in Section V.

Fig. 1. Methodology of motion classification via MCHOG; labels III.A -
III.C refer to the following sections.

III. METHOD

It is expected that the subregion of the image that covers
the pedestrian within its bounding box is available for a
time series, e.g. by the fusion of LIDAR- and video-data
and a HOG-based detection [11]. The methodology of our
approach to generate the motion descriptors within this box
and to classify the motion is illustrated in Fig. 1. The
approach is composed of three major stages. In the first
stage, which operates on grayscale images, an edge-image
is obtained by directional differentiation and an MHI is
composed of consecutive edge-images. Building on this MHI
representation, in the descriptor (MCHOG) stage normalized
cell histograms of oriented gradients are calculated, which
are eventually concatenated and form the feature descriptor.
In the final stage the descriptors are classified using a linear
SVM.

We start with an outline before we go into details. Our
MCHOG is based on local directional changes of contour
patches extracted from MHIs. Since robust closed contour
extraction may become a challenge in cluttered urban traffic
scenarios, we analyze patches which are evenly distributed
over the pedestrian ROI, making the descriptor less sensitive
to gaps in the contour. At first we compute an edge-image by
differentiation yielding gradient magnitudes and orientations.
A static background edge image is used for subtraction
in order to generate a foreground image. With our indoor
case study the background can be captured in advance.
For our outdoor scenes, however, the background must be
updated recursively during run-time. We have implemented
the mixture of Gaussians (MOG) model [40] for that purpose
on the GPU including a grayscale shadow elimination [41].

The usage of a shadow elimination algorithm, however,
proved not to be necessary for the indoor case study, because
the magnitude of shadow edges is rather small and these
edges are suppressed by thresholding for binarization. The
resulting binarized edge image is propagated to the update
pipeline of the MHI. Afterwards, the MCHOG descriptor is
computed.

A. Edge-Based MHI

The magnitude |Iedge(x, y)| of the gradient images IedgeX
and IedgeY at each pixel (x, y) is generated by convolving the
grayscale input image I with the differential kernels Kx =(
−1 0 1

)
for the x-direction and Ky = KT

x for the y-
direction

IedgeX = Igray ∗Kx (1)



IedgeY = Igray ∗Ky (2)

and by applying the L2-norm. The next step is background
subtraction from the gradient magnitude image. Binarization
with a small threshold eliminates noise and smooth shadow.
Let Ψ(I(x, y, t)) be the respective binarization of an image
sequence I(x, y, t), t the frame number and τ a decay value.
The MHI-intensity Hτ (x, y, t) is computed using the update
rule

Hτ (x, y, t) =

{
τ if Ψ(I(x, y, t)) 6= 0

max(0, Hτ (x, y, t− 1)− 1) otherwise
(3)

The pixel intensities in the MHI are set to zero if they
are older than the decay value τ . This update function is
called for every new video frame analyzed in the sequence.
Depending on the value chosen for the decay parameter τ , an
MHI can encode a wide history of movement [28], [32]. We
have empirically found that τ = 10 represents an adequate
trade-off for our application.

B. MCHOG Descriptor

When a pedestrian intends to walk, many parts of the
person move accordingly. To capture these different local
motions we propose to use a HOG descriptor of the edge-
based MHI with appropriate adaptions to the original im-
plementation [42]. As Dalal and Triggs we compute the
magnitude and orientation of the gradients, divide the detec-
tion window into cells and compute cell histograms [42]. In
contrast to the original HOG descriptor we do not perform
a normalization of blocks of cells which is used conven-
tionally to boost invariance against illumination changes
and foreground-background contrast. In our case a block
normalization scheme affects intention recognition rather
adversely, because it reduces the local difference between
neighboring cells whereas the very same should be captured.
Instead, we only normalize the cell histograms by applying
an L2-Hys-norm. Finally, concatenating all normalized cell
histograms yields the MCHOG descriptor. The default de-
scriptor is optimized for a detection window of 384 × 704 px
corresponding to the average bounding box of pedestrians in
our database. We use a cell size of 32 × 32 px, 12 bins for
cell histogram quantization and a hysteresis threshold of 0.2
yielding a 3168-dimensional MCHOG feature descriptor.

C. Classification

We employ a linear 2-class SVM for classification pur-
poses. A parameter search in order to find a suitable penalty
multiplier C was performed using an exponentially growing
sequence C = {2−10, 2−9.5, . . . , 215}.

IV. EXPERIMENTS AND RESULTS

A. Data Acquisition

We generated a video database comprising 170 videos
of 26 adult test persons, male and female, standing upright
and start walking at some point of time. This database was
used for the development of the descriptors and finding the
optimal descriptor parameter set for machine learning and

for evaluation. The videos were captured at daylight in a
laboratory environment using a CMOS high-speed camera,
operated with a resolution of 1128 × 752 px at a frame
rate of 50 fps. This allows us to resolve 10 - 20 single shots
within the first step. A complete sequence covers a period
of about 15 s. The laboratory features a huge glass front
and roof, enabling the lighting to be as natural as possible
in an indoor environment. We have not applied any artificial
lighting, the color and texture of the carpet fairly resembles
tarmac.

B. Scenarios

We specify a set of five scenarios with typical motion
activities. To support the orientation of the test person, we
attached tape markers to the floor representing position 1-5
and the approximated location of the curb between road (on
the right side) and pavement (left), see Fig. 2.

Fig. 2. Test field: laboratory floor (right picture) and the respective curb
(left picture).

The entire width of the test corridor is about 4 m, 1.5 m
representing the pavement (left) and the remaining 2.5 m
representing the road (right). The positions 1-3 mark the
initial positions of scenario s1 − s3, each about 1.5 m
away from the center position 4. Both locations 4 and 5
play different roles in each scenario. The particular action
sequence of the scenarios is described below.

1) Scenario s1 − s3 (Fig. 3 a-c): The test person walks
from the starting position 1 (2, 3) to the center (position
4) and turns in direction to the road. This reorientation
corresponds to the fact, that a person willing to cross the
road commonly observes the state of the traffic. About two
seconds later the pedestrian decides to cross the road and
moves into direction of position 5.

2) Scenario s4 (Fig. 3 d): A pedestrian is starting to
cross the road, but suddenly he or she recognizes a vehicle
approaching. As a reflex, the person reverses the direction
of movement in order to reach the pavement again. A
few seconds later the pedestrian crosses the road without
disruption.

3) Scenario s5 (Fig. 3 e-f): For this scenario, the subject
was not given any particular instruction. The test person can
do any kind of action while waiting for a good opportunity to
cross the street. He or she can do some stretching (pretending
to be a jogger), place a mobile phone call, walk up and down
the pavement, tie his or her shoes, et cetera. At an arbitrary
point of time, the test person crosses the road.

C. MCHOG/SVM Classification Results

The evaluation was carried out on data of the test persons
performing the 5 scenarios. 4663 pedestrian ROIs were
automatically extracted using a multi-scale HOG descriptor



(a) (b) (c)

(d) (e) (f)
Fig. 3. Sketch of scenarios: a) Scenario s1, b) Scenario s2, c) Scenario s3,
d) Scenario s4, e) First part of a possible Scenario s5 where the test person
starts to tie his shoes, f) Second part of a possible Scenario s5 where the
test person directly intents to walk after tieing his shoes.

and linear SVM classification [42]. The frame where a
human observer recognizes the initial foot movement, below
denoted as initial frame, is labeled manually. In order to
create a database for training and testing, the pedestrian
ROIs are separated into positive and negative examples using
the information of the labeled initial frames. In particular,
the first 30 frames before the initial frame are the negative
examples and the 30 after the initial frame are the positive
examples.

Note, however, that application of this hard separation
for classifier training could potentially impair classification
performance for two major reasons. First, the data closest
to the initial frame are hardly discriminative. Second, it
is challenging to label the exact frame. To cope with this
problem, we discard the 5 adjacent patches of each class
to the initial frame, leaving the decision about the correct
initial frame to the generalization ability of the SVM. By that
means we have splitted the 4663 patches in 2700 positive
and 1963 negative examples. For training we use a subset
of 1700 positive and 963 negative examples (see Fig. 4).
The remaining 1000 examples of each class were used for
balanced testing. Training and testing sets used disjunctive
video sets.

Fig. 4. MHIs of the motion database. Four images on the left: positive
examples, on the right: negative examples.

Fig. 5 plots the classification results we achieved. The
points of this ROC graph were generated by performing a
sweep of the SVM parameter C. The 9 point sets represent
different parameter settings, IDs see Table I. We observe
maximum true positive rate (99,1 %) at lowest false positive
rate (1,5 %) and maximum accuracy (98,8 %) for a cell size
of 32 × 32 px and 12 bins.

The elements of the confusion matrix of the best classifier
are denoted in the last four columns of Table I. We use

Fig. 5. Receiver operating characteristics (ROC) for MCHOG/SVM
classification.

the configuration labeled bold (data line 2, minimum false
negatives at low false positive rate) as default descriptor
and basis in the following evaluation. The associated penalty
multiplier of the linear SVM is C = 2−8.

Fig. 6 illustrates the detection of the intention of a
pedestrian to start walking by displaying a warning symbol
200 ms after the initial frame. Note, that the motion of the
pedestrian, where he obviously discusses with his counterpart
before starting (Scenario 5), involving significant motion of
the upper extremities, is not detected erroneously.

ID Cell Cell Bins TP TN FP FN
height (px) width (px) rate rate rate rate

1 32 32 9 .991 .983 .017 .009
2 32 32 12 .991 .985 .015 .009
3 32 32 15 .988 .987 .013 .012
4 64 64 9 .967 .943 .057 .033
5 64 64 12 .965 .942 .058 .035
6 64 64 15 .966 .937 .063 .034
7 8 64 9 .990 .976 .024 .010
8 16 32 9 .984 977 .023 .016
9 32 64 9 .990 .957 .043 .010

TABLE I
CLASSIFICATION RESULTS ACCORDING TO PARAMETER VARIATION.

Fig. 6. Example sequence. Note, that the background artifacts do not impair
classification.

D. Response Time

The response time of our method is evaluated on a frame-
rate-basis. Real-time operation was not in the scope of this
study. We do expect that this can be done with hardware ac-
celeration. It was demonstrated that time critical components
of the algorithms (MOG, MHI, HOG) can be calculated on
the fly using an FPGA for the respective resolution and frame
rate [18], [19]. Fig. 7 shows accuracy vs. frame number.

We observe that within 3 - 6 frames on average, i.e.
60 - 120 ms after the manually labeled initial frame, our
algorithm detects the movement with an accuracy of 80 %.
The accuracy reaches 99 % after 17 frames, i.e. 340 ms, and
decreases towards the initial frame. Accuracy is below 100
% before the initial frame because the test persons do not



really stand still, whereas after the initial frame spreading of
legs is very discriminative for initiation of gait. In relation to
typical gait data the result corresponds to a detection within
the time span of the first step. It is in the same order of the
detection time reported for stopping [6].

Fig. 7. Accuracy TP+TN
P+N

as a function of time. (See also [6], Frame 0
corresponds to the initial frame.)

Fig. 8 presents the positions of head, center of gravity
(COG), left and right foot, and the respective velocities
during initiation of gait, manually deduced from pixel data
of a calibrated camera. Obviously, the COG-data which are
widely used for trajectory-based motion estimation are the
least sensitive for detection of gait initiation. Video-based
recognition additionally induces noise, e.g. due to the scatter
of the detected bounding box. Position and velocity of the
head, due to body bending (forward in the case of starting
and backward in the case of stopping) are slightly and that
of the legs are significantly more sensitive. Our MCHOG-
descriptor implicitly comprises these features without using
noisy absolute positions and its derivatives, respectively.

Fig. 8. Position and velocity during initiation of gait. The initial frame is
observed at 0.62 s. Left foot (dotted red line) and right foot (dashed black
line), head (broken blue line) and COG (solid magenta line).

E. Real World Application

Real world scenarios are more complex, issues such as
shadows or illumination changes have to be adressed. To
show feasabilty of our method, we process sequences cap-
tured at the Ko-FAS [5] test intersections using two high
definition cameras mounted 5 meters above street level and
looking perpendicular to eachother at the same sidewalk
corner, see Fig. 9.

Fig. 9. Images of the Ko-FAS test intersection [5] located at the University
of Applied Sciences Aschaffenburg, captured from two different cameras
(viewpoint left and viewpoint right).

This camera setup adresses the main conflict scenarios
of pedestrians at intersections according to the German In-
Depth Accident Study (GIDAS) [43]: a vehicle turns right
or left and conflicts with a pedestrian on a crosswalk. The
setup ensures the perpendicular view to the pedestrians at the
crosswalk independent from the lane to cross. Using MOG
background estimation [11] we apply our classifier for gait
initiation trained on the laboratory dataset. Fig. 10 illustrates
that the proposed method works and responds within a
fraction of the first step. The detection of the pedestrian’s
intention to cross the street is obtained 160 ms after the
initial frame in this sequence.

V. CONCLUSION

In this paper we have proposed a motion contour im-
age based HOG-like descriptor (MCHOG) in combination
with an SVM learning algorithm that decide within the
initial step if a pedestrian at the curb will enter the traffic
lane. The method is designed for monocular-video-based
stationary intersection monitoring. By evaluation of ROC
and the span of time necessary for recognition, in a case
study we demonstrate detection within 120 - 340 ms after
the manually labeled gait initiation at accuracy levels of
80 % - 99 %, respectively. The presented data have been
evaluated at laboratory conditions and feasibility of the
method in a real world intersection scenario is demonstrated.
Future work will concentrate on optimization of the response
time and on the application to a real test intersection in order
to issue a warning to the road traffic. The features described
here reflect the person’s behavior comprised in the database.
To date, there is no reference database for the initiation
and termination of human gait in real world urban traffic
scenarios.
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