# Heart Rate Variability During Physical Exercise

Heike Leutheuser, Bjoern Eskofier Pattern Recognition Lab (CS 5) Digital Sports Group 12.09.2012

Universitätsklinikum Erlangen







# Why Heart Rate Variability (HRV)?



- HRV is the existent oscillation of the heart rate
  RR interval = time between two heartbeats
  - Time [min]

- HRV is an indicator for
  - Fatigue
  - Overtraining
  - Hydration level
  - ...



2

### **Motivation**



 $\wedge / \wedge$ 

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT







# How are HRV features changing during one hour of running?



Reveals significant differences of variables

## **Study Design**



#### • 295 athletes\*

- 98 female
- 176 male
- Age: 43 ± 11 years
- BMI: 23.1 ± 2.4 kg/m<sup>2</sup>



One hour outdoor run without distance or speed requirements

\* 27 athletes did not answer the questionaire with respect to gender, age and BMI

# **Study Design - Equipment**





Polar RS 800sd
 Watch, chest strap and shoe sensor

- Kinematic data (stride frequency, running speed)
- Physiological data (RR intervals, Heart Rate)

# **Feature Extraction (1)**





Time domain features

RMSSD =

- Average heart rate
- Square root of the mean squared differences of successive RR intervals:



Tachogram (zoomed in)

# **Feature Extraction (2)**



- Frequency domain feature:
  - LF/HF-ratio of normalized power spectral density (PSD)
  - Low frequency (LF) component: 0.04 0.15 Hz
  - High frequency (HF) component: 0.15 0.40 Hz



#### **Research Question**



- HRV features:
  - Heart Rate
  - RMSSD
  - LF/HF-ratio

# How are these three HRV features changing during one hour of running?







- ANOVA = Analysis of Variance
- Aim:

Determines if significant differences between different groups of variables are existent

- Design: ANOVA with repeated measures
- Procedure:
  - Calculation of F statistic
  - Comparison of F-value to the critical value F<sub>c</sub>
  - $F_{C}$  depends on degrees of freedom (df) (Error and Numerator) and significance level  $\alpha$



- In this study: **Repeated Measures Analysis** 
  - Univariate ANOVA with repeated measures
  - Multivariate ANOVA with repeated measures
- Assumptions:
  - Independence of observation
  - Multivariate normality
     → Natural logarithm of RMSSD and LF/HF-ratio
  - Sphericity (Circularity)

→ Only for univariate ANOVA; if violated: Greenhouse & Geisser correction



#### • F values

|              | Heart Rate | In(RMSSD) | ln(LF/HF) |
|--------------|------------|-----------|-----------|
| univariate   | 1452.1     | 108.6     | 294.7     |
| multivariate | 796.6      | 91.8      | 126.5     |

#### Degrees of Freedom

|              | df Numerator  | df Error   | Critical F-value | þ       |
|--------------|---------------|------------|------------------|---------|
| univariate   | 12 <b>→</b> 1 | 3528 → 294 | 10.83            | < 0.001 |
| multivariate | 12            | 283        | 2.74             | < 0.001 |

# Significant differences in the means of Heart Rate, RMSSD and LF/HF-ratio over distinct 5 minute sequences

### **Results – Post-Hoc Procedure**



• Determination of significant differences in the segments



- No significant differences for all three parameters
  - Starting in different segments
  - Lasting up to the 12<sup>th</sup> segment
  - For RMSSD: no significant differences after the 2<sup>nd</sup> segment
- $\rightarrow$  Indication of start and end of a workout

# Summary



- Study
  - 295 volunteers
  - Task: one hour outdoor run
- Three HRV features: Heart Rate, RMSSD, LF/HF-ratio
- Evaluation with ANOVA with repeated measures

# How are these three HRV features changing during one hour of running?

 No significant differences for Heart Rate between 35 and 60 minutes RMSSD between 25 and 60 minutes LF/HF-ratio between 30 and 60 minutes



FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT

- Consideration of additional HRV features and a different segment length
- New methods:
  - Detrended Fluctuation Analysis
  - Dynamic Invariants
- Stride frequency and running speed
- Differences between female and male

# Thank you for your attention!





Bavarian Ministry of Economic Affairs, Infrastructure, Transport and Technology



Universitätsklinikum Erlangen







**TECHNISCHE FAKULTÄT** 

### Quotations

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT

- [1] http://www.laufszene-thueringen.de/berichte/2009/stundenlauf4-2
- [2] http://www.bz-berlin.de/multimedia/archive/00366/gomeztor\_366209a.jpg
- [3] http://www.bz-berlin.de/aktuell/berlin/anmelder-rekord-beimmarathon-article462004-image1.html
- [4] www.adidas.com
- [5] http://polar.fitnessmegastore.co.uk/polar-297/running-299/polarrs400-running-heart-15041.htm