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Abstract—A general approach to correct for lateral data 
truncation in cone-beam CT is presented in which the 
correction is achieved by minimizing a specific objective 
function in the projection domain. We suggest an efficient 
objective function and derive, from the general approach, an 
iterative truncation correction algorithm. This algorithm is 
initialized with a water-cylinder-model-based fan-beam 
extrapolation as it is employed in a clinical product. 
Compared to using the model-based extrapolation alone, our 
iterative algorithm improves image quality in the artifact 
regions at the boundaries of the field-of-view, particularly 
where the water-cylinder assumptions are not fulfilled. In that 
case, first quantitative evaluations on a clinical data set 
indicate an improvement in the root mean square error of up 
to 18 %. 
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I.  INTRODUCTION 
The X-ray dose that the patient receives during a CT 

exam is proportional to the volume that is irradiated during 
the scan. Several medical applications require only a small 
volume to be imaged, so that the irradiated area can be 
highly restricted. Fig. 1 shows a follow-up scan of a 
cochlear implant. In this case, a scan with a full field of 
view was performed although only the small area, indicated 
by the circle, is of diagnostic interest. Hence, a restriction of 
the X-ray irradiation to only that area would have been 
possible to significantly reduce radiation dose.  

 

 
Figure 1: In many diagnostic exams, only a part of the scanned 
volume is of diagnostic interest. The image shows a follow-up scan of a 
cochlear implant. The area of interest is marked with an ellipse. 

Several practical methods have been suggested for 
volume-of-interest tomography. Some of them require prior 
knowledge about the reconstructed object [1] or irradiate 
parts of the scan at a lower dose [2]. In this paper, however, 
we will only focus on methods that are able to reconstruct 
without any other means of prior knowledge. 

Reconstruction from laterally severely truncated 
projection data is an algorithmic challenge. Iterative 
methods are computationally demanding but might provide 
solutions if only a part of the object is truncated [3]. In case 
of bilateral truncation in all views, practically useful results 
are often obtained by estimating the missing data using 
heuristic extrapolation methods, e.g. [4]. A good overview 
on such methods is given in [5]. It is also possible to 
reconstruct without using any explicit extrapolation scheme 
[6]. Results are visually satisfying, but generally also 
approximate.  

In this paper, we follow a different approach to solve the 
truncation problem: We formulate the extrapolation of the 
missing data as an optimization problem in the projection 
domain that may involve data before and after filtering. In 
order to do so, we setup an objective function that describes 
desired properties of this extrapolation. Then we search for 
extrapolation values that minimize this objective function 
using water-cylinder-based fan beam extrapolation values as 
start values [7]. In the following, we will describe a few 
properties of truncated and complete filtered projections and 
will subsequently derive different components of an 
objective function. Using this objective function, we 
calculate extrapolation data, and use them for 
reconstructions and compare their results with 
reconstruction results from the clinically used extrapolation 
algorithm using the water-cylinder-based fan beam 
extrapolation.  At the end of this paper, we discuss the 
properties of the proposed extrapolation algorithm and 
describe future improvements of the algorithm. 

II. EXTRAPOLATION AS OPTIMIZATION PROBLEM 
The limited size of the field of measurement can be 

formulated by a multiplication of the complete row signal 
𝑝∗(𝑢, 𝜆) with a function that describes the size of the field 
of measurement 𝑑(𝑢, 𝜆), where 𝑢 ∈ [0, 𝑈 − 1] is the index 
of the detector column, 𝑢𝑚𝑖𝑛and 𝑢𝑚𝑎𝑥 are the smallest and 
the highest detector column indices that are still observed, 
and 𝜆 is the current  projection angle: 

𝑑(𝑢, 𝜆) = �  
 

1         𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥     
0                     𝑒𝑙𝑠𝑒                  
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 The observed row signal 𝑝(𝑢, 𝜆) is then found as the 
multiplication of both: 

 
𝑝(𝑢, 𝜆) =  𝑝∗(𝑢, 𝜆) ⋅  𝑑(𝑢, 𝜆) 

 
The idea of extrapolation adds new coefficients 𝑥(𝑢) to 

the observed values yielding an extrapolated 
projection 𝑝′(𝑢, 𝜆): 

𝑝′(𝑢, 𝜆) = �  
           

𝑝(𝑢, 𝜆)        𝑢𝑚𝑖𝑛 < 𝑢 < 𝑢𝑚𝑎𝑥     
𝑥(𝑢)                     𝑒𝑙𝑠𝑒               

� 

The extrapolated values can be summarized in the 
vector 𝑿  

 
𝑿 = [𝑥(0) …  𝑥(𝑢𝑚𝑖𝑛 − 1) 𝑥(𝑢𝑚𝑎𝑥 + 1) …  𝑥(𝑈 − 1)]. 
 

𝑿 is found as the solution to a minimization problem 
 

𝑿 ← argmin𝑿 𝑓(𝑿). 
 

The challenge to perform an optimal extrapolation is 
thus the challenge to find an objective function 𝑓(𝑿) that 
leads to an extrapolation, which would coincide best with 
the missing data if they could be measured. In the 
following, we describe a few properties that are suitable for 
inclusion in such an objective function. 

 

A. High Frequency Artifact 
The predominant artifact that is caused by truncation is a 

bright ring that is generated at the boundary of the field of 
view of the reconstructed image. The artifact is caused by 
the distortion that is introduced into the signal by the 
convolution of 𝑃∗(𝜔, 𝜆) with 𝐷(𝜔, 𝜆)which are the Fourier 
transforms of 𝑝∗(𝑢, 𝜆) and 𝑑(𝑢, 𝜆).  The filtered projection 
data after extrapolation is denoted by 𝑔′(𝑢, 𝜆)  in the 
following.  

The relevant property of the artifact is that it contains 
high frequencies. We use this to build the following 
constraint: The signal should only have few high frequency 
components in Fourier domain. The amount of high 
frequencies can be described using the 1D frequency 
representation 𝐺′(𝜔, 𝜆) of 𝑔′(𝑢, 𝜆) 

𝑐1 = � � 𝐺′(𝜔, 𝜆)2
 

𝜔∈𝛺ℎ𝑖𝑔ℎ

, 

where Ωℎ𝑖𝑔ℎ represents the coefficients of the spectrum that 
contains the 𝑁 highest frequencies.  

Another relevant property of the filtered projection is 
that the extrapolated values do not introduce additional 
signal. This observation is used to design a second term: 

𝑐2 = �� 𝑔′(𝑢, 𝜆)2
 𝑈−1

𝑢=0

 

B. Constant Extrapolation in Reconstruction Domain 
As we do not know the object outside the field of 

measurement, its shape is difficult to describe in a 
constraint. In most applications, we image objects that are 
homogenous to some extent. Hence, we can assume that the 
average absorption coefficient in reconstruction domain at 
the end of the field of measurement stays in the same range 
during extrapolation. In order to achieve this constant 
behavior after backprojection, we also require the filtered 
projection to be a constant continuation of the known part. 
Furthermore, we assume that there is only little deviation 
from this constant continuation. Subtraction of the average 
value should yield a signal with many zeros, i.e. a sparse 
signal.  

These postulates yield the following constraint: 

𝑐3 = � |𝑔𝑚𝚤𝑛������ − 𝑔′(𝑗, 𝜆)|1

𝑢𝑚𝑖𝑛−1 

𝑗=𝑢𝑚𝑖𝑛−𝑅

+ � |𝑔𝑚𝑎𝑥������� − 𝑔′(𝑗, 𝜆)|1

𝑢𝑚𝑎𝑥+𝑅 

𝑗=𝑢𝑚𝑎𝑥+1

 

with 

𝑔𝑚𝚤𝑛������ =
1
𝑄

� 𝑔′(𝑗, 𝜆)
𝑢𝑚𝑖𝑛+𝑄−1 

𝑗=𝑢𝑚𝑖𝑛

 

𝑔𝑚𝑎𝑥������� =
1
𝑄

� 𝑔′(𝑗, 𝜆)
𝑢𝑚𝑎𝑥 

𝑗=𝑢𝑚𝑎𝑥−𝑄+1

 

where 𝑔𝑚𝚤𝑛������ and  𝑔𝑚𝑎𝑥������� are average values over the left and 
right end of the filtered projection over an area of 𝑄 values 
and |⋅|1 describes the L1 norm that promotes sparsity. 𝑅 
denotes the area in which this constant behavior is required. 

 

C. Optimization 

Using the criteria defined above, we are now able to 
define our optimization problem using the following 
objective function: 

𝑓(𝑿) = 𝛼𝑐1 + 𝛽𝑐2 + 𝛾𝑐3,  

where 𝛼, 𝛽, and 𝛾 are constants that are used to weigh the 
influence of each of the constraints. 

 
Figure 2: The root mean square error was evaluated over the complete 
reconstructable area and in an area close to the boundary. 



 

 

 
Figure 3:  Truncation introduces additional frequencies into the signal 
that are amplified after filtering. While heuristics can help to reduce 
this effect, they often suffer from the problem that the remaining signal 
has a certain slope as seen in the left side of this example. By definition 
of a constant region at the boundary of the field of view (here 
R=Q=64), this effect is reduced. 

 

III. EXPERIMENTAL VALIDATION 
The scope of this paper is more of an exploratory nature, 

and to investigate the properties of such a compound 
objective function. We involve an iterative coordinate-
descent for optimization and initialize the iterations using a 
water-cylinder based fan-beam extrapolation. This model-
based extrapolation is also used as a baseline result in the 
experimental validation. 

 
Figure 4: The reconstruction with the complete data is shown in 
subfigure a). The effect of the truncation is shown in b). Subfigure c) 
was reconstructed with the heuristic approach. Subfigure d) shows the 
effect of the optimization (𝜶 = 𝟎.𝟓, 𝜷 = 𝟎.𝟎𝟎𝟎𝟓, and 𝜸 = 𝟎. 𝟒𝟗𝟗𝟓). 
Subfigures e) and f) show the absolute differences between images and 
a) and c) and a) and d). The darker the image is, the lower the error. 
The top and the bottom of f) show that the match between a) and d) is 
improved by the optimization process. The visualization window in 
Subfigures a-d is [-1000, 2500] HU. In subfigures e) and f) the window 
is [350, 1000] HU. 

 

In order to speed up the computation, we solved the 
problems on a multi-resolution grid that started with a very 
coarse resolution of 64 bins. In each step of the grid search, 
we increased resolution by a factor of 2 and used the result 
of the previous iteration as initial value for the optimization 
problem. In each iteration, we reduced the search space 
towards the boundary of the field of measurement to speed 
up computation time further. The optimization parameters 
were chosen as α=0.5, β=0.0005,  γ=0.4995, and 𝑅 = 𝑄 =
64.  

The reconstruction scenario was the truncated 
reconstruction of the cochlear implant in Fig.1. The scan 
was acquired with 496 projections at 1280x960 pixels. 
Reconstruction was performed at 5123 voxels with a Shepp-
Logan kernel. We chose to evaluate the proposed 
extrapolation with real data that was truncated artificially. In 
this manner, we are able to compare the extrapolation result 
with the reconstruction from the complete signal. The 
reconstructions are evaluated using the root mean square 
error (RMSE) on the reconstructable part of the image (ROI 
1) and within an area close to the boundary of the field of 
view (ROI 2, cf. Fig. 2). 



 

 

In Fig. 3 we show the effect of the extrapolation after a 
Shepp-Logan ramp filter was applied. The optimized signal 
shows the characteristics that were postulated in the 
objective function. The signal remains constant in the 
defined area, has few additional frequencies, and has a low 
norm.  

Fig. 4 shows a comparison between the different 
reconstructions obtained from the signals from Fig. 4. 
Subfigure a) shows the reference signal and Subfigure b) the 
effect of the truncation. In Subfigure c) the reconstruction 
with the heuristic method is shown. Due to the truncation, 
the lateral extent of the projection is small, making the fit of 
a water-cylinder model difficult. The extrapolation is thus 
degraded and all observed values are increased by an offset. 
The RMSE for ROI 1 is 557 HU. In ROI 2, the error is even 
larger with 628 HU. Subfigure d) shows the reconstruction 
with the optimized extrapolation. Its average RMSE is 500 
HU which is lower than in the heuristic extrapolation. At the 
boundary an average RMSE of 531 HU is obtained. This is 
only a little higher than the average of the complete ROI, i.e. 
the reconstruction shows fewer artifacts at the boundary 
than the heuristic method. The absolute difference images 
are shown in subfigures e) and f). The error is reduced at the 
top and the bottom of the image, i.e. in the areas where 
bones are at the edge of the field of measurement in the 

projection images. In these areas, the heuristic water 
cylinder assumption is violated which causes a reduction in 
image quality. The optimization helps to reduce this artifact. 

Fig. 5 shows the effect of the different compensation 
algorithms on vertical and horizontal profiles through the 
reconstruction. In order to diminish the offset error, we 
subtracted the mean values of each of the profiles in the 
visualization. On the vertical profile, the optimally 
compensated reconstruction matches the complete 
reconstruction better. This is especially the case towards the 
end of the field of measurement. In the horizontal profile, 
we do not see an improvement compared to the heuristic 
extrapolation. 

IV. DISCUSSION 
The results indicate that the presented method is able to 

improve image quality. The error introduced by the 
truncation artifact is reduced by 18%. The method seems to 
be able to yield better extrapolation results in cases where 
the assumptions of the water cylinder model are not valid.  
When bone passes through the end of the detector, the 
heuristic truncation correction algorithm is not able to find a 
very good solution since the model assumption is invalid. In 
these cases, the optimization-based method is able to 
outperform the heuristic method.  

 
Figure 5: The graphs display two profiles through the reconstructed image. The vertical profile shows an improvement towards the end of the 
field of measurement. In the horizontal profile no further improvement was obtained compared to the heuristic extrapolation. We subtracted 
the mean value of each profile to reduce the effect of the offset error. 

 



 

 

In cases that match the water cylinder assumption well, 
it is difficult to find a better solution with the presented 
objective function. The optimization-based method then 
presents the same result as the heuristic method (cf. Fig. 5). 

The presented method has an interesting property: As we 
define parts of the objective function after the filtering step, 
the optimization is dependent on the used filter kernel. If a 
smoother kernel is applied, a different extrapolation result is 
obtained. In the present paper, we employ the method in a 
Feldkamp-type reconstruction method [8]. In principle, the 
same method could also be applied to different analytic 
reconstruction methods that require a completely different 
filtering step. 

The first results indicate that criterion 𝑐2 did not show a 
lot of importance. A value of 𝛽 = 0.0005 was sufficient in 
our first experiments. The other two criteria were almost 
balanced with 𝛼 = 0.5 and 𝛾 = 0.4995. 

The runtime of the algorithm could be reduced to a 
feasible amount as we employed multi-grid methods and 
only applied few iterations (N=5) in the present study.  It 
helped to reduce the search space dramatically, but also 
limited the solution to one that is rather close to the initial 
value. This implies that the result of the computation is 
somewhat dependent on the initialization. At the present 
state, we decided that the investigation of the objective 
function was more important than finding an algorithm that 
is robust of different initializations. We expect this to 
improve with a more efficient optimization strategy. With 
respect to the objective function, we could not observe a 
deterioration that was caused by the method compared to the 
baseline result.  

 

V. CONCLUSION AND OUTLOOK 

We presented a truncation correction method that was 
inspired by the optimization of an objective function. In a 
first investigation, we could achieve an improved image 
quality compared to a water cylinder extrapolation-based 
algorithm. In an area towards the end of the field of 
measurement, a reduction of the truncation error of 18 % 
was obtained. The method could mainly contribute in areas 
where the water cylinder assumption was violated. This is 
quite surprising, as only simple assumptions were used in 
the objective function.  

In future work, we will investigate additional constraints 
that can be used in the objective function. One main concern 
is that the reconstruction still suffers from an offset error 
that needs to be reduced. This could be achieved, if the 
correct size of the object were supplied to the truncation 
correction method. Improvements of the optimization 
method are also scope of our current work. 
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