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Abstract—This work introduces and evaluates an iterative, baseline volumes with static anatomical structures. Thors$
compressed sensing (CS) reconstruction algorithm based on tight sequence acquires seven consecutive sweeps with altgynati
frame regularization for perfusion C-arm CT with a high C-arm ¢ \ward and backward rotation direction after bolus irijeet

rotation speed acquisition protocol. To allow a realistic evaluation, Each . 133 ecti in a=280qul
a digital 4D brain phantom was created by extending a recently ach sweep acquires projections in a gular range

published phantom emulating time attenuation curves (TACs) and requiresT, = 2.8 s for data acquisition with a pause
inside a virtual brain segmented from clinical MR data. We of T, = 1.2 s between sweeps. Thus TACs can be sampled
additionally incorporated MR data to vary perfusion parameters  wijth a temporal resolution of, = T, + T, = 4 s. However,
all over the brain to avoid unrealistic homogeneous structures using the well-known FDK algorithm [1] for reconstruction o
favoring CS algorithms. The iterative algorithm is compared to h ired vol he limited b f133 .
the Feldkamp algorithm by evaluating the root mean square L€ acquired volumes, the limited number o projections
error of the reconstructed TACs and Pearson correlation of leads to streak artifacts. Furthermore, the peaks of tiseidis
the reconstructed perfusion maps to the ground truth. The TACS typically lie in a range ofv 5 — 10 HU, thus perfusion
results indicate that the tight frame algorithm qualitatively and  jmaging is very sensitive to noise. An important challenge
guantitatively improves reconstructed perfusion maps compard is to find algorithms capable of reliably reconstructingtis
to the Feldkamp algorithm. > . g "
TACs at a higher noise level to limit the radiation exposure t
. INTRODUCTION the patient. Recently, new iterative reconstruction tépies

Perfusion CT (PCT) is an important imaging modality fopave been proposed with a promising application to these
diagnosis in case of an ischemic stroke event. Time attenuatchallenges: exploiting the idea of CS that the volumes have a
curves (TACs) in tissue and vessels are extracted fromSBarse representation under a certain transformation. IA we
time series of brain volumes acquired after a contrast bol@own example for such a transformation is the total varati
injection. Perfusion parameter maps calculated from TACH,V) norm which is applied by the ASD-POCS [2] and iTV
such as cerebral blood flow (CBF), cerebral blood voluni8] algorithms. In the context of perfusion imaging the TV
(CBV), and mean transit time (MTT), provide informationOrm was proposed in combination with a prior image in
about the extent of the affected tissue. They can be usedtf§ PICCS [4], and additionally with a non-convex extension
identify potentially salvageable ischemic tissue thatldde ©f the TV norm in the NCPICCS algorithm [5]. Another
reperfused by catheter-guided stroke therapy procedures sexample for a transformation is the tight frame (TF) wavelet
as intra-arterial thrombolysis. For this purpose the patie based approach presented in [6]. Also special model-based
transported to an interventional suite with C-arm angippya iterative [7] and analytical [8] algorithms have been premb
systems, where perfusion measurement is not yet availa, reconstruction of dynamic projection data from slowly
Perfusion measurement using C-arm systems would allé@fating acquisition systems by using temporal basis fanst
assessing the perfusion parameters directly before and d@r approximate the TACs. The scope of this work is the
ing the interventional procedure and help to determine th@alistic evaluation of an iterative algorithm using a nfiedi
treatment success and endpoint. Yet the low rotation speed/8rsion of the TF regularization suggested by Jia et al. jfi} w
common C-arm systems, which typically need s to acquire an extension of the realistic digital brain perfusion ploamt
one volume, makes perfusion C-arm CT (PCCT) challengin@y Riordan et al. [9]. As discussed in [6] the TF approach
Future C-arm systems with an increased rotation speed af uf's been found to have higher computational efficiency and
100°/s (Artis zeego, Siemens AG, Forchheim, Germany) wilhaintains image contrast better than TV minimization, Whic
enable protocols with reduced acquisition time. In thigigta are important features in interventional perfusion imggirhe
potential protocol with fast C-arm rotation speed is sirteda brain phantom data and tools are published online to improve
The protocol consists of two acquisition sequences: the fit§e reproducibility of this and future studies [10].
sequence acquires one sweep in forward and one in back- II. MATERIALS AND METHODS

ward rotation direction befor lus injection r r . .
ard rotation direction before bolus injection to recoust A Reconstruction Algorithms
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between the measured projection datand the reconstructed wavelet transformation. This highly favors CS reconstorct
volume f(x) : N> — R with respect to the acquisition systemalgorithms, which exploit sparse representations. Thogls
matrix A. The projections are partitioned into 10 disjoint set&xtensions to 4D dynamic phantoms do not allow for an
the relaxation factor is initialized witl# = 0.8 and reduced authentic evaluation. We adopted the dynamic head phantom
by multiplication with 5, = 0.95 after each iteration. After from [9], which was originally used for evaluation of perfu-
processing one subset of projections, all negative valugs i sion parameter calculation methods, to create an apptepria
are set to zero to obtain a physically correct solution. Tmee phantom for evaluating the reconstruction algorithms. iSim
noise the wavelet based tight frame regularization pragosiarly to what is proposed in [9], we segmented brain MRI
by Jia et al. [6] is used. The volumg is decomposed into scans from a human volunteer into white and gray matter,
27 wavelet coefficientsy;(x) = ¥;(x) ® f(x),7 = 0...26 by cerebrospinal fluid (CSF), and arteries. White/gray matter a
convolving the volume with the discrete version of a redur€SF segmentation was done from T1 weighted MRI data using
dant, piecewise linear 3D TF basis [12] consisting of a lovthe Freesurfer software [14]. Arteries were segmented from
pass filter¥(x) and high-pass filterd;(x),7 = 1...26. For a time-of-flight acquisition by thresholding and manualtpos
simplifying notation, we denote this decompositiondik) = processing. The segmentations were combined into a volume
Df(x). Then a vector-shrinkage operation is applied to thmnsisting of 150 slices with 256x256 voxels of isotropizesi
coefficients, where thé, norm of the high-pass coefficientsl mn?. Inside the volume two different tissue classes were
Th(x) = Z?il a;(x)? determines whether the high_pasgnnotated using ellipsoid ROIs:.tissue yvith reduced CBF (2
coefficients are kept or discarded. The shrinkage parameR&?!s: altogether 13197 mihand tissue with severely reduced

1 controls the level of suppressing the high-pass coeffisient’BF and CBV (2 ROIs, altogether 5761 mjmFurthermore,

In practice the regularization has shown to smoothen out A¢RO! of healthy tissue (87949 nijnaround the stroke
high contrast vessels, which can lead to underestimation &fected areas was annotated for evaluation purposesteFigu
the contrast attenuation inside the vessels and blurring 58 Shows an example of an annotated brain slice. Tissue
the vessel into the encircling tissue. Thus, the shrinkage sthat was not annotated was simulated like healthy tissue.
is modified by excluding voxels containing vessel struturdifferent perfusion parameters were assigned to the atetbta
from the regularization. A vessel madk(x) : N3 — {0,1} ROIs as shown in Table I. To further reduce the sparsity
was created by simple thresholding a baseline subtractéd F&f the brain phantom, the MR data was used to vary the

reconstruction of a sweep with high contrast attenuatisre TPerfusion parameters. The parameters were varied acgordin
vector-shrinkage operatdf" is then defined as: to the intervals shown in Table |. Details of this variatiae a
A :

provided at the phantom web page [10]. The tissue TACs were
a;(x) 1=0o0rV(x)=1, created as described in [9] by convolution of a real measured
arterial input function (AIF) from clinical PCT with a regidl
function with exponential decay. For vessel structures the
] ] (1) TACs were simulated by the real measured AIF. To incorporate
After the shrinkage step ”;g volume is recomposed from thg, anatomic tissue structures into the phantom, apptepria
new coefficientsf(x) = 32, Wi(—x)ai(x), for simplicity constant HU values were added to the TACs like in [9].
denoted byf(x) = D_TO‘(X)- The iterations stop when datap|gg, the HU values of the anatomic structures were varied
consistency has not improved after one full iteration. using the MR data to reduce sparsity. Finally the dynamic
C-arm projection data was created by forward projecting the
4D phantom according to the high C-arm rotation speed

i (x) max [T”(x)‘“ , 0} otherwise.

Th(x)

Algorithm 1 TF Shrink

1) Initialize: f© =0, ¢* = [[Af® —pll2, k=0 acquisition protocol. Poisson-distributed noise was ddite

2) Do the projections assuming an emitted X-ray densit.af 106

3) foutrut = fk =k 41 photons per mrat the source-to-detector distance as in [7].
4) ¥ = OS-ART(f*~1) (3 Iterations)

5) Shrinkage:f* = DTEVka C. Perfusion Parameter Calculation and Comparison

6) " =[|Af* —pl|2 To compute perfusion parameters from the reconstructed
7) While (¥ < 1) data, the baseline volumes were subtracted from the dynamic

volumes to extract the contrast attenuation. Then the TACs
2) EDK: The iterative algorithm is compared to standardere created from the subtracted volumes. Each volume-repre

FDK reconstruction with Parker short-scan weights [13]e ThS€nts TAC samples at the mid time point of its acquisition. By
filtering step uses a Shepp-Logan filter kernel multipliethwi linear interpolation the TACs were resampled to 1 s temporal

a Gaussian of variance? controlling smoothness and noisg€solution. A TAC inside the internal carotid artery was

level in the reconstructed volumes. selected as AIF and the perfusion parameters were caldulate
o ) ) using a deconvolution approach based on indicator-ditutio
B. Realistic Dynamic Brain Phantom theory [15]. For quantitative comparison of the recongtanc

Classical digital CT phantoms usually consist of homogedgorithms the root mean square error (RMSE) over time
neous structures and have a very sparse representationan T¥etween the reconstructed and the ground truth time curves



of the AIF and inside the annotated tissue was computed. if@mps were done using a realistic brain phantom that avoéls th
compare the resulting perfusion maps the Pearson coaelatsparse structure of classical CT phantoms. Visual impoassi
(PC) between maps created from the reconstructed TACs amdl correlation of the reconstructed maps to the ground trut
maps created from the ground truth TACs was computed. Tugsignificantly improved compared to the FDK reconstruttio
types of PC have been calculated: the first PC value takesults. However, computation time is increased compared
only the annotated tissue into account. It is focused on th® FDK reconstruction, which is critical in interventional
regions inside and close to the stroke affected tissudangtatapplications. Nevertheless, further code optimizatiod tre
how well it is separated from the healthy tissue. The seconapid development of hardware will likely make this apptoac
value represents all values of the stroke affected slichs Tclinically applicable in the foreseeable future.

PC value incorporates the higher blurring of vessels in the
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(a) Annotation

(h) FDK CBF (i) FDK CBV () FDK MTT

Fig. 1. Perfusion maps (Annotation legend: yellow: reduc@&F @rea, red: reduced CBF/CBV area, blue: healthy tissue ased for evaluation).

Healthy Reduced CBF Reduced CBF/CBV
WM | GM WM | GM WM | GM
CBF [mI/100 ml/min] | 25+ 14 53+ 14 75+425 | 16 £4.25 | 25+14 53+14
CBV [ml/100 ml] 1.9+£09 | 3.34+04 1.7£0.9 3+£0.7 042+0.2 | 0.71£0.12
MTT [s] 46+07 | 3.7£0.7 | 14+£0.75 | 11£0.75 10+1 8+1
TABLE |
PERFUSION PARAMETERY WM = WHITE MATTER, GM = GRAY MATTER).
Algorithm FDK Tight Frame Regularization W.0. vessel mask
Parameter c=051]07 | 1.0 | 125 | 1.5 | p=5-10"5 | 1-107* | 5-10~* 5.104
RMSE Tissue [HU] 7.26 427 | 3.08 | 254 | 2.29 2.52 221 2.15 2.20
RMSE AIF [HU] 78 119 | 156 | 184 | 204 53 58 86 155
PC CBF (annotated tissue) 0.68 0.75 | 0.78 | 0.79 | 0.78 0.84 0.86 0.84 0.80
PC CBV (annotated tissue) 0.54 0.62 | 0.68 | 0.71 | 0.72 0.77 0.79 0.77 0.76
PC MTT (annotated tissue) 0.35 0.47 | 0.58 | 0.66 | 0.73 0.81 0.81 0.80 0.80
PC CBF (complete tissue) 0.65 0.69 | 0.68 | 0.64 | 0.61 0.73 0.76 0.71 0.64
PC CBV (complete tissue)] 0.52 0.59 | 0.62 | 0.61 | 0.59 0.67 0.72 0.69 0.64
PC MTT (complete tissue)] 0.32 043 | 055 | 0.64 | 0.71 0.70 0.75 0.78 0.78
Iterations/Volume N/A N/A | N/A | N/A | N/A 4 6 10 4

TABLE I
QUANTITATIVE RESULTS.



