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Abstract—This work introduces and evaluates an iterative,
compressed sensing (CS) reconstruction algorithm based on tight
frame regularization for perfusion C-arm CT with a high C-arm
rotation speed acquisition protocol. To allow a realistic evaluation,
a digital 4D brain phantom was created by extending a recently
published phantom emulating time attenuation curves (TACs)
inside a virtual brain segmented from clinical MR data. We
additionally incorporated MR data to vary perfusion parameters
all over the brain to avoid unrealistic homogeneous structures
favoring CS algorithms. The iterative algorithm is compared to
the Feldkamp algorithm by evaluating the root mean square
error of the reconstructed TACs and Pearson correlation of
the reconstructed perfusion maps to the ground truth. The
results indicate that the tight frame algorithm qualitatively and
quantitatively improves reconstructed perfusion maps compared
to the Feldkamp algorithm.

I. I NTRODUCTION

Perfusion CT (PCT) is an important imaging modality for
diagnosis in case of an ischemic stroke event. Time attenuation
curves (TACs) in tissue and vessels are extracted from a
time series of brain volumes acquired after a contrast bolus
injection. Perfusion parameter maps calculated from TACs,
such as cerebral blood flow (CBF), cerebral blood volume
(CBV), and mean transit time (MTT), provide information
about the extent of the affected tissue. They can be used to
identify potentially salvageable ischemic tissue that could be
reperfused by catheter-guided stroke therapy procedures such
as intra-arterial thrombolysis. For this purpose the patient is
transported to an interventional suite with C-arm angiography
systems, where perfusion measurement is not yet available.
Perfusion measurement using C-arm systems would allow
assessing the perfusion parameters directly before and dur-
ing the interventional procedure and help to determine the
treatment success and endpoint. Yet the low rotation speed of
common C-arm systems, which typically need∼ 5 s to acquire
one volume, makes perfusion C-arm CT (PCCT) challenging.
Future C-arm systems with an increased rotation speed of up to
100◦/s (Artis zeego, Siemens AG, Forchheim, Germany) will
enable protocols with reduced acquisition time. In this study a
potential protocol with fast C-arm rotation speed is simulated.
The protocol consists of two acquisition sequences: the first
sequence acquires one sweep in forward and one in back-
ward rotation direction before bolus injection to reconstruct
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baseline volumes with static anatomical structures. The second
sequence acquires seven consecutive sweeps with alternating
forward and backward rotation direction after bolus injection.
Each sweep acquires 133 projections in a 200◦ angular range
and requiresTr = 2.8 s for data acquisition with a pause
of Tw = 1.2 s between sweeps. Thus TACs can be sampled
with a temporal resolution ofTs = Tr + Tw = 4 s. However,
using the well-known FDK algorithm [1] for reconstruction of
the acquired volumes, the limited number of 133 projections
leads to streak artifacts. Furthermore, the peaks of the tissue
TACs typically lie in a range of∼ 5 – 10 HU, thus perfusion
imaging is very sensitive to noise. An important challenge
is to find algorithms capable of reliably reconstructing tissue
TACs at a higher noise level to limit the radiation exposure to
the patient. Recently, new iterative reconstruction techniques
have been proposed with a promising application to these
challenges: exploiting the idea of CS that the volumes have a
sparse representation under a certain transformation. A well-
known example for such a transformation is the total variation
(TV) norm which is applied by the ASD-POCS [2] and iTV
[3] algorithms. In the context of perfusion imaging the TV
norm was proposed in combination with a prior image in
the PICCS [4], and additionally with a non-convex extension
of the TV norm in the NCPICCS algorithm [5]. Another
example for a transformation is the tight frame (TF) wavelet
based approach presented in [6]. Also special model-based
iterative [7] and analytical [8] algorithms have been proposed
for reconstruction of dynamic projection data from slowly
rotating acquisition systems by using temporal basis functions
to approximate the TACs. The scope of this work is the
realistic evaluation of an iterative algorithm using a modified
version of the TF regularization suggested by Jia et al. [6] with
an extension of the realistic digital brain perfusion phantom
by Riordan et al. [9]. As discussed in [6] the TF approach
has been found to have higher computational efficiency and
maintains image contrast better than TV minimization, which
are important features in interventional perfusion imaging. The
brain phantom data and tools are published online to improve
the reproducibility of this and future studies [10].

II. M ATERIALS AND METHODS

A. Reconstruction Algorithms

1) TF Shrink: The iterative CS algorithm applies the GPU-
based Algebraic Reconstruction Technique with Ordered Sub-
sets (OS-ART) presented in [11] to ensure data consistency



between the measured projection datap and the reconstructed
volumef(x) : N3 → R with respect to the acquisition system
matrixA. The projections are partitioned into 10 disjoint sets,
the relaxation factor is initialized withβ = 0.8 and reduced
by multiplication with βr = 0.95 after each iteration. After
processing one subset of projections, all negative values in f

are set to zero to obtain a physically correct solution. To reduce
noise the wavelet based tight frame regularization proposed
by Jia et al. [6] is used. The volumef is decomposed into
27 wavelet coefficientsαi(x) = Ψi(x) ⊗ f(x), i = 0...26 by
convolving the volume with the discrete version of a redun-
dant, piecewise linear 3D TF basis [12] consisting of a low-
pass filterΨ0(x) and high-pass filtersΨi(x), i = 1...26. For
simplifying notation, we denote this decomposition byα(x) =
Df(x). Then a vector-shrinkage operation is applied to the
coefficients, where thel2 norm of the high-pass coefficients

τh(x) =
√

∑26
i=1 αi(x)2 determines whether the high-pass

coefficients are kept or discarded. The shrinkage parameter
µ controls the level of suppressing the high-pass coefficients.
In practice the regularization has shown to smoothen out the
high contrast vessels, which can lead to underestimation of
the contrast attenuation inside the vessels and blurring of
the vessel into the encircling tissue. Thus, the shrinkage step
is modified by excluding voxels containing vessel structures
from the regularization. A vessel maskV (x) : N3 → {0, 1}
was created by simple thresholding a baseline subtracted FDK
reconstruction of a sweep with high contrast attenuation. The
vector-shrinkage operatorT V

µ is then defined as:

T V
µ αi(x) =







αi(x) i = 0 or V (x) = 1,

αi(x)max
[

τh(x)−µ

τh(x)
, 0
]

otherwise.
(1)

After the shrinkage step the volume is recomposed from the
new coefficientsf(x) =

∑26
i=0 Ψi(−x)αi(x), for simplicity

denoted byf(x) = DTα(x). The iterations stop when data
consistency has not improved after one full iteration.

Algorithm 1 TF Shrink

1) Initialize: f0 = 0, ǫ0 = ||Af0 − p||2, k = 0
2) Do
3) foutput = fk, k = k + 1
4) fk = OS-ART(fk−1) (3 Iterations)
5) Shrinkage:fk = DTT V

µ Dfk

6) ǫk = ||Afk − p||2
7) While (ǫk < ǫk−1)

2) FDK: The iterative algorithm is compared to standard
FDK reconstruction with Parker short-scan weights [13]. The
filtering step uses a Shepp-Logan filter kernel multiplied with
a Gaussian of varianceσ2 controlling smoothness and noise
level in the reconstructed volumes.

B. Realistic Dynamic Brain Phantom

Classical digital CT phantoms usually consist of homoge-
neous structures and have a very sparse representation in TVor

wavelet transformation. This highly favors CS reconstruction
algorithms, which exploit sparse representations. Thus, simple
extensions to 4D dynamic phantoms do not allow for an
authentic evaluation. We adopted the dynamic head phantom
from [9], which was originally used for evaluation of perfu-
sion parameter calculation methods, to create an appropriate
phantom for evaluating the reconstruction algorithms. Simi-
larly to what is proposed in [9], we segmented brain MRI
scans from a human volunteer into white and gray matter,
cerebrospinal fluid (CSF), and arteries. White/gray matter and
CSF segmentation was done from T1 weighted MRI data using
the Freesurfer software [14]. Arteries were segmented from
a time-of-flight acquisition by thresholding and manual post-
processing. The segmentations were combined into a volume
consisting of 150 slices with 256x256 voxels of isotropic size
1 mm3. Inside the volume two different tissue classes were
annotated using ellipsoid ROIs: tissue with reduced CBF (2
ROIs, altogether 13197 mm3) and tissue with severely reduced
CBF and CBV (2 ROIs, altogether 5761 mm3). Furthermore,
a ROI of healthy tissue (87949 mm3) around the stroke
affected areas was annotated for evaluation purposes. Figure
1a shows an example of an annotated brain slice. Tissue
that was not annotated was simulated like healthy tissue.
Different perfusion parameters were assigned to the annotated
ROIs as shown in Table I. To further reduce the sparsity
of the brain phantom, the MR data was used to vary the
perfusion parameters. The parameters were varied according
to the intervals shown in Table I. Details of this variation are
provided at the phantom web page [10]. The tissue TACs were
created as described in [9] by convolution of a real measured
arterial input function (AIF) from clinical PCT with a residual
function with exponential decay. For vessel structures the
TACs were simulated by the real measured AIF. To incorporate
the anatomic tissue structures into the phantom, appropriate
constant HU values were added to the TACs like in [9].
Also, the HU values of the anatomic structures were varied
using the MR data to reduce sparsity. Finally the dynamic
C-arm projection data was created by forward projecting the
4D phantom according to the high C-arm rotation speed
acquisition protocol. Poisson-distributed noise was added to
the projections assuming an emitted X-ray density of2.1 ·106

photons per mm2 at the source-to-detector distance as in [7].

C. Perfusion Parameter Calculation and Comparison

To compute perfusion parameters from the reconstructed
data, the baseline volumes were subtracted from the dynamic
volumes to extract the contrast attenuation. Then the TACs
were created from the subtracted volumes. Each volume repre-
sents TAC samples at the mid time point of its acquisition. By
linear interpolation the TACs were resampled to 1 s temporal
resolution. A TAC inside the internal carotid artery was
selected as AIF and the perfusion parameters were calculated
using a deconvolution approach based on indicator-dilution
theory [15]. For quantitative comparison of the reconstruction
algorithms the root mean square error (RMSE) over time
between the reconstructed and the ground truth time curves



of the AIF and inside the annotated tissue was computed. To
compare the resulting perfusion maps the Pearson correlation
(PC) between maps created from the reconstructed TACs and
maps created from the ground truth TACs was computed. Two
types of PC have been calculated: the first PC value takes
only the annotated tissue into account. It is focused on the
regions inside and close to the stroke affected tissue, stating
how well it is separated from the healthy tissue. The second
value represents all values of the stroke affected slices. This
PC value incorporates the higher blurring of vessels in the
perfusion maps of smoother reconstructions.

III. R ESULTS

Figure 1 shows the resulting CBF, CBV, and MTT perfusion
maps from FDK reconstruction withσ = 1.25 mm, TF Shrink
reconstruction withµ = 0.0001, and the reference images
for comparison. Table II shows the quantitative results for
different parameters, where the best result for each measure is
shown in bold. The reconstructions were performed on a laptop
computer with an Intel i7 M 620 2 x 2.7 GHz CPU, 8 GB
RAM and an Nvidia Quadro FX 880M graphic chipset. The
GPU-based implementation required∼ 50 s for one complete
TF Shrink iteration, the complete reconstruction of 9 volumes
of size 256x256x180 varied between∼ 30 – 75 min depending
on the shrinkage parameterµ. Complete reconstruction with
FDK took ∼ 1.5 min.

IV. D ISCUSSION

The perfusion maps in Figure 1 show that the maps created
from the TF Shrink reconstructions have a qualitatively good
correspondence with the reference maps for CBF and CBV.
Stroke affected areas are well separated from the healthy
regions. In the TF Shrink MTT map the areas with reduced
CBF are well visible. However, the areas with severely reduced
CBF/CBV are not visible. Since MTT= CBV

CBF and both CBV
and CBF values are very low in these regions, it is very
challenging to estimate under noisy conditions. In the maps
generated from the FDK reconstructions the affected regions
are still visible in the CBF and CBV map but not as well
separated from the healthy tissue as in the TF Shrink maps.
The FDK MTT map does not allow for a reliable location of
the stroke affected areas. This corresponds to the quantitative
results in Table II. The TF Shrink algorithm has the best PC
for most maps withµ = 10−4, e.g. the PC of the CBF map
can be increased from 0.79 for the best FDK reconstruction
to 0.86. The results also show the advantage of excluding the
vessels from regularization, which reduces blurring of vessels
and underestimation of contrast attenuation values in vessels.
The RMSE of the AIF estimation is improved from 155 HU
to 86 HU forµ = 5 · 10−4.

V. CONCLUSIONS

This work shows that iterative reconstruction with tight
frame regularization has significant potential to improve per-
fusion C-arm CT with a fast acquisition protocol. Qualitative
and quantitative comparisons of the reconstructed perfusion

maps were done using a realistic brain phantom that avoids the
sparse structure of classical CT phantoms. Visual impression
and correlation of the reconstructed maps to the ground truth
is significantly improved compared to the FDK reconstruction
results. However, computation time is increased compared
to FDK reconstruction, which is critical in interventional
applications. Nevertheless, further code optimization and the
rapid development of hardware will likely make this approach
clinically applicable in the foreseeable future.
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(a) Annotation (b) Reference CBF (c) Reference CBV (d) Reference MTT

(e) TF Shrink CBF (f) TF Shrink CBV (g) TF Shrink MTT

(h) FDK CBF (i) FDK CBV (j) FDK MTT

Fig. 1. Perfusion maps (Annotation legend: yellow: reduced CBF area, red: reduced CBF/CBV area, blue: healthy tissue area used for evaluation).

Healthy Reduced CBF Reduced CBF/CBV
WM GM WM GM WM GM

CBF [ml/100 ml/min] 25± 14 53± 14 7.5± 4.25 16± 4.25 2.5± 1.4 5.3± 1.4

CBV [ml/100 ml] 1.9± 0.9 3.3± 0.4 1.7± 0.9 3± 0.7 0.42± 0.2 0.71± 0.12

MTT [s] 4.6± 0.7 3.7± 0.7 14± 0.75 11± 0.75 10± 1 8± 1

TABLE I
PERFUSION PARAMETERS(WM = WHITE MATTER, GM = GRAY MATTER).

Algorithm FDK Tight Frame Regularization w.o. vessel mask

Parameter σ = 0.5 0.75 1.0 1.25 1.5 µ = 5 · 10−5
1 · 10−4

5 · 10−4
5 · 10−4

RMSE Tissue [HU] 7.26 4.27 3.08 2.54 2.29 2.52 2.21 2.15 2.20

RMSE AIF [HU] 78 119 156 184 204 53 58 86 155

PC CBF (annotated tissue) 0.68 0.75 0.78 0.79 0.78 0.84 0.86 0.84 0.80

PC CBV (annotated tissue) 0.54 0.62 0.68 0.71 0.72 0.77 0.79 0.77 0.76

PC MTT (annotated tissue) 0.35 0.47 0.58 0.66 0.73 0.81 0.81 0.80 0.80

PC CBF (complete tissue) 0.65 0.69 0.68 0.64 0.61 0.73 0.76 0.71 0.64

PC CBV (complete tissue) 0.52 0.59 0.62 0.61 0.59 0.67 0.72 0.69 0.64

PC MTT (complete tissue) 0.32 0.43 0.55 0.64 0.71 0.70 0.75 0.78 0.78

Iterations/Volume N/A N/A N/A N/A N/A 4 6 10 4

TABLE II
QUANTITATIVE RESULTS.


