Fast Dynamic Reconstruction Algorithm with Joint Bilateral Filtering for Perfusion C-arm CT

Michael Manhart¹, Markus Kowarschik², Andreas Fieselmann^{1,3}, Yu Deuerling-Zheng², Joachim Hornegger^{1,3}

¹ Pattern Recognition Lab, FAU Erlangen-Nürnberg, Germany ² Siemens AG, Angiography & Interventional X-Ray Systems, Forchheim, Germany ³ Erlangen Graduate School in Advanced Optical Technologies (SAOT)

TECHNISCHE FAKULTÄT

Introduction

- Perfusion C-arm CT (PCCT) enables measuring perfusion during interventional procedures with full brain coverage and good resolution in all 3 dimensions
- Challenges:

Results Blood flow maps from digital brain phantom [3]: /IW

- Slow C-arm rotation speed
- Low contrast-to-noise level in brain tissue Acquisition & Reconstruction

Dynamic Iterative Reconstruction (DIR):

- Subtract mask projections from contrast-enhanced projections to create contrast-only projection data **p**
- Represent 4D volume **x** describing the contrast time attenuation curves (TACs) as weighted sum of basis functions with basis weights w: $\vec{p} = A\vec{x}$ $\vec{x} = B\vec{w}$ $\arg\min_{\vec{w}} ||AB\vec{w} - \vec{p}||_2$ • Solve for w with Landweber iterations [1]: $\vec{w}^{k+1} = \vec{w}^k + \beta \cdot B^T A^T \vec{e}^k \qquad \vec{e}^k = \vec{p} - A B \vec{w}^k$

Table 1: Quantitative results from brain phantom study (RMSE: root mean square error of time)
 attenuation curves over time; PC: Pearson correlation between reference and reconstructed maps; CBF: cerebral blood flow; CBV: cerebral blood volume).

<u>Blood flow maps from canine stroke model study:</u>

PCCT with DIR

PCCT with FDK

- Use vessel masking in back projection to avoid streaking artifacts around vessels: $\vec{w}^{k+1} = \vec{w}^k + \beta \cdot \left(\vec{m}^{\mathrm{V}} \otimes B^T A^T \vec{e}^k + \neg \vec{m}^{\mathrm{V}} \otimes B^T A^T \left(\neg \vec{m}^{\mathrm{P}} \otimes \vec{e}^k \right) \right)$
 - $\vec{m}^{\rm V}$: volume vessel mask $\vec{m}^{\rm P}$: projection vessel mask

Noise Reduction with Joint Bilateral Filtering (JBF) [2]: Temporal maximum intensity projection for range similarity Avoids blurring of vessels into brain tissue

phantom

brain

and

data

without

phantom

denoised

	DIR	FDK
PC CBF	0.73	0.61
PC CBV	0.62	0.50

3D blood flow maps:

Canine study data by courtesy of Dr. Charles Strother, University of Wisconsin, Madison, USA. Y7

Arterial input functions:

Table 2: Quantitative results from canine stroke model study. Pearson correlation (PC) between co-registered perfusion C-arm CT (PCCT) and perfusion CT (PCT) cerebral blood flow (CBF) and cerebral blood volume (CBV) maps.

Dynamic Iterative Reconstruction Algorithm Flow Chart joint bilateral filter

Conclusion

 DIR improves temporal resolution of reconstructed TACs • JBF for denoising of low contrast tissue TACs without blurring vessels

[1] C. Neukirchen et al., An iterative method for tomographic X-ray perfusion estimation in a decomposition model-based approach, Med Phys, vol. 37, 2010.

[2] G. Petschnigg et al., Digital photography with flash and no-flash image pairs, Proc. ACM SIGGRAPH, 2004.

[3] A. J. Riordan et al., Validation of CT brain perfusion methods using a realistic dynamic head phantom, Med Phys, vol. 38, 2011.