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Abstract—Tissue perfusion measurement using C-arm angiog- C-arm systems would allow assessing the perfusion parasnete
raphy systems is a novel technique with potential high bendfi directly before and during the interventional procedure an
for catheter-guided treatment of stroke in the interventional 5 phelp to determine treatment success and endpoint [2].
suite. However, perfusion C-arm CT (PCCT) is challenging: . . .
the slow C-arm rotation speed only allows measuring samples Current C-arm SYSte_mS typically require4 — 5s to acquire
of contrast time attenuation curves (TACs) every 5 — 6 s if the X-ray projection images needed to reconstruct one velum
reconstruction algorithms for static data are used. Furthemore, and a pause of- 1 s between two successive acquisitions,

the peaks of the tissue TACs typically lie in a range of 5 which limits the temporal sampling of the TACs and makes

— 30 HU, thus perfl_Jsic_)n imaging is very. sensitive to noise. perfusion C-arm CT (PCCT) challenging.
We present a dynamic, iterative reconstruction (DIR) apprach

to reconstruct TACs described by a weighted sum of linear

spline functions. The optimization problem is solved usingan Recently new approaches have been presented to over-
appropriate initialization and a Landweber-based optimization come these problems: Fieselmann et al. [3] proposed a new
strategy with a modified backprojection step. To reduce nois a scanning protocol combining interleaved scanning andajart
novel regularization technique based on Joint Bilateral Hitering reconstruction interpolation. While providing improveeirt-
(JBF) is introduced. The algorithm is evaluated using simution - . - - .

data created with a dynamic cylindrical phantom, a realistc poral _sampllng and high computatlon_al gﬁlClency, multl_ple
digital brain phantom and real measured data from an animal Scanning sequences are required, which increases iicatiat
study with a canine stroke model. Results indicate that the R and contrast agent dose to the patient. Serowy et. al [4]
algorithm qualitatively and quantitatively improves reconstructed  and Neukirchen et al. [5] showed iterative model-based ap-
TACs and perfusion maps compared to classical Feldkamp -qaches, which reconstruct TACs described by a sum of

(FDK) reconstruction. For the brain phantom study the Pearon . . . .
correlation (PC) of the reconstructed cerebral blood flow (BF) weighted smooth temporal basis functions in order to keep th

maps to the ground truth increased from 0.82 (FDK) to 0.87 degree of freedom relatively low. Although these algorithm
(DIR). For the canine study the PC of the CBF maps to co- can be implemented similarly to classical algebraic retrans

registered perfusion CT maps increased from 0.61 (FDK) to 03  tion techniques (ART) [6], the use of basis functions with
(DIR). non-compact support introduces additional computatignal
Index Terms—Perfusion imaging, dynamic reconstruction, C- expensive steps. In [7] Neukirchen presents a computdiyona
arm CT, stroke treatment fast, analytic approach for computing the basis weights by a
weighted Feldkamp (FDK) [8] reconstruction. However, rdgce
developments in iterative reconstruction techniques ey
total variation (TV) [9] or wavelet based [10] regularizatifor
Perfusion CT (PCT) is an important imaging modality foexample, have shown to highly improve reconstruction tesul
diagnosis in case of an ischemic stroke event [1]. Time atteNn case of noisy or undersampled data. Since the peaks of the
ation curves (TACs) in tissue and vessels are extracted #0MaACs inside the brain tissue lie typically in a range of 5 —
time series of brain volumes acquired after a contrast bolg§ Hu perfusion imaging is highly sensitive to noise, which
injection. Perfusion parameter maps calculated from TAGgakes PCCT an interesting application for iterative altonis.
which represent quantities such as cerebral blood flow (CBF)
cerebral blood volume (CBV), and mean transit time (MTT), This work introduces a dynamic, iterative reconstruction
provide information about the extent of the affected tissug:)”q) algorithm which is based on the iterative parameter op
They can be used to identify potentially salvageable isébemimization algorithm by Neukirchen et al. [5]. In contras{§]
tissue that may be reperfused by catheter-guided strokafthe e use linear spline basis functions with compact suppart fo
procedures such as intra-arterial thrombolysis. For thip@se  gescribing the reconstructed TACs to reduce the computaitio
the patient is transported to an interventional suite gurdp effort. Additionally we introduce a novel denosing strateg
with a C-arm angiography system, where perfusion megased on joint bilateral filtering (JBF) [11], [12]. The atghm
surement is not yet available. Perfusion measurement usjiggimplemented GPU-based and evaluated using simulation
M. Manhart, A. Fieselmann and J. Hornegger are with PatteznoBni- data .Created with a.digital phantpm describing. mUItipl.(EMt
tion 'Lab, Depértrﬁent of Computer S.cience, Friedrich-Atalex-Universitat and tissue TACs, with an extension of the realistic d'g'tai'b
Erlangen-Niirnberg, Martensstr. 3, 91058 Erlangen, GeynMnKowarschik ~ perfusion phantom by Riordan et al. [13] and real measured

and Y. Deuerling-Zhenr?hare with Siemens AG, A?giographé &iventional  gata from an animal study with a canine stroke model. The
X-Ray Systems, Forchheim, Germany. A. Fieselmann and Jndgger are . . . .
with Erlangen Graduate School in Advanced Optical Techgielo (SAOT).  Prain phantom data and tools are published online to improve

Email: michael.manhart@cs.fau.de the reproducibility of this and future studies [14].

I. INTRODUCTION



i ‘ ‘ ‘ ‘ ‘ ‘ with a Gaussian of variance? controlling smoothness and
HZOO’ ’ 1 noise level in the reconstructed volumes.
< 150 . . .
) B. Dynamic lterative Reconstruction (DIR)
& 100r Mathematical Formulation: Since there is a continuous
§ 5ol contrast flow during the acquisition, each of thg projec-
tions is taken from a different volume. Thus for an exact
0 solution, we would have to reconstruct the 4D volume vector

0 5 10 15 20 25 30 35 T o
time t after starting acquisition [s] X = [x{ e XJTV ] . x; € R, consisting ofNp 3D volumes
Nyx X Ny X .
X; RV i =1...Nprepresented as a column vector

Figure 1: C-arm acquisition protocol 5 ’
x; € RV, Sy = Ny-Ny-N,, where each voxel in a volumg;

view-angle increment 0.8° repregents a sample of a reconstruct_ed '!'AC. To describe_ the
number of views per rotatior Noro;) 248 mapping of the 4D volume to the projection data, we define
aﬂ%ﬂ”;ﬁ?&;ﬁ)ﬁ&“ﬁ“on 4%957-6 the system matrixd assembled from matrice$; mapping the
time bet\?veen rotationg}swp) 12s 3D vpl_u.mes to the projection line integrals according to the
number of rotationg Nrot) 7 acquisition geometry, such that= Ax :
total scanning time 37.3s
source-to-detector distance 1200 mm
detector pixel size 0.616 x 0.616 mm? A0 - 0
number of detector pixel§Ny x Ny) 616 x 480 . A; € RSy
after 4 x 4 rebinning A 0 A - 0 with
total detector size ~ 380 x 296 mm? - . . .
Poono A € RONe:S0) X (No-Si).
Table I: Acquisition parameters 0 0 --- Ay,
. . . (1)
Of course, directly solvingdx = p for the exact solutiorx
Il. ACQUISITION PROTOCOL is not possible since the equation system is heavily underde

This section describes the C-arm perfusion acquisition prermined. Therefore we constrain the TACs described by
tocol used for the simulation studies and real data acquibke inside the subspace spanned by asymmetric linear spline
tions. Since currently available C-arm systems are nottilapafunctions, such that = Bw with B € R(VeSv)x(Nw-Sv) " gnd
of continuous, uni-directional C-arm rotations, the C-asm solve for the spline weightsr = [w7 - --w%W]T, w; € RSV,
rotated in a bi-directional manner in forward and backwartihe basis system is shown in Figure 2. The number of spline
direction. At first one C-arm rotation in forward and ondasis functions iV, = 2 - Ny, and the weight vectorsy;
in backward direction acquires baseline projections wité t describe the contrast attenuation at the time paifitsvhere:
static anatomical structures. In each rotatidp,; = 248

projections in an angular range of 197.6° are acquired.rAfte LEJ - (Tstop~+ Trot) +0.25 - Try  j odd
contrast agent injection the C-arm is rotatdg,; = 7 times ty = Léj (Tyop+ Tot) + 0.75 - T : even
in bi-directional manner as shown in Figure 1. Each rotation 2 stop 7T Frot) T ot J '

takes Tror = 4.3s with a pause ofl50, = 1.2s between Thust} describes the temporal position of the knot of the
each rotation. Thus direct reconstruction of the rotatiwosld linear spline belonging to the weight vecter;. The basis
allow a temporal sampling of TACs with peridfl = T;,: + matrix B computes the volume vectoxs, which describe the
Tsiop = 5.5s. The static projections are subtracted from thestimated contrast attenuation at timje by linear interpola-
projections of the contrast-enhanced scans after logaidth tion between the two closest weight vectors:

re-processing, assuming that the patient head is not moved i P_yw
pre-p g g p xi= (1 —w)wpy + wiw, with w; = 222

during acquisition. This generates the projection dataorec tn—tp
p=[pl- ~pJTvP]T, p € RSN containing only the pure ang P = max {plth <tP, p=1...Nu}, @
contrast dynamics (and noise), whefg = N - N, denotes n=min{n[t} > n=1...Ny}.

thed ?\lfze Oigt(r)]e detectc(;er p|>1<\(fels V}’\'[tNU i 616 lcolumgs Exceptions need to be defined for the beginpand for the end
and fiy = rows andNe = Nrot - Nproj the total numoer. ¢ acquisition: if0 < t? < ¥ thenx; = %w,, and if
of acquired contrast-enhanced projections. Furthermbee t w v 4 ,
vectort® = [¢7--- % | describes the acquisition time pointd: ~ ‘N, thenx; = wy,. This reflects the assumption that

of every projection inp. Table | shows an overview over all\e expect a rise of the contrast attenuation from 0 HU in the

acquisition parameters. beginning and a constant plateau phase of residual coinrast
the end.
1. DYNAMIC RECONSTRUCTIONALGORITHM To reconstruct the basis weighis from the measured pro-

jection datap, we solve the least-squares problem minimizing

A. FDK the Euclidean distance between the measured projectian dat
For initialization and comparison standard FDK reconstrug and the forward projected estimated 4D volume:

tion [8] with Parker short-scan weights [15] is used. The fil-

tering step applies a Shepp-Logan filter kernel [16] muitigpl W= argvf,nm lABw —pl,. ®)
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Figure 2: Basis functions for linear interpolation (redlico mask

and relative angular C-arm position (blue, dashed) Figure 3: MIP reconstruction results [0 50] HU

rithm. A sharp filter kernel is used to avoid blurring of
contrast vessels into the soft tissue. From the FDKmreco
uction, initial TACs are calculated by linear interpada,
whereby each reconstructed rotation represents TAC sample
- i - i at the temporal mid time point of its acquisition. The weight
whtt =w" 4+ 3. BTA" (p - ABwW"). (4)  volumesW; are initialized using the interpolated TACs. To
) . avoid the streak artifacts the back projection step is medlifi
The relaxation parametes controls the step size of therparetore the temporal MIP of the initial TACs is computed.
parameter update in each iteratioAB describes a linear By thresholding the MIP with thresholdye a vessel mask
interpolation followed by forward projection ang” A7 is in volume spacé’" (v) : N3 — {0,1} is created, indicating
a weighted backprojection of the error image onto the bagiich voxelv belongs to a vessel. Accordingly, vessel masks
weights. _ _ S in projection spacé/P(u) : N2 — {0,1} are computed for
_Implementation: The computation of the weights is done )1 ; — 1. N, projections by a maximum intensity forward
similarly as deSCQPf,Q n [5]. We reconstruct the 3D weigiiroiection of V. The projection vessel masks indicate which
volumesW; € R~ ’ ©J = 1...Nw, where eachiV; getector pixelsu belong to a ray intersecting with a vessel
represents the weights in vectar; as 3D volume, using a sirycture (see Figure 3c). In all backprojection stepsglpix
ray driven forward and a voxel driven back projector, botly the error image associated with a vessel intersecting ray
implemented in CUDA as described in [17]. To improvgy P are only backprojected onto voxels which belong to a
convergence speed, an ordered subset (OS) approach is uUgggse| according t&V. This helps to avoid the severe streak

The projections of each rotation are partitioned into 1ot  artifacts as shown in the resulting MIP slice from the vessel
subsets maximizing the difference of the acquisition amgle yasked reconstruction in figure 3b.

each subset. In each iteration, the algorithm processegsuc
sively the projections of all rotations. For each projectjs _ ) o
the corresponding volum&; is computed according to equa-C- Joint Bilateral Filtering
tion 2 using a GPU implemented linear interpolation, fordvar Due to the high sensitivity of perfusion imaging to noise, a
projected and subtracted with the measured projectionémagophisticated regularization strategy for DIR allowingjaiele
The resulting error image is weighted with its associatesisbareconstruction of TACs under noisy conditions is required.
function valueg1 — w;) andw;, and back projected onto thethe following we introduce a bilateral filter based denagsin
corresponding weight volumés,, andWV,,, respectively. After for regularization of the DIR. Bilateral filtering, introdad
processing one subset of projections, all negative attemua by [18] and made popular by [11], is a non-linear, edge-
weights in the updated vectar are set to zero to ensure apreserving noise filter using a combination of domain and
physically correct solution. range filtering. Mendrik et al. [19] presented a special &dap
Direct application of the optimization strategy of [5] infor PCT by replacing the range component by a time-intensity
combination with linear basis functions converged slowlgrofile similarity (TIPS): each voxel of a 4D perfusion vol-
and the reconstructions were corrupted by streaking et$ifa ume is replaced by a weighted combination of voxels of
Figure 3a shows a slice of the resulting temporal maximuits corresponding temporally sampled 3D volume, which are
intensity projection (MIP) volume of the TACs reconstruttespatially close and have high TIPS, i.e. the TACs the voxels
from a digital brain phantom (see section IV-C for detaild)elong to are similar. However, evaluating the TIPS measure
after 30 iterations, where severe streak artifacts arotied between two voxels requires to calculate a sum of squared
high contrast vessel structures are visible. The MIP istecka difference over the temporal dimension inducing a higher
by taking the peak of the reconstructed TACs. Thus, a goodmputational effort than standard 3D bilateral filteringour
initialization and a sophisticated optimization strategge approach we only use the peak value of the TAC instead of
required such that the algorithm converges to a suitabldtresincorporating the complete TAC to identify voxels belorgyin
Therefore all rotations are first reconstructed using th& FDxo similar structures (like vessels or healthy and strokectéd

a gradient-based iterative procedure based on an exten
Landweber scheme. This results in a weight update st
similar to classic ART-based algorithms:

We solve this large scale problem as described in [5] by usia
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Figure 4: MIP noise reduction [0 50] HU Step
tissue). This results in a bilateral filter, where the range Create Vi | Joint Bilateral
similarity is calculated using the temporal MIP M instead reale vVesse L -oint bilatera
" . . Masks — Filtering
of the filtered volume itself. Such kind of approach, where
a different image is used to calculate the range similarity,
is known as joint bilateral filtering (JBF) [12] in the image Figure 5: Algorithm overview
processing community and has the same computational effort
as standard 3D bilateral filtering. The filtered weight votum Pafam_ete'| Vvalue
WJBF is calculated fromiV; by: # lterations 6
5 i oY B 0.6/Nprgj
oD 1 mm
™P 55 HU

WP (v) =k~ w; v)s (M(v),M(v)),
W) ) Z H(V)elv, v)s (M(v), M(v)) Table 1I: Parameters DIR-JBF algorithm

v/'ENy
®)
) the denoised FDK reconstructions a fixed number of itera-
s(M(v),M(v')) = exp (— (M(v) = M(v)) /U?e) : tions is performed. Each iteration consists of a DIR step to
, 02 o achieve data consistency between the weight volumes and the
c(v,v) = exp (_ v =+l /UD) ’ measured projection data followed by denosing of all weight
k(v) = Z c(v,v)s (M(v),M(+")). volumes with JBF.
v/ENy

_ . o IV. MATERIALS & M ETHODS
Each voxelv of the f|_|t(_ered volumeW " is a_comblna_non A. Algorithm Parameters
of voxels from the original voluméV; belonging to neigh-
borhood N, weighted with the MIP similaritys and the
spatial closeness and normalized by dividing with the sum
of all weights k. Figure 4b shows the MIPs of the initial
FDK reconstruction before and after denoising using the JBF
approach, where the initial noisy MIP is used as M. B. Cylinder Phantom

For tentative evaluation of the DIR algorithm, a simple dy-
: namic phantom consisting of cylindrical structures dédsog
D. DIR-JBF Algorithm typical time curves occurring inside a stroke affected rbrai
Figure 5 shows a flow chart of the complete DIR-JB¥s used. The MIP of one slice of this phantom is shown in
algorithm. At first the baseline projections with the stati€igure 6a. The cylinders were placed around the origin of
anatomic structures are subtracted from the contrast eedana volume of size 256x256x32 with isotropic voxel spacing
projections. Then all rotations are reconstructed using tbf 1 mm and had a length of 16 mm in z direction. The
FDK algorithm with a sharp filter kernglox = 0.25 pixel).  bright white structures describe a real measured artenpalti
In the next step an initial MIP volume M is calculated fronfunction (AlFs) from clinical PCT (black curve in Figure
the reconstructed rotations, all initial volumes are dsedi 7). The light gray, gray and dark gray structures describe
using JBF and an updated M is computed from the denois€dCs in healthy tissue, tissue with reduced perfusion and
reconstructions. The vessel mask in volume space is creatisdue with severely reduced perfusion, respectively.tidseie
by thresholding M and the vessel masks for all projections ®ACs were created as described in [13] by convolution of
the forward and backward rotations are computed by forwattte AlIF with a residual function with exponential decay.
projecting the volume vessel mask using a maximum intensithe perfusion parameters for the different tissue classre w
forward projector. After initializing the weight volumesoin set for CBF to53,16,2.5ml/100 ml/min and for CBV to

The DIR-JBF algorithm parameters used for the experi-
ments are shown in Table II. If one parameter is varied for one
experiment, it is stated explicitly in the experiment dgstaon.



3.3,3,0.71 ml/100 ml for healthy tissue, tissue with reduced c?nr}g?t?;nms,%'gm ?i’zgan\jg,!/onals
and severely reduced perfusion, respectively. Due to thegsm injection rate 2.0 mi/s
in the acquisition protocol the quality of the reconstrdcte total contrast volume 28 ml
TACs depends on the temporal shift of the simulated TACs. total S‘;‘J'?:ycgg‘lzs voum¢ 10m

Therefore the TACs of every cylinder were computed from

an AIF with different temporal shift. The rise of the AIF was Table 1V: Canine study injection protocol

varied from3.5s to 7.5 s after acquisition start with an equal

increase of0.5s between adjacent cylinders. The dynamic

C-arm projection data was created by forward projecting tiotocol used for both modalities is shown in Table IV. Fa th

4D phantom according to the acquisition protocol and Poissgeal data experiments,p was set to 155 HU andg was set

distributed noise was added to the projections assuming tarb - 10~*. For the FDK reconstruction the static anatomical

emitted X-ray density of2.1 - 10° photons per m at the Structures were subtracted in volume and not in projection

detector. space and the motion compensation was carried out in the
3D volume space using a 3D-3D rigid registration based on

C. Dynamic Brain Phantom mutual information [23].

Classical digital CT phantoms usually consist of homoge- ) )
neous structures. This highly favors reconstruction dtigors E. Perfusion Parameter Calculation
exploiting homogeneity like algorithms using compressed To calculate the perfusion parameters, the reconstructed
sensing based regularizers (e.g. TV minimization) and al3®Cs were resampled to a temporal resolution 1§ by
algorithms using regularization by bilateral filtering. U8y linear interpolation. A TAC inside the internal carotid east
simple extensions to 4D dynamic phantoms do not allowas selected as AIF in the brain phantom data and a TAC
for an authentic evaluation. We adopted the dynamic hemgide the basilar artery was selected as AIF in the canine
phantom from [13], which was originally used for evaluatiostudy data. The perfusion parameters were calculated with
of perfusion parameter calculation methods, to create an aur in-house perfusion analysis software using a deconvolu
propriate phantom for evaluating the reconstruction algor. tion approach based on indicator-dilution theory [24],][25
Similarly to what is proposed in [13], we segmented braif26]. Before deconvolution the TAC samples were filtered
MRI scans from a human volunteer into white and graglice wise in spatial dimension with a 2D Gauss kernel of
matter, cerebrospinal fluid (CSF), and arteries. Whitg/graariances? = 1mn?. For quantitative evaluation of the
matter and CSF segmentation was done from T1 weightsithulation results the root mean square error (RMSE) over
MRI data using the Freesurfer software [20], [21], [22}time between the reconstructed and the ground truth time
Arteries were segmented from a time-of-flight acquisition bcurves of the AIF and inside the tissue was computed. To
thresholding and manual post-processing. The segmemsatioompare the resulting perfusion maps, the Pearson caorelat
were combined into a volume consisting of 150 slices witfPC) between maps created from the reconstructed TACs and
256 x 256 voxels of isotropic siz& mm. Inside the volume two maps created from the ground truth TACs was computed. The
different tissue classes were annotated using ellipsoitsROPC was calculated using all voxels of brain slices with strok
tissue with reduced CBF (2 ROls, altogethdt97 mm?) and annotation belonging to the brain tissue, voxels in andectos
tissue with severely reduced CBF and CBV (2 ROIs, altogethesscular structures were excluded. For quantitative ewialin
5761 mm?). Tissue that was not annotated was simulated abthe canine study perfusion maps we applied the automated
healthy tissue. Different perfusion parameters were assig ROl analysis with vascular pixel elimination discussed 3i [
to the annotated ROIs as shown in Table Ill. To furthao calculate the PC between the 8 slices PCT and the co-
reduce the sparsity of the brain phantom, the MR data wasyistered PCCT maps.
used to vary the perfusion parameters. The parameters were
varied according to the intervals shown in Table IIl. Detail V. RESULTS
of this variation are provided at the phantom web page [14]. :
The AIF and the tispsue TACs were simulated similarly aé' Cvlinder Phantom
for the cylinder phantom. To incorporate the anatomic #ssu Figure 6 shows MIP slices of the reconstructed cylinder
structures into the phantom, appropriate constant HU galughantom for FDK reconstruction withk = 1 and DIR-JBF
were added to the TACs as described in [13]. Noisy projectiégconstruction withor = 10~*. Examples of reconstructed

data was created similarly as for the cylinder phantom. ~ AlFs from the cylinder phantom using FDK and DIR-JBF
algorithm resampled td s temporal resolution, as used for

D. Canine Study the perfusion parameter calculation, are shown in Figure 7.

) ) Table V shows the RMSE of the reconstructed TACs for the
The DIR-JBF algorithm was also evaluated using data froR)s and the different tissue classes.

an animal study, where an ischemic stroke was induced in a

healthy canine under an institutionally approved proto€olr . .

hours after stroke creation, PCT was acquired and immdgiat8: Dynamic Brain Phantom

followed by a PCCT acquisition using the same protocol The quantitative comparison between FDK and DIR-JBF is
parameters as used for the simulation. The contrast injectishown in Table VI for different parameter selectionsgfand



Healthy Reduced CBF Reduced CBF/CBV
WM | GM ‘ WM | GM WM | GM
CBF [ml/100 mI/min] | 25 + 14 53+14 | 75+425]| 16 +425| 25+14 53114
CBV [mI/100 ml] 19+09| 33+04| 17+09 3+07 | 042+0.2| 0.71 £0.12
MTT [s] 46+07| 3.7+£07| 14+0.75| 11 +£0.75 10+1 8+1

Table IlI: Perfusion parameters (WM = white matter, GM = gragtter)

Algorithm FDK DIR-JBF
Parameter ok =025 ok =1 or=101] or=10""
RMSE AIFs [HU] 55.0 89.7 25.0 35.1
RMSE Tissue Healthy [HU] 16.4 15.9 4.4 7.1
RMSE Tissue Reduced Perfusion [HU] 13.6 5.0 2.9 3.0
RMSE Tissue Severely Reduced Perfusion [HU] 13.4 5.4 2.3 2.1

Table V: Quantitative results of the cylinder phantom ststipwing the root mean square error (RMSE) of the recongtluct
time attenuation curves using the FDK and the DIR-JBF apgroa

(a) Ground truth (b) FDK (c) DIR-JBF
Figure 6: MIP cylinder phantom [0 50] HU
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Figure 7: Example AIF from cylinder phantom

or. Perfusion maps calculated from the reconstructed TA((ZBIR) algorithm with a denoising strategy based on joint

are shown in Figure 8 for FDK reconstruction with = 1.25
and DIR-JBF reconstruction withig = 1.25-10~%. The TACs
of the brain phantom were reconstructed insidib & x 256 x
86 volume with isotropic voxel sizé mm covering all brain
phantom slices with stroke annotation.

C. Canine Study

VI. DISCUSSION

The MIPs of the reconstructed cylinder phantom shown in
Figure 6 illustrate two advantages of the DIR-JBF algorithm
compared to FDK reconstruction. The artifacts around the
high contrast artery structures caused by the time-varying
attenuation values are reduced in the DIR-JBF result (for a
detailed analysis of these artifacts in filtered backprajec
reconstruction see [27]). Furthermore the JBF reguladmat
avoids the smoothing of the artery structures into the elieg
tissue like in the FDK result. The example AlFs from the
cylinder phantom reconstruction in Figure 7 show how the
dynamic reconstruction can improve the temporal resatutio
and avoid the underestimation of the peaks of the TACs
compared to FDK reconstruction. Also the quantitative itesu
in Table V show that the RMSEs of the reconstructed TACs
are improved. The perfusion maps created from the brain
perfusion data in Figure 8 show that the DIR-JBF perfusion
maps compared to the FDK maps are smoother, the stroke
affected areas are mostly better separated from the healthy
tissue and the vascular structures, which are visible as the
red structures, are not blurred into the brain tissue. Tlsis a
holds for the blood flow maps of the canine study shown
in Figure 9. Furthermore a perceptible increase of the PC to
the co-registered PCT maps for DIR-JBF compared to FDK
reconstruction is observed for the canine CBF and CBV maps
(Subsection V-C).

VII. CONCLUSIONS
We introduced a novel dynamic iterative reconstruction

bilateral filtering (JBF). The computational efficiency afiro
algorithm is better compared to existing approaches due to
the use of linear spline functions as basis for the TACs.
The JBF provides a computational fast, stable and expedient
regularization, which is also easy to implement. The rasult
show that the DIR-JBF algorithm has the potential to provide
adequate reconstructions of TACs and perfusion maps from

Figure 9 shows a side-by-side comparison of co-registersidwly rotating C-arm acquisitions. Compared to the FDK
PCT and PCCT CBF maps reconstructed with the DIR-JBHgorithm the reconstructed TACs are more accurate both for
and FDK algorithms. Comparing FDK to DIR-JBF reconstrudhe cylinder phantom and realistic brain phantom. Also the
tion the PC increased from 0.50 to 0.62 for the CBV map4gsual impression and the correlation of the reconstructed

and from 0.61 to 0.73 for the CBF maps.

brain maps to the ground truth are improved. The PC values



Algorithm FDK DIR-JBF
Parameter ok =025 [ oxk=1]oxk=125]oxk=15 | or=125-10 % [or=25-10 % [or=5-10"2 [ or=10"°
RMSE AIF [HU] 48.00 117.03 135.05 151.57 24.17 24.12 26.10 26.61
RMSE Tissue [HU] 20.63 3.48 2.74 2.35 2.16 211 2.09 2.10
PC CBF 0.65 0.82 0.81 0.78 0.87 0.87 0.87 0.87
PC CBV 0.53 0.78 0.78 0.76 0.83 0.82 0.82 0.81

Table VI: Quantitative results of the brain phantom showihg root mean square error (RMSE) of the reconstructed time
attenuation curves and the Pearson correlation (PC) of Bfe &d CBV maps to the reference maps using the FDK and the
DIR-JBF approach.

Reference

CBF

CBV
Figure 8: Digital brain phantom CBF (units: ml/100 g/min)da@BV (units: ml/100 g) perfusion maps

PCCT DIR-JBF PCCT FDK

Figure 9: Canine study CBF maps (units: ml/100 g/min)
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