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ABSTRACT

Magnetically-guided capsule endoscopy (MGCE) is a nascent technology with the goal to allow the steering of
a capsule endoscope inside a water �lled stomach through an external magnetic �eld. We developed a classi�-
cation cascade for MGCE images which groups images in semantic and topological categories. Results can be
used in a post-procedure review or as a starting point for algorithms classifying pathologies. The �rst semantic
classi�cation step discards over-/under-exposed images as well as images with a large amount of debris. The
second topological classi�cation step groups images with respect to their position in the upper gastrointestinal
tract (mouth, esophagus, stomach, duodenum). In the third stage two parallel classi�cations steps distinguish
topologically di�erent regions inside the stomach (cardia, fundus, pylorus, antrum, peristaltic waves) and se-
mantically di�erent viewpoints relative to the stomach wall (close-up, mid-range and panorama view). For
image classi�cation, global image features and local texture features were applied and their performance was
evaluated. We show that the third classi�cation step can be improved by a bubble and debris segmentation
because it limits feature extraction to discriminative areas only. We also investigated the impact of segmenting
intestinal folds on the identi�cation of di�erent semantic camera positions. The results of classi�cations with
a support-vector-machine show the signi�cance of color histogram features for the classi�cation of corrupted
images (97% accuracy). Features extracted from intestinal fold segmentation lead only to a minor improvement
(3%) in discriminating di�erent camera positions.

Keywords: Magnetically-Guided Capsule Endoscopy, Content-Based Image Retrieval, Computer-Aided Diag-
nosis, Semantic Classi�cation, Upper Gastro-Intestinal Tract

1. INTRODUCTION

Stomach cancer causes nearly 10% of all cancer deaths worldwide, surpassed only by lung cancer. Stomach
cancer is particulary frequent in Asia. 43% of the Japanese population su�ers from atrophic gastritis,1 one of the
main causes of stomach cancer,2 and about 20% of the Korean population su�ers from gastroesophageal re�ux
disease.3 These numbers suggest a high demand for a precise, fast and cost e�ective way of screening the popula-
tion for signs and symptoms of cancer, since early detection of cancer increases the survival rate of the patients.4

The standard procedure for screening and examination of the upper GI tract is the esophagogastroduodenoscopy
(EGD).5 EGD is performed under full consciousness or moderate sedation of the patient and has a relatively low
risk of complications (1 out of 1000 cases).6 However, patient's fears of embarrassment, discomfort, and worries
about endoscopic procedures are common.7,8 These concerns, in conjuction with a lack of adressing patients
anxiety, may decrease the willingness of the patient to undergo an EGD procedure.8,9

An alternative to EGD is barium x-rays of the upper digestive tract.10 The so-called barium swallow is used for
the examination of the esophagus and can detect esophageal diseases such as achalasia, Schatzki's ring, gastroe-
sophageal re�ux disease or cancer of the esophagus.11�14 Barium swallow is also deployed in the examination of
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the stomach and duodenum where it can help in the diagnosis of hiatal hernia, gastric carcinoma and polyps.15�17

In comparison, EGD provides more in-depth information and outperforms barium x-rays in terms of sensitiv-
ity for the detection of esophagitis, gastritis, or small ulcers.18,19 Today modern barium computed tomography
(CT) and magnetic resonance imaging (MRI) using barium or other contrast agents may compete with EGD.20,21

However, for the upper gastrointestinal tract CT and MRI techniques are costly, time consuming, may cause
allergic reaction caused by the contrast agent and do not allow biopsy. A drawback for all x-ray techniques is
the radiation dose the patient is exposed to.

Capsule Endoscopes (CE) were introduced in 2000 by Given Imaging∗. CE is aimed primarily for small bowel
examination which is hard to reach with other types of endoscopy. CE has also been applied to the examination
of the colon and esophagus.22�24 In CE the patient swallows a capsule which then acquires images while travelling
through the gastric tract by the natural intestinal peristaltic motion. It is used in case of obscure bleedings or
whenever a disease (e.g. Crohn's disease or peptic ulcers) is suspected in the small intestine.

Classical CE is not indicated for stomach examination because the capsule can not be controlled, which makes it
impossible to reliably cover the entire surface of the stomach. Magnetically guided capsule endoscopes (MGCE)
were introduced in 2010 by Siemens Healthcare† and Olympus Medical Systems Corporation‡ making it feasible
to control a capsule endoscope in a water-�lled stomach. Two clinical studies show the feasibility of gastric
exploration with MGCE.25,26

Computer-aided diagnosis for CE and MGCE was previously presented in.27�35 In27�29 di�erent descriptors for
the task of blood and ulcera detection and topographic segmentation of the GI tract are investigated. Topographic
segmentation is addressed in30 and31 for the purpose of a more e�cient and faster review. In32 and33 the issue of
eliminating redundant frames, as well as those with intestinal juices, is addressed. In36 a set of color and texture
based features for the detection of intestinal bleedings is presented. These methods are not directly applicable to
MGCE. The duodenum, when compared to the stomach, exhibits di�erent pathologies and imaging conditions,
such as texture and distance to objects of interest. Camera viewpoints and distance to objects of interest in
CE is limited. Furthermore CE exams are conducted in an empty and narrow gastrointestinal (GI) tract, while
MGCE exams are conducted in a liquid-distended stomach.

This paper presents a three-stage classi�cation cascade for sorting MGCE images in di�erent semantic and
topological categories. Furthermore the third classi�cation stage is subdivided in two parallel classi�cation
tasks. A categorized image can ease a post-procedure review process or be used as a starting point for algorithms
classifying pathologies inside the upper GI tract such as in Mewes et al.34,35

2. THE ANATOMY OF THE STOMACH

The stomach is part of the upper digestive system, connecting to the esophagus at its upper end and the
duodenum at its lower end. The stomach itself can be further divided into three major parts. The upper part,
called fundus, the middle part, called stomach body, and the lower part called pyloric antrum or simply antrum.
Between the esophagus and the fundus is a sphincter call cardia and at the lower end between the stomach and
the duodenum is a second sphincter, called pyloric sphincter (pylorus). The stomach wall is covered by gastric
folds (or gastric rugae) to increase the stomach surface area for food. The folds allow the stomach to expand,
when food enters, without increasing the pressure in the stomach walls.

3. METHOD

Our classi�cation cascade is divided in three stages (see Fig. 1). In the �rst step (stage #1) severely corrupted
images (over-exposure, under-exposure, too many �oating particles and debris) are excluded. In a second step
(stage #2) images are classi�ed according to the topology of the upper GI tract (mouth, esophagus, stomach
and duodenum). In a third step images of the stomach are further classi�ed: Stage (#3b) topologically classi�es
images according to the position inside the stomach (cardia, fundus, pylorus, antrum, peristaltic contractions)
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Figure 1: Classi�cation cascade showing the di�erent stages and pipeline of classi�cation, as well as class-speci�c
example images from each stage.

while stage #3a groups images according to the camera viewpoint relative to the stomach wall (close-up, mid-
range view, panorama view). The following features were extracted from each image: mean, variance, skewness,
kurtosis, energy and entropy for each histogram of an HSV color channel (HSV, 18 features); line-likeliness and
directionality of the features as presented by Tamura37 (LLD, 10 features)(cf. section 3.4); linear binary pattern
(LBP, 18 features); stomach fold features (SFF, 201 features)(cf. sections 3.2-3.3). Table 1 shows which features
are used at each stage.



3.1 Bubble and Debris Detection

Bubbles and debris appear often in MGCE images. An image region with bubbles usually contains no medically
relevant information and corrupts global features, such as color or LBP histograms (Fig. 1).31 Areas with
bubbles have a di�erent texture than the stomach mucosa, the esophagus, the duodenum or the mouth. While
the latter regions mostly appear as smooth and intensity-constant regions, areas with bubbles and debris exhibit
sharp local changes in contrast caused by transitions from bubble specularities to bubble/mucosa edges and
bubble shadows. Based on these observations, we developed the following algorithm (Algorithm 1) for bubble
and debris detection:

� Steps 1-2: To distinguish between texture related to image regions with bubbles and texture related to
image regions stemming from the rest of the upper GI tract, the response image for the LBP variance
operator (8-neighborhood/radius 1)38 is computed (step 1, Fig 2b). This operator is highly discriminative
regarding local changes in contrast and invariant against shifts in gray scale. The resulting variance image
is thresholded with an empirically determined threshold (threshold used for this paper is 100) leading to a
binary pixel map (step 2, Fig 2c). The input image I and the binary pixel map have the dimension of 431
pixels in width and 432 pixel in height. We denote these dimensions as h and v for the rest of this paper.

� Steps 3-5: Three morphologic operations are performed. Step 3 reduces noise with a small opening operator
(Fig 2d). Step 4 connects gaps and openings between debris/bubble segments with a closing operator (Fig
2e). Step 5 removes transitions between stomach folds and �at mucosa that were mistakenly detected as
bubbles (Fig 2f). This occurs only for few stomach folds which exhibit a bright illumination close to the
camera and a signi�cant dark shadow at the transition to normal mucosa. This high-contrast edge region
may be above the empirical threshold applied to the LBP variance image (Step 2) and appears as a thin
line on the binary image. Such lines are removed with a small opening element (Fig 2f).

� Steps 6-7: The previously segmented region is limited to small bubble segments by a larger opening
operator. The result is subtracted from the original segmented regions of step 5. The remainder of this
operation is the small bubble segments, which were previously deleted (step 5, Fig 2g).The binary image
is subsequently dilated with an element of the same size (step 7, Fig 2h).

� Step 8: The union of the result of steps 5 and 7 represents the actual bubble area (Fig 2i).

The morphological operations performed in step 6-7 lead to a more conservatively segmented area of bubbles and
debris. For a less sensitive version of the algorithm steps 6-7 may be omitted and the segmented area of step 5 is
directly dilated with a structuring disk element of size 8 (Algorithm 2 step 6, (Fig 2g)). This latter version may
misclassify prominent edges of stomach folds as bubbles, while performing more reliably on the segmentation of
edges of bubbles. We refer to the two versions of the Algorithms 1 and 2 as low and high sensitivity versions.
Bubbles detection is applied to stages 2, 3a and 3b of the classi�cation pipeline. Images in classi�cation stage
1 may contain elements other than bubbles and upper GI mucosa such as transmission noise or saturated areas
due to overexposure. This stage is therefore not preprocessed with the bubble segmentation algorithm.

3.2 Fold Segmentation

Stomach folds are distinctive visual features in MGCE images that may convey signi�cant information for stages
#3a and #3b of the classi�cation cascade. They are oriented along the stomach sphincters from the cardia
(part of the stomach attached to the esophagus) towards the antrum to the pyloric sphincter (see section 2 for
anatomical description). Thus, the �rst task in this feature extraction process is to segment the folds in the image.
The segmentation focuses on the transitions between the actual fold and the surrounding �at stomach mucosa
(Fig.1 stage #3a and stage #3b). These particular regions appear as thin dark-shadowed regions. Algorithm
3 combines results of a Sobel edge detector together with local brightness information to extract these regions
based on the following steps:

� Steps 1-2: The gray scale image is convolved with the Sobel kernels. In order to discard weak edges, the
edge magnitude image is thresholded with an empirically determined threshold (here 201) leading to a
binary image.



Algorithm 1: Bubble and debris detection. Morphologic operations are de�ned as follows: dilation (⊕), closing
(•), opening (◦) and disk(·) denotes a morphologic structuring disk element with a given radius. Algorithm 2:
Bubble and debris detection with less sensitivity

Algorithm 1:

Require: I {Input Image, grayscale}
1: IVAR ← VAR(8,1)(I)
2: IVARτ

← IVAR > τ
3: Ibubbles ← disk(2) ◦ (IVARτ )
4: Ibubbles ← disk(11) • (Ibubbles)
5: Ibubbles ← disk(3) ◦ (Ibubbles)
6: IsmallB ← Ibubbles − disk(6) ◦ (Ibubbles)
7: IsmallB ← disk(8)⊕ (IsmallB)
8: Ibubbles ← Ibubbles ∪ IsmallB

Algorithm 2:

Require: I {Input Image, grayscale}
1: IVAR ← VAR(8,1)(I)
2: IVARτ ← IVAR > τ
3: Ibubbles ← disk(2) ◦ (IVARτ )
4: Ibubbles ← disk(11) • (Ibubbles)
5: Ibubbles ← disk(3) ◦ (Ibubbles)
6: Ibubbles ← disk(8)⊕ (Ibubbles)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2: Steps of bubble segmentation in Algorithm 1: (a) shows the original image, (b)-(i) represent step 1
to step 8 of Algorithm 1, where (b) is the response image from the LBP variance operator, images (c)-(i) are
binary images, red circles in (f) point out di�erences between (e) and (f), (j) shows the original image with the
superimposed segmented bubble region in green

� Step 3 detects dark pixels in the original image. We compute for each pixel at location (x, y) the mean
intensity value at a 15× 15 neighborhood around it, mean(Wx,y) =

∑
p∈WIg(p) where Ig(p) is the gray-scale

value at a pixel p. A pixel is considered dim and thus assigned a value 1 if its value is smaller that the
neighborhood average.

� Step 4 computes the intersection of the strong edge mask and the dim pixel mask (i.e. the result of step 2
and 3).

� Steps 5-6: From the intersected binary map 8-connected groups of pixels are computed (Step 5). The size
of a pixel group considered for further processing can be limited to a certain size using the threshold ρ.
Both versions (with and without threshold) are considered for the fold focus computation, while for the
computation of the fold coverage the threshold is not applied (both methods are described in section 3.3).
In step 6 the intersected binary mask is element-wise multiplied with the original horizontal and vertical
Sobel derivatives (ISobel(h,v)) to obtain the horizontal and vertical derivatives maps for each pixel in the



fold-transition region.

For the sake of simplicity we will refer to the extracted edges of stomach folds simply as stomach folds.

Algorithm 3: Fold segmentation algorithm. card(·) denotes the number of pixels within a 8-connected region

Require: Ig {Input Image, grayscale}
1: ISobel ← Ig ∗ Sobel
2: ISobelτ ← |ISobel| > τ
3: Imin ← I(x,y) > mean(W(x, y))
4: Iintersect ← ISobelτ ∩ Imin

5: IfoldMap ← card(8-connected regions(Iintersect)) > ρ
6: Mh,v ← ISobel(h,v) × IfoldMap

3.3 Fold Features (Fold Coverage and Line Focus)

Fold Coverage An indicator of the presence of folds is the percentage of pixels that are set to 1 in the
intersected binary map IfoldMap (Step 5 in Algorithm 3). This feature solely contains the quantitative presence
of folds in the image without information about spatial distribution and orientation. However, the ratio between
pixels belonging to folds and pixels not belonging to folds is considered as a feature since quantitative di�erences
in the amount of folds are an indicator for the capsule position relative to the stomach wall. An image captured
close to the stomach wall may exhibit fewer folds than an image capturing the complete fundus with many gastric
folds.

Fold Focus This feature aims to describe the orientation of folds on the stomach mucosa. From this description,
information may be derived about the capsule position relative to the stomach wall (stage #3a) and about the
topologic position of the capsule inside the stomach (stage #3b). For instance, if many stomach folds tend to
meet in one spot in the image one can assume that the capsule image contains the pylorus or cardia, while a
parallel arrangement of the folds, with no obvious vanishing point of the folds, may represent a situation where
the capsule is in a perpendicular position to the stomach wall. Stomach folds can be detected as prominent edges
or lines in an image. Figure 3 illustrates such segmented lines and their di�erent orientation for two topologically
di�erent images.

Stomach fold segmentation is described in Algorithm 3 and leads to a binary pixel map IfoldMap that is set to 1
for a pixel considered as part of a stomach fold and 0 if not (Step 5). IfoldMap has the same dimensions as the
image Ig. We refer to a pixel on this map with the binary value of 1 as pi = (px, py) with i = 1...n and n the total
number of these pixels. For each of these pixels the horizontal and vertical derivatives of the convolution with
the Sobel operator is computed (Step 1 and 6 of Algorithm 3). We denote these maps containing the derivatives
as Mh(x, y) and Mv(x, y) for the horizontal(h) and vertical(v) derivatives respectively. The gradient direction
for each pixel pi is denoted as

θpi = arctan

(
Mh(px, py)

Mv(px, py)

)
(1)

Subsequently for each pixel pi a line l(x)i going through this pixel is de�ned as follows:

l(x)i = − 1

θpi

· (x− px) + py (2)

For the n lines l(x)i the possible number of line-line intersections is denoted nis = ( n!
2!(n−2)! ) assuming that

none of the lines is parallel to each other. Each intersection point is denoted isj with the coordinates (x, y) and
j = 1...nis. The function



(a) (b)

(c) (d)

Figure 3: Example of di�erent fold orientations detected by Algorithm 3. (a),(b) Original stomach images: View
of the cardia (a) and stomach wall (b). (c),(d) folds extracted from the original images (a) and (b).

S(j) = N(l(x)i ∩ l(x)k) ∀ l(x)i ∦ l(x)k (3)

returns the coordinates (x, y) of the line-line intersection point isj(x, y) for all j unique combinations of two
intersecting lines l(x)i and l(x)k. N(·) rounds the value of x and y to the nearest integer so that isj(x, y) ∈ N.
The spatial and quantitative distribution of line-line intersection points is translated to a cumulative map cm of
the same dimensions (h, v) as the original gray-scale image Ig. Each map pixel cm(x,y) is de�ned as

cm(x,y) =
∑
j

δ(j) (4)

with δ an indicator function s.t.

δ =

{
1 if S(j) = (x, y)

0 otherwise
(5)

Thus, cm contains information about the quantitative accumulation of line-line intersections in the image. The
mapping to cm is comparable to a parameter space such as the Hough space for circle detection.39 For each pixel



(a) (b)

Figure 4: Arti�cially generated example histograms showing the quantitative occurrences (-Z-) for the accu-
mulated line-line intersections map cm(x,y)(-X-) vs. the intensity value of Ig (-Y-). A projected view of bin
intensities is shown on the bottom of the image for better visibility. (a) shows a distribution which occurs when
many lines meet at few points (high number of occurrences of line intersections in a few bins) The corresponding
gray-scale intensities are distributed around the mean of all possible intensities. (b) shows a distribution which
occurs when lines meet at many points (uniform number of occurrences of line intersections distributed over all
bins). The corresponding gray-scale intensities are distributed around the upper third of the intensity spectrum.
The upper third of the intensity spectrum contains dark pixel values. Therefore it can be assumed that the lines
meet in dimmer (lower intensity) illuminated background pixels of the image

being part of a stomach fold according to IfoldMap a parameter is entered into the parameter space. For cm this
parameter is the sum of all lines (Eq. 4) de�ned for all pixels pi (Eq. 2) going through a map pixel cm(x,y).

Since cm and Ig have the same size they can both be represented in a combined 2D histogram showing the
quantitative occurrences of intersections for a position in cm vs. the intensity value of Ig. The intensity
information of the original gray scale image conveys information about the distance of the spatial fold arrangement
with respect to the capsule. The more dimly illuminated background results in low intensity values, while the
well illuminated foreground results in high intensity values. Figure 4 shows two example histograms illustrating
the way information from the previously described method is translated and combined in one 2D histogram.
The number of histogram bins on both axes is �xed to 10. Each bin is used as a feature and therefore leads to
100 features per 2D histogram. Since IfoldMap can be computed in two ways (step 5 of Algorithm 3) the total
number of features computed in section 3.3 is 201 (200 fold focus features + 1 fold coverage feature).

3.4 Tamura Features

Directionality: Implemented as described by Tamura37 in chap. IV-c. Tamura's original directionality feature
is represented as the modes of the histogram of angles (directions) of gradients in the image. Here, instead
of representing the feature with the modes, the angle histogram is computed as proposed by Tamura but is
represented by six histogram statistics (mean, variance, skewness, entropy, energy, kurtosis).

Line-likeness: Implemented as described by Tamura37 in chap. IV-d. For the computation of the image
co-occurrence matrix the angles 0, π

4 ,
π
2 and 3π

4 with the discrete distance of 3 pixels are taken into account.
This results in a four-element line-likeness feature. The use of other distances did not have a signi�cant impact



Table 1: Performance of classi�cation stages given in terms of the average accuracy and sensitivity of all classes
belonging to a stage. The impact of bubble and debris segmentation (bds) is shown for the stages 2, 3a and 3b.

stage # (# of Cascade Features bds (Sensitivity Average Average
classes/ # of Images) stage (Num. of Features) High/Low) accuracy sensitivity

1 (2/349) Corruption HSV (18) No 0.97 0.92

2 (4/408) Upper GI Topology HSV, LBP (36) No 0.94 0.90
2 (4/408) Upper GI Topology HSV, LBP (36) Yes (High) 0.94 0.89

3a (3/363) Camera Pose HSV, LBP, SFF (237) No 0.89 0.84
3a (3/363) Camera Pose HSV, LBP, SFF (237) Yes (High) 0.92 0.88

3b (5/361) Stomach Topology HSV, LBP, SFF, LLD (247) No 0.75 0.44
3b (5/361) Stomach Topology HSV, LBP, SFF, LLD (247) Yes (Low) 0.82 0.48

on the classi�cation results and are, therefore, not computed. In order to make the feature rotation invariant,
the concatenated line-likeness of all four directions is sorted (circular shift) such that it starts with the least
signi�cant number. The total number of Tamura features is therefore ten.

4. RESULTS

Di�erent sets of features described in section 3 were extracted from a dataset of 1481 images. Sets were chosen
based on the quality of the described classi�cation results and based on the discriminative potential of individual
features. Table 1 summarizes the number of images used for each of the four stages, as well as the exacted
composition of previously described features and their total number. To evaluate the discriminative potential
of the complete feature-set of each stage classi�cation was performed with support vector machines using radial
kernels in a 10-fold leave-one-out crossvalidation. The results of these experiments at each stage are shown in
Table 1. The impact of debris and bubble detection on the classi�cation stages 2, 3a and 3b is shown for each of
these stages. The best result regarding the low and high sensitivity version of the debris and bubble segmentation
algorithm is shown. The average accuracy and average sensitivity is computed for all stages.

5. DISCUSSION

The experimental results show that semantic and topological classi�cation of images stemming from MGCE
achieve an accuracy of over 80% for all classi�cation stages. This also holds for the true positive rates of all
stages except the topological classi�cation stage 3b. However, images from the cardia, fundus or the pylorus
region are di�cult to distinguish even for human observers. Deformation of the stomach shape due to peristaltic
waves may cause anatomical patterns that can easily be confused with other anatomic regions. Features based
on the presence and orientation of stomach folds in an image could improve the results but are strongly in�u-
enced by the camera pose. Stage 3a classi�es the camera pose with an average accuracy of 92% and an average
sensitivity of 88%. Therefore, for future work one should consider shifting the classi�cation stage 3a ahead of
the classi�cation stage 3b and use the obtained knowledge as an additional information to solve 3b. However,
taking into account the di�culties a human observer has with this classi�cation task there is no guarantee for
superior performance of stomach topology classi�cation.

Regarding the bubble and debris segmentation it is notable that this method can improve the classi�cation result
for the two classi�cation stages (3a and 3b) inside the stomach, but not signi�cantly for the general topological
classi�cation of the upper GI. In these stages (3a and 3b) the classi�cation task becomes more severe. Color
characteristics as an obvious discriminative feature for the general topological classi�cation of the upper GI
(stage 2) are less substantial in 3a and 3b. Features considering texture and the global fold feature become more
important. These features are strongly a�ected by bubbles and debris which explains the improvement generated
by the bubble and debris detector. The use of fold features could improve the sensitivity of the classi�cation
result for stage 3b by 2% and by 3% for stage 3a. For stomach topology classi�cation, the bubble segmentation
with low sensitivity gave better results than the one with high sensitivity.



6. NEW OR BREAKTHROUGH TO BE PRESENTED

This paper proposes a classi�cation cascade for MGCE images. The presented classi�cation results suggest that
techniques from passive capsule endoscopy such as31 can be applied successfully for some tasks. However, for
stomach topology classi�cation they are inadequate for the second and third classi�cation stages. Therefore, we
developed an algorithm for fold segmentation and an approach for exploiting this information. We also showed
that the detection and exclusion of bubble areas enhanced the classi�cation result especially for stages 2 and 3 of
the classi�cation cascade. Our evaluation also showed that di�erent stages of the cascade and di�erent features
need di�erent bubble and debris segmentation settings.
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