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Abstract. Vessel diseases are very common reason of permanent organ damage,

disability, and death. This fact necessitates further research for extracting meaningful

and reliable medical information from the 3D DSA volumes. Murray’s Law states

that at each branch point of a lumen-based system the sum of the minor branch

diameters each raised to the power x is equal to the main branch diameter raised to

the power x. The principle of minimum work and other factors like the vessel type

impose typical values for the junction exponent x. Therefore, deviations from these

typical values may signal pathological cases. In this paper, we state the necessary and

the sufficient conditions for the existence and the uniqueness of the solution for x. The

second contribution is a scale- and orientation- independent set of features for stenosis

classification. A support vector machine classifier was trained in the space of these

features. Only one branch was misclassified in a cross validation on 23 branches. The

two contributions fit into a pipeline for the automatic detection of the cerebral vessel

stenoses.
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1. Introduction

Vessel diseases are a major reason of permanent organ damage, disability, and death. In

this paper, we are interested in those diseases which affect the morphological properties

of the vascular wall, and hence can be detected using computer vision methods, and

then learned using machine learning techniques. Aneurysms, stenoses, and what we call

long abnormalities exemplify this kind of diseases.

A ruptured cerebral aneurysm can cause permanent brain damage, disability, or

death. Unfortunately, 80%-90% of aneurysms are not diagnosed until after they have

ruptured [Olendorf et al., 2002].

Both stenoses and aneurysms can be described as ”local” and ”rapid” changes in

the vessel’s wall geometry. However, in some cases, the vessel may have a narrowing
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(a) 3D model of the DSA

volume

(b) Axial slice (c) Sagittal slice

Figure 1. An Example of the input

1.Segmentation

2.Skeletonization

3.Cross-sections

3D DSA Volume

4.A.Classification in bifurcation features 4.B.Classification in rapid changes features

Figure 2. A system for the automatic detection of the vascular diseases

(or a widening) on a long distance, which can be in extreme cases as long as the whole

branch. Such narrowings or widenings are termed ”long abnormalities” in this paper.

Some aspects of the automatic disease detection are modality-dependent; for

instance, the difficulty, and hence the quality of the segmentation. Therefore, it is

important to mention the image modality under which our results were obtained. Our

input images are 3D Digital Subtraction Angiography volumes computed from CT scans

of the human head. Figure 1 shows an example of the input depicted from different

perspectives.

An automatic system for the vascular diseases detection (figure 2), in the context

of this paper, can be roughly described as a software which takes a 3D DSA volume as

input, and gives a pointer to the suspected points (e.g. stenoses) in the whole vascular

tree. To achieve this goal, the system must segment the vascular tree, extract the

medial axis, and cut cross-sections perpendicular to this medial axis. Then two types

of analysis are performed. First, a law in physics called Murray’s law is utilized to

compute features at the bifurcations of the vascular tree. These bifurcation features are

meant to detect the ”suspected” branch points. This kind of analysis was suggested in

[Endress et al., 2011] to detect the long abnormalities. Second, another set of features

is used to detect rapid pathological changes like stenoses and aneurysms at the non-

bifurcational medial axis points. This set of features was used and validated in this

paper on stenoses. Therefore, it is referred to by ”stenoses features” through this text.

To our knowledge, there is no currently available system which can achieve this
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task reliably and automatically on the cerebral 3D CT DSA volumes. This paper does

not present such a system. Nevertheless, it adds two novel contributions to it. The first

contribution fits in box number 4.A of figure 2 and described in section 2.3. The second

fits in box number 4.B of the same figure and described in section 2.4.1.

The organization of the paper is as follows. In section 2.1 the vessels segmentation

from the 3D DSA volumes is discussed. Section 2.2 discusses getting the medial axis of

the segmented mask. In section 2.3 the junction-exponent of Murray’s law is studied

and utilized. Section 2.4 addresses the stenosis classification problem. This includes

a review of the used machine learning techniques, a description of our training data,

and a novel set of features. The results are presented in section 3 and discussed with a

summary of conclusions in section 4.

2. Materials and methods

2.1. Segmentation

Aiming for a generic, flawless segmentation framework for 3D vessels is prob-

ably illusory [Lesage et al., 2009]. Vesselness measures which depend on the

eigenvalues of the Hessian of the intensity profile were used in the literature

[Lorenz et al., 1997],[Frangi et al., 1998],[Aylward et al., 1996] for vessels segmentation.

Unfortunately, and depending on the noise level, the information we obtained from

these measures were not always sufficient. One may think of combining it with the

intensity information and the homogeneity constraints in an EM-MRF scheme like

[Zhang et al., 2002]. However, this is computationally expensive because of the multi-

scale Hessian computation, the eigenvalue analysis, and the iterative scheme.

Level set methods became very popular tool in computer vision since they were

introduced by Sethian and Osher in the 1980s [Osher and Sethian, 1988]. Antiga

[Antiga, 2002] used the level set segmentation for segmenting 3D vessels. The vascular

wall smoothness was controlled by an average second order term. The level set was

attracted to the vascular wall using an attraction term to image regions of high gradient

magnitude, which correspond to the vessel wall. We used this approach, as it gave

sufficiently good results in reasonable time.

2.2. Skeletonization

The skeleton is a classical notion of geometry [Blum et al., 1967]. There exists several

algorithms of skeletonization [Lantuéjoul and Maisonneuve, 1984],[Heijmans, 1994].

The first approach by mathematical morphology is in [Lantuéjoul, 1978]. It is called

the skeleton of Lantuejoul. In [Serra, 1988], a link was established with approaches

based on the distance transform. In fact, the geodesic skeleton by influence zone (SKIZ)

is the basic notion used in the watershed [Beucher and Lantuéjoul, 1979].

With morphological thinning approaches, erosion is applied iteratively on the

object at hand until no further erosion can be carried out without breaking some
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rules. These rules seek to guarantee the connectedness of the remaining voxels and

to assure that almost the same amount of erosion was applied from all directions

[Lee et al., 1994],[Lam et al., 1992].

Distance transform methods use the information of the distance transform

[Borgefors, 1986]. Informally speaking, the ridge of this transform is the sought skeleton.

The method we use [Antiga, 2002] is conceptually distance-transform based. The medial

axis is defined as the curve C which minimizes the following energy functional:∫ L=C−1(p1)

0=C−1(p0)

F (C(s))ds

where C is the centerline curve, p0, p1 are the start and end points, and F (X) = 1
R(X)

.

R is the field of the maximum inscribed spheres inside the vessel. The domain of F is

restricted to the Voronoi diagram of the boundary. Instead of following a variational

approach, the wave propagation theory and the fast marching methods were used in the

aforementioned reference to find a global optimum. We found the resulting medial axis

satisfying in terms of centeredness, thinness, and continuity.

This algorithm requires the vascular wall to be represented as a polygonal surface.

This makes its accuracy dependent on the local mesh resolution instead of the image

resolution [Antiga, 2002]. Therefore, the segmentation result is converted to a surface

mesh using Marching Cubes [Lorensen and Cline, 1987]. The resulting surface is

smoothed using [Taubin, 1995] in order to remove the small segmentation artifacts.

As a post-processing step, the resulting skeleton is slightly smoothed using a moving

average filter.

2.3. The junction exponent

A concept will be borrowed from fluid dynamics and utilized to detect the unhealthy

cases at the bifurcation points of the vascular tree. This concept is called Murray’s law:

m−1∑
i=1

axi = axm

where am is the main branch diameter, while the ais are the diameters of the minor

branches, and m is the total number of branches at the considered bifurcation, so it

is at least 3. Classical literature of Murray’s law points out that a value of 3 for the

junction exponent x is the ”typical” value. Typical in the sense that best circulation

efficiency will be achieved by the system whose branches fulfill Murray’s law with this

exponent. More information is in [Sherman, 1981].

Kaimovitz et al [Kaimovitz et al., 2008] showed in a study on porcine coronary

arterial trees, that the typical exponent is a function of the vessel’s order, and it is

significantly far from Murray’s optimum 3 in many cases. For example, it is close to 3

and 3.2 for order 1, close to 2.4 for order 3 and minimized for order 5 and 6 with a value

close to 1.4. So, nature does not strictly follow Murray’s mathematical conclusion.
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Nevertheless, the junction exponent values are not arbitrary. [Endress et al., 2011]

suggested using the law to detect the ”long abnormalities” in the human vascular trees.

We think that two requirements are needed to achieve this goal. First, a theoretical

understanding of the mathematical properties of the junction exponent is necessary.

Second, a decision boundary between the healthy and the pathological bifurcations

must be learned in the bifurcation features. As mentioned in the introduction, these

bifurcation features are derived from the junction exponent. In this paper, we address

the first requirement. We also extract bifurcation features. The classification in the

space of these features is planned as further work.

2.3.1. Theoretical analysis We are interested in solving Murray’s equation:

h(x) =

(
m−1∑
i=1

axi

)
− axm = 0, x > 0 (1)

Dividing both sides by axm yields:

g(x) =

(
m−1∑
i=1

(
ai
am

)x
)
− 1 = 0, x > 0 (2)

This division is important because h(x) is not convex in general, whereas g(x) is.

The equation is not always solvable, e.g. the configuration (m = 3, a3 = a2) yields

an exponential which is never zero. We’ll see later that there is a class of cases for

which there is no solution of the equation. So, the problem is better formulated as a

minimization problem:

_
x= arg min

x
f(x) = arg min

x

((
m−1∑
i=1

(
ai
am

)x
)
− 1

)2

= arg min
x

(g(x))2 , x > 0 (3)

Adding Lagrange Multiplier λ ≥ 0 yields the following Lagrangian of the problem:

L(x, λ) =

((
m−1∑
i=1

(
ai
am

)x
)
− 1

)2

− λx (4)

The necessary conditions for the optimum are:

f ′(x) = 2g(x)g′(x) = λ

λx = 0

where

g′(x) =
m−1∑
i=1

ln(
ai
am

)(
ai
am

)x (5)

In case the constraint is inactive, x > 0 implies λ = 0 and the necessary condition turns

out to be:

f ′(x) = 2g(x)g′(x) = 0
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In the following, we characterize the properties of the possible solution of the

optimization problem (3) including its relationship with the possible solution of the

equation (2). A set of statements will be claimed and proved in order to investigate

these properties, starting with this definition:

Definition 1. We’ll call the case when the condition ∃k ∈ 1 . . .m− 1 : ak ≥ am holds

a degenerate configuration.

Claim 1. g(x) has at most one root in R under a non-degenerate configuration, and

it has no root in the feasible range under a degenerate configuration.

Proof:

(i) If am > ai, i = 1..m − 1 (i.e. non-degenerate case), then all the exponentials in g

are strictly decreasing over the whole real axis R. This implies that their sum, and

hence g is strictly decreasing over R, which leads to the fact that g has at most one

root because it is strictly monotonic and continuous.

(ii) If the condition in the previous case does not hold, then there is at least one of

the exponentials in g increasing over R ‡, which its minimum value for the feasible

range approaches 1 as x approaches 0. The other exponentials in g are decreasing

but strictly positive, which means that the sum
∑m−1

i=1 ( ai
am

)x is always strictly more

than 1 in the feasible range, and hence g(x) = 0 is not solvable.

Claim 2. g(x) has at least one root in the feasible range under a non-degenerate

configuration.

Proof: In the non-degenerate case we have limx→∞ g(x) = −1 and limx→0 g(x) = m−2.

The latter is ≥ 1 because m ≥ 3. g(x) is continuous. The previous facts imply that

there is at least one root in ]0,+∞[.

Claim 3. g′(x) has at most one root in R under any configuration, and it has no root

in R under a non-degenerate configuration.

Proof:

(i) Having g′(x) with more than one root contradicts the fact that g is a non-constant

convex function.

(ii) If am > ai, i = 1..m − 1 (non-degenerate configuration), then it is obvious from

equation (5) that a sum of exponentials with the same sign (negative) cannot be

zero.

Claim 4. g′(x) has at least one root in the feasible range under a degenerate

configuration if and only if β =
∑m−1

i=1 ln( ai
am

) < 0.

Proof:

(i) Let us consider limx→∞ g
′(x) in the degenerate case, which is one of these two cases:

‡ even in the special case when the base is 1, the minimum value is 1
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(a) There is at least k such that ak > am:

lim
x→∞

g′(x) = lim
x→∞

m−1∑
i=1

ln(
ai
am

)(
ai
am

)x = +∞

because there is at least one increasing exponential due to the degenerate case.

(b) No ai, i : 1..m − 1 is strictly larger than am, but there is at least k such that

ak = am which leads to:

lim
x→∞

g′(x) = lim
x→∞

m−1∑
i=1

ln(
ai
am

)(
ai
am

)x = C > 0

where C is a non-zero positive number.

(ii) Let us consider the limit at the other side of the feasible range:

lim
x→0

g′(x) = lim
x→0

m−1∑
i=1

ln(
ai
am

)(
ai
am

)x =
m−1∑
i=1

ln(
ai
am

)

(iii) The second derivative g′′(x) =
∑m−1

i=1 ln2( ai
am

)( ai
am

)x is always positive, which means

that g′(x) is increasing over R, and hence over the feasible range.

We conclude that the continuous function g′(x) has a root in the feasible range iff the

limit of g′ is negative when x approaches 0 .

Claim 3 leads to the following interesting result:

Result 1. Solving the equation (2) and the optimization problem (3) are equivalent

under a non-degenerate configuration!

Claims 1 and 3 lead together to:

Result 2. f(x), though not convex in general, but it has one stationary point at most.

The proof of claim 4 yields that under a degenerate configuration, there is no

solution if and only if β =
∑m−1

i=1 ln( ai
am

) ≥ 0 and this corresponds with strictly positive

g′ over the feasible range. On the other hand, g is strictly positive over the feasible

range in the degenerate case as well (see proof of claim 1). So f ′(x) = 2g(x) ∗ g′(x) is

strictly positive over the feasible range when there is no stationary point of f , which

leads to the following result:

Result 3. When f(x) has no stationary point, it is minimized (with its value zero)

when x approaches zero from the right hand side.

Of course, this case is not interesting as it cancels the effect of the individual

diameters ai by raising to power 0.
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2.3.2. Interpretation of the condition β < 0 It turns out that β < 0 has an interesting

interpretation:

m−1∑
i=1

ln(
ai
am

) < 0⇔ exp(
m−1∑
i=1

ln(
ai
am

)) < 1⇔
m−1∏
i=1

exp(ln(
ai
am

)) < 1⇔

m−1∏
i=1

ai
am

< 1⇔
∏m−1

i=1 ai
amm−1 < 1⇔

m−1∏
i=1

ai < am
m−1

Or:

m−1

√√√√m−1∏
i=1

ai < am (6)

This tells simply that β < 0 is equivalent to the geometric mean of the minor branch

diameters being less than the main branch diameter. Cases which fulfill this condition

are the non-degenerate cases plus a subset of the degenerate cases.

2.3.3. Finding the junction exponent in practice Newton’s method is a well-known

root-finding and optimization technique with a quadratic convergence rate. However, it

does not take into account the problem constraints. The theoretical results of section

2.3.1 will be utilized to use Newton’s method properly, such that the convergence is

guaranteed and the constraint is fulfilled. In the following, a detailed discussion of

using Newton’s method to minimize our objective function f (optimization problem

(3)) is presented and justified:

The degenerate condition given in definition 1 is checked:

(i) Non-degenerate case: The root of g(x) is found, Newton for finding roots is

guaranteed to converge to the root because g(x) is convex, and there is one and only

one root according to claims 1 and 2. As this root is in the feasible range (claim 2),

the constraint will be fulfilled automatically, even when the iterative procedure hits

values outside the feasible range during the iterations. There is no need to check

the root of g′(x) according to claim 3.

(ii) Degenerate case: The condition β < 0 pointed out in claim 4 is checked:

(a) If fulfilled, the stationary point of g(x) is found. Because of the convexity,

Newton’s method is guaranteed to converge to one and only one solution due

to claims 3 and 4. This solution is also automatically inside the feasible range

due to claim 4 even if Newton’s method hits the negative side of the x-axis

during the iterations.

(b) If the condition is not fulfilled, then there is no solution due to claim 4.

2.4. Stenosis classification
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2.4.1. Stenosis features A literature review of the stenosis classification reveals

the fact that not so many automatic stenosis detection approaches were suggested.

Among them, Zeng [Zeng, 2011] detected the cardiac stenoses in the 2D angiograms

by measuring the ratio between the minimum diameter and the most frequent

diameter in the vessel. TeBmann et al. [TeBmann et al., 2008] used the intensity,

the intensity gradient, and the Haar-like features in order to train an Ada-Boost

classifier to detect the coronary stenotic lesions in the CTA images. Some other

works are completely different from our approach. Either because the imaging

modality is inherently different [Goodenday et al., 1997], or because the visual pattern

is different [Makram-Ebeid, 1999],[Christodoulou et al., 2003],[Mittal et al., 2010], or

even the signal is acoustic [Pavlopoulos et al., 2004]. The method suggested in

this paper measures the morphological changes of the vascular wall as opposed to

the intensity-dependent features in [TeBmann et al., 2008] and the perfusion pattern

detection in [Goodenday et al., 1997]. Therefore, the closest approach to ours is the one

followed in [Zeng, 2011].

Figure 3. A 3D model of a branch. The white line is the medial axis. Perpendicular

to it, one cross-section was cut every 1 mm. In the training data, a smaller interval

was taken in order to use all available information.

In our approach, we extract a feature vector at each point of the medial axis of

the vessel. The intended outcome of each feature vector is to give a judge whether the

corresponding medial axis point belongs to a stenotic or a healthy vascular segment.

The features must be independent of the size and the orientation of the vessel. In the

following, we propose five features to serve this goal.

At each medial axis point, we cut a cross-section perpendicular to the medial axis.

This is shown in figure 3. For each cross-section, we compute the maximum diameter,

the minimum diameter, the area, and the circumference. Obviously, these geometric

measures cannot be used directly as an input to a machine learning algorithm because

they are dependent on the vessel size. However, their derivatives w.r.t. the distance or

the abscissa along the medial axis contain important and discriminative information.

Assume a function t(s) which increases before s = s0 and then decreases after it (or

vice versa). This behavior of t at s0 can be well captured by its curvature, or its second

derivative. If t is the maximum diameter of the vessel, and s is the spatial dimension

along the medial axis of the vessel (abscissa), then the first case may correspond to

an aneurysm, and the second may correspond to a stenosis. t can be also any other

geometric measure like the minimum diameter, the area , and the circumference. The

second derivative can capture the rapid change, but it is still dependent on the vessel
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size. For instance, a linear scaling of the vessel diameter by a factor a will scale the 2nd

derivatives of the maximum diameter, the minimum diameter, and the circumference

by a. And scale the 2nd derivative of the area by a2. Therefore, the derivative must be

normalized.

The discretization of the curvature is given by the well-known finite differences

formula:

c(t, s, d) =
t(s+ d)− 2t(s) + t(s− d)

d2
(7)

where t is the geometric measure as a function of the abscissa s along the medial axis,

and d is the scale.

To normalize it, we can divide by some measure M of the vessel size like the

maximum diameter in the whole branch, or the average diameter in the whole branch:

cn(t, s, d) =
1

M

t(s+ d)− 2t(s) + t(s− d)

d2
(8)

A possibly better normalization option than the average in the whole branch is the

simple average at the extraction point:

cn(t, s, d) =
t(s+ d)− 2t(s) + t(s− d)

t(s+d)+t(s)+t(s−d)
3

d2
(9)

We think that the second is better because no global information about the whole branch

is needed. In some applications, e.g. in 3D navigation, the segmentation of the vascular

tree into branches might be unknown. Therefore, a value like the average diameter in

the branch is unavailable.

Substituting t in (9) with the maximum diameter, the minimum diameter, the area,

and the circumference of the cross sections generates four features.

R(Si)

R(Si+D)

S

Medial Axis

Figure 4. Illustration of the feature SectionCurvature

A fifth feature uses also the second derivative, but it has a different purpose. Rather

than quantifying the changes along the medial axis like the previous four features, it

quantifies the change along the enclosing curve of the cross-section. The feature is
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defined by the following formula:

Cn(s) =
1

P (s)

P (s)∑
i=1

∣∣∣∣R(Si +D(s))− 2R(Si) +R(Si −D(s))

D(s)

∣∣∣∣ (10)

where R is the radius of the cross-section as a function of the abscissa S along the

enclosing curve. s is the abscissa along the medial axis. P (s) is the points number of

the cross-section’s enclosing curve at s. D(s) is the scale defined as a specified ratio of

the enclosing curve circumference at s. E.g. D = 10%.

There are two differences between d in (9) and D in (10). First, D is a function,

whereas d is a constant. Second, D is not squared. These two changes were made to

make the feature independent of the vessel size. Any linear scaling of the vessel diameter

will cause the same scaling of the circumference, and hence of D.

This feature measures how ”weird” or uncircular the cross-section is. It is zero for

the circular sections in spite of their radii.

Table 1 summarizes the five features. We have shown how to make the features

size-independent. And because they are extracted from cross-sections which are

perpendicular to the medial axis, they are also independent of the vessel orientation.

The features capture the vascular wall changes in spite of the change’s type. Therefore,

they can be -in principle- used for aneurysms and stenoses. In this paper, we use them

for stenoses.

Feature name Formula

MaxDiameterCurvature Substitute t with the maximum diameter in (9)

MinDiameterCurvature Substitute t with the minimum diameter in (9)

AreaCurvature Substitute t with the area in (9)

CircumferenceCurvature Substitute t with the circumference in (9)

SectionCurvature Use (10)

Table 1. Stenosis features

2.4.2. Support vector machines and kernel methods The development in the statistical

learning theory led to the invention of the support vector machine (SVM) classifier

[Boser et al., 1992]. The SVM training algorithm tries to find the linear decision

boundary which maximizes the margin between two classes. A linear decision

boundary can be expressed by the equation αx + β = 0 where α is an n-dimensional

normal vector, n is the dimensionality of the feature space, and β is the intercept.

Maximizing the margin is achieved by minimizing the L2-norm of the normal vector α

[Scholkopf and Smola, 2001].

The corresponding minimization problem is:

find α and β such that :

g(α) = 1
2
‖α‖2 + C

∑
i ξi is minimized under the conditions{

yi(α
Txi + β) ≥ 1− ξi, ξi ≥ 0 for all patterns xi

} (11)
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where xi is the ith training pattern . yi is its label which is either +1 or −1. ξis are the

slack variables. They are responsible for the soft-margin. C is the SVM cost parameter.

Allowing the classifier to make some training errors is desirable as simpler decision

surfaces tend to generalize better [Hamel, 2009]. The parameter C controls this trade-off

between the over-fitting and the under-fitting.

The optimization problem is commonly solved in its dual form which yields a

quadratic with a negative semi-definite Hessian. And hence, a concave objective

function:

g(λ) = − 1

2
λT(1,p)A(p,p)λ(p,1) + 1Tλ→ max

subject to

p∑
i=1

λiyi = 0, C ≥ λi ≥ 0

(12)

where p is the number of the training patterns, λ is a vector of Lagrange multipliers,

and A is a matrix whose elements are the inner products of the training patterns.

The SVM discussed so far finds a linear decision boundary. If the classes are not

linearly separable, then kernel methods are commonly used. The matrix A in (12)

is a matrix of inner products, therefore it is positive semi-definite. Using the kernel

trick [Scholkopf and Smola, 2001], one can replace A with other positive semi-definite

matrices. This is equivalent to mapping the feature vectors into a higher dimensional

feature space, where they can be linearly separable.

The simplest kernel is the linear kernel Ai,j = k(xi, xj) = 〈xi, xj〉 which is the one

used in the previous formulation. Another possible kernel is the Gaussian Radial Basis

Function RBF given by k(xi, xj) = exp(−γ ‖xi − xj‖2), where γ is the RBF kernel

parameter. Other common kernels include the polynomial, sigmoid, and others (see

[Abe, 2010]). The Gaussian RBF kernel is a reasonable first choice, and it has fewer

numerical difficulties and hyperparameters than the polynomial kernel [Hsu et al., 2003].

In [Lin and Lin, 2003], it was concluded that the sigmoid kernel is in general not better

than the RBF. Furthermore, if a complete model selection has been conducted using the

RBF kernel, then there is no need to consider the linear kernel [Keerthi and Lin, 2003].

Therefore, we started with the RBF. We tested also the linear kernel in order to

investigate the linear separability.

One major advantage of the SVM over the artificial neural networks (ANNs) is the

convexity of the optimization problem which leads to a global optimum, as opposed to a

local optimum in the ANNs. Another advantage is the immunity against outliers, which

can be controlled by the cost parameter C. Third is the generalization ability because

of the very nature of the SVM (see [Abe, 2010]).

Unlike the probabilistic classifiers, the support vector machine gives a hard decision.

We use the SVM for stenosis classification and we need a probabilistic result which

expresses the severity of the stenosis. For this purpose, we use the method of Platt

[Platt, 1999]. He fit a sigmoid function after the SVM in order to get a probability

measure from the distances to the decision boundary.
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One important aspect of our classification problem is the imbalance of the training

data, as the number of healthy feature vectors is much larger than the number of

the stenotic feature vectors. Veropolous et al [Veropoulos et al., 1999] suggested using

two cost parameters C+ and C− to compensate for the imbalance. The ratio by

which the positive misclassifications outweigh the negative misclassifications is called

the cost factor F = C+

C− . This model is called Control-Sensitivity SVM or CS SVM.

[Lee et al., 2001] reported considerable improvement using the CS SVM compared to

the conventional SVM. As mentioned above, our data is imbalanced. Therefore, we use

the CS SVM.

2.4.3. Training data Two classes are considered. ”normal” for the healthy feature

vectors and ”stenosis” for the stenotic feature vectors. Luckily enough, data for the

class ”normal” is available because any healthy branch can be used to provide feature

vectors for this class. However, data for the class ”stenosis” is not sufficiently available.

To circumvent this problem, we added artificial stenoses. These stenoses were generated

from natural branches which contain surface deformations by over-deforming the surface.

Figure 5(a) shows a natural and an artificial stenosis. A medical expert evaluated the

artificial stenoses in order to assess their similarity to the natural stenoses. He gave an

average grade of 65 %.

(a) An example of an artificial stenosis

(top) and a natural one (bottom)

 0

 0.5

 1

 1.5

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

Sammon1

Stenosis

Artificial Stenosis

Normal

Sammon2

(b) Sammon map of the training data

Figure 5. Training data

The natural dataset is extracted from 6 DSA volumes. It contains 12 normal

branches and 4 stenoses. The artificial dataset is 7 stenoses. Overall, we have 23

branches divided into 12 normal and 11 stenotic branches. Each branch gives a set of

feature vectors, one feature vector per medial axis point. The final result is 3087 normal

feature vectors and 189 stenotic feature vectors.
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In order to get an insight into the five-dimensional feature space, we used the

Sammon map visualization [Sammon, 1969]. It maps n dimensional feature vectors

non-linearly into 2 or 3 dimensional feature space s.t. the ”structure” is approximately

preserved. Figure 5(b) shows the Sammon map of our five-dimensional feature space.

Normalization is a common pre-processing step of the classification pipeline.

Simple normalization techniques like max-min and z-score are not without pitfalls (see

[Jain et al., 2005]). The stenosis features have similar dynamic ranges. Therefore, we

chose to train the classifiers without normalization.

3. Results

3.1. Junction exponent

The results of the junction exponent analysis are theoretical (section 2.3). What we

show here is, more or less, a proof of concept.

We solve the optimization problem (3) using the procedure described in section

2.3.3. Obviously, the diameters ais must be known. Each diameter ai is estimated by

the formula âi =
∑Li

j=1 MD(i, j), where Li is the number of the cross-sections in branch

i, MD(i, j) is the maximum diameter of the jth cross-section in branch i. A second

choice is to estimate ai using the minimum diameter instead of the maximum. A third

is to use the mean of the maximum and the minimum diameters. These three ways

of estimating the ais give different solutions of (3) and provide more information. In

addition, the residual defined by equation (2) provides another kind of information.

Figure 6 exemplifies the process. First, cross-sections are assigned to branches in

6(a). Second, an average diameter of each branch is computed 6(b). In this example,

the maximum diameters were averaged. Third, the optimization problem (3) is solved.

Figure 6(c) shows the optimum. While figure 6(d) shows the residual.

In figure 6, there is a widening in one of the minor branches. Figure 6(c) shows

that at the bifurcation related to the branch which contains the widening, we got a high

junction exponent value compared to the other bifurcation.

Figure 7 shows another example. Here, each diameter ai is estimated using the

average of the mean diameters in branch i. Bifurcation A contains an aneurysm in its

right minor branch. The branches related to bifurcation B do not contain rapid surface

changes like stenoses or aneurysms, but the main branch is narrower than one of the

minor branches (degenerate case). Both the junction exponent and the residual are

distinguishable at A and B.

One of our theoretical results was that the residual is not zero if and only if the

case is degenerate. This can be seen in bifurcation A of figure 6 and bifurcations A and

B of figure 7.
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(a) Each cross-section is assigned to its

branch

(b) The maximum diameters of each

branch are averaged

(c) The junction exponent. The arrows

represent the bifurcation direction.

(d) The residual

Figure 6. Computing the junction exponent
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(a) The mean diameters of

each branch are averaged
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(c) The residual

Figure 7. The junction exponent related information with an aneurysm

3.2. Stenosis features

SectionCurvature is meant to capture the weirdness of the cross-section. Figure 8(a)

shows this feature extracted along a branch. The cross-section at which the feature

is maximized in this branch is plotted. As can be seen, the enclosing curve of this

cross-section suffers from severe uncircular deviations along its perimeter.

Figure 8(b) shows CircumferenceCurvature along a branch. The stenosis here

is a decrease of the diameter followed by an increase. But what if there is a sever
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decrease which is not followed directly by an increase? Figures 8(c) and 8(d) show that

CircumferenceCurvature can be discriminative in this case as well.

Figures 8(a),8(b), and 8(c) are real stenoses. In Figure 8(d), we over-smoothed the

surface to make an ideal simulation of the case when the change from one side is rapid

and from the other side is gradual.

SectionCurvature should express the weirdness of the cross-section in a size-

independent way. We chose the feature vectors for which the ratio between the minimum

diameter and the maximum diameter is more than 0.9. These cross-sections are nearly

circular. Therefore, SectionCurvature must be close to zero. Figure 9(a) shows that

SectionCurvature is very close to zero for those cross-sections, regardless of the cross-

section’s size. The range of the SectionCurvature axis in the figure is the dynamic range

of this feature after removing the extreme outliers.

CircumferenceCurvature should reflect the change in a size-independent way. Figure

9(b) shows a set of stenotic feature vectors. As can be seen, CircumferenceCurvature

does not increase with the increasing circumference.

Figure 9(c) shows the expected positive correlation between CircumferenceCurva-

ture and AreaCurvature in the whole training dataset. While figure 9(d) shows that

this correlation is much less between MaxDiameterCurvature and MinDiameterCurva-

ture because most cross-sections are not circular.

3.3. Stenosis classification

To evaluate the classification performance, we use the balanced error rate BER =
1−TPR+FPR

2
. Where TPR is the true positive rate or the sensitivity. FPR is the false

positive rate or 1− specificity. The BER was chosen because it can adapt to the data

imbalance.

Estimating the performance measure is done using K-fold cross validation. One

may think of using leave-one-out cross validation LOOCV because it is an unbiased

estimator of the test error [Smola and Bartlett, 2000] and it can be efficiently computed

with the SVMs [Abe, 2010]. However, if the data is densely sampled, LOOCV may

overfit. Therefore, we have decided for K = 5.

Parameter Search was performed to find the best RBF kernel in the space of γ,

C, and F similar to [Hsu et al., 2003]. A rough estimation of the BER minimum was

found with very coarse grid search under 3-fold CV. Then a finer grid search with 5-fold

cross validation was performed near the previous optimum. As the data is imbalanced,

stratified sampling was used in both of them. The same search strategy was applied

with a linear kernel, where we have two parameters C and F . The results are shown in

table 2. Figure 10 shows a ROC curve comparison of the corresponding models.

To evaluate each model, we applied CV on the 23 branches. The following error

function was used:

E(ws, wh) =
ws

∑ns

i=1
mci
ni

+ wh

∑nh

i=1
mci
ni

wsns + whnh
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(a) Left: SectionCurvature with scale D =

10%. Right: The cross-section at which

the feature is maximized in this branch.

(b) CircumferenceCurvature extracted with scale d = 1 mm. The branch is

approximately 35 mm long. The minimum of the minimum diameters is 0.92

mm.

(c) CircumferenceCurvature extracted with scale d = 1 mm. The branch is

approximately 25 mm long. The minimum of the minimum diameters is 0.24

mm.

(d) CircumferenceCurvature on an over-smoothed version of the previous branch.

Figure 8. Stenosis features shown on stenotic branches
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Figure 9. Some statistical properties of the stenosis features

Classifier C F γ BER

SVM with linear kernel 300 10 - 0.01

SVM with RBF kernel 250 0.1 25 0

Table 2. Results of the parameter search

FPR

TPR

Figure 10. ROC curve comparison. The hard decision of each model was made

probabilistic using [Platt, 1999].The curves are computed with 5-fold CV and stratified

sampling.
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where ns is the number of the stenotic branches in the training data. nh is the number

of the healthy or the normal branches. In our case, ns = 11 and nh = 12. ni and mci are

respectively the number of the feature vectors and the number of the misclassifications

in the ith branch. ws and wh are the misclassification weights of the stenotic and

the healthy branches, respectively. This error function makes the contribution of each

branch in the error independent of the feature vectors number in this branch. Obviously,

its range is [0, 1]. The results are shown in table 3.

Classifier E(1, 1) E(2, 1) E(10, 1)

Sub-Optimal SVM with RBF kernel 0.192 0.265 0.352

Optimal SVM with linear kernel 0.064 0.084 0.111

Optimal SVM with RBF kernel 0.067 0.083 0.106

Table 3. Model Evaluation: Results of the branches CV

Figure 11 shows the distribution of the error among the branches. Branch number

19 is the only branch which was completely misclassified by both classifiers. By checking

it, we noticed that its narrowing is not really serious. It was the only stenosis with

light narrowing. Therefore, deleting it from the training data (by the CV) caused the

classification error.

Figure 11.

Figure 12 shows the result of Platt probability fitting with the optimal RBF SVM.

Of course, the test branch was removed from the training data. There are two stenoses

in the branch, and they were detected with high probability.
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Figure 12. Testing the optimal RBF classifier with Platt probability

4. Conclusions and discussion

We presented novel features for stenosis detection. These features are independent of

the vessel size and orientation. They are designed to capture the rapid changes in the

vascular wall. Therefore, in principle, they can be used to detect other types of the

vascular wall changes like aneurysms. In this paper, we investigated the features with

stenoses only.

An SVM classifier was used to separate the healthy from the stenotic feature vectors.

The Sammon map of the feature space and the high classification performance both

showed that the stenotic and the healthy feature vectors are well separated.

Sometimes the narrowing of the vessel could be too long. In an extreme case,

it could be as long as the whole branch. Such cases are not rapid surface changes.

Therefore, they cannot be detected with the stenosis features. [Endress et al., 2011]

suggested using the junction exponent of Murray’s law to detect such cases. We solved

Murray’s equation for the junction exponent as an optimization problem. We proved

that the optimization problem and the equation are equivalent only when the diameters

configuration is not degenerate. By a degenerate diameters configuration we mean that

at least one minor diameter is larger than the main diameter. This could be the case,

for example, if the main branch contains a long narrowing, or if a minor branch contains

an aneurysm.

We discussed the necessary and the sufficient conditions for the existence of an

optimal junction exponent. Basically three cases were found and proved: First, if the

case is not degenerate, then there is an existent and unique solution of the equation.

Second, if the case is degenerate but the geometric mean of the minor diameters is still

less than the main diameter. In this case, there is no solution of Murray’s equation,

but there is an existent and unique solution of the optimization problem. Third, if the

case is degenerate with the geometric mean of the minor branch diameters larger than

the main branch diameter. In this case, there is no solution, i.e. no optimal junction

exponent exists.

The stenosis features and the theoretical analysis of the junction exponent were
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both developed with the following system in mind. A system which takes a cerebral

3D DSA volume, segments it, and gets the skeleton. Then two types of analysis are

performed. First, it uses the junction exponent to identify the suspected bifurcation

points as suggested in [Endress et al., 2011]. The junction exponent can be computed

depending on the maximum, the minimum, or the mean diameters, and for each of

them there is a residual. We called all these information bifurcation features. Second,

another set of features are extracted at the non-bifurcational points and fed into an

SVM classifier to detect rapid pathological changes like stenoses and aneurysms. Since

the validation was performed on stenoses, we called this set of features stenosis features.

This paper added two contributions to the previous system. Further researches

will concentrate on classification in the bifurcation features, investigating the automatic

skeletonization, and performing the segmentation with higher degree of automation.
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