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Abstract—In interventional cardiology three-dimensional
anatomical and functional information of the cardiac chambers
would have an important impact on diagnosis and therapy. With
the technology of C-arm CT it is possible to reconstruct in-
traprocedural 3-D images from angiographic projection data. In
order to generate accurate and artifact-free reconstructions from
dynamic cardiac projections, the motion needs to be taken into
account. We present the novel Combined Multiple Heart Phase
Registration (CMHPR) method. CMHPR is an iterative motion
estimation and compensation algorithm that uses projection data
acquired during a single C-arm sweep. Filtered-backprojection
(FBP) volumes from electrocardiogram (ECG)-gated data are re-
constructed for different motion states of the heart. According to
an unknown 4-D motion vector field the ECG-gated FBP images
are deformed and accumulated to a sum volume for representing
the status of a particular heart phase. In an iterative optimization
procedure the 4-D motion vector field is computed by registering
the sum volume to a reference volume of the same heart phase.
The negative normalized cross correlation (NCC) of both volumes
is used as a cost function. In this paper, the reference image is
generated using the prior image constrained compressed sensing
(PICCS) algorithm combined with the improved total variation
(iTV). First preliminary experiments on clinical porcine data
sets show promising results. CMHPR reduces streak artifacts
and simultaneously preserves sharp edges without producing the
artificial comic-like appearance of the PICCS + iTV reference
volume.

I. INTRODUCTION

A. Purpose of This Work

In the daily clinical routine, characteristic parameters quan-

tifying the ventricular heart wall motion are based on 2-

D angiographic projections acquired with a C-arm system

[1]. These images can be used for visual guidance during

interventions and to analyze clinically significant parameters,

e.g. ejection fraction and wall motion of the heart chambers.

Due to the nature of the projection, the images cannot exhibit

depth information. Therefore, a 3-D reconstruction is desirable

to measure the parameters directly in the three-dimensional

space. C-arm systems have a slow period of rotation (a few
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seconds), therefore, the dynamics of the heart need to be taken

into account. With the standard reconstruction approach (FDK)

[2] an average over the whole heart cycle is computed without

providing temporal information. Consequently, a motion esti-

mation and compensation algorithm for the heart chambers

is required in order to permit temporal heart wall analysis in

three dimensions.

B. State-of-the-Art

A variety of algorithms deal with the estimation of cardiac

motion from a rotating C-arm system. Different approaches

for recovering ventricular shapes from angiographic data using

angiographic systems can be found in the literature. The re-

construction of the ventricular shape based on two orthogonal

acquired 2-D projection images with a biplane C-arm system

has been presented by the group of Medina. In one paper, the

ventricle is formed as an ellipsoid and embedded in a Markov

Random Field framework [3]. Ventricular shape reconstruction

from multi-view X-ray projections has been presented by

Moriyama et al. [4]. They represent time-varying 3-D shapes

using uniform B-spline functions to recover the ventricular

shape in 3-D. However, both methods provide only a surface

model with no structural information of the ventricle, such as

papillary muscles, which could be visualized in a tomographic

reconstruction.

Different tomographic reconstruction algorithms attempt to

improve temporal resolution. That means, several volumes

corresponding to different states of the heart are recon-

structed. The different states of the heart are identified by

an electrocardiogram (ECG) acquired synchronous with the

acquisition. A relative heart phase, commonly denoted as a

percentage between two successive R-peaks, is assigned to

each projection. The reconstruction is performed with the

subset of the projections that lie inside a certain ECG window

centered at the favored heart phase [5]. However, for the heart

chambers the ECG-gated projection data of a single sweep

leads to prominent streak artifacts and a poor signal-to-noise

ratio. Consequently, multiple sweeps of the C-arm have to

be performed to acquire enough projections for each heart

phase [6], [7]. But, the longer imaging time results in a higher

contrast burden and radiation dose for the patient. In recent

years, approaches dealing with undersampled projection data

from ECG gating, so-called compressed sensing (CS) algo-
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rithms were published [8]. A variety of algorithms minimizes

an objective function related to the total variation (TV) [9].

In one approach called prior image constrained compressed

sensing (PICCS), a-priori information of the same object is

incorporated into the reconstruction [10], [11]. The PICCS

algorithm was recently applied to interventional images using

angiographic data from a C-arm system [12], [13]. In general,

volumes reconstructed with TV regularization have an artificial

look and are highly smoothed compared to a standard FDK

reconstruction. They are piecewise constant in homogenous

regions and can lose small structures [14].

In this paper, we present an iterative motion estimation and

compensation algorithm that uses projection data acquired

during one single C-arm sweep. It uses the ECG information to

parametrize a 4-D motion field that maps the sum of all ECG-

gated FBP reconstructed volumes to a target heart phase by a

combined multiple heart phase registration (CMHPR). This is

done by correlating the combination of all ECG volumes to

one reference volume reconstructed with the PICCS and the

iTV algorithm.

II. COMBINED MULTIPLE HEART PHASE REGISTRATION

(CMHPR)

The presented motion estimation and compensation scheme

is built up from different components: First, a reference vol-

ume needs to be generated. Second, the ECG-gated volumes

representing different heart phases are reconstructed with a

standard FBP algorithm. The final volume is defined by the

sum over the deformed ECG-gated volumes. The deformation

depends on the 4-D motion vector field (MVF). The MVF is

iteratively updated by minimizing an objective function.

An overview of the algorithm is given in Figure 1. A more

detailed description of the individual steps is given in the

following sections.

A. Reference Volume Reconstruction

First, a reference image fr(x) is reconstructed at a selected

heart phase with a few-view reconstruction algorithm taking

care of the sparse sampling condition. The reference volume

needs to provide a low artifact level with minor streak artifacts,

but needs to represent sharp edges of the endocardial wall. As

a first attempt, the prior image constrained compressed sensing

(PICCS) and the improved total variation (iTV) algorithm

are used [10], [15], [16]. As prior volume for the PICCS

reconstruction, a FBP reconstruction with data from a whole

short-scan is used. The objective function is minimized in

an alternating manner, the raw data constraint is minimized

and in the second step the sparsity cost function is optimized.

In order to ensure that the raw data cost function converges

to the best possible value and simultaneously ensure that the

sparsity constraint converges to a low value, the improved total

variation (iTV) was introduced by Ritschl et al. [15], [16].

Additionally, a bilateral filter is applied to the reconstructed

volume at every iteration step in order to suppress apparent

noise.

B. ECG-gated FBP Volume Reconstruction

A certain number H of ECG-gated volumes fh(x) , with

h = 1, . . . , H at specific heart phases are reconstructed with an

FDK reconstruction algorithm. The ECG-gating is performed

by inserting a weighting function λ into the standard FDK

approach. Let qh ∈ [0, 1] be the relative heart phase at which

the reconstruction shall be carried out. The volume fh(x)
represents one heart phase from 1, . . . , H . The ECG-gated

FDK reconstruction fh(x) : R
3 → R at voxel x ∈ R

3 is

given by

fh(x) =

N∑
i=1

λ(i, qh) · w(i,x) · pF (i, A(i,x)), (1)

where N is the number of projection images, w : N×R
3 is the

FDK distance weight and pF (i,u) : N×R
2 → R is the filtered

and redundancy-weighted projection data of the i-th image

at pixel position u. The pixel position is determined by the

perspective projection of voxel x, A : N×R
3 → R

2, (i,x) →
A(i,x) = u . The perspective projection A can be computed

via pre-calibrated projection matrices. The weighting function

λ can be a cosine- or rectangular-window [17]. Here, we use

a strict rectangular gating function of minimal width, i.e. only

one view per heart cycle is considered.

C. Final Volume Reconstruction

The final volume is defined as a sum volume f(x, s)
consisting of the deformed ECG volumes fh(x + sh,x) with

motion vector sh,x at heart phase h and location x:

f(x, s) =

H∑
h=1

fh(x+ sh,x). (2)

The function fh returns the ECG-gated, interpolated recon-

structed object value at voxel x based on the motion vec-

tor sh,x for the heart phase h. In this paper, the motion

compensated reconstruction and its derivative are based on

a densely sampled motion vector field. That means for each

voxel x ∈ Ω at the h-th heart phase an individual displacement

vector sh,x ∈ R
3 is given. Ω denotes the area where cardiac

motion is assumed.

D. Objective Function

The 4-D motion vector field is derived by optimizing an

objective function LNCC(s) so that the negative normalized

cross correlation (NCC) between the sum volume f(x, s) and

the reference volume fr(x) is minimized. The metric ranges

between [−1, 1]. In order to define a dissimilarity measure,

the negative correlation is considered here. Therefore, a value

of -1 indicates a perfect positive linear relationship, a value

of +1 a perfect negative linear relationship and values close

to zero show no linear correlation between the volumes. The

definition of the negative NCC [18], [19] combined with the
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Figure 1: Schematic overview of the presented CMHPR algorithm.

computational formula for the variance [20] is given by

LNCC(s) = − nrf (s)√
nrr · nff (s)

, where (3)

nr =
∑
x∈Ω

fr(x) (4)

nf (s) =
∑
x∈Ω

f(x, s) (5)

nrr =
∑
x∈Ω

fr(x)
2 − 1

|Ω|n
2
r (6)

nff (s) =
∑
x∈Ω

f(x, s)2 − 1

|Ω|nf (s)
2 (7)

nrf (s) =
∑
x∈Ω

fr(x)f(x, s)− 1

|Ω|nr · nf (s). (8)

E. Optimization Strategy

The objective function is minimized by a gradient based

quasi-Newton method, a limited-memory Broyden-Fletcher-

Goldfarb-Shanno optimizer (L-BFGS) [21]. Usually, the quasi-

Newton based methods converge in fewer iterations than

gradient descent optimizers, but have a higher cost per iteration

evaluation. For the optimization, the derivative of the objective

function with respect to the motion vector at every heart phase

and voxel is required. It can be computed as

∂LNCC(s)

∂sh,x
= −

⎛
⎝ 1√

nrr · nff (s)

∂nrf (s)

∂sh,x
−

nrf (s)

2
√
(nrr · nff (s))

3

∂nff (s)

∂sh,x

⎞
⎠ (9)

where the remaining components are given by

∂nrf (s)

∂sh,x
=

(
fr(x)− nr

|Ω|
)

∂f(x, s)

∂sh,x
and

∂nff (s)

∂sh,x
= 2

(
f(x, s)− nf (s)

|Ω|
)

∂f(x, s)

∂sh,x
.

Finally, putting all components together we arrive at the

derivative of the objective function:

∂LNCC(s)

∂sh,x
= −κ(x, s) · ∂f(x, s)

∂sh,x

= −κ(x, s) · ∂fh(x, s)
∂sh,x

, (10)

where κ(x, s) =

(
fr(x)− nr

|Ω|√
nrr · nff (s)

−

nrf (s)

nff (s)

(
f(x, s)− nf (s)

|Ω|
))

. (11)

Only κ(x, s) depends on the objective function and can be

easily adapted if a different objective function is used. In

order to guarantee a smooth motion vector field, a spatial and

temporal Deriche filter is applied to the 4-D motion vector

gradient. Additionally, a spatial Deriche filter is also applied

to the gradient weighting term κ(x, s) [22], [23].

F. Implementation Details

Due to memory limitations when using a quasi-Newton op-

timizer and to reduce computation time, the motion vector field

was first computed on downsampled volumes at a resolution

of 1283 voxels and upsampled onto the final reconstructed

volume size by cubic spline interpolation. The initial motion

vector field was set to zero in all dimensions. The weighting

parameter α for the PICCS algorithm was set to 0.5. The

relaxation parameter β for the iTV optimization was set to

0.8 and the iTV parameter ω to 0.8. For the bilateral filter,



the closeness parameter σd was set to 0.25 and the similarity

parameter σr was set to 0.0001. The used filter mask has a

radius of 2 voxels. The Deriche filter parameter αD for spatial

filtering was heuristically set to 0.94 and for temporal filtering

to 2.12, i.e. a stronger smoothing in spatial than in temporal

direction. The LBFGS optimizer of the VNL numerics library

delivered with The Insight Segmentation and Registration

Toolkit (ITK)1 was used for the optimization. The optimization

procedure was performed until the termination criterion was

reached. Here, the number of function evaluations was used

which was set to 200. The number of iterations is implicitly

given by the number of function evaluations. During the

linesearch of the gradient update, the objective function is

evaluated more than once if we are close to a minimum, hence

less iterations are performed. In order to restrict the motion

vector field to a local area where the heart motion is expected,

a local motion mask enforces zero motion outside the defined

local area. In this first approach the mask volume defining

Ω is generated manually by the user. For a later version it

is planned to use an automatic heart isolation software [24],

[25].

III. EXPERIMENTAL SETUP

The method was applied to in-vivo data sets of two porcine

models (p1, p2). Image acquisition was performed using an

Artis Zee C-arm system (Siemens AG, Healthcare Sector,

Forchheim, Germany). The acquisition time was 14.535 s

capturing 381 projection images with 30 f/s, and an angular

increment of 0.52◦ during one C-arm sweep. The isotropic

pixel resolution was 0.31 mm/pixel (0.19 mm in isocenter) and

the detector size 1240×960 pixel. The distance from source

to detector was 1200 mm and from isocenter to source 750

mm. The heart rate was synchronized with the frame-rate of

the imaging acquisition through external heart pacing. The

considered heart phases are equal to the number of image

frames per heart cycle. For porcine model p1 a number of

32 heart cycles and H = 12 heart phases were imaged with

an external pacing of ≈ 131 bpm. For porcine model p2 a

number of 25 heart cycles and H = 15 heart phases were

imaged with an external pacing of ≈ 105 bpm. A volume of

∼ 150 ml contrast fluid was administered intravenously at a

speed of p1= 10 ml/s, p2= 6.5 ml/s , with a delay of 5 s and 8

s before the X-ray rotation was started. Image reconstruction

was performed on an image volume of (25.6 cm)3 distributed

on a 2563 voxel grid.

IV. RESULTS AND DISCUSSION

A. Visual Inspection

The reconstruction results of the 1st porcine model p1 at

a relative heart phase of 80% are shown in Figure 2. The

standard FDK reconstruction averages over all heart phases

which is visible at the doubling of the catheter and the blurred

endocardium edges (Fig.2a). The ECG-gated reconstruction

illustrates the sharp contours of the endocardium, however

1www.itk.org

prominent streak artifacts are apparent (Fig.2b). Streak ar-

tifacts are reduced by the PICCS and iTV reconstruction

(Fig.2c). However, the image still exhibits blurred streak

artifacts and is smoothed. The presented CMHPR algorithm

(Fig.2d). yields the best result. Streak artifacts are further

reduced while keeping the spatial resolution. The same effects

are visible in Figure 3 for a different relative heart phase of 30

% of the same porcine model p1 and for the second porcine

model p2 for relative heart phases of 50% in Figure 4 and of

30 % in Figure 5.

B. Normalized Edge Response Profile

In order to quantify the results, the normalized edge re-

sponse function (similar to the edge response in Prümmer et al.

[7]) of all volumes is illustrated in Figure 6. The normalized

edge response profile is computed as mean edge profile of

the lines indicated in Figures 2, 3, 4 and 5 and normalized

to [0, 1]. The measurements were performed for the porcine

model p1 and a relative heart phase of 80% (Fig.6a) and 30%

(Fig.6b). Similar measurements were performed for the second

porcine model p2 and a relative heart phase of 50% (Fig.6c)

and 30% (Fig.6d). It can be seen that the FDK reconstruction

loses the edge at the endocardium border. The sharp edge is

reconstructed by the ECG-gating, however, it is affected by

noise and streak artifacts. The CMHPR method preserves the

sharp edge similiar to the reference volume.

V. CONCLUSION

We have presented a new motion estimation and compen-

sation algorithm by the combined multiple heart phase regis-

tration (CMHPR) which increases image quality for cardiac

angiographic C-arm data. The presented algorithm was tested

on two porcine models and first results are promising. The

technique reduces streak artifacts and simultaneously preserves

sharp edges without getting an artificial comic-like appearance.
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