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Abstract—Task-based image quality assessment is a valuable
methodology for development, optimization and evaluation of
new image formation processes in CT. Such an assessment can be
performed by building a receiver-operating characteristic (ROC)
curve, or variants of it, such as the localization ROC (LROC)
curve or the free-response ROC (FROC) curve. For comparisons,
it is common to reduce the entire curve to a single scalar that
is generally chosen as the area under the curve. In this setting,
building the entire curve is not necessary: a two alternative forced
choice (AFC) experiment can be performed to directly obtain the
desired scalar. In this work, we discuss statistical inference for
comparisons of image formation processes using multiple AFC
studies.

I. INTRODUCTION

Significant effort is currently spent on the development of

statistical iterative reconstruction methods for CT imaging,

particularly for the aim of enabling CT exams with a lower

dose. To be successful, this effort needs to be accompanied by

a careful methodology for assessment of image quality. Such

an assessment should be task-based [1], particularly because

the algorithms that are under development are non-linear, so

that resolution, contrast and anatomical background effects are

tangled and thus cannot be analyzed each on their own.

A popular methodology for task-based image quality assess-

ment is the construction of a receiver operating characteristic

(ROC) curve [1], [2]. The main idea behind this approach

is to evaluate how well an observer (also called a reader) can

differentiate images from two separate classes. Typically, these

two classes are chosen as sets of images with signal (lesion)

either present or absent, but the theory is not limited to such

a type of classes. For example, the ROC curve can be used to

evaluate the ability of an observer to distinguish lesions with

fuzzy boundaries from lesions with sharp boundaries.

Two other popular methodologies for image quality assess-

ment are the localization ROC (LROC) curve, and the free-

response ROC (FROC) curve. When the task is defined as

that of detecting a signal with unkown location, these two

methodologies are often preferred over the classical ROC

curve. This preference is due to the fact that, unlike the ROC

methodology, the LROC and FROC curves do account for

the visual search process. (When the lesion location is not

specified, the ROC approach suffers from the fact that an

observer may rate an image as containing a lesion and be

correct while basing its decision on a reconstruction artifact.)
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Note that the FROC curve is more powerful than the LROC

curve as it does not require telling the observer how many

instances of the signal are present in an image.

Whether ROC, LROC or FROC curves are used, it is typical

to reduce all information brought by the curve to a single

scalar. For ROC and LROC studies, this scalar is generally

chosen as the area under the curve. For FROC studies, the

area under the curve is not defined, and no single metric has

yet been universally accepted.

Interestingly, the area under the ROC or LROC curve has

a clear probabilistic meaning: it is the probability of correct

decision. In the ROC case, correct decision means correct clas-

sification. In the LROC case, correct decision means correct

classification together with correct localization [3]. Given this

probabilistic meaning, it was noted that the area under the

ROC or LROC curve can be estimated without seeking the

curve, using the concept of Bernoulli trials. In the context of

image quality assessment, this trial is often referred to as a

two alternative forced choice (2-AFC) experiment. Whereas

the ROC or LROC curve involves only two choices, AFC

experiments do not need to be limited to two choices. Multiple

AFC experiments (MAFC) can be as easily implemented,

and they can be advantageous over a 2-AFC experiment by

allowing more stringent testing of image formation processes.

However, note that the MAFC experiment does not have an

ROC-curve interpretation.

The primary aim of a 2-AFC or MAFC experiment is to

evaluate a proportion that serves as an estimate of the probabil-

ity of correct decision. To achieve this aim, the experimentalist

creates a number n of independent trials (cases), present these

cases one after the other to an observer and records the number

of times when the observer succeed to make a correct decision;

this number divided by n is the sought proportion.

As presented above, the probability of correct decision

in an MAFC experiment is a quantity that depends on the

observer. To reduce this dependence, the mean probability of

correct decision over a set of observers is often preferred as a

figure-of-merit. Moreover, the proportion obtained for a given

observer in an MAFC experiment depends on the selected

cases as well as their number. The larger the number of cases,

the closer the proportion is to the desired probability of correct

decision. However, there are practical limits on the number of

trials an observer can be subjected to. Hence, it is important to

realize that image quality assessment results based on MAFC

experiments include variability due to randomness in cases as

well as in the reader pool. An MAFC experiment is inherently

a so-called multi-reader multi-case (MRMC) study.

There are four different ways of reporting results from an
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MRMC study: the cases can either be seen as a fixed or a

random effect, and the observers can also either be seen as

a fixed or a random effect. Naturally, treating the readers

and also the cases as a random rather than a fixed effect

enables more general conclusions. However, it is important

to realize that generality comes with a cost: error bars are

increased. If only 3 or 4 observers are available, there is

virtually no hope to make any useful conclusion between

image formation processes while treating the readers as a

random effect. In this paper, we are interested in the statistical

analysis of MRMC results obtained with alternative forced

choice experiments under the condition that the readers are

seen as a fixed effect, and the cases as a random effect. Our

results are primarily relevant for image quality assessment

studies related to development and optimization of image

formation processes, for which generating a large number

of cases is typically easy whereas readers are scarce due to

limited availability and high cost.

Technically speaking, the statistical analysis we are in-

terested in amounts to making inferences based on a set

of correlated proportions. Proper handling of correlations is

where the complexity lies. In practice, correlations can be

induced through a number of mechanisms. For example,

a study involving two observers that read the exact same

cases from one image formation process yields two correlated

proportions. Similarly, comparing two image reconstruction

algorithms using the exact same data sets with a single

observer will yield two correlated proportions. Hypothesis

tests have been developed for comparing two [4] or more [5]

correlated proportions. Here, we extend on these results in two

ways: first, we enable comparisons using confidence intervals

rather than hypothesis testing, and second, we enable these

comparisons to be performed between linear combinations of

proportions, instead of proportions, which is crucially needed

to compare reader-averaged proportions.

II. THEORY

The problem we consider is that of drawing statistical

inferences from K correlated proportions that are each the

result of one MAFC experiment. The difference from one

experiment to another may either be a change in the observer,

or a change in the image formation process used to define the

cases. In this section, we first give a mathematical formulation

for this problem. Then, we derive the covariance matrix

for the vector of correlated proportions, and we introduce

a robust estimator for this matrix. Together with properties

of asymptotic normality, this covariance matrix estimator is

essentially all that we need to build confidence intervals for

any function of the K correlated proportions.

A. Mathematical formulation

Let θk with k = 1, . . . K denote the probability of correct

decision associated with the k-th MAFC experiment, and let

θ̂k be the proportion used as estimate of this probability.

As discussed earlier, each θ̂k is obtained from a number n
of independent Bernoulli trials. Let Xik be the outcome of

the i-th trial in the k-th MAFC experiment. This outcome is

equal to one in case of success, and equal to zero otherwise.

By definition,

θ̂k =
1

n

n
∑

i=1

Xik . (1)

Also, the expected value of Xik, denoted as E(Xik), is θk,

and consequently, E(θ̂k) = θk.

Now, let θ and θ̂ be the two vectors in the K-dimensional

Cartesian space that have the θk and θ̂k values as their

components, respectively, and let ui be the vector that has

the Xik as components for any fixed value of i. Using this

vectorial notation, we can write E(θ̂) = θ and

θ̂ =
1

n

n
∑

i=1

ui . (2)

In our setting, vector θ̂ is a multivariate random variable

with covariance matrix C. If there were no correlations be-

tween the MAFC experiments, C would be a diagonal matrix.

However, here, we consider that correlations are present and

thus C is not diagonal. In any case, the diagonal elements of

C are each given by the variance expression for a proportion

based on n Bernoulli trials, i.e.,

C(k, k) =
θk (1 − θk)

n
. (3)

B. Covariance matrix

Theorem 1. Let prs be the probability of jointly reaching a

correct decision in the experiments of indices r and s with

r 6= s. Then,

C(r, s) =
prs − θr θs

n
. (4)

This theorem is proved as follows. First, recall that, by

definition

C(r, s) = E((θ̂r − θr)(θ̂s − θs))

= E(θ̂r θ̂s) − θr θs . (5)

From (1), we get

E(θ̂r θ̂s) =
1

n2

n
∑

i=1

n
∑

l=1

E(Xir Xls)

=
1

n2

n
∑

i=1

∑

l 6=i

E(Xir Xls) +
1

n2

n
∑

i=1

E(Xir Xis) .

(6)

Given that the cases correspond to independent trials,

E(Xir Xls) = θr θs when l 6= i. Moreover, from the definition

of prs, we have E(Xir Xis) = prs for any value of i.
Therefore,

E(θ̂r θ̂s) =
n (n − 1)

n2
θrθs +

1

n
prs

= θr θs +
1

n
(prs − θr θs) . (7)

Direct combination of this last result with (5) yields the

announced result.

Note, as expected, that (3) and (4) are fully consistent with

each other, since prs = θr when r = s. In addition, when the
proportions are independent, prs = θr θs and thus C(r, s) = 0.
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C. Estimator for the covariance matrix

Theorem 2. Let

p̂rs =
1

n

n
∑

i=1

Xir Xis . (8)

Then,

Ĉ(r, s) =
1

n − 1

(

p̂rs − θ̂r θ̂S

)

(9)

is an unbiased and consistent estimator of C. Furthermore, Ĉ
is definite positive with probability one.

The unbiasedness of C is proved as follows. First, we note,

from its definition, that E(p̂rs) = prs. Second, we observe

that

E(θ̂r θ̂s) = C(r, s) + θr θs . (10)

Consequently,

E(Ĉ(r, s)) =
1

n − 1
E(p̂rs) −

1

n − 1
E(θ̂r θ̂s)

=
1

n − 1
prs −

1

n − 1
(C(r, s) + θr θs)

=
1

n − 1
(prs − θr θs) −

1

n − 1
C(r, s)

= C(r, s) (11)

where the last equality comes from (4).

To prove consistency, we need to evaluate the behavior of

Ĉ(r, s) as a function n. Given that Ĉ(r, s) is expressed as the
sum of two random variables, we have

Var
(

Ĉ(r, s)
)

≤





√

Var

(

p̂rs

n − 1

)

+

√

√

√

√Var

(

θ̂r θ̂s

n − 1

)





2

≤
1

(n − 1)2

(

√

Var(p̂rs) +

√

Var(θ̂r θ̂s)

)

≤
1

(n − 1)2

(
√

p̂rs (1 − p̂rs)

n
+

√

Var(θ̂r θ̂s)

)

. (12)

Also, by the delta method, we know that

Var(θ̂r θ̂s) ≃
W

n
(13)

for n large where W is a constant. Therefore, Var(Ĉ(r, s))
decays at least as n−5/2 with n, which proves consistency.

Last, to prove that Ĉ is definite positive with probability

one, we first note that the following equality holds:

n Ĉ =
1

n

n
∑

i=1

ui uT
i − θ̂ θ̂

T
. (14)

Thus, for any vector x, we have

n xT Ĉx =
1

n

n
∑

i=1

(xT ui)
2 − (xT θ̂)2 . (15)

Furthermore, since θ̂ = 1

n

∑n
i=1

ui, this last equality is

equivalent to

n2 xT Ĉx =

n
∑

i=1

(αi)
2 −

1

n

(

n
∑

i=1

αi

)2

(16)

with αi = xT ui. However, Cauchy-Schwartz’s inequality

implies that
(

n
∑

i=1

αi

)2

≤ n

n
∑

i=1

(αi)
2 . (17)

Therefore,

n2 xT Ĉx ≥ 0 , (18)

which demonstrates that Ĉ is semi-definite positive.

Last, we examine the condition under which the equality in

(18) can hold. Because the inequality in (18) was found using

Cauchy-Schwartz’s inequality, the condition is simple: equality

only holds only when xT ui is equal to a constant for all i.
Since this constraint corresponds to a set of measure zero for

any given x, the strict inequality holds with probability one.

D. Asymptotic properties

Theorem 3. The random vector Ĉ−1/2(θ̂ − θ) converges in

distribution to a multivariate normal vector with mean zero

and identity covariance matrix.

This theorem is a direct consequence of the following two

results. First, Ĉ converges towards C with probability one,

because Ĉ is a consistent estimator of C with a converging

rate of n−5/2. Second, equation (2) and the central limit

theorem for multivariate random variables imply together that

Ĉ−1/2(θ̂−θ) converges in distribution to a multivariate normal
vector with mean zero and identity covariance matrix.

E. Summary

Thanks to the asymptotic properties of Theorem 3, the

covariance matrix estimator defined by (9) can be used to build

confidence intervals (or regions) for any linear combination of

components of θ̂. More precisely, let d̂ = F θ̂ where F is a

matrix of non-random coefficients, and let Ω = FCFT be the

covariance matrix of d̂. Our results imply that Ω̂ = FĈFT is a

consistent unbiased estimator of Ω and that Ω̂−1/2(d̂−E(d̂))
is asymptotically distributed as a multivariate normal vector

with mean zero and identity covariance matrix.

III. EXAMPLE OF UTILIZATION

In this section, we illustrate how the results of the previous

section can be utilized for comparison between image recon-

struction algorithms using results from 2-AFC experiments.

A. Reconstruction algorithms

The algorithms selected for our example perform image re-

construction from fan-beam data collected in two dimensions.

The first two algorithms, called algorithms A and B, use a full-

scan of data, whereas the third algorithm, called algorithm C,

only uses a short-scan of 240 degrees. Algorithms A and C are

both implementations of the fan-beam filtered-backprojection

(FBP) formula with different weighting schemes: algorithm

A weights all measurements with a factor of 1/2, whereas

algorithm C invokes a Parker weighting so that only data over

a short-scan are needed. Algorithm B is an implementation of

the parallel-beam FBP formula that is applied after rebinning

The second international conference on image formation in X-ray computed tomography Page 85



Fig. 1. Image display for a 2-AFC experiment that assesses the area under
an LROC curve.

the fan-beam data to the parallel-beam geometry. Like algo-

rithm A, algorithm C assigns a weight of 1/2 to handle all

data redundancy.

B. Task description

Image quality was assessed using two-AFC experiments

corresponding to LROC analysis. The LROC task was to

detect a small lesion within a uniform brain phantom. Both

the position of the lesion and the contrast of the lesion were

random ([25, 35]HU), whereas the lesion size was fixed (5 mm
diameter). The lesion was always within the gray-matter area

of the brain, and was not allowed to overlap with the skull.

In our context, the Bernoulli trial corresponded to presenting

the observer with a pair of images as shown in Figure 1. One

of the images always contained exactly one lesion whereas

the other image did not contain any lesion. The observer was

asked to insert a mark within one of the two images (see the

red cross). A success was recorded when the mark identified

the lesion within 10 pixels, otherwise a failure was recorded.

In Fig.1, the lesion is indicated with a green square, showing

that the mark was inserted at the wrong location.

C. Study design

We decided to assess performance using four observers

reading each 250 pair of images (in two sessions of 125

images, with 40 training images before each session). To

optimize statistical power, the exact same data sets were used

for all three reconstruction algorithms, and different cases

were used from one reader to another. Hence, the computed

proportions were only correlated between algorithms.

Denote the proportions for algorithms A, B and C and reader

j as Aj , Bj and Cj , and let Ĉj be the 3×3 covariance matrix
for these three proportions. This matrix was estimated for each

reader using (9). Next, define the reader-averaged proportions

for the three algorithms as A = (A1 +A2 +A3 +A4)/4, B =
(B1 +B2 +B3 +B4)/4, C = (C1 +C2 +C3 +C4)/4. Given

that the cases were independent from one reader to another,

the covariance matrix for these reader-average proportions was

Ω =
1

16

4
∑

j=1

Cj . (19)

Confidence intervals were estimated for A, A−B andA−C;

A was included to provide a reference value. Let d̂ = [A, A−

B, A−C]. The covariance matrix for d̂ was obtained from Ω
and the diagonal elements of this matrix were used to find a

98.33% confidence interval for each entry of d̂, by relying on
asymptotic normality. The confidence intervals found for A,
A − B and A − C were [0.7909, 0.8491], [−0.0199, 0.0359]
and [0.1141, 0.1819] respectively. By Bonferroni’s inequality,

the joint probability for the three intervals together is at least

95%. As expected, we observe that Algorithm A significantly

performs better than Algorithm C, due in particular to the

extra amount of data involved in the reconstruction process.

On the other hand, the difference between algorithms A and

B is relatively small, and no conclusion can be made in favor

of one method versus the other.

IV. CONCLUSION

We have presented a nonparametric methodology to evaluate

the statistical variability of image quality assessment results

based on MAFC experiments with multiple readers and cases.

Our methodology views the readers as a fixed effect and the

cases as a random effect. This setting is ideal for development

and optimization of image formation processes, where using a

large number of readers is impractical. For studies that invoke

many readers, we recommend evaluating the variability due to

the reader pool as well as that due to the cases, which may

be done using the results in [6].

Although not discussed here, it can be shown that our theory

also enables simple sample size calculations. The procedure to

follow is very similar to that presented in [3] for LROC studies.

Moreover, it turns out that there exist interesting links between

our covariance matrix estimator, Jack-knifing techniques, and

maximum likelihood estimation. These links will be discussed

in the future.
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