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Abstract

Automatic hypernasality detection in children with Cleft Lip
and Palate is classically performed by means of acoustic anal-
ysis; however, recent findings indicate that nonlinear dynamics
features could be useful for this task. In order to continue deep-
ening in this issue, in this paper the discriminant capability of
4 different nonlinear dynamics features along with a set of 6
entropy measurements is studied. The whole set of features is
optimized using an automatic feature selection technique based
on principal component analysis. The decision about the pres-
ence or absence of hypernasality is made by employing a sup-
port vector machine. The system is tested over two databases,
one considers the five Spanish vowels and the words /coco/ and
/gato/, and the other one considers different German words. The
performance of the system is presented in terms of accuracy,
sensitivity, specificity and receiver operating curves. According
to the results, the accuracy of system increases when nonlinear
and entropy measures are combined.
Index Terms: Hypernasality, Cleft Lip and Palate, nonlinear
dynamics, entropy measures.

1. Introduction
The Cleft Lip and Palate (CLP) is the second most frequent
congenital malformation worldwide [1] and it is character-
ized by an incomplete formation of the structures that separate
nasal from oral cavities, generating different morphological and
functional disorders such as hypernasality, hyponasality, glottal
stop, among others [2]. As hypernasality is the most common
pathology suffered by patients with CLP, the research commu-
nity is interested in the development of robust systems for its
detection and evaluation [3, 4].

Automatic detection of hypernasal voices can be addressed
considering classical measurements such as temporal and am-
plitude perturbation, noise estimates and Mel-Frequency Cep-
stral Coefficientes (MFCC). In [5] pronunciation features and
twelve MFCCs are implemented to detect articulation problems
in 26 CLP patients, reporting success rates of 71.1% for vowels.
On the other hand, the spectrum analysis has also been used for
the automatic detection of hypernasality. In [6] an analysis con-
sidering group delay functions applied over the speech spectrum
is presented and the reported results show accuracies of 100%,
88.15% and 80.25% for vowels /a/, /i/ and /u/, respectively.

On the other hand, features extracted from nonlinear dy-
namics (NLD) techniques, have been employed successfully in
the discrimination of different speech pathologies including hy-
pernasality [4, 7]. Those results are supported in the fact that

there are evidence of nonlinear behavior in the speech produc-
tion process, for instance, nonlinear pressure-flow relationship
in the glottis or the nonlinear stress-strain relationship in the
vocal fold tissues which is related to the velopharyngeal insuffi-
ciency [8], one of the functional problems associated to CLP. In
[4], it is showed that the performance of NLD features is sim-
ilar to the performance of the classical analysis and could be
used to provide complementary information for the detection
system. Besides, different entropy measures have been used for
the automatic detection of pathological voices [7].

Bearing this in mind, this paper goes a step forward in the
analysis of complexity features in the detection of hypernasal
voices. The characterization is performed using four NLD mea-
sures and six different entropy measures taken from the recon-
structed attractor. After, the most relevant features are selected
using a features selection technique that is based on the Princi-
pal Component Analysis (PCA), and the decision about whether
a voice record is hypernasal or healthy is taken by using a Sup-
port Vector Machine (SVM). Finally, with the aim of present-
ing the results in terms of clinical accepted concepts, they are
reported in terms of specificity, sensitivity, accuracy and area
under de receiver operating curve (AUROC). The rest of the
paper is organized as follows: section 2 contains the descrip-
tion of the characterization process, section 3 presents the fea-
ture selection technique and the classification process, section
4 describes the experiments, section 5 contains the results, and
section 6 presents the conclusions derived from this work.

2. Characterization stage
The estimation of NLD features from time series requires the
previous reconstruction of the space state which is based on the
time-delay embedding theorem. This theorem establishes that
where there is a single sampled quantity of a dynamical system,
it is possible to reconstruct a state space that is equivalent or
diffeomorphic to the original state space that is unknown. Points
in the state space form trajectories, and a set of trajectories from
a time series is known as attractor [9].

After the reconstruction of the attractor, two groups of
features are estimated, one set includes correlation dimension
(D2), Largest Lyapunov Exponent (λ1), Hurst exponent (H)
and Lempel-Ziv complexity LZ. The other set includes ap-
proximate entropy (AE), Gaussian kernel Approximate En-
tropy (GAE), Sample Entropy (SE), Gaussian Kernel Sample
Entropy (GSE), Recurrent Period Density Entropy (RPDE)
and a measure derived from a Detrended Fluctuation Analysis
(DFA) related to the self-similarity of a stochastic process.



2.1. Nonlinear dynamics

The Correlation Dimension is a measure of the space dimen-
sionality occupied by the points in the reconstructed state space.
In this work, (D2) is implemented according to the Takens es-
timator method [9]. The estimation requires the use of the cor-
relation sum (C(r)), which is the number of possible pair of
points closer than a given distance r in a particular norm. In-
tuitively, such sum can be thought as the probability of having
pairs of points in specific regions of the attractor according to a
sphere of radius r. In formal terms, it is defined as:

C(r) =

N∑
i=1

Cm
i (r) (1)

where,

Cm
i (r) =

2

N(N − 1)

N∑
j=i+1

Θ(r − ∥x⃗i − x⃗j∥) (2)

N is the number of points in the state space, Θ the Heavi-
side function and (∥·∥) is a norm defined in any consistent met-
ric space. D2 is defined theoretically for an infinity amount of
data (N → ∞) and for small r, thus its general expression is
written as:

D2 = lim
r→0

lim
N→∞

∂ lnC (r,N)

∂ ln (r)
(3)

Another property of the nonlinear systems is its sensitivity to
the initial conditions, which can be measured through the esti-
mation of the Lyapunov spectrum. Theoretically, if a system has
at least a positive Lyapunov exponent, the trajectories in state
space will diverge exponentially. Therefore, the Largest Lya-
punov exponent indicates weather or not such divergence exists.
The estimation of the average divergence rate of neighbor tra-
jectories in the state space, is calculated according to the Ron-
senstein method [9]. In this algorithm, once again the nearest
neighbors to every point in the trajectories must be estimated. In
this case, a neighbor must fulfill a temporal separation greater
than the “period” of the time series, to be considered as a near-
est neighbor. It is possible to state that the separation of points
in a trajectory is according to the expression d(t) = Ceλ1t,
where λ1 is the maximum Lyapunov exponent, d(t) is the av-
erage divergence taken at the time t, and C is a normalization
constant. Assuming that the j − th pair of nearest neighbors
approximately diverge at a rate of λ1, it is possible to obtain
the expression ln(dj(i)) = ln(Cj)+λ1(i∆t), where λ1 is the
slope of the average line that appears when such expression is
drawn on a logarithmic plane [9].

On the other hand, the randomness of the voice signals can
be estimated with the Lempel-Ziv Complexity (LZ), according
to the algorithm presented in [10]. The method consists in find-
ing the number of different “patterns” present in a given time
series. As the algorithm only considers binary strings; for the
practical case, 0 is assign when the difference between two suc-
cessive samples is negative, and 1 when such a difference is
positive or null (see [10] for additional details).

Finally, Hurst exponent (H) is calculated in order to esti-
mate possible long term dependences in the voice recordings.
Given a time series x(n) with n = 1, 2, ..., L, the estimation of
H is based on the rank scaling method proposed by H. Hurst in
[9]. Hurst demonstrated that the relation between the variation
rank (R) of the signal, evaluated in a segment, and the standard
deviation of the signal S is given by R

S
= cTH , where c is a

scaling constant, T is the duration of the segment and H is the
Hurst exponent.

2.2. Entropy estimates

In general, entropy is a measure of the uncertainty of a random
variable. The most common definition of entropy is the Shan-
non entropy, which is expressed as

H(X) = −
∑
x∈χ

p(x) log p(x) (4)

where X is a random variable with alphabet χ and its proba-
bility mass function is p(x). When there is a stochastic process
with a set of independent but not identically distributed vari-
ables, the rate at which the joint entropy grows with the number
of variables n is given by

H(X) = − lim
n→∞

1

n

n∑
i=1

H (Xi) (5)

For the case of a state space, it can be partitioned into hyper-
cubes of content ϵm and observed at time intervals δ, defining
the Kolmogorov-Sinai entropy (HKS) as:

HKS = − lim
δ→∞
ε→0
n→∞

1

nδ

∑
k1,...,kn

p (k1, ..., kn) log p (k1, ..., kn)

(6)
where p (k1, ..., kn) is the joint probability that the state of the
system is in the hypercube k1 at the time t = δ, k2 at t = 2δ,
etc. For stationary processes, it can be shown that HKS =
lim
δ→0

lim
ε→0

lim
n→∞

(Hn+1 −Hn).

Considering that in practical terms it is not possible to com-
pute entropy for n → ∞, in the literature have been proposed
different methods for approximating HKS . One of them is
the Approximate entropy (AE), which is designed for measur-
ing the average conditional information generated by diverging
points on a trajectory in the state space [11]. For fixed m and r,
AE is estimated as in the equation 7

AE (m, r) = lim
N→∞

[
Φm+1 (r)− Φm (r)

]
(7)

where Φm(r) = 1
N−m+1

N−m+1∑
i=1

lnCm
i (r), and Cm

i (r) is de-

fined in the equation 2.
The main drawback of AE is its dependence on the signal

length due to the self comparison of points in the attractor. In
order to overcome this problem, the sample entropy (SE) was
proposed. SE is defined as

SE (m, r) = lim
N→∞

(
− ln

Γm+1(r)

Γm(r)

)
(8)

The only difference between Γ and Φ is that the first does not
evaluate the comparison of embedding vectors with themselves.
Another modification of AE is the Gaussian kernel approxi-
mate entropy GAE . It takes advantage on the fact that Gaussian
kernel function can be used to give greater weight to nearby
points by replacing the Heaviside function by the following
equation [12].

dG (x⃗i, x⃗j) = exp

(
−
(
∥x⃗i − x⃗j∥1

)
10r2

)
(9)

The same procedure of changing the distance measure can be
applied to define the Gaussian kernel sample entropy GSE .



On the other hand, considering that the voice signal has two
components [13], deterministic and stochastic, the deterministic
component can be analyzed by means of the recurrence period
density entropy (RPDE), consider a hypersphere of radius r >
0, containing a embedded data point x⃗(ti). The time tr = tj −
ti is the recurrence time, where tj is the instant at which the
trajectory first returned to the same hypersphere. If R(t) is the
normalized histogram of the recurrence times estimated for all
embedded points into a reconstructed attractor, the RPDE can
be defined as in the equation 10 [13]

RPDE =

−
tmax∑
i=1

R(i) lnR(i)

ln tmax
(10)

where tmax is the maximum recurrence time in the attrac-
tor. Besides, the stochastic component of the voice signals
can be analyzed by means of the detrended fluctuation analy-
sis (DFA) to estimate the scaling exponent α in non-stationary
time series as is indicated in [13].

3. Feature Selection and Classification
For feature selection process, a PCA-based algorithm is applied
as in [14] and for the decision of whether a voice recording is
hypernasal or healthy a Support Vector Machine (SVM) with a
Gaussian kernel is implemented.

4. Experimental Setup
4.1. Databases

This methodology is tested on two databases, the first one is pro-
vided by Grupo de Control y Procesamiento Digital de Señales-
(GCyPDS) at Universidad Nacional de Colombia, Manizales. It
contains 238 voice recordings from children between 5 and 15
years old, who uttered the Spanish vowels and the words /coco/
and /gato/. 108 of the children were labeled as healthy by a
phoniatry expert, and the remaining 130 were labeled as hyper-
nasal. All recordings were sampled at 48kHz with 16 bits of
resolution. The second database is provided by Pattern Recog-
nition Laboratory at the University of Erlangen-Nürnberg. The
dataset used here contains 468 voice recordings with German
words uttered by children with CLP. 39 of the recordings were
labeled by a phoniatry expert as hypernasal and the other 429
were labeled as belonging to other kind of pathologies derived
from the CLP malformation. For this case, the signals were
recorded at 16 kHz with 16 bits.

4.2. Experiments

The signals are processed following a short-time procedure, and
to have enough number of points for the reconstruction of the
attractor, the window length is set at 55ms as in [7]. After char-
acterization, the mean value and standard deviation is calculated
for each feature vector ξi,k: i = 1, . . . N , and k = 1, . . . , L,
where N is the number of voice recordings and L is the number
of windows per voice register. Thus, the dataset is X ∈ RN×M,
where M is the number of features considered in each experi-
ment. Different combinations of the feature set are tested. First,
only the NLD features are included (M = 8). Second, only the
entropy measures (M = 12) and finally, the combination of the
NLD and entropy measures is evaluated (M = 20). These dif-
ferent datasets are built to compare their performance and to an-
alyze the impact of considering the information provided by the

entropy measures. Each feature set is divided following a boot-
strapping strategy, using 70% of the data for training and the
remaining 30% for validation. The same set of NLD features
used in [4] is included in this work for the sake of comparison.

5. Results
Table 1 shows the results obtained in the experiments with dif-
ferent feature sets and with the different phonations (vowels and
words). It can be seen that the results with only NLD features
are lower than in the cases where the entropy measures are in-
cluded. As it is highlighted in table 1, for the vowels /a/, /i/
and /u/ the best results are obtained by combining NLD features
and entropy measures. For vowels /e/ and /o/, entropy measures
achieve similar results than NLD features. The results in the
row labeled as Union are obtained considering the combination
of the features in the highlighted rows of the table 1. It is clear
that the combination of the best set of features per vowel yields
an improvement in the performance of the system and it is due
to the inclusion of information provided by the five vowels in
the discrimination process. The use of the Spanish words /coco/

Table 1: Classification results with the Spanish vowels.

Vowel Features SM NF Accuracy Sensitivity Specificity AUROC
NLD PCA 7 81.13±5.36 83.44±6.76 79.23±8.33 0.87
NLD WS 8 82.39±4.94 81.56±5.97 83.08±6.64 0.88

/a/ Ent PCA 9 83.66±2.50 86.56±4.67 81.28±4.20 0.90
Ent WS 12 89.44±2.42 87.50±4.66 91.03±4.05 0.95

NLD+Ent PCA 14 88.31±3.58 88.13±5.47 88.46±4.56 0.93
NLD+Ent WS 20 90.56±1.76 89.39±3.36 91.54±2.43 0.96

NLD PCA 7 85.07±4.26 84.06±5.79 85.90±6.54 0.87
NLD WS 8 84.65±4.06 87.50±3.29 82.31±6.89 0.89

/e/ Ent PCA 7 88.31±3.05 91.88±4.22 85.38±2.97 0.95
Ent WS 12 88.87±3.95 93.13±6.88 85.38±5.14 0.95

NLD+Ent PCA 11 87.61±2.47 88.13±3.23 87.18±4.98 0.93
NLD+Ent WS 20 87.89±3.71 89.06±6.46 86.92±3.91 0.95

NLD PCA 6 81.69±4.20 82.50±9.22 81.03±5.30 0.87
NLD WS 8 87.46±2.77 90.00±4.37 85.38±5.28 0.91

/i/ Ent PCA 7 87.46±4.57 81.25±11.60 92.56±4.43 0.92
Ent WS 12 88.17±3.13 85.94±6.79 90.00±4.26 0.94

NLD+Ent PCA 13 85.77±5.53 84.38±4.42 86.92±8.75 0.94
NLD+Ent WS 20 89.86±3.03 88.44±4.67 91.03±4.40 0.95

NLD PCA 8 84.79±4.78 84.69±6.15 84.87±7.78 0.91
NLD WS 8 83.38±3.92 81.88±7.63 84.62±4.83 0.90

/o/ Ent PCA 8 84.23±4.39 84.38±6.91 84.10±6.82 0.91
Ent WS 12 87.32±2.39 85.00±6.56 89.23±5.10 0.93

NLD+Ent PCA 15 87.61±3.97 85.00±6.56 89.74±6.84 0.93
NLD+Ent WS 20 86.34±3.45 85.00±7.48 87.44±4.43 0.92

NLD PCA 8 82.11±4.65 83.44±4.67 81.03±6.64 0.87
NLD WS 8 82.11±4.93 79.06±7.80 84.62±4.98 0.85

/u/ Ent PCA 7 83.10±2.89 84.06±8.39 82.31±6.45 0.86
Ent WS 12 82.82±2.88 84.69±5.79 81.28±7.16 0.86

NLD+Ent PCA 14 82.68±2.82 81.25±5.10 83.85±6.05 0.86
NLD+Ent WS 20 83.80±2.59 84.06±4.98 83.59±3.67 0.88

N/A PCA 53 91.13±2.21 92.50±4.93 90.00±2.25 0.96
Union N/A WS 84 91.27±1.60 95.31±3.04 87.95±3.21 0.97

SM: Selection Method, WS: Without Selection, NF: Number of Features, N/A: Not applicable

and /gato/ is supported in the fact that both words have plosive
and velar phonemes, and therefore they could be useful to eval-
uate the velopharyngeal competence in CLP patients [2]. The
results showed in the table 2 indicate that it is possible to eval-
uate hypernasal voices by means of the analysis of this kind of
words. Note that once again, the best results are obtained when
both kind of measures are considered.

Table 2: Classification results with the words /coco/ and /gato/.
Vowel Features SM NF Accuracy Sensitivity Specificity AUROC

NLD PCA 6 77.14±6.17 82.50±10.94 72.63±11.58 0.84
NLD WS 8 79.71±8.57 86.88±11.95 73.68±11.64 0.81

/coco/ Ent PCA 7 78.57±6.06 81.25±11.02 76.32±7.94 0.85
Ent WS 12 81.43±5.43 81.25±7.80 81.58±9.69 0.87

NLD+Ent PCA 15 83.14±6.09 85.00±7.91 81.58±9.69 0.88
NLD+Ent WS 20 82.29±5.84 85.63±9.34 79.47±13.69 0.87

NLD PCA 6 82.86±5.71 80.63±9.06 84.74±10.94 0.86
NLD WS 8 81.71±4.89 86.88±9.52 77.37±10.83 0.85

/gato/ Ent PCA 6 84.29±8.86 86.88±13.96 82.11±9.99 0.91
Ent WS 12 84.29±4.31 84.38±10.72 84.21±8.95 0.92

NLD+Ent PCA 12 85.71±5.22 87.50±8.84 84.21±8.95 0.91
NLD+Ent WS 20 86.00±4.75 82.50±8.23 88.95±8.02 0.95



The results obtained with German words are presented in
the table 3. It is important to say here that in this database all
registers are from children with CLP, thus in this case the ad-
dressed issue is not to identify hypernasal form healthy voices
but to identify hypernasality from other kind of voice patholo-
gies suffered by CLP patients such as hyponasality, glottal
stops, phonatory tension, among others. These results indicate
that this methodology is also useful for the evaluation of Ger-
man words and even that it can be used for the identification of
hypernasality among other voice pathologies in CLP patients.

Figure 1 shows the ROC curves obtained for the best results

Table 3: Classification results with different German words.

Vowel Features SM NF Accuracy Sensitivity Specificity AUROC
NLD PCA 7 75.12±7.85 74.96±12.20 75.29±12.01 0.80
NLD WS 8 76.20±7.91 77.02±13.59 75.37±11.44 0.84

German Ent PCA 6 75.25±9.61 76.61±14.95 73.88±14.31 0.80
words Ent WS 12 73.64±8.68 74.55±12.54 72.73±11.20 0.80

NLD+Ent PCA 13 80.08±6.88 83.64±11.34 76.53±11.04 0.88
NLD+Ent WS 20 80.66±8.18 81.24±11.83 80.08±11.84 0.87

on each database (Spanish vowels, Spanish words and German
words). For Spanish words, the best result corresponds to the
word /gato/; it can be explained because, the pronunciation of
that word requires to hold the velum up longer and needs to
perform additional articulation movements of the tongue to the
corrected anterior palatal fistula [15]. The discriminant capabil-
ity of the methodology is illustrated in figure 2, which shows the
cumulative distributions for the false scores (gray) and for the
positive scores (black) in the evaluation of the Spanish vowel
/a/.

Figure 1: ROC with the best results
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Figure 2: Likelihood threshold for the Spanish vowel /a/

6. Conclusions
A characterization methodology based on the NLD features and
entropy measures for the detection of hypernasal voices is pre-
sented. According to the results, entropy measures contribute

additional information to the one provided by NDL features.
The method works properly in the evaluation of sustained vow-
els and also in Spanish and German words. In general, the accu-
racy levels and the confidence intervals are improved when the
entropy measures are included in the characterization process.
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J.I., Sáenz-Lechón, N., Osma-Ruı́z, V. and Castellanos-
Domı́nguez, G., “Dynamic feature extraction: An application to
voice pathology detection”, Intelligent Automation and Soft Com-
puting., 15(4):665-680, 2009.

[15] K.L. Moll and R.G. Daniloff, “Investigation of the timing of velar
movements during speech”, Journal of the Acoustical Society of
America, 50(2): 678-684, 1971.


