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ABSTRACT

We describe a lattice generation method that is exact, i.e. it satisfies
all the natural properties we would want from a lattice of alterna-
tive transcriptions of an utterance. This method does not introduce
substantial overhead above one-best decoding. Our method is most
directly applicable when using WFST decoders where the WFSTis
expanded down to the HMM-state level. It outputs lattices that in-
clude state-level alignments as well as word labels. The general idea
is to create a state-level lattice during decoding, and to doa special
form of determinization that retains only the best-scoringpath for
each word sequence.

Index Terms— Speech Recognition, Lattice Generation

1. INTRODUCTION

In Section 2 we give a Weighted Finite State Transducer (WFST)
interpretation of the speech-recognition decoding problem, in order
to introduce notation for the rest of the paper. In Section 3 we define
the lattice generation problem, and in Section 4 we review previous
work. In Section 5 we give an overview of our method, and in Sec-
tion 6 we summarize some aspects of a determinization algorithm
that we use in our method. In Section 7 we give experimental re-
sults, and in Section 8 we conclude.

2. WFSTS AND THE DECODING PROBLEM

The graph creation process we use in our toolkit, Kaldi [1], is very
close to the standard recipe described in [2], where the Weighted
Finite State Transducer (WFST) decoding graph is

HCLG = min(det(H ◦ C ◦ L ◦ G)), (1)

where◦ is WFST composition (note: viewHCLG as a single sym-
bol). For concreteness we will speak of “costs” rather than weights,
where a cost is a floating point number that typically represents a
negated log-probability. A WFST has a set of states with one dis-
tinguished start state1, each state has a final-cost (or∞ for non-final

Thanks to Sanjeev Khudanpur for his help in preparing the paper, and
to HonzaČernocký, Renata Kohlová, and Tomáš Kašpárek for their help
relating to the Kaldi’11 workshop at BUT.

1This is the formulation that corresponds best with the toolkit we use.
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Fig. 1. AcceptorU describing the acoustic scores of an utterance

states); and there is a set of arcs, where each arc has a weight(just
think of this as a cost for now), an input label and an output label.
In HCLG , the input labels are the identifiers of context-dependent
HMM states, and the output labels represent words. For both the in-
put and output symbols, the special labelǫ may appear meaning “no
label is present.”

Imagine we have an utterance, of lengthT , and want to “de-
code” it (i.e. find the most likely word sequence, and the correspond-
ing alignment). A WFST interpretation of the decoding problem is
as follows. We construct an acceptor, or WFSA, as in Fig. 1 (an
acceptor is represented as a WFST with identical input and output
symbols). It hasT+1 states, and an arc for each combination of
(time, context-dependent HMM state). The costs on these arcs are
the negated and scaled acoustic log-likelihoods. Call thisacceptor
U . Define

S ≡ U ◦ HCLG , (2)

which is thesearch graphfor this utterance. It has approximately
T + 1 times more states thanHCLG itself. The decoding problem
is equivalent to finding the best path throughS. The input symbol
sequence for this best path represents the state-level alignment, and
the output symbol sequence is the corresponding sentence. In prac-
tice we do not do a full search ofS, but use beam pruning. LetB
be the searched subset ofS, containing a subset of the states and
arcs ofS obtained by some heuristic pruning procedure. When we
do Viterbi decoding with beam-pruning, we are finding the best path
throughB.

Since the beam pruning is a part of any practical search proce-
dure and cannot easily be avoided, we will define the desired out-
come of lattice generation in terms of the visited subsetB of the
search graphS.



3. THE LATTICE GENERATION PROBLEM

There is no generally accepted single definition of a lattice. In [3]
and [4], it is defined as a labeled, weighted, directed acyclic graph
(i.e. a WFSA, with word labels). In [5], time information is also
included. In the HTK lattice format [6], phone-level time alignments
are also supported (along with separate language model, acoustic and
pronunciation-probability scores), and in [7], state-level alignments
are also produced. In our work here we will be producing state-level
alignments; in fact, the input-symbols on our graph, which we call
transition-ids, are slightly more fine-grained than acoustic states and
contain sufficient information to reconstruct the phone sequence.

There is, as far as we know, no generally accepted problem state-
ment for lattice generation, but all the the authors we citedseem
to be concerned with the accuracy of the information in the lattice
(e.g. that the scores and alignments are correct) and the complete-
ness of such information (e.g. that no high-scoring word-sequences
are missing). The simplest way to formalize these concerns is to ex-
press them in terms of a lattice pruning beamα > 0 (interpret this
as a log likelihood difference).

• The lattice should have a path for every word sequence within
α of the best-scoring one.

• The scores and alignments in the lattice should be accurate.

• The lattice should not contain duplicate paths with the same
word sequence.

Actually, this definition is not completely formalized– we have left
the second condition (accuracy of scores and alignments) a little
vague. Let the lattice beL. The way we would like to state this
requirement is:

• For every path inL, the score and alignment corresponds to
the best-scoring path in inB for the corresponding word se-
quence2.

The way we actually have to state the requirement in order to get an
efficient procedure is:

• For every word-sequence inB within α of the best one, the
score and alignment for the corresponding path inL is accu-
rate.

• All scores and alignments inL correspond to actual paths
throughB (but not always necessarily the best ones).

The issue is that we want to be able to pruneB before generating a
lattice from it, but doing so could cause paths not withinα of the best
one to be lost, so we have to weaken the condition. This is no great
loss, since regardless of pruning, any word-sequence not within α of
the best one could be omitted altogether, which is the same asbeing
assigned a cost of∞). By “word-sequence” we mean a sequence of
whatever symbols are on the output ofHCLG. In our experiments
these symbols represent words, but not including silence, which we
represent via alternative paths inL.

4. PREVIOUS LATTICE GENERATION METHODS

Lattice generation algorithms tend to be closely linked to particu-
lar types of decoder, but are often justified by the same kindsof
ideas. A common assumption underlying lattice generation meth-
ods is theword-pair assumptionof [5]. This is the notion that the
time boundary between a pair of words is not affected by the iden-
tity of any earlier words. In a decoder in which there is a different

2Or one of the best-scoring paths, in case of a tie.

copy of the lexical tree for each preceding word, assuming the word-
pair assumption holds, in order to generate an accurate lattice it is
sufficient to store a single Viterbi back-pointer at the wordlevel;
the entire set of such back-pointers contains enough information to
generate the lattice. Authors who have used this type of lattice gen-
eration method [5, 8] have generally not been able to evaluate how
correct the word-pair assumption is in practice, but it seems unlikely
to cause problems. Such methods are not applicable for us anyway,
as we use a WFST based decoder in which each copy of the lexical
tree does not have a unique one-word history.

The lattice generation method described in [3] is applicable to
decoders that use WFSTs [2] expanded down to theC level (i.e.
CLG), so the input symbols represent context-dependent phones.
In WFST based decoding networks, states normally do not havea
unique one-word history, but the authors of [3] were able to satisfy
a similar condition at the phone level. Their method was to store
a single Viterbi back-pointer at the phone level; use this tocreate a
phone-level latice; prune the resulting lattice; project it to leave only
word labels; and then removeǫ symbols and determinize. Note that
the form of pruning referred to here is not the same as beam pruning
as it takes account of both the forward and backward parts of the
cost. The paper also reported experiments with a different method
that did not require any phone-pair assumption; these experiments
showed that the more efficient method that relied on the phone-pair
assumption had almost the same lattice oracle error rate as their more
efficient method. However, the experiments did not evaluatehow
much impact the assumption had on the accuracy of the scores,and
this information could be important in some applications.

The lattice generation algorithm that was described in [7] is ap-
plicable to WFSTs expanded down to theH level (i.e. HCLG), so
the input symbols represent context-dependent states. It keeps both
scores and state-level alignment information. In some sense this al-
gorithm also relies on the word-pair assumption, but since the copies
of the lexical tree in the decoding graph do not have unique word
histories, the resulting algorithm has to be quite different. Viterbi
back-pointers at the word level are used, but the algorithm keeps
track of not just a single back-pointer in each state, but theN best
back-pointers for theN top-scoring distinct preceding. Therefore,
this algorithm has more in common with the sentence N-best algo-
rithm than with the Viterbi algorithm. By limitingN to be quite
small (e.g.N=5) the algorithm was made efficient, but at the cost
of losing word sequences that would be within the lattice-generation
beam.

5. OVERVIEW OF OUR ALGORITHM

5.1. Version without alignments

In order to explain our algorithm in the easiest way, we will first
explain how it would be if we did not keep the alignment informa-
tion, and were storing only a single cost (i.e. the total acoustic plus
language-model cost). This is just for didactic purposes; we have not
implemented this simple version. In this case our algorithmwould
be quite similar to [3], except at the state level rather thanthe phone
level. We actually store forward rather than backward pointers: for
each active state on each frame, we create a forward link record for
each active arc out of that state; this points to the record for the des-
tination state of the arc on the next frame (or on the current frame,
for ǫ-input arcs). As in [3], at the end of the utterance we prune the
resulting graph to discard any paths that are not within the beamα
of the best cost. Let the pruned graph beP , i.e.

P = prune(B,α), (3)



whereB is the un-pruned state-level lattice. We project on the output
labels (i.e. we keep only the word labels), then removeǫ arcs and
determinize. In fact, we use a determinization algorithm that doesǫ
removal itself.

As in [3], to save memory we actually do the pruning periodi-
cally rather than waiting for the end of the file (we do it every25
frames). Our method is equivalent to their method of linkingall cur-
rently active states to a “dummy” final state and then pruningin the
normal way. However, we implement it in such a way that the prun-
ing algorithm does not always have to go back to the beginningof
the utterance. For each still-active state, we store the cost difference
between the best path including that state, and the best overall path.
This quantity does not always change between different iterations of
calling the pruning algorithm, and when we detect that thesequanti-
ties are unchanged for a particular frame, the pruning algorithm can
stop going backward in time.

After the determinization phase, we prune again using the beam
α. This is needed because the determinization process can intro-
duce a lot of unlikely arcs. In fact, for particular utterances the
determinization process can cause the lattice to expand enough to
exhaust memory. To deal with this, we currently just detect when
determinization has produced more than a pre-set maximum number
of states, then we prune with a tighter beam and try again. In future
we may try more sophisticated methods such as a determinization
algorithm that does pruning itself.

This “simple” version of the algorithm produces an acyclic,de-
terministic WFSA with words as labels. This is sufficient forappli-
cations such as language-model rescoring.

5.2. Keeping separate graph and acoustic costs

A fairly trivial extension of the algorithm described aboveis to store
separately the acoustic costs and the costs arising fromHCLG . This
enables us to do things like generating output from the lattice with
different acoustic scaling factors. We refer to these two costs as the
graph cost and the acoustic cost, since the cost inHCLG is not just
the language model cost but also contains components arising from
transition probabilities and pronunciation probabilities. We imple-
ment this by using a semiring that contains two real numbers,one
for the graph and one for the acoustic costs; it keeps track ofthe two
costs separately, but its⊕ operation returns whichever pair has the
lowest sum of costs (graph plus acoustic).

Formally, if each weight is a pair(a, b), then(a, b) ⊗ (c, d) =
(a+c, b+d), and(a, b) ⊕ (c, d) is equal to(a, b) if a+b < c+d or
if a+b = c+d anda−b < c−d, and otherwise is equal to(c, d).
This is equivalent to the lexicographic semiring of [9], on the pair
((a+b), (a−b)).

5.3. Keeping state-level alignments

It is useful for various purposes, e.g. discriminative training and
certain kinds of acoustic rescoring, to keep the state-level alignments
in the lattices. We will now explain how we can make the alignments
“piggyback” on top of the computation defined above, by encoding
them in a special semiring.

First, let us defineQ = inv(P ), i.e. Q is the inverted, pruned
state-level lattice, where the input symbols are the words and the out-
put symbols are the p.d.f. labels. We want to processQ in such a way
that we keep only the best path through it for each word sequence,
and get the corresponding alignment. This is possible by defining
an appropriate semiring and then doing normal determinization. We

shall ignore the fact that we are keeping track of separate graph and
acoustic costs, to avoid complicating the present discussion.

We will define a semiring in which symbol sequences are en-
coded into the weights. Let a weight be a pair(c, s), wherec is a
cost ands is a sequence of symbols. We define the⊗ operation as
(c, s)⊗(c′, s′) = (c+c′, (s, s′)), where(s, s′) is s ands′ appended
together. We define the⊕ operation so that it returns whichever pair
has the smallest cost: that is,(c, s) ⊕ (c′, s′) equals(c, s) if c < c′,
and(c′, s′) if c > c′. If the costs are identical, we cannot arbitrarily
return the first pair because this would not satisfy the semiring ax-
ioms. In this case, we return the pair with the shorter stringpart, and
if the lengths are the same, whichever string appears first indictio-
nary order.

Let E be an encoding of the inverted state-level latticeQ as de-
scribed above, with the same number of states and arcs;E is an
acceptor, with its symbols equal to the input symbol (word) on the
corresponding arc ofQ, and the weights on the arcs ofE containing
both the the weight and the output symbol (p.d.f.), if any, onthe cor-
responding arcs ofQ. Let D = det(rmeps(E)). Determinization
will always succeed becauseE is acyclic (as long as the original
decoding graphHCLG has noǫ-input cycles). BecauseD is de-
terministic andǫ-free, it has only one path for each word sequence.
Determinization preserves equivalence, and equivalence is defined
in such a way that the⊕-sum of the weights of all the paths through
E with a particular word-sequence, must be the same as the weight
of the corresponding path throughD with that word-sequence. It is
clear from the definition of⊕ that this path throughD has the cost
and alignment of the lowest-cost path throughE that has the same
word-sequence on it.

5.4. Summary of our algorithm

We now summarize the lattice generation algorithm. During decod-
ing, we create a data-structure corresponding to a full state-level lat-
tice. That is, for every arc ofHCLG we traverse on every frame, we
create a separate arc in the state-level lattice. These arcscontain the
acoustic and graph costs separately. We prune the state-level graph
using a beamα; we do this periodically (every 25 frames) but this
is equivalent to doing it just once at the end, as in [3]. Let the final
pruned state-level lattice beP .

Let Q = inv(P ), and letE be an encoded version ofQ as
described above (with the state labels as part of the weights). The
final lattice is

L = prune(det(rmeps(E)), α). (4)

The determinization and epsilon removal are done together by a sin-
gle algorithm that we will describe below.L is a deterministic,
acyclic weighted acceptor with the words as the labels, and the graph
and acoustic costs and the alignments encoded into the weights. The
costs and alignments are not “synchronized” with the words.

6. DETAILS OF OUR DETERMINIZATION ALGORITHM

We implementedǫ removal and determinization as a single algorithm
becauseǫ-removal using the traditional approach would greatly in-
crease the size of the state-level lattice (this is mentioned in [3]). Our
algorithm uses data-structures specialized for the particular type of
weight we are using. The issue is that the determinization process
often has to append a single symbol to a string of symbols, andthe
easiest way to do this in “generic” code would involve copying the
whole sequence each time. Instead we use a data structure that en-
ables this to be done in linear time (it involves a hash table).



1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

0 2 4 6 8 10
R

ea
l t

im
e 

fa
ct

or
Lattice beam

9.4

9.6

9.8

10

10.2

10.4

0 2 4 6 8 10W
E

R
, r

es
co

rin
g 

w
ith

 tr
ig

ra
m

 L
M

Lattice beam

4

6

8

10

12

14

0 2 4 6 8 10

O
ra

cl
e 

W
E

R

Lattice beam

One-best WER
Oracle WER

0

5

10

15

20

25

0 2 4 6 8 10

La
tti

ce
 d

en
si

ty

Lattice beam

Fig. 2. Varying lattice beamα (Viterbi pruning beam fixed at 15)

We will briefly describe another unique aspect of our algorithm.
Determinization algorithms involve weighted subsets of states, e.g.:

S = {(s1, w1), (s2, w2), . . .}. (5)

Let this weighted subset, as it appears in a conventional determiniza-
tion algorithm with epsilon removal, be thecanonical representation
of a state. A typical determinization algorithm would maintain a
map from this representation to a state index. We define aminimial
representationof a state to be like the canonical representation, but
only keeping states that are either final, or have non-ǫ arcs out of
them. We maintain a map from the minimal representation to the
state index. We can show that this algorithm is still correct(it will
tend to give more minimal output). As an optimization for speed,
we also define theinitial representationto be the same type of sub-
set, but prior to following through theǫ arcs, i.e. it only contains
the states that we reached by following non-ǫ arcs from a previous
determinized state. We maintain a separate map from the initial rep-
resentation to the output state index; think of this as a “lookaside
buffer” that helps us avoid the expense of followingǫ arcs.

7. EXPERIMENTAL RESULTS

We report experimental results on the Wall Street Journal database
of read speech. Our system is a standard mixture-of-Gaussians sys-
tem trained on the SI-284 training data; we test on the November
1992 evaluation data. For these experiments we generate lattices
with the bigram language model supplied with the WSJ database,
and for rescoring experiments we use the trigram language model.
The acoustic scale was1/16 for first-pass decoding and1/15 for
LM rescoring. For simplicity we used a decoder that does not sup-
port a “maximum active states” option, so the only variablesto con-
sider are the beam used in the Viterbi beam search, and the separate
beamα used for lattice generation.

Figure 2 shows how various quantities change as we varyα, with
the Viterbi beam fixed at 15. Note that we get all the improvement
from LM rescoring by increasingα to 4. The time taken by our
algorithm started to increase rapidly after aboutα = 8, so a value
of α anywhere between about 4 and 8 is sufficient for LM rescoring
and still does not slow down decoding too much. We do not display
the real-time factor of the non-lattice-generating decoder on this data
(2.26) as it was actually slower than the lattice generatingdecoder;
this is presumably due to the overhead of reference counting. Out
of vocabularly words (OOVs) provide a floor on the lattice oracle
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error rate: of 333 test utterances, 87 contained at least oneOOV
word, yet only 93 sentences (6 more) had oracle errors withα = 10.
Lattice density is defined as the average number of arcs crossing each
frame. Figure 3 shows the effect of varying the Viterbi decoding
beam, while leavingα fixed at 7.

8. CONCLUSIONS

We have described a lattice generation method that is to our knowl-
edge the first efficient method not to rely on the word-pair assump-
tion of [5]. It includes an ingenious way of obtaining state-level
alignment information via determinization in a specially designed
semiring.
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