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ABSTRACT

We describe a lattice generation method that is exact tisatisfies
all the natural properties we would want from a lattice otala-
tive transcriptions of an utterance. This method does rtobdince
substantial overhead above one-best decoding. Our methuodst
directly applicable when using WFST decoders where the WIES
expanded down to the HMM-state level. It outputs lattice th-
clude state-level alignments as well as word labels. Themg¢idea
is to create a state-level lattice during decoding, and ta dpecial
form of determinization that retains only the best-sconagh for
each word sequence.

T

Index Terms— Speech Recognition, Lattice Generation

1. INTRODUCTION

In Section 2 we give a Weighted Finite State Transducer (WFST
interpretation of the speech-recognition decoding probl@ order

to introduce notation for the rest of the paper. In Sectiore3iefine
the lattice generation problem, and in Section 4 we reviesvipus
work. In Section 5 we give an overview of our method, and in-Sec
tion 6 we summarize some aspects of a determinization #hgori
that we use in our method. In Section 7 we give experimental re
sults, and in Section 8 we conclude.

2. WFSTS AND THE DECODING PROBLEM

The graph creation process we use in our toolkit, Kaldi [ }véry
close to the standard recipe described in [2], where the N&ig
Finite State Transducer (WFST) decoding graph is
HCLG = min(det(H o C o Lo G)), 1)
whereo is WFST composition (note: view CLG as a single sym-
bol). For concreteness we will speak of “costs” rather thamims,
where a cost is a floating point number that typically repnesa
negated log-probability. A WFST has a set of states with dee d
tinguished start stateeach state has a final-cost ¢arfor non-final
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1This is the formulation that corresponds best with the toalie use.
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Fig. 1. AcceptorU describing the acoustic scores of an utterance

states); and there is a set of arcs, where each arc has a \{jaght
think of this as a cost for now), an input label and an outpbela

In HCLG, the input labels are the identifiers of context-dependent
HMM states, and the output labels represent words. For betint

put and output symbols, the special labehay appear meaning “no
label is present.”

Imagine we have an utterance, of lendth and want to “de-
code” it (i.e. find the most likely word sequence, and theespond-
ing alignment). A WEST interpretation of the decoding pesblis
as follows. We construct an acceptor, or WFSA, as in Fig. 1 (an
acceptor is represented as a WFST with identical input ampubu
symbols). It has'+1 states, and an arc for each combination of
(time, context-dependent HMM state). The costs on these @
the negated and scaled acoustic log-likelihoods. Calldabteptor
U. Define

S=UoHCLG, @)

which is thesearch graphfor this utterance. It has approximately
T + 1 times more states thaHCLG itself. The decoding problem

is equivalent to finding the best path through The input symbol
sequence for this best path represents the state-levehegigt, and
the output symbol sequence is the corresponding sentemgead-
tice we do not do a full search ¢&f, but use beam pruning. L&

be the searched subset $f containing a subset of the states and
arcs ofS obtained by some heuristic pruning procedure. When we
do Viterbi decoding with beam-pruning, we are finding thet ipagh
throughB.

Since the beam pruning is a part of any practical search proce
dure and cannot easily be avoided, we will define the desiutd o
come of lattice generation in terms of the visited subBetf the
search grapts.



3. THE LATTICE GENERATION PROBLEM

There is no generally accepted single definition of a lattice[3]

and [4], it is defined as a labeled, weighted, directed acygriaph
(i.e. a WFSA, with word labels). In [5], time information i¢sa
included. In the HTK lattice format [6], phone-level timeggments
are also supported (along with separate language modelstecand
pronunciation-probability scores), and in [7], stateeleslignments
are also produced. In our work here we will be producing deatel

alignments; in fact, the input-symbols on our graph, whighaall

transition-ids are slightly more fine-grained than acoustic states and

contain sufficient information to reconstruct the phoneusege.

copy of the lexical tree for each preceding word, assumiagwbrd-
pair assumption holds, in order to generate an accurateelattis
sufficient to store a single Viterbi back-pointer at the wéedel;
the entire set of such back-pointers contains enough irgtham to
generate the lattice. Authors who have used this type aféagien-
eration method [5, 8] have generally not been able to evaloatv
correct the word-pair assumption is in practice, but it seaniikely
to cause problems. Such methods are not applicable for weagny
as we use a WFST based decoder in which each copy of the lexical
tree does not have a unigue one-word history.

The lattice generation method described in [3] is applieabl
decoders that use WFSTs [2] expanded down toChievel (i.e.

There is, as far as we know, no generally accepted probléet sta C'LG), so the input symbols represent context-dependent phones

ment for lattice generation, but all the the authors we cgedm
to be concerned with the accuracy of the information in thicka
(e.g. that the scores and alignments are correct) and thpletan
ness of such information (e.g. that no high-scoring womglisaces
are missing). The simplest way to formalize these concertts éx-
press them in terms of a lattice pruning beam> 0 (interpret this
as a log likelihood difference).

In WEST based decoding networks, states normally do not have
unique one-word history, but the authors of [3] were ableatisfy/

a similar condition at the phone level. Their method was twest
a single Viterbi back-pointer at the phone level; use thisreate a
phone-level latice; prune the resulting lattice; projétd leave only
word labels; and then removesymbols and determinize. Note that
the form of pruning referred to here is not the same as beanirgu

e The lattice should have a path for every word sequence withifS it takes account of both the forward and backward partheof t

« of the best-scoring one.

cost. The paper also reported experiments with a differesthod
that did not require any phone-pair assumption; these erpats

e The scores and alignments in the lattice should be accurate.qpawed that the more efficient method that relied on the plpaite
e The lattice should not contain duplicate paths with the samessumption had almost the same lattice oracle error raemsriore

word sequence.

Actually, this definition is not completely formalized— wave left
the second condition (accuracy of scores and alignmentijle |
vague. Let the lattice bé&. The way we would like to state this
requirement is:

efficient method. However, the experiments did not evaltiate
much impact the assumption had on the accuracy of the sands,
this information could be important in some applications.

The lattice generation algorithm that was described in§@p-
plicable to WFSTs expanded down to tHelevel (i.e. HCLG), so
the input symbols represent context-dependent statesefiskboth

e For every path in’, the score and alignment corresponds toscores and state-level alignment information. In someeséhis al-

the best-scoring path in iB for the corresponding word se-
quencé.

The way we actually have to state the requirement in ordeetaugy
efficient procedure is:

e For every word-sequence i within « of the best one, the
score and alignment for the corresponding patl iis accu-
rate.

e All scores and alignments i correspond to actual paths
throughB (but not always necessarily the best ones).

The issue is that we want to be able to prundefore generating a
lattice from it, but doing so could cause paths not withiof the best
one to be lost, so we have to weaken the condition. This is eatgr
loss, since regardless of pruning, any word-sequence tioirve of
the best one could be omitted altogether, which is the sarbeing
assigned a cost ek). By “word-sequence”
whatever symbols are on the output@CLG. In our experiments
these symbols represent words, but not including silenb&hwe
represent via alternative pathsin

4. PREVIOUS LATTICE GENERATION METHODS

Lattice generation algorithms tend to be closely linked &otipu-
lar types of decoder, but are often justified by the same kofds
ideas. A common assumption underlying lattice generatiethm
ods is theword-pair assumptiorof [5]. This is the notion that the
time boundary between a pair of words is not affected by tke-id
tity of any earlier words. In a decoder in which there is aafiit

20r one of the best-scoring paths, in case of a tie.

gorithm also relies on the word-pair assumption, but siheebpies
of the lexical tree in the decoding graph do not have uniquedwo
histories, the resulting algorithm has to be quite différeviterbi
back-pointers at the word level are used, but the algoritleepk
track of not just a single back-pointer in each state, but’thbest
back-pointers for theV top-scoring distinct preceding. Therefore,
this algorithm has more in common with the sentence N-begst-al
rithm than with the Viterbi algorithm. By limitingV to be quite
small (e.g. N=>5) the algorithm was made efficient, but at the cost
of losing word sequences that would be within the latticeegation
beam.

5. OVERVIEW OF OUR ALGORITHM

5.1. Version without alignments

We mean a Sequence of | orger to explain our algorithm in the easiest way, we witsti

explain how it would be if we did not keep the alignment infam
tion, and were storing only a single cost (i.e. the total atiowplus
language-model cost). This is just for didactic purposesheve not
implemented this simple version. In this case our algorithoold
be quite similar to [3], except at the state level rather tirenphone
level. We actually store forward rather than backward st for
each active state on each frame, we create a forward linkddop
each active arc out of that state; this points to the recarthiodes-
tination state of the arc on the next frame (or on the curnemhé,
for e-input arcs). As in [3], at the end of the utterance we prure th
resulting graph to discard any paths that are not within #wgain
of the best cost. Let the pruned graphBg.e.

P = prune(B, a), 3)



whereB is the un-pruned state-level lattice. We project on thewutp
labels (i.e. we keep only the word labels), then remewescs and
determinize. In fact, we use a determinization algorithat ttoes
removal itself.

As in [3], to save memory we actually do the pruning periodi-

cally rather than waiting for the end of the file (we do it evegy
frames). Our method is equivalent to their method of linkatigeur-
rently active states to a “dummy” final state and then pruiminiipe
normal way. However, we implement it in such a way that thenpru
ing algorithm does not always have to go back to the beginafng
the utterance. For each still-active state, we store thedifésrence
between the best path including that state, and the bestlbpeth.
This quantity does not always change between differerstitars of
calling the pruning algorithm, and when we detect that thyesanti-
ties are unchanged for a particular frame, the pruning dlgorcan
stop going backward in time.

After the determinization phase, we prune again using thenbe

shall ignore the fact that we are keeping track of separatgrgand
acoustic costs, to avoid complicating the present disoossi

We will define a semiring in which symbol sequences are en-
coded into the weights. Let a weight be a pairs), wherec is a
cost ands is a sequence of symbols. We define theperation as
(c,s)®(c,s") = (c+, (s,5")), where(s, s') is s ands’ appended
together. We define the operation so that it returns whichever pair
has the smallest cost: that (g, s) @ (¢, s") equals(c, s) if ¢ < ¢/,
and(c’, s') if ¢ > ¢. If the costs are identical, we cannot arbitrarily
return the first pair because this would not satisfy the segiax-
ioms. In this case, we return the pair with the shorter stpiag, and
if the lengths are the same, whichever string appears firdictio-
nary order.

Let E be an encoding of the inverted state-level lattigas de-
scribed above, with the same number of states and d&ds; an
acceptor, with its symbols equal to the input symbol (wond)tloe
corresponding arc ap, and the weights on the arcs Bfcontaining

«. This is needed because the determinization process aan int Poth the the weight and the output symbol (p.d.f.), if anyttencor-

duce a lot of unlikely arcs. In fact, for particular utteraacthe
determinization process can cause the lattice to expandganim
exhaust memory. To deal with this, we currently just detelsemnv
determinization has produced more than a pre-set maximunbeu
of states, then we prune with a tighter beam and try againutlré
we may try more sophisticated methods such as a determaonizat
algorithm that does pruning itself.

This “simple” version of the algorithm produces an acyadtie;
terministic WFSA with words as labels. This is sufficient &ppli-
cations such as language-model rescoring.

5.2. Keeping separate graph and acoustic costs

A fairly trivial extension of the algorithm described abdsgeo store
separately the acoustic costs and the costs arising f6thG. This
enables us to do things like generating output from theckttvith
different acoustic scaling factors. We refer to these twatsas the
graph cost and the acoustic cost, since the co#tdii. GG is not just
the language model cost but also contains components gfisim
transition probabilities and pronunciation probabibtieNe imple-
ment this by using a semiring that contains two real numhmzrs,
for the graph and one for the acoustic costs; it keeps trattkedfvo

responding arcs af). Let D = det(rmeps(F)). Determinization
will always succeed becaudg is acyclic (as long as the original
decoding graphHCLG has noe-input cycles). Becaus® is de-
terministic ande-free, it has only one path for each word sequence.
Determinization preserves equivalence, and equivalenckefined

in such a way that the>-sum of the weights of all the paths through
FE with a particular word-sequence, must be the same as thétveig
of the corresponding path throudh with that word-sequence. It is
clear from the definition ofp that this path througtD has the cost
and alignment of the lowest-cost path throufithat has the same
word-sequence on it.

5.4. Summary of our algorithm

We now summarize the lattice generation algorithm. Duriegod-
ing, we create a data-structure corresponding to a fukkdeatel lat-
tice. Thatis, for every arc df CL G we traverse on every frame, we
create a separate arc in the state-level lattice. Theseantain the
acoustic and graph costs separately. We prune the statiegl@ph
using a beamy; we do this periodically (every 25 frames) but this
is equivalent to doing it just once at the end, as in [3]. Letfihal
pruned state-level lattice be.

Let @ = inv(P), and letE be an encoded version @} as

costs separately, but its operation returns whichever pair has the described above (with the state labels as part of the weigfitse

lowest sum of costs (graph plus acoustic).

Formally, if each weight is a paiia, b), then(a, b) ® (¢, d) =
(a+c,b+d), and(a,b) & (c,d) is equal to(a, b) if a+b < c+d or
if a+b = c+d anda—b < c—d, and otherwise is equal 1@, d).
This is equivalent to the lexicographic semiring of [9], dwe tpair
((a+b), (a—b)).

5.3. Keeping state-level alignments

It is useful for various purposes, e.g. discriminativerag and
certain kinds of acoustic rescoring, to keep the state-ignments
in the lattices. We will now explain how we can make the aligmts
“piggyback” on top of the computation defined above, by einugpd
them in a special semiring.

First, let us defing) = inv(P), i.e. @ is the inverted, pruned
state-level lattice, where the input symbols are the wond<lae out-
put symbols are the p.d.f. labels. We want to procggssuch a way
that we keep only the best path through it for each word semgjen
and get the corresponding alignment. This is possible byidefi
an appropriate semiring and then doing normal determioizatVe

final lattice is

L = prune(det(rmeps(E)), a). 4

The determinization and epsilon removal are done togethardin-
gle algorithm that we will describe belowL is a deterministic,
acyclic weighted acceptor with the words as the labels, laaditaph
and acoustic costs and the alignments encoded into the igeifje
costs and alignments are not “synchronized” with the words.

6. DETAILS OF OUR DETERMINIZATION ALGORITHM

We implemented removal and determinization as a single algorithm
because-removal using the traditional approach would greatly in-
crease the size of the state-level lattice (this is mentiamé3]). Our
algorithm uses data-structures specialized for the pdatidype of
weight we are using. The issue is that the determinizatiocgss
often has to append a single symbol to a string of symbolstfzend
easiest way to do this in “generic” code would involve cogythe
whole sequence each time. Instead we use a data structtientha
ables this to be done in linear time (it involves a hash table)
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Fig. 2. Varying lattice beana (Viterbi pruning beam fixed at 15)

We will briefly describe another unique aspect of our aldonit
Determinization algorithms involve weighted subsets afes, e.g.:

S:{(sl,w1),(52,w2),...}. (5)

Let this weighted subset, as it appears in a conventionatéatiza-
tion algorithm with epsilon removal, be tisanonical representation
of a state. A typical determinization algorithm would maint a
map from this representation to a state index. We defimenamial

representatiorof a state to be like the canonical representation, bu

only keeping states that are either final, or have a@mes out of

them. We maintain a map from the minimal representation ¢o th

state index. We can show that this algorithm is still corf@otvill
tend to give more minimal output). As an optimization for epe
we also define thaitial representationto be the same type of sub-
set, but prior to following through the arcs, i.e. it only contains
the states that we reached by following noarcs from a previous
determinized state. We maintain a separate map from thal irép-
resentation to the output state index; think of this as akémside
buffer” that helps us avoid the expense of followingrcs.

7. EXPERIMENTAL RESULTS

We report experimental results on the Wall Street Journtlldese
of read speech. Our system is a standard mixture-of-Gansssies-
tem trained on the SI-284 training data; we test on the Noeemb
1992 evaluation data. For these experiments we genericesat

with the bigram language model supplied with the WSJ datgbas [5]

and for rescoring experiments we use the trigram languagiemo
The acoustic scale wals/'16 for first-pass decoding ant/15 for
LM rescoring. For simplicity we used a decoder that does apt s
port a “maximum active states” option, so the only varialiteson-
sider are the beam used in the Viterbi beam search, and theasep
beama used for lattice generation.

Figure 2 shows how various quantities change as wewvanith
the Viterbi beam fixed at 15. Note that we get all the improveime
from LM rescoring by increasinge to 4. The time taken by our
algorithm started to increase rapidly after abaut= 8, so a value

of a anywhere between about 4 and 8 is sufficient for LM rescoring

and still does not slow down decoding too much. We do not displ
the real-time factor of the non-lattice-generating decaaethis data
(2.26) as it was actually slower than the lattice generatiecpder;
this is presumably due to the overhead of reference counting
of vocabularly words (OOVs) provide a floor on the lattice abea
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Fig. 3. Varying Viterbi pruning beam (lattice beamfixed at 7)
error rate: of 333 test utterances, 87 contained at leastOiD¢
word, yet only 93 sentences (6 more) had oracle errorsavith 10.
Lattice density is defined as the average number of arcsiogosach

frame. Figure 3 shows the effect of varying the Viterbi dengd
beam, while leaving fixed at 7.

8. CONCLUSIONS

We have described a lattice generation method that is to rowlk

tedge the first efficient method not to rely on the word-paiuags

tion of [5]. It includes an ingenious way of obtaining stigeel
alignment information via determinization in a speciallgs@jned
semiring.
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