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Gräfenberger Str. 32-34, 91080 Uttenreuth, GERMANY
http://www.medav.de

Abstract—Voice scrambling is widely used to add privacy to the
radio communication of various authorities – but is also used by
criminals to evade prosecution. In this article, we consider various
analog voice scrambling techniques such as fixed frequency inver-
sion, splitband inversion and rolling code scramblers. We explain
how to break them using automatically extracted measures and
scoring algorithms, and evaluate the proposed system using
simulated data. While the simple inversion can be easily broken,
the more advanced techniques require additional work prior to
unsupervised automatization; the presented user interface allows
the user to refine the automatic results to obtain a high quality
solution.

I. INTRODUCTION

Many authorities including police, fire department, tow
trucks, military and alike, use voice scrambling to add privacy
to their radio communications. Although voice scrambling
does not provide security due to its simple implementation,
the manual decipherment is a tedious task, thus one could
think of voice scrambling to add temporal security – which
may be sufficient for time-critical operations. In general, “a
rule of thumb is 60:1 ’grunt time to clear speech time’.”1

Unfortunately, voice scrambling is not only used by authorized
personnel but also by villains taking part in organized crime
such as drug dealing and man hunt, making it hard for
authorities to succeed in surveillance and raids.

In this article, we take on the widespread analog voice
scrambling, a symmetric and frequency based modulation of
the speech signal. Our vision is an automatic descrambler that
acts as a one-fits-all adapter to analog voice scrambling that
allows to listen to the clean speech in real time. Beside the
use to aid real time reconnaissance in ongoing operations, an
automatic descrambler can be used in conjunction with large-
scale surveillance assets like broad-band radio scanning and
automatic speech recognition.

The remainder of this paper is organized as follows. Sec. II
introduces to analog voice scrambling and its variants. Sec. III
and IV describe our key contributions that is how to model
a “good” clean speech signal and how to exploit that for au-
tomatic descrambling. The graphical user interface described
in Sec. IV-C allows the user to work with the algorithms
and make manual corrections to the descrambled solution. We
evaluate the proposed algorithms in Sec. V and conclude with
a discussion and outlook on future work in Sec. VI.

1J. Walker, former US DOD employee; source: MX-COM document
#20830062.002

Figure 1. Spectrogram of a single word; from left to right: original, ring
modulated (3400 Hz), additional high-pass and additional low-pass. The mirror
effect of the ring modulation is clearly visible.

II. ANALOG VOICE SCRAMBLING

A. Frequency Inversion

The most basic scrambling technique is based on a fixed
frequency inversion (ring modulation) that shifts all frequen-
cies by a certain modulation frequency. This simple transform
can be expressed as a multiplication in the time domain as

s(t) = f(t) · cos(2πtfinv/fSR) (1)

where t is the time index, finv is the selected modulation
frequency and fSR is the sampling frequency. As the ring
modulation introduces a mirror-like effect (everything that
“falls out on top” is inserted head first at the bottom of
the spectrum – hence ring modulation), typically a low- or
high-pass filter at the modulation frequency is applied after
the modulation. A high-pass filter results in a funny voice,
often known from characters in animated films like Donald
Duck, but a low-pass filter retains the inverted and typically
unintelligible part (hence, speech inversion); Fig. 1 shows the
spectrogram of a single word in its original, ring modulated
(3400 Hz), and subsequent high- and low-pass filter.

The ring modulation is a symmetric process, i.e., it can be
reversed by the same transformation; this makes it very easy
to implement in both software and hardware. The most salient
parts of the human voice frequency spectrum is between 100
and 4000 Hz; that range typically covers the first 3 formants
which are crucial for intelligibility2. To break the scrambling,
one needs to find the right descrambling frequency, which
is similar to tuning in the right frequency in an AM/FM
radio. Thus, analog voice scrambling only provides privacy,
but not security. Example devices for ham radio use include
the Ramsey SS70C speech scrambler/descrambler kit and the
Kenwood TK 3170.

2Telephone codecs typically cover 300-3400 Hz (a-law, µ-law)



B. Splitband Inversion
To add a little bit to the privacy achieved by voice inversion,

security companies came up with a slight modification, the
splitband inversion. In contrast to the single frequency as
with regular inversion, splitband inversion is configured by
a frequency triple. The input signal is first split into a lower
and upper frequency band using a split frequency fs; then,
the lower (upper) band is inverted using fl (fu); finally, the
two signals are added together to obtain the output signal. As
with the simple inversion, this process is symmetric, i.e., the
same configuration is used for scrambling and descrambling.
Popular devices include the MX-COM VSB chips and alike.

C. Rolling Code
Both single and splitband inversion can be wire-tapped

fairly simple by a human operator setting the right frequencies.
Rolling code (RC) scrambling significantly increases the pri-
vacy by a fairly simple principle: In a fixed time interval, the
inversion frequencies are changed following a prior negotiated
protocol; the chips synchronize using short high frequency
and energy bursts. Depending on the hardware manufacturer
and module, configurations may change every 80-500 msec;
frequencies and their time-order may have an arbitrary length.
Popular devices include the Transcrypt Int’l 400 series and
the Selectone ST-25. This RC principle can be applied to
both single and splitband inversion, making it rather hard for
humans to decode in reasonable time.

D. Simulation Framework
Unfortunately, scrambled communications data is often

strictly classified, and privacy laws and the limited accessibil-
ity of scrambling devices make it difficult to acquire authentic
recordings. Thus, we implemented a simulation framework
for the scrambling techniques described above to work on
automatic descrambling algorithms. The de/scrambler can be
configured for single and splitband inversion; additionally, a
RC governor can be configured at the desired burst (frequency,
energy), time interval and configuration protocol to simulate
scrambling modules available on the market.

III. MODELING SPEECHINESS

Due to the simple design of the analog scrambling pro-
cess, the descrambling problem comes down to finding the
right inversion frequency. Interestingly, the closer the guessed
inversion frequency is to the correct value, the more natural
and intelligible is the speech. While selecting an inversion
frequency which is wrong by several 100 Hz results in un-
intelligible gibberish, a close guess may already result in a
clearly understandable speech. Thus, a crucial step in finding
a proper inversion frequency is to come up with a measure of
speechiness, i.e., how good or natural a (descrambled) speech
signal sounds.

A. Statistical Model
In related work on speech quality, we could show that

statistical models can be used to describe and estimate in-
herent properties of speech such as age and gender [1] and
intelligibility [2]. Based on these findings, we build a model
by extracting features from the speech signal and computing

a probability of being “proper” speech, i.e., that the selected
inversion frequency was indeed (close to) correct.

We extract shifted delta coefficients [3] on top of Mel-
frequency cepstral coefficients (MFCC), both well established
features in speech and language recognition. In short, the
feature extraction pipeline is

1) Apply Hamming window (25 ms length, 10 ms shift).
2) Compute power spectrum using 512 point FFT.
3) Apply Mel-filterbank (300-3400 Hz), 26 filters dis-

tributed over the Mel scale with 50% overlap; apply log
for compression.

4) Apply DCT to compute model spectrum; output short-
time energy and coefficients 1-6.

5) Compute and stack delta-frames (SDC 7-1-3-7), by

∆cj(t) = c(t+ iP + d)− c(t,+iP − d) (2)

where j is the cepstral coefficient in the t-th window,
d = 1 the delta size, P = 3 the block shift between the
deltas, and i = 0 . . . (k − 1), k = 7 is the index of the
shifted delta.

Speech and silence are modeled using Gaussian mixture
models (GMM) defined as

p(x|Θ) =
N∑

i=1

ciN (x;µi,Σi) (3)

where x is a feature vector and Θ are the parameters, i.e.,
weights ci, means µi and covariances Σi of each mixture i;
here, we use N = 32 Gaussians with diagonal covariance.
The parameters are learned from training data in an iterative
scheme, beginning from an initial estimate.

The means and variances are trained in a discriminative way
maximizing the maximum mutual information (MMI) criterion

LMMI(Θ) =
R∑

r=1

log
pΘ(xr|sr)KrP (sr)∑

k pΘ(xr|k)KrP (k)
(4)

where sr is the correct class label (voice, silence) of segment
r, and the segment probability pΘ(xr|s) is computed using the
current parameters Θ; the scaling coefficient Kr is typically
set to a value related to the segment length, e.g., kr = C/Tr

where Tr is the length of segment r and C is a constant, e.g.,
2; for detailed update formulas refer to [4].

After the re-estimation of the means and variances, the
individual mixture weights ci are estimated by maximizing
the maximum likelihood objective function

LEM(Θ) =
∏

t

p(xt|Θ) (5)

which also has a closed form solution as

ĉi =
1
N

∑
t

γt(i) =
1
N

∑
t

ciN (xt;µi,Σi)∑
j cjN (xt;µj ,Σj)

. (6)

The ML step is repeated for five times, the MMI-ML routine
ten times.

The speech and silence model are now used to compute
a statistical speechiness score of a possible descrambling



attempt.

τstat =
1∑T

t=1 χ(xt)

T∑
t=1

χ(xt) · p(xt|Θvoice) (7)

where xt is the feature vector, and

χ(xt) =
{

1 if p(xt|Θvoice) > p(xt|Θsilence)
0 else

(8)

is the decision function to filter out silence frames, as these
would have similar probability regardless of the chosen inver-
sion frequency. This results in an average probability of each
(non-silence) frame being a proper speech frame, thus, the
larger the value, the more speech-like the underlying speech
signal is.

B. Cepstral Peak Prominence
Beside a purely statistical measure, we extract a solely

acoustic value from the presented speech signal to indicate
speechiness. Human voice production is basically a two-step
process; the primary excitation signal is generated by air
flowing through the vocal folds. This signal is then further
modulated by the vocal tract, i.e., the trachea, mouth, tongue
and nasal cavities. In case of voiced (e.g., vowel) segments,
the vocal folds generate a signal with a fundamental frequency
(F0), which also manifests as harmonics throughout the whole
spectrum. We exploit this natural property of speech; if the sig-
nal was properly descrambled, then the F0 and it’s harmonics
must be clearly identifiable. If we chose a wrong inversion
frequency, the main F0 is shifted, thus, the resulting signal
will have little harmonics for that phony F03. The value and
strength of the F0 and its harmonics can be found as a peak
in the cepstrum, making it easy to detect.

This measure of cepstral peak prominence [5] was success-
fully used to evaluate the intelligibility of pathologic voices.
Here, we adapt the idea and compute a more coarse estimate.
Similar as with the SDC, we apply the same window function
and FFT to the input signal. The Mel-filterbank contains 30
filters that cover 0-4000 Hz, equally spaced on the Mel-scale
and with 50% overlap. After the DCT, we consider the first
10 coefficients, excluding the zeroth (an energy correlate).

The final per-frame measure δ(xt) is the absolute distance
of the peak to the regression line fit to the remaining coef-
ficients. Experiments show that this distance is rather small
for proper speech frames, thus we consider the inverse of
the absolute distance. Similar as with the statistical scoring,
we also compute an average acoustic speechiness score that
discards silence frames.

τacou =

(
1∑T

t=1 χ(xt)

T∑
t=1

χ(xt) · δ(xt)

)−1

(9)

C. Combining Measures
The two above measures can be combined to compensate

individual shortcomings. While the statistical measure can be
fooled by something that “just looks like speech” by chance,
the acoustical measure might be misleading if the explored

3Unless a harmonic of the F0 was chosen as inversion frequency.
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Figure 2. Speechiness values (scaled and normalized for same maximum)
for a speech signal scrambled at 3400 Hz and descrambled with frequencies
from 2000 Hz to 4000 Hz in 100 Hz steps.

frequencies were too far off the correct solution. Furthermore,
one or the other might be less reliable in adverse channel
conditions.

We consider two score combinations; first, the measures can
be combined as a weighted sum as

τsum = w · τstat + v · τacou (10)

where w and v are the individual weights; these can be used
to transform the measures to a similar numeric range or to put
emphasis on one measure. We chose v = 0.01 and w = 1 to
achieve a similar numeric range of the two measures.

Similar, we can combine the two values as a product
utilizing the fact that the probabilities should be high, but the
peak prominence low.

τprod = τstat · τ−1
acou (11)

Fig. 2 shows the statistical, acoustical and combined speech-
iness values for an example file that was originally scram-
bled at 3400 Hz and then descrambled at frequencies from
2000 Hz to 4000 Hz, at a 100 Hz interval. The fact that the
statistical measure shows peaks around 2200 Hz confirms, that
something may appear as speech that can be ruled out by the
acoustical measure.

IV. AUTOMATIC DESCRAMBLING

The automatic descrambling can be a problem of variable
difficulty. In the best case, the make and model of the used
scrambling module are known, and thus are the possible
scrambling configurations – most chips have only a limited
number of scrambling configurations with associated frequen-
cies. In the worst case, nothing about the used language or
scrambling device is known – but the statistical model is
trained to recognize certain languages, and the scrambler might
introduce too much noise to the acoustical features.

A. Stationary Scrambling
If the voice scrambling method is stationary, i.e., the in-

version configuration is unchanged throughout the recording,
finding the best inversion frequency is a straight forward task.
The τ measures are computed for the whole recording; the
possibly best candidate is the frequency associated with the



maximum τ value. Using a list sorted by descending τ , we
can also produce a set of best guesses.

Interestingly, the experiments show that splitband inversion
can be treated as regular inversion. Although the resulting
voice quality is clearly lower, it seems sufficient to catch one of
the two bands with a proper inversion frequency. The resulting
voice will sound unnaturally high pitched or dark in timbre,
as the other subband is missing. The advantage is that we only
need to estimate one frequency instead of guessing the right
frequency triple. However, if the scrambling module is known
in advance, the possible configurations can be evaluated.

B. Rolling Code

For RC scramblers, the descrambling process is a two-step
process. The segments of constant scrambling configurations
need to be identified before each segment is individually
descrambled.

Typically, RC devices use a high-frequency and -energy
burst to synchronize the transmitter’s and receiver’s scrambling
configuration. We identify these bursts using a sliding Ham-
ming window (as with the feature extraction) and a threshold
for the short-time energy. The segmentation is further heuristi-
cally constrained to minimize false alarms; the burst length is
typically 30-50 msec, and they should appear rather regularly.
The burst segmentation is a rather simple task that can be
completed with a high reliability.

The second step is analog to the stationary descrambling,
assuming that the configuration remains the same throughout
the segment.

C. Guided Manual Descrambling

Although the automatic descrambling can produce good
results, it still contains errors and, especially for RC, results
in sub-optimal quality due to errors. We implemented an
interface that allows the user to work with the recording in
question; Fig. 3 shows an overview of the program. Starting
from an initial automatic burst segmentation (in case of RC)
and descrambling attempt, the user can modify the burst
segmentation and the descrambling configurations for each
segment. Zoom and pan for the spectrograms as well as the
audio play-back functions allow the user to quickly assess the
recording and produce a high quality descrambled version.
The program is implemented in Java using the parts of the
Java Speech Toolkit [6] and is thus platform independent.

V. EVALUATION

We use a subset of the CALLFRIEND [7] corpus, namely
the training and test sets for the languages Arabic, Mandarin,
German, Farsi, Spanish and Vietnamese. The corpus is a
collection of phone call recordings in the above languages with
varying topics. The Brno Phoneme Recognizer [8] was used
to obtain a speech/non-speech segmentation of the speech data
which is necessary for the training of the statistical model. To
evaluate the automatic descrambling algorithms, we simulate
voice scrambling for a subset of the German CallFriend test
data; we use a 30 second chunk of each of the 40 available
speakers.

Figure 3. Screen shot of the descrambler interface; from top to bottom:
original signal and spectrum, rolling code segmentation, descrambled signal
spectrum, controls. Segmentation and per-segment descrambling configuration
can be automatically computed and manually refined.
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Figure 4. Recognition rate of the correct descrambling frequency by reference
inversion frequency considering the n = 1 and n = 3 best guesses; the
combinations are not displayed as they could not improve over the statistical
measure. n = 5 for τacou shows that it is typically only off by little.

A. Frequency Inversion

To examine the descrambling strategy performance for the
whole spectrum, we explore the de/scrambling frequencies
from 2000 Hz up to 4000 Hz, with 100 Hz steps. Each record-
ing is first inverted using a fixed frequency; the descrambler
tries to find the correct frequency within the full range (2000,
2100, 2200, . . . , 4000), resulting in a 5% chance of guessing
the right frequency. Fig. 4 indicates a satisfactory performance
using τstat for inversion frequencies above 2600, especially
when considering the best three estimates; if the estimate is
wrong, it is on average ca. 300 Hz off for that measure.

B. Splitband Inversion

We evaluate the splitband inversion for each of the first
16 frequency triples of the MX-COM VSB (refer to doc.
#20830062.002). The automatic descramblers are provided
with the same list as possible frequencies, resulting in a
6.25% chance of guessing the correct triple. Fig. 5 shows
the classification performance for the individual scrambling
configurations. Unfortunately, the task seems rather more
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Figure 5. Recognition rate of the correct descrambling configuration by
reference scrambling configuration using the n = 1 and n = 5 best guesses;
the combination measures show improvements for some configurations.

difficult; the main reason is the proximity of the scrambling
configurations in terms of frequency – most configurations
differ by about 100-130 Hz, leading to very similar acoustic
and statistical scores. Interestingly, the combination measures
could show major improvements for some configurations,
indicating possible future improvements.

C. Rolling Code
The RC descrambling and subsequent user interactions were

not yet evaluated. We expect that the segmental descrambling
needs to be improved to work on the RC chunks; the segments
are typically very short (80-500 msec), making it difficult to
extract reliable spectral and acoustic features.

VI. DISCUSSION

Basic voice scrambling by frequency inversion is imple-
mented as a ring modulation with a subsequent low-pass
filter. The proposed descrambling approach is a brute-force
attack; the signal is descrambled with a list of frequencies, and
statistical and acoustic measures are used to identify the most
promising attempt. The list of candidate frequencies is either
manually selected, e.g., if the scrambling device and thus its
possible settings are known, or systematically sampled; here,
we chose frequencies in 2000, 2100, 2200, . . . , 4000 Hz, as
these can be used without discarding too much of the actual
speech spectrum, and an error of 100 Hz still results in a well
understandable voice. While the basic inversion frequency can
be reliably detected, there is still a rather low performance
for frequencies between 2200 and 2600 Hz. We suspect this
due to the relatively large cutout in the spectrum resulting in
similar τ values. The proposed setup can be run in about real
time on typical desktop machines; the availability of clusters
would allow a more detailed analysis. For future work, we are
interested in fine-tuning the descrambling frequency; starting
from a rough estimate, the frequency can be adjusted to maxi-
mize the harmonics in voiced segments. Instead of comparing
different descrambling attempts, the inversion frequency could
also be estimated directly from the scrambled signal using
similar statistic and acoustic features.

Splitband scrambling is a more challenging task; depending
on how much is known in advance, an automatic descrambling

should be possible following some optimizations. The rather
poor classification results can be explained by the proximity
of the individual scrambling configurations. This proximity
is also the reason why these results should be evaluated
by human listeners – the guesses may be close enough to
result in intelligible speech. Prior knowledge about the signal
bandwidth and possibly used scrambling device can help to
narrow the search space to a few frequency combinations.

The RC descrambling evaluation turned out to be tricky;
although the bursts can be reliably selected, the segmental de-
scrambling gives us a hard time. Furthermore, picking slightly
wrong inversion frequencies already significantly decreases
the overall intelligibility, as the pitch and formants may have
an abrupt change at segment boundaries. Future work needs
to address a homogeneous pitch and formant contour over
segment boundaries to ensure a good intelligibility. As a by-
product, this constraint may narrow down the search space
for the possible inversion frequencies, resulting in a better
segmental descrambling.

The presented user interface helps to compensate the short-
comings of the automatic system. The segmentation and
individual scrambling configurations can be changed and im-
mediately validated by the user to obtain high quality results.

Finally, the performance needs to be validated on real(istic)
data, ideally real voice transmissions with known scrambling
configurations; unfortunately, these are hard to get due to
privacy and homeland security laws. Furthermore, real data
may include transmissions of variable quality and include
noise, squelch triggers, data carrier and dialer tones which
all introduces further challenges.
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