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Abstract

The objective of blind image forensics is to determine whether an image is au-
thentic or captured with a particular device. In contrast to other security-related
fields, like watermarking, it is assumed that no supporting pattern has been embed-
ded into the image. Thus, the only available cues for blind image forensics are either
a) based on inconsistencies in expected (general) scene and camera properties or b)
artifacts from particular image processing operations that were performed as part of
the manipulation.

In this work, we focus on the detection of image manipulations. The contributions
can be grouped in two categories: techniques that exploit the statistics of forgery ar-
tifacts and methods that identify inconsistencies in high-level scene information. The
two categories complement each other. The statistical approaches can be applied to
the majority of digital images in batch processing. If a particular, single image should
be investigated, high-level features can be used for a detailed manual investigation.
Besides providing an additional, complementary testing step for an image, high-level
features are also more resilient to intentional disguise of the manipulation operation.

Hence, the first part of this thesis focuses on methods for the detection of statis-
tical artifacts introduced by the manipulation process. We propose improvements to
the detection of so-called copy-move forgeries. We also develop a unified, extensively
evaluated pipeline for copy-move forgery detection. To benchmark different detection
features within this pipeline, we create a novel framework for the controlled creation
of semi-realistic forgeries. Furthermore, if the image under investigation is stored in
the JPEG format, we develop an effective scheme to expose inconsistencies in the
JPEG coefficients.

The second part of this work aims at the verification of scene properties. Within
this class of methods, we propose a preprocessing approach to assess the consis-
tency of the illumination conditions in the scene. This algorithm makes existing
work applicable to a broader range of images. The main contribution in this part
is a demonstration of how illuminant color estimation can be exploited as a forensic
cue. In the course of developing this method, we extensively study color constancy
algorithms, which is the classical research field for estimating the color of the il-
lumination. In this context, we investigate extensions of classical color constancy
algorithms to the new field of non-uniform illumination. As part of this analysis, we
create a new, highly accurate ground truth dataset and propose a new algorithm for
multi-illuminant estimation based on conditional random fields.



Zusammenfassung

In der Forschungsrichtung „Blinde Bildforensik“ werden Methoden entwickelt, um
die Authentizität und das Aufnahmegerät digitaler Bilder zu ermitteln. Hierfür kann
— im Unterschied zu verwandten Gebieten, wie zum Beispiel der Wasserzeichenein-
bettung — nicht auf eine speziell hinzugefügte Sicherheitssignatur zurückgegriffen
werden. Dementsprechend können die verfügbaren Hinweise auf Ursprung und Au-
thentizität eines Bildes lediglich aus zwei Quellen bezogen werden: a) aus Inkonsis-
tenzen in erwarteten, allgemeinen Szenen- oder Kameraeigenschaften, oder b) aus
Bildverarbeitungsartefakten, die durch eine Fälschungsoperation entstanden sind.

Diese Arbeit beschäftigt sich mit dem Erkennen von Bildmanipulationen. Die
Beiträge teilen sich in zwei Kategorien auf: die Ausnutzung statistischer Fälschungs-
artefakte und das Finden von Inkonsistenzen in abstrakterer Szeneninformation.
Beide Kategorien ergänzen sich gegenseitig. Die statistischen Ansätze können in
einem automatisierten Ablaufplan auf die meisten digitalen Bilder einfach angewandt
werden. Für den Fall, dass ein einzelnes Bild speziell untersucht werden soll, können
Szeneneigenschaften in einer manuellen Analyse miteinbezogen werden. Neben dem
Umstand, dass hiermit ein weiterer, zu den statistischen Merkmalen komplementärer
Prüfschritt möglich wird, bieten Szeneneigenschaften im allgemeinen einen besseren
Schutz gegen die gezielte Vertuschung der Fälschungsoperation.

Der erste Teil behandelt die Erkennung statistischer Manipulationsartefakte. Wir
schlagen Verbesserung für die Erkennung sogenannter Copy-Paste-Fälschungen und
eine einheitliche, gründlich evaluierte Verarbeitungskette zur Erkennung von Copy-
Paste-Fälschungen vor. Zum Leistungsvergleich verschiedener Erkennungsmerkmale
innerhalb der Verarbeitungskette wird ein neuartiges Konstruktionsgerüst für die ges-
teuerte Erzeugung semi-realistischer Fälschungen vorgestellt. Des weiteren, falls das
zu untersuchende Bild im JPEG-Format vorliegt, wird ein effektives Verfahren en-
twickelt, um Inkonsistenten in den JPEG-Koeffizienten aufzudecken.

Der zweite Teil dieser Arbeit beschäftigt sich mit der Verifikation von Szeneneigen-
schaften. Für diese Algorithmenkategorie schlagen wir einen Vorverarbeitungsschritt
für die Analyse der Lichtrichtung vor, der die Anwendbarkeit bestehender Metho-
den auf eine größere Vielfalt von Bildern ermöglicht. Der Hauptbeitrag in diesem
Teil ist die Vorstellung eines Ansatzes zur Ausnutzung von Lichtfarbschätzern als
Fälschungsindikatoren. Im Rahmen der Entwicklung dieser Methode untersuchen
wir ausführlich Algorithmen zur Farbkonstanz, dem klassischen Forschungsfeld zur
Schätzung der Lichtfarbe. Hierbei werden Erweiterungen klassischer Farbkonstanz-
Methoden auf eine neue Problemstellung untersucht, der Schätzung inhomogener
Lichtumgebungen. Im Rahmen dieser Analyse stellen wir einen neuen, sehr präzisen
Datensatz zur Evaluation von Szenen mit inhomogener Beleuchtung vor. Des weit-
eren wirde eine neue Methode zur Schätzung inhomogener Lichtquellen entwickelt,
die auf Conditional Random Fields beruht.
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Chapter 1

Introduction

Blind Multimedia Forensics is a relatively new research direction in multimedia se-
curity. It aims at the detection of altered media content, but does not assume any
embedded security scheme. Video footage, scanned images, as well as digital and
analog photographs can be the target for manipulations. In this thesis, we limit
ourselves to digital photographs. From a forensics perspective, several changes in a
photograph are widely acceptable. For instance, it is well accepted to improve the
image quality, e. g. to enhance the contrast, denoise an image, or highlight important
regions. Forensics investigators search for changes in an image that create a different
statement of the image. Thus, an “image forgery” is semantically defined, by consid-
ering the information communicated by the original image and the tampered image.
The creation of forgeries can be motivated politically, economically, commercially,
socially, or individualistically. Real-world examples for two of these motivations are
shown in Fig. 1.1. On the left side, an allegedly propaganda-motivated retouch of the
failed missile launch is shown. Note that the smoke billows in the inserted missile
are the same as for the right rocket. In the middle, another politically motivated
forgery is shown. Interestingly, the technique is completely different. The manipula-
tion was created by just removing unwanted information (in this case, the knife) from
the source image. Finally, the column on the right shows an example for a socially
motivated forgery. For an exhibition in London 2010, Churchill’s cigar was removed
from a poster allegedly due to the anti-smoking movement. Thus, an image forgery
is not defined independently of the applied technique. As a side note, not even every
motive is considered a forgery. For instance, photo collages are typically acceptable,
because it is not expected that the image shows a real event. One particular example
is an advertisement in the German news magazine Der Spiegel [Spiegel 10], shown in
Fig. 1.2. Technically, the same form of manipulation has been used as in Fig. 1.1d.
Thus, the crowd of soccer fans was enlarged by simply copying groups of people within
the same image. The middle and the right images highlight the copied regions. The
lower and upper part of the image contain identical image regions, which can be best
seen in the two large identical blocks in the right part of the image. These aspects
illustrate that it does not suffice to look at an image from a solely technical viewpoint.
Nevertheless, algorithmic methods can greatly support a human expert.

1



2 Chapter 1. Introduction

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples of real-world image manipulations. Top original, bot-
tom forgery. Left: Allegedly, Sepah news has been hiding the failed missile
launch [Nizz 08]. Middle: The knife of the defending guard has been hidden in the
press images [Mozg 10]. Right: Churchill’s trademark, the cigar, has been removed
from the image [Hale 10].

1.1 Categories of Forensic Methods

Figure 1.3 subsumes the potential stages in the image formation process that can be
exploited by forensic algorithms. From left to right, the world reflects light to the
camera. Thus, the shown scene must adhere to the laws of physics, in particular
with respect to perspective and lighting. The light is refracted by the lens. Again,
by physical laws, the lens introduces chromatic aberrations which act as an intrinsic
signature in the image. Then, the sensor converts the incident light into an electric
signal. Variations in the sensor sensitivity allow the extraction of a sensor-specific
watermark, in the sense of digital watermarking. Subsequent processing in the dig-
ital signal processor (DSP) can also be used for the extraction of camera-specific
signatures. Finally, the output image can be explicitly examined for tamper-specific
artifacts. Additionally, if the output image has undergone JPEG compression, JPEG
artifacts can be used as a general purpose image signature.

Looking at the pipeline in Fig. 1.3 from a different viewpoint, there are two gen-
eral approaches for detecting tampered images. We subsume these approaches as
Verification of Imaging Artifacts and Detection of Tampering Artifacts , or abbrevi-
ated Verification and Detection.Verification-oriented techniques operate mainly on
features from the in-camera processing, i. e. between the lens and the digital signal
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Figure 1.2: Example of an image manipulation that is not considered a forgery.
Soccer fans are copied and pasted within the same image. Middle: colored regions
were highlighted using Zernike features for copy-move forgery detection. Right:
binary map of the highlighted regions. Note that the applied manipulation technique
is the same as in Fig. 1.1d.

World Lens Sensor DSP Final Image

Figure 1.3: Image formation pipeline. The highlighted stages are popular anchor
points for forensic algorithms (see text for details).

processor. For example, the chromatic aberration of a lens must follow a consistent
pattern over the whole image. If a subregion of the image exhibits a contradicting
behavior, this subregion is assumed to be manipulated.

Conversely, detection-oriented techniques aim at discovering a particular mistake
in the process of creating a manipulated image. In the schematic of Fig. 1.3, these
techniques can be attributed to the last step, i. e. the “final image”. Irregularities
that are introduced after capturing the image, for instance by resampling or copying
image content, can often directly be detected from statistical artifacts.

Often, forensic algorithms can not strictly dichotomically be divided into Verifi-
cation and Detection methods. However, we consider this distinction to be helpful in
characterizing the application domain and particularities of forensic algorithms. As
a particular example for methods that fall in both categories, we consider detection
techniques that exploit the first step of Fig. 1.3, the depicted “World”. On one hand,
the laws of physics can be verified on a natural image. Thus, such techniques can be
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seen as verification techniques. On the other hand, these algorithms are specialized
to detect image splicing. As such, it can also be seen as a detection technique for
spliced objects.

In this thesis, we present improvements and novel features in Detection ap-
proaches. First, two methods are presented that examine the final, possibly tampered,
image. First, we thoroughly investigate features for copy-move forgery detection. We
present our work on these algorithms in Chap. 2. The second technique we em-
ploy investigates JPEG artifacts as a cue for possible image manipulation history,
in Chap. 3. As part of this thesis we also examine illumination-based physical con-
straints on natural images. We present our work on these algorithms in Chap. 5. As
a theoretical foundation to this part, several novel insights in color constancy under
non-uniform illumination are presented in Chap. 4.

The diversity of our methods offers various, complementary tools to the forensic
analyst. Algorithms that operate on tampering artifacts of the output images can
run fully automatically. Thus, these algorithms can be incorporated in a standard
document processing pipeline, for instance at an insurance company. Whenever a
digital image is submitted, these algorithms can be executed as a baseline test before
forwarding the document to the person in charge. Algorithms that verify the physical
consistency of the scene typically require semantic scene understanding. Thus, a
human expert is required to support the scene analysis. However, this drawback is
outweighed by two factors. Firstly, methods for scene analysis are not limited to
digital imagery. They can be directly translated to analog photographs. Secondly,
automated counter-detection methods are typically difficult to implement for these
methods.

1.2 Contributions

This thesis investigates cues for the detection of manipulated images in blind image
forensics. We examined two types of indicators, low-level statistical anomalies of
tampered images, and high-level illumination properties. In the latter case, particular
emphasis has been put on the estimation of the color of the illumination. As a
consequence, a number of results contribute to color constancy, i. e. the foundations of
research on illumination color. Part of this work was done in collaborations with other
researchers. The detailed contributions by the author are stated at the beginning of
the respective sections.

Statistical Cues in Image Forensics We developed a semi-realistic dataset for
the controlled evaluation of statistical algorithms for detecting image forgeries. This
benchmark database was introduced in [Chri 12]. We also thoroughly investigated
prior work for the detection of copy-move forgeries. We cast these algorithms in
a uniform pipeline and compared 15 of the proposed feature sets [Chri 12]. Upon
closer investigation of the individual steps in the pipeline, we argue for using ap-
proximate nearest neighbors for matching these features [Chri 10a] and proposed a
novel rotation- and theoretically also scale-invariant matching strategy [Chri 10b].
As a second low-level cue, we investigated JPEG-compressed images, and proposed a
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pattern recognition-based automated detector for the so-called JPEG ghost observa-
tion [Zach 12]. This method removes the requirement for the user to browse dozens or
even hundreds of intermediate images in order to find JPEG ghosts that discriminate
single- and double-compressed regions in JPEG-images.

Color Constancy As a theoretical foundation for illumination cues in image foren-
sics, we thoroughly investigated existing color constancy algorithms. Upon reviewing
the challenges with specularity- and shadow processing [Ries 09a, Ries 09c], we de-
veloped a physics-based single- or multi-illuminant estimator that avoids specularity
segmentation [Ries 11, Ries 09b]. Aiming ultimately at a robust estimator for non-
uniform illumination, we investigated the potential of extending off-the-shelf single-
illuminant estimators [Blei 11]. However, although the overall benchmark results
were acceptable, we concluded that non-uniform illumination is so severely undercon-
strained, that it is worth investigating more sophisticated approaches. Ultimately,
we propose to use a Conditional Random Field to incorporate spatial information
in the local illuminant estimates. The resulting algorithm is currently under re-
view [Beig 12]. Quantitative results for this algorithm are obtained from a newly
created ground truth dataset, which exploits a novel idea for computing accurate
ground truth from multiple input images.

Scene Understanding in Image Forensics Exploiting the insights from our
research on color constancy, we proposed the use of the estimated illumination color
as a cue for image manipulations [Ries 10]. We extended this work towards automated
forgery assessment by interpreting local estimates of the illuminant color as texture
maps. As a second high-level cue, we investigated the direction of the incident light
as an indicator for image manipulations. The original method [John 07a] suffers from
relatively strict assumptions. Thus, we develop a preprocessing step, inspired from
intrinsic image decomposition, to make the exploitation of the illumination direction
applicable to a broader range of images.

1.3 Thesis Outline

The thesis is structured in three main parts: statistical cues for detecting image
manipulations, fundamental work on illuminant color estimation and illumination
cues for detecting image manipulations. The statistical cues are split in two chapters.

In Chap. 2, an in-depth examination of copy-move forgery detection is presented.
For quantitative analysis, we present a novel ground truth dataset and framework
in Sec. 2.1. This dataset is used in Sec. 2.2, where a unified pipeline for copy-
move forgery detection is proposed. The most important steps in this pipeline are
thoroughly examined in this section, namely the choice of features, matching of the
features and subsequent filtering on the found matches. The feature comparison is
the largest part of this section. A comparison is conducted on copied regions under
added noise, JPEG-compression, scaling and rotation. Additionally, a performance
analysis is conducted under global downscaling of the images, a categorization into
the type of the copied texture and a categorization on a semantic level.
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In Chap. 3, we investigate the so-called JPEG-ghost observation for distinguishing
single- and double-compressed regions in JPEG images. As the original method is
a relatively tedious manual approach, we propose a fully automated classification
scheme that performs this task with high sensitivity and specificity at also high
spatial resolution.

In Chap. 4, we turn towards illuminant color estimation. After preliminary re-
marks and related work, we propose in Sec. 4.3 two approaches to create a ground
truth dataset for scenes under non-uniform illumination. This opens the opportunity
to quantitatively evaluate the effectiveness of estimation algorithms for scenes under
multiple illuminants. In Sec. 4.4, we propose three approaches to multi-illuminant
estimation. First, we experiment with off-the-shelf single-illuminant estimators on
superpixels. Then, we propose a physics-based method that performs coarse cluster-
ing on similar estimates. Finally, we propose an energy-minimization approach that
integrates color estimation and segmentation of differently illuminated regions in a
single step.

In Chap. 5, we explore scene properties for image forensics. In Sec. 5.2, insights
from the previous chapter are transferred to forgery detection. We propose to use
physics-based features in a manually guided pipeline for image manipulation, and
extend it to preliminary experiments on automated tampering detection using a ma-
chine learning approach. Besides the color of the illuminant, we also investigated
the geometry factor in different lighting environments in Sec. 5.3. The exploitation
of different directions of the illumination on manipulated images has been proposed
before. However, existing work is only applicable to a small set of images, due to rel-
atively strict constraints. In this section, we propose a preprocessing step that makes
prior work applicable to a broader range of images, using insights from intrinsic image
decomposition.

We conclude this work with a brief discussion and outlook in Chap. 6. Finally,
in Chap. 7, we present a summary on the results in this thesis.



Chapter 2

Optimizing Copy-Move Forgery
Detection

Copy-Move Forgery Detection (CMFD) is a classical approach in tampering artifact
detection, in the sense that copy-move manipulations leave characteristic traces which
can be directly discovered. The underlying assumption is that a region is copied
and pasted within the same image. The pasted part may have been subject to
additional transformations, for instance be slightly rescaled, rotated or parts of it
can be repainted for artistic reasons. In general, if a duplicated region within the
same image is found, the manipulation is directly proven. Thus, in terms of the
image formation pipeline in Fig. 1.3 on page 3, CMFD methods are located in the
last, rightmost step.

A considerable number of CMFD methods have been proposed. Despite this large
body of work, there was a lack of a framework for consolidating the various insights,
and additionally unifying existing approaches when applicable. In the first part of
this thesis, such an overarching schema is proposed. It can encompass most of the
existing CMFD methods. It is flexible and general and thus allows for the inclusion
of future algorithms. It includes a benchmarking database.

In this chapter, we first introduce a novel, challenging benchmark database of
close-to-real-world image forgeries (see Sec. 2.1). Second, we formulate proposed so-
lutions to the CMFD problem in a unified processing pipeline in Sec. 2.2.1. Finally,
we examine the three most influential steps in the pipeline separately and give con-
crete guidelines for practical implementations of the algorithms. In detail, we found
that approximate nearest are in general a more solid choice for feature matching than
lexicographic sorting (see Sec. 2.2.2). Then, we propose a novel method for postpro-
cessing raw feature matches that have undergone affine transformations, called Same
Affine Transform Selection (SATS) in Sec. 2.2.3. Finally, we conducted a large-scale
study on the best performing features in Sec. 2.2.4. This comparison suggests that
keypoint-based methods are excellent choices for quick screening of large databases,
while several other feature sets provide higher detail in the detection performance,
but at a much higher computational cost. The code for copy-move forgery detection
was mostly written by Vincent Christlein, in the course of his study thesis under my
supervision and optimized by him after submitting his thesis. The dataset, and the
software framework were created by me. Most algorithmic ideas that are presented

7



8 Chapter 2. Optimizing Copy-Move Forgery Detection

in this chapter are also by me. The evaluation for the large comparison at the end of
the chapter was done jointly by Vincent and me.

2.1 Ground Truth Database
When a new algorithm is introduced in image forensics, it is typically evaluated on
a number of specifically tailored images. Only a small number of publicly avail-
able datasets exists for a standardized comparison of similar methods. Some of these
datasets aim at the identification of source cameras. Others are specifically developed
for evaluating one particular type of manipulation. In this section, we address the
lack of data by introducing a framework for evaluating copy-move forgery detection
algorithms. The benchmark consists of images, image components for performing
manipulations and a software to replay the manipulation. While replaying the ma-
nipulation, postprocessing, image artifacts and noise can be inserted on demand.
Thus, it is a framework for creating semi-synthetic forgeries in a controlled way.

2.1.1 Related Work

Samples from publicly available datasets are shown in Fig. 2.1. Ng et al. [Ng 04]
developed a dataset of automatically spliced images. It consists of 183 authentic
and 180 tampered images. The size of the images ranges from 757 × 568 pixels to
1152×768 pixels. The dataset aims mainly at distinguishing different cameras types.
Four cameras from different manufacturers have been used to create the dataset. For
the tampered part, portions of an image from one camera are randomly copied and
inserted in an image from a different camera, without additional post-processing (see
Fig. 2.1a). The seams of the spliced regions often exhibit sharp edges, and the content
of the spliced region is semantically not meaningful. However, meaningful image
content was not the goal of this work. Algorithms for camera identification often use
methods from signal processing approaches. Thus, it suffices to have different camera
signatures within the same image. Additionally, the user can mask the boundary
regions with the associated ground truth map (see Fig. 2.1b). Here, red and green
denote data from different cameras, while blue masks the boundary between the
areas.

Battiato et al. [Batt 09b] presented a tampered image database that is focused on
the exploitation of JPEG artifacts. It consists of 59 images, taken mostly from the
Uncompressed Colour Image Database (UCID) [Scha 04]. The authors provide masks
and photoshop scripts to create artifacts for distinguishing single and double JPEG
compression. As JPEG-based manipulation detectors often operate on independent
image blocks of 8 × 8 or 16 × 16 pixels, image size is a secondary criterion. Conse-
quently, these images have rather low dimensions: almost all images are 384 × 512
pixels. Fig. 2.1c and Fig. 2.1d show an example image and the associated mask for
introducing artifacts from double JPEG compression.

The CASIA [CASIA] forensic dataset provides a large number of tampered images
with realistic content. Version 2 of this dataset consists of 7491 authentic and 5123
manipulated (mostly JPEG-compressed) images. The manipulations are done by
splicing two images from the authentic data (for an example, see Fig. 2.1e, Fig. 2.1f
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i)

Figure 2.1: Example images from other forensic databases. Top row, from left to right:
A sample from the dataset of Ng et al. [Ng 04] (Fig. 2.1a and Fig. 2.1b), and an image
with associated object mask from the dataset by Battiato et al. [Batt 09b] (Fig. 2.1c
and Fig. 2.1d). Middle row: a tampered image from the CASIA dataset [CASIA], and
the corresponding source images. Bottom row: tampered image from the copy-move
detection dataset by Amerini et al. [Amer 11] and its associated source image.

and Fig. 2.1g). If desired, the inserted region is rotated, scaled, and perspectively
distorted. Most of the image sizes are 384× 256 pixels, which is unrealistically small.
Additionally, tampered pixels are not indicated, the only available information is
whether the whole image has been tampered or not. Although it should in principle
be possible to compute such a map from the input images, we refrained from this
approach, as it is an error-prone process to reverse-engineer pixelwise ground truth
from output images, in particular after lossy JPEG compression.

Amerini et al. [Amer 11] published two ground truth databases for CMFD algo-
rithms, called MICC F220 and MICC F2000. They consist of 220 and 2000 images,
respectively. In each of these datasets, half of the images are tampered. The image
size is 2048×1536 pixels. However, the type of processing on the copy-move forgeries
is limited to rotation and scaling (for an example, see Fig. 2.1h and Fig. 2.1i). Ad-
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ditionally, the source files are not available. Hence, it is not straightforward to add
artifacts like noise to the copied region.

Several other databases target camera identification. For instance, the Dresden
Image Database by Gloe and Böhme [Gloe 10] focuses on methods for camera identi-
fication. Dirik et al. [Diri 08] also developed a dataset on camera identification based
on sensor dust. Similarly, Goljan et al. [Golj 09] created a large-scale database for
the identification of sensor fingerprints.

There are a number of shortcomings in the presented work. First, image size is an
important property for algorithms aiming at the detection of copy-move forgeries or
resampling. Furthermore, for an evaluation that is focused on practical applications,
it is always a better choice to operate on realistic forgeries rather than on randomly
tampered images. Equally importantly, every single one of the existing databases
has been created with a particular evaluation scenario in mind. Except of the work
by Battiato et al., the benchmark scenario is static, in the sense that it can not be
extended or varied.

2.1.2 A Framework for Image Forensics Benchmarking

To address the limitations of prior datasets, we propose a novel framework for eval-
uation, consisting of large real-world images. An outline of the framework is shown
in Fig. 2.2. We start by manually preparing semantically meaningful regions and a
corresponding alpha channel (for partial transparency) which will be used for tam-
pering (see Fig. 2.2, top row). These regions (called snippets) are taken from within
the source image, so that the benchmark can also be used for copy-move forgery de-
tection. Three persons of varying artistic skills manually created the snippets. When
creating the snippets, we asked the artists to vary the size of the selected regions.
Additionally, the snippet content should be either smooth (e. g., sky), rough (e. g.,
rocks) or structured (typically man-made buildings). These groups can be used as
categories for CMFD images.

To create artifacts from tampering operations in a controlled setup (i. e. as the
result of a parameterized algorithm), we developed a software to create forgeries us-
ing these snippets. The creation of a forgery involves three computational steps,
denoted as green and blue boxes in Fig. 2.2. First, each snippet can be individually
postprocessed by adding for instance noise, or by applying an affine transformation
to it. Then, the postprocessed snippets and the source image are spliced by inserting
the snippets on freely chosen positions in the source image (see Fig. 2.2, blue box).
For spliced images that are semantically meaningful, we provide predefined snippet
coordinates. The output of this combination step is the combined image and an
associated ground truth map. The combined image can be exposed to global post-
processing, e. g. JPEG compression. The outcome of this processing chain becomes
the benchmark image.

The combination of the snippets and the postprocessing steps are done in the C++
core of the framework. For a systematic evaluation, a variation of the parameters in
the postprocessing steps is required. Example variations are shown in Fig. 2.2 within
the green boxes. For instance, if different variants of resampled splicing shall be
evaluated, the snippets can be resampled in equidistant steps, e. g. by rotation or by
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source and snippets
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Ground Truth Map
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Figure 2.2: Overview of our proposed framework for benchmark creation.

scaling. This parametrization is highly problem-dependent. Thus, these variations
are guided by perl-scripts that call the C++ core with the required parameters.

In total, the dataset consists of 48 source images. A group of 12 images was
collected from the same source, namely a Panasonic DMC-TZ4, a Canon EOS, a
Nikon D70 and flickr [Yaho 12]. The images from the Panasonic and the Canon EOS
cameras contain weak artifacts from JPEG compression. The pictures from Nikon
D70 were converted from raw images. The flickr images are downloaded from various
authors and serve as images from uncontrolled origin. We prepared a total of 87
snippets. The average size of an image is about 3000 × 2300 pixels. Little less than
5% of the pixels are used for creating the snippets. For a copy-move scenario, every
snippet is copied, thus about 10% of the pixels belong to the ground truth. Tab. 2.1
summarizes these numbers on the dataset. In Appendix C.4, we show the reference
manipulations together with the computed ground truth maps.
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# of images 48
# of snippets 87
Total # of pixels 348972116
Total # of pixels in snippets 17395849
#tampered pixels / # total pixels 0.0498
Total # of copy-move tampered pixels 34791698
#copy-moved pixels / # total pixels 0.0997

Table 2.1: Dataset statistics

Figure 2.3: From left to right: The image beachwood (first image) is forged with a
green patch to conceal a building (second and third image). A ground truth map
(fourth image) is generated where copy-moved pixels are white, unaltered pixels are
black and boundary pixels are gray.

Figure 2.3 illustrates the various components and the final output of an example
copy-move forgery in our database. The source image is shown in the left. The
snippet (in its position of insertion) in the middle left. To the middle right, the
combined image is shown. The associated ground truth map is shown in the right
image. White pixels denote one-to-one copies, black pixels denote background. Gray
pixels state that the pixels have been copied, but are no direct copies, for instance
due to partial transparency of these pixels.

2.1.3 Generation of Spliced Copies

The snippets are inserted in the source image in the order of their numbering, i. e.
snippet 1 is inserted before snippet 2, and so on. This may play a role in the case that
multiple inserted snippets overlap. The alpha channel is used to linearly interpolate
the intensity of a snippet pixel with the corresponding source pixel. When setting
the value of a pixel, the ground truth is updated with the opacity of the pixel. When
a snippet pixel has to be placed with full opacity over another snippet pixel, we
simply overwrite it. When partially transparent pixels from two snippets overwrite
each other, we set the ground truth to the opacity of the overwriting pixel. This
can lead to inaccuracies, but as partially transparent pixels should be excluded from
evaluation, these inaccuracies are not critical.

A particular challenge is the definition of ground truth for copy-move detection
algorithms. In these methods, it is assumed that a region is copied and pasted within
the same image. Thus, the ground truth computation must also consider the inserted
region, as well as the source region where it has been copied from. The location
of the source region is provided with the software framework. However, a 1-to-1
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Figure 2.4: Artificial example of several types of occlusion in the ground truth gen-
eration. From top to bottom: original image; final tampered image, where the two
boats from the left and the single boat from the right are copied one over another; vi-
sualization of which image parts were copied and to which location; when computing
the ground truth, occlusions are characterized by the insertion order.

pixel relationship between the source and the target regions of the snippet must be
maintained. When a second snippet masks a pixel in either of these regions (source
or target), it must also be excluded from the ground truth in the corresponding other
region. This property is illustrated with an (exaggerated) example in Fig. 2.4 , using
the “central park” motif. In the top row, the original image is shown. In the second
row, the two boats from the left are copied and moved to the right, while the single
small boat on the right is copied and moved to the left. The third row illustrates these
moves. Note that the source and target regions of the boats considerably overlap each
other in the central part of the image. The fourth row contains the move annotations
for the ground truth map. The impact of the overlap can be seen from the shape of
the boats in the last row. The source region from the boats on the left is partially
occluded, which leads to excluded pixels in the copy of this region (as can be seen in
the ground truth annotation of the second boat from the right). The bow of the boat
that was copied from left is also occluded from the rightmost boat. Thus, the bow is
also excluded from the source region (as can be seen in the ground truth annotation
of the leftmost boat).

Although such mutual occlusion rarely happens in practice, it can lead to very
complicated situations. In our implementation, we used a recursive formulation that
resolves overlaps when a new snippet is inserted. We omit the algorithmic description
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here, as we consider it of mostly theoretical interest. From a practitioners viewpoint,
we do not necessarily see a reason for producing such particularly difficult overlapping
cases.

2.1.4 Performance Measures

The database is suitable for evaluations at two levels of detail. At a broad level,
one can examine the images in their entirety. The evaluation focuses on the num-
ber of images that were correctly detected as original or tampered. We call this a
performance evaluation at image level . The second possibility is to evaluate the de-
tection performance within an individual image. In this case, we count the number
pixels that were correctly detected. This can be done using the ground truth map
together with the pixelwise output of the respective benchmark image. We call this
a performance evaluation at pixel level .

At both levels, it is possible to count the number of correct detection (true pos-
itives, nTP), false detections (false positives, nFP) and correctly omitted images or
pixels (true negatives, nTN). This metric has been used in several papers, for instance
by Bravo et al. [Brav 09] and Luo et al. [Luo 06]. From these measures, related per-
formance metrics can be computed. We recommend to use Precision prec and Recall
rec. They are defined as:

prec =
nTP

nTP + nFP

(2.1)

and
rec =

nTP

nTP + nFN

. (2.2)

Precision denotes the probability that a reported detection is indeed correct, while
Recall shows the probability that a manipulation is detected. Recall is often also
called true positive rate.

Alternatively, one can use Specificity and Sensitivity. Specificity spec is defined
as

spec =
nTN

nTN + nFN

, (2.3)

while Sensitivity is equivalent to Recall. The intuition between spec is to reward
non-marked (i. e. omitted) areas, if they are truly not part of the sought region. Note
that two other popular measures, the false positive rate and the false negative rate,
additively complement specificity and sensitivity to 1.

If a single performance metric is required, we recommend the use of the F1 score.
It combines Precision and Recall in a single measure:

F1 = 2 · prec · rec

prec + rec
. (2.4)
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Figure 2.5: Common processing pipeline for the detection of copy-move forgeries. The
feature extraction differs for keypoint-based features (top) and block-based features
(bottom). Except of method-specific threshold values, all remaining steps are the
same.

2.2 Copy-Move Forgery Detection

Copy-move forgery detection (CMFD) is the most popular topic among all approaches
for exposing image manipulations: more than 30 different CMFD algorithms have
been proposed. The undelying assumption is that an image region has been copied
and pasted within the same image. Although this assumption is very restrictive,
copy-move forgeries are commonly seen in practice. Two real-world examples have
already been shown in Fig. 1.1d and Fig. 1.2 (on page 2 and page 3), respectively.

Our main contributions are: a) a large-scale comparison of different CMFD feau-
tures, and b) a novel algorithm, SATS, for robust post-processing of copied regions.
In Sec. 2.2.1, we formulate the CMFD algorithms within a unified pipeline. The
joint pipeline allows us to relate the various algorithms and to compare the various
design decisions. The remainder of this section covers our findings for several steps
of the pipeline. In Sec. 2.2.2, we show that feature matching is better done using
approximate nearest neighbors, rather than the earlier proposed lexicographic sort-
ing. In Sec. 2.2.2, we propose the Same Affine Transformation Selection (SATS) to
perform rotation- and scale-invariant postprocessing of matched features. Finally, in
Sec. 2.2.4, we use the derived insights for a large-scale evaluation of feature types
that have been proposed in earlier work.

2.2.1 Related Work and the CMFD Pipeline

Although a large number of CMFD methods has been proposed, the general workflow
is typically very similar. Most of the CMFD-methods follow a common pipeline, as
shown in Fig. 2.5. Given an original image, there exist two processing alternatives.
CMFD-methods are either keypoint-based methods or block-based methods. In both
cases, preprocessing of the images is possible. For instance, most methods operate
on grayscale images, and as such require that the color channels be first merged.
For feature extraction, block-based methods subdivide the image in rectangular re-
gions. For every such region, a feature vector is computed. Similar feature vectors
are matched. By contrast, keypoint-based methods do not perform explicit image
subdivision. Instead, their feature vector is computed at image regions containing
high entropy. Subsequently, similar features within an image are matched. A forgery
shall be reported if regions of such matches cluster to larger areas. Both, keypoint-
and block-based methods include further filtering for removing spurious matches. An
optional postprocessing step of the detected regions may also be performed, to group
matches that jointly follow a transformation pattern.
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Due to differences in the computational cost, as well as the detected detail, we
consider the difference between block- and keypoint-based methods very important.
We describe these two variants for feature vector computation in detail in the last
two subsections of this section. Additional relevant details to the remaining steps in
the pipeline are presented below.

Matching High similarity between two feature descriptors is interpreted as a cue
for a duplicated region. Most authors propose the use of lexicographic sorting in iden-
tifying similar feature vectors (see e. g. [Bash 10, Bayr 05, Bayr 09, Brav 11, Dyba 07,
Frid 03, Ju 07, Kang 08, Ke 04, Li 07, Lang 06, Lin 01, Lin 09a, Luo 06, Myrn 07, Pope 04,
Ryu 10, Shie 06, Wang 09b, Wang 09a, Zhan 08]). In lexicographic sorting, a matrix of
feature vectors is built so that every feature vector becomes a row in the matrix. This
matrix is then row-wise sorted. Thus, the most similar features are in consecutive
rows to each other.

Other authors [Huan 08, Pan 10, Mahd 07] propose to use the Best-Bin-First search
method [Beis 97] derived from the kd-tree algorithm to get approximate nearest neigh-
bors with lower computational cost than the original kd-tree [Frie 77].

Filtering Filtering schemes have been proposed in order to reduce the probability
of false matches. For instance, a common noise suppression measure is the removal of
matches between spatially close regions. Neighboring pixels often have similar intensi-
ties, which can lead to false forgery detection. Additionally, different distance criteria
have been proposed to filter out weak matches. For example, several authors proposed
the Euclidean distance between matched feature vectors [Mahd 07, Wang 09a, Ryu 10].
In contrast, Bravo-Solorio et al. [Brav 11] proposed the correlation coefficient between
two feature vectors as a similarity criterion.

Postprocessing The goal of this last step is to only keep those matches that exhibit
a common behavior. Consider a set of matches that belongs to the same copied region.
These matches are expected to be spatially close to each other in both the source, and
the target blocks (or keypoints, resp.). Furthermore, multiple matches must follow a
joint pattern with respect to translation, rotation and scaling.

The most widely used postprocessing variant handles outliers by imposing a min-
imum number of same-shift-vectors between matches (see e. g. [Bash 07, Bayr 09,
Frid 03, Luo 06, Pope 04]). A shift vector contains the translation (in image coor-
dinates) between two matched feature vectors. Consider a number of blocks which
are simple copies, without rotation or scaling. Then, the histogram of shift vectors
exhibits a peak at the translation parameters of the copy operation.

Mahdian and Saic [Mahd 07] consider a pair of matched feature vectors as forged
if: a) they are sufficiently similar, i. e. their Euclidean distance is below a thresh-
old, and b) the neighborhood around their spatial locations contains similar features.
Other authors use morphological operations to connect matched pairs and remove
outliers [Zhan 08, Lang 06, Pan 10, Wang 09b]. An area threshold can also be ap-
plied, so that the detected region has at least a minimum number of points [Luo 06,
Pan 10, Wang 09b, Wang 09a]. To handle rotation and scaling, Pan and Lyu [Pan 10]
proposed to use RANSAC. For a certain number of iterations, a random subset of
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the matches is selected and the transformations of the matches are computed. The
transformation which is satisfied by most matches (i. e. which yields most inliers)
is chosen. Recently, Amerini et al. [Amer 11] proposed a scheme which first builds
clusters from the locations of detected features and then uses RANSAC to estimate
the geometric transformation between the original area and its copy-moved version.
Alternatively, SATS (see Sec. 2.2.3 on page 20) can be used for both, block-based and
keypoint-based methods. Although not explicitly reported, we evaluated the impact
of each of these methods. Ultimately, we adopted two strategies. For block-based
approaches, we used a threshold τ2 based on the SATS-connected area to filter out
spurious detections, as SATS provided the most reliable results in early experiments.
To obtain pixel-wise results for keypoint-based methods, we combined the methods
of Amerini et al. [Amer 11] and Pan and Lyu [Pan 10]. We built the clusters described
by Amerini et al., but avoided the search for the reportedly hard to calibrate incon-
sistency threshold [Amer 11]. Instead, clusters stop merging when the distance to
their nearest neighbors are too high, then the affine transformation between clusters
is computed using RANSAC and afterwards refined by applying the gold standard
algorithm for affine homography matrices [Hart 03, pp. 130]. For each such estimated
transform, we computed the correlation map according to Pan and Lyu [Pan 10]. For
further details on our implementation, please refer to the appendix C.1.

2.2.1.1 Block-based Algorithms

The image is subdivided into equally sized blocks. A feature vector is extracted for
every block. A number of different features has been recently proposed. We investi-
gated 13 block-based features, which we considered representative of the entire field.
They can be grouped in four categories: moment-based, dimensionality reduction-
based, intensity-based, and frequency domain-based features (see Tab. 2.2).
Moment-based: We evaluated 3 distinct approaches within this class. Mahdian and
Saic [Mahd 07] proposed the use of 24 blur-invariant moments as features. We refer
to this method as Blur. Wang et al. [Wang 09b] used the first four Hu moments
as features. We refer to this method as Hu. Finally, Ryu et al. [Ryu 10] recently
proposed Zernike moments for features, which we denote as Zernike.
Dimensionality reduction-based: In [Pope 04], the feature matching space was
reduced via principal component analysis (PCA). Bashar et al. [Bash 10] proposed
another variant of PCA, called Kernel-PCA (KPCA). Kang et al. [Kang 08] computed
the singular values of a reduced-rank approximation (SVD). A fourth approach using
a combination of discrete wavelet transform and Singular Value Decomposition [Li 07]
did not yield reliable results in our setup and is, thus, excluded from the evaluation.
Intensity-based: The first three features used in [Luo 06] and [Brav 11] are the aver-
age red, green and blue components. Additionally, Luo et al. [Luo 06] use directional
information of blocks (Luo) while Bravo-Solorio et al. [Brav 11] consider the entropy
of a block as a discriminating feature (Bravo). Lin et al. [Lin 09a] (Lin) compute the
average grayscale intensities of a block and its sub-blocks. Wang et al. [Wang 09a]

1Some feature-sizes depend on the block size, which we fixed to 16 × 16. Also note that the
feature-sizes of PCA and SVD depend on the image or block content, respectively.
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Group Methods Feature-length 1

Moments
Blur [Mahd 07] 24
Hu [Wang 09b] 5
Zernike [Ryu 10] 12

Dimensionality
reduction

PCA [Pope 04] –
SVD [Kang 08] –
KPCA [Bash 10] 192

Intensity

Luo [Luo 06] 7
Bravo [Brav 11] 4
Lin [Lin 09a] 9
Circle [Wang 09a] 8

Frequency
DCT [Frid 03] 256
DWT [Bash 10] 256
FMT [Bayr 09] 45

Keypoint Sift [Huan 08],[Pan 10],[Amer 11] 128
Surf [Shiv 11],[Bo 10] 64

Table 2.2: Categorization and size of the CMFD feature sets that have been examined
for this work.

(Circle) use the mean intensities of circles with different radii around the block
center.

Frequency-based: Fridrich et al. [Frid 03] proposed the use of the 256 coefficients
of the discrete cosine transform as features (DCT). The coefficients of a discrete
wavelet transform (DWT) using Haar-Wavelets are proposed as features in work by
Bashar et al. [Bash 10]. Bayram et al. [Bayr 09] recommended the use of the Fourier-
Mellin Transform (FMT) for generating feature vectors.

2.2.1.2 Keypoint-based Algorithms

Unlike block-based algorithms, keypoint-based methods rely on the identification and
selection of high-entropy image regions (i. e. the “keypoints”). Whereas in block-based
techniques a feature vector was computed per block, keypoint approaches extract
a feature vector per keypoint. Consequently, fewer feature vectors are estimated,
resulting in reduced (by an order of magnitude) computational complexity of feature
matching and post-processing. As a side-effect of the lower number of feature vectors,
the postprocessing thresholds have to also be an order of magnitude lower than that
of block-based methods. A drawback of keypoint methods is that copied regions
are often only sparsely covered by matched keypoints. If the copied regions exhibit
little structure, it may happen that the region is completely missed. We examined two
different versions of keypoint-based feature vectors. One uses the SIFT features while
the other uses the SURF features (see e. g. [Huan 08, Shiv 11]). They are denoted as
Sift and Surf, respectively.
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2.2.2 Feature Matching using Approximate Nearest Neigh-
bors

We first focused on the matching step in the CMFD pipeline shown in Fig. 2.5.
In prior work, lexicographic sorting and an approximate nearest neighbor search
have been proposed. Although lexicographic sorting is the method that has been
predominantly used in the related work, early experiments suggested that computing
approximate nearest neighbors leads to better results. Consequently, we investigated
this issue more thoroughly. The foundation of this section is [Chri 10a]. However,
in contrast to [Chri 10a], we investigate in this work the performance difference on
a much larger dataset. We confirm the results in our prior work, but upon closer
investigation, the gained advantage is less pronounced as reported in [Chri 10a].

We set up an experiment consisting of the 13 block-based feature sets from
Tab. 2.2. Keypoint-based features have been omitted, as Sift and Surf keypoints
are matched using the Euclidean distance, and have not been subject to this discus-
sion. As benchmark data, we used the 48 reference manipulations from our proposed
dataset according to Sec. 2.1. Note that we did not apply any postprocessing like
noise, JPEG artifacts, rotation or scaling to the benchmark images. We used the
same-shift-vector approach for determining the final matches, and set the minimum
number of same shifts to 800. Per image, we computed the F1 score, as proposed
in Eqn. 2.4 on page 14. We sorted the obtained F1 scores for one test run, i. e. one
feature type combined with either lexicographic or nearest neighbor sorting, and plot-
ted the F1 scores feature group, as shown in Fig. 2.6. In these plots, matching by
approximate nearest neighbors is shown in red, while lexicographic sorting is shown
in blue. For the large majority of the feature sets, sorting by approximate nearest
neighbors outperforms lexicographic sorting.

To analyze this more closely, we counted the number of times that kd-tree out-
performs lexicographic sorting with respect to the F1 score, but also with respect to
precision and recall. The results are shown in Tab. 2.3. In the left part of the table,
we counted the number of times that approximate nearest neighbors outperformed
lexicographic sorting. For the F1 score (see column 1), Circle, Hu, DWT, Lin and
SVD exhibit more often worse performance when using nearest neighbors. The sec-
ond and third column highlight an interesting aspect, namely that the improvement
of using approximate nearest neighbors is almost exclusively due to the better recall
rate, i. e. improved detection of actually copied areas. Conversely, precision is in
almost all cases worse compared to lexicographic sorting.

The right part of Tab. 2.3 provides further details of our analysis. We sorted the
results by performance and computed the mean difference of the F1 score, Precision
and Recall obtained from approximate nearest neighbors versus lexicographic sorting,
and its standard deviation. A positive sign denotes better performance by approxi-
mate nearest neighbors, and vice versa. Thus, for instance the F1 score of Circle
is on average three points worse when approximate nearest neighbor sorting is used.
On the other hand, overall the benefits of approximate nearest neighbors outweigh
the smaller losses in some feature sets. Considering the two rightmost columns on
precision and recall, it can also be seen that in general the gain in the recall is typ-
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Figure 2.6: Comparison of the F1 score for lexicographic sorting (green) to approxi-
mate nearest neighbors sorting (red) over all 48 images, for all feature sets.

ically larger than the loss in precision. Thus, we believe that in general, sorting by
approximate nearest neighbors is a better choice than using lexicographic sorting.

2.2.3 Detection of copies after affine transforms

One of the advantages of keypoint-based methods over block-based methods is their
intrinsic rotation- and scale-invariance (see e. g. [Huan 08],[Pan 10]). For instance,
Sift features consist of an orientation- and scale-invariant part that can be used for
matching. The orientation- and scale-dependent part can then be used for postpro-
cessing the detected matches.

In some works on block-based methods, the feature vectors were also designed
to be rotation- and scale-invariant. Typical examples of such rotation-invariant fea-
tures are Circle proposed by Wang et al. [Wang 09a] and Zernike proposed by
Ryu et al. [Ryu 10]. Features that are pseudo-invariant to rotation and scaling have
also been proposed. Bayram et al. [Bayr 09] proposed the FMT features, where a ro-
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# cases ann > lex.-sort median of rel. difference
Feature F1 Precision Recall F1 Precision Recall
Blur 46 0 47 0.02± 0.02 −0.01± 0.04 0.04± 0.03
Hu 11 0 17 −0.02± 0.06 −0.04± 0.18 −0.01± 0.04
Zernike 48 0 48 0.05± 0.05 −0.05± 0.08 0.11± 0.07
PCA 48 0 48 0.09± 0.06 −0.04± 0.07 0.17± 0.07
SVD 26 0 36 −0.01± 0.09 −0.03± 0.14 0.01± 0.07
KPCA 48 0 48 0.06± 0.05 −0.06± 0.08 0.14± 0.08
Luo 47 0 47 0.04± 0.03 −0.02± 0.05 0.07± 0.05
Bravo 48 0 48 0.03± 0.03 −0.01± 0.03 0.05± 0.04
Lin 22 36 24 −0.00± 0.02 −0.00± 0.01 −0.00± 0.02
Circle 0 1 0 −0.03± 0.03 −0.01± 0.01 −0.04± 0.04
DCT 39 0 46 0.01± 0.04 −0.06± 0.11 0.07± 0.07
DWT 15 2 46 −0.01± 0.03 −0.05± 0.05 0.03± 0.04
FMT 48 0 48 0.05± 0.05 −0.01± 0.02 0.07± 0.06

Table 2.3: Numerical results for lexicographic sorting versus approximate nearest
neighbor sorting on the 48 images of the dataset. No noise, rotation or similar has
been added to the copied regions.

tation of the block corresponds to a rotation of the feature dimensions. In this work,
the authors proposed to match every region against all 180 circular shifts of a feature
vector to achieve rotation invariance. However, for images of realistic dimensions,
this brute-force approach is computationally excessively expensive.

However, even when a rotation- and scale-invariant feature set is used, it is not
straightforward to exploit its full potential. The reason is that the remainder of
the pipeline (see Fig. 2.5) must also be extended for rotation- and scale-invariance.
More specifically, filtering and postprocessing are important steps to remove false
matches. Most authors, e. g. Ryu et al. [Ryu 10], limit themselves to morphological
filtering of the matches. However, more advanced postprocessing of the matches is
not invariant to affine transformations. The same-shift-vector approach can only be
used for translations of the copies, i. e. a plain shifted copy in x- and y-direction.

As a consequence, we propose in this section an extension to the same-shift-vector
approach. We call it Same Affine Transform Selection (SATS) [Chri 10b]. Instead of
estimating a translation between the source region and the target region of a copied
snippet, we propose to estimate the full affine transformation. Thus, SATS includes
translation, rotation, scaling and reflection. At the same time, the runtime of SATS
within the whole pipeline is low compared to the more expensive feature extraction
and matching steps (confer also Tab. 2.10 on page 40).

We demonstrate the effectiveness of the proposed method by evaluating invariance
to rotation. First, we present the performance of 12 block-based feature sets with
respect to their rotation invariance. With the 3 best performing features, we show
the effectiveness of SATS.
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cattle, max 0◦: 2588 tree, max 0◦: 4755
Feat. 60◦ 120◦ 180◦ 60◦ 120◦ 180◦

Bravo 2108 2154 1875 2628 2625 2512
Circle 774 738 541 1650 1663 1762
Zernike 609 544 363 1725 1686 1698
Luo 736 310 184 853 539 506
Hu 294 296 389 1172 1210 1308
FMT 54 60 766 191 199 1633
SVD 198 221 232 1084 982 913
Blur 91 148 112 691 667 715
Lin 130 71 64 853 803 662
DWT 127 73 64 44 49 76
DCT 9 0 1 20 25 16
PCA 0 0 0 7 1 2

Table 2.4: Number of correct block pair matches, for 60◦, 120◦ and 180◦ rotations.
For comparison, under no rotation, the best performing feature sets found 2588 and
4755, respectively, true closest matches2.

2.2.3.1 Rotation-invariant features

We evaluated the ability of existing feature sets to match similar blocks when they
have undergone rotation. For this purpose, we considered 12 different features, from
all four categories (according to Tab. 2.2 on page 18). In detail, we used Blur, Hu
and Zernike as moment-based features, PCA and SVD as features resulting from
dimensionality reduction, Luo, Bravo, Lin and Circle as intensity-based features,
and DCT, DWT and FMT as frequency-based features.

For testing the feature performance for rotational CMFD, we picked two images
from our benchmark dataset, namely tree and cattle. We inserted the copied parts
with rotations of 0◦, 60◦, 120◦ and 180◦ (see Fig. 2.7 for an example of the tree image).
Then, we subdivided the resulting images into blocks, computed the respective feature
vectors per block and matched every feature vector to its nearest neighbor in feature
space. Each such match constitutes a block pair. Note that, for this particular
experiment, no noise has been added to the copies, since we are only interested in
the performance of the features under pure rotation.

As a first straightforward measure of the suitability of the features, we counted
the block pairs, where one block stems from the source and one from the target region
of the copied part. Features with good discriminating power which are also rotational
invariant will exhibit a low number of false nearest neighbors in feature space. This
will result in a high number of correctly matched block pairs. Without rotation,
the best-performing feature set found 2588 correct matches in tree, and 4755 correct
matches in cattle. The columns of Table 2.4 show the correctly matched pairs under
rotations of 60◦, 120◦ and 180◦.

Based on the results of these experiments, we chose Bravo, Circle and Zernike
for the demonstration of our proposed method. Our findings support the claim of
the authors that these three methods are rotation invariant. Bravo [Brav 09] uses
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the average color information of a circular block as the first three features, and the
area’s entropy as its fourth component. Circle [Wang 09a] uses the mean intensities
of circles with different radii around the block center. Finally, the feature vector of
Zernike [Ryu 10] is based on the Zernike moments of circular blocks.

Fig. 2.7 shows a visualization of this test. White pixels belong to block pairs,
where both blocks truly belong to a copied region. Gray pixels denote matches where
at least one block is outside the copied area (and thus a false match). Finally, as a
copied region has a minimum size, two blocks are not allowed to lie too close to each
other. Thus, black pixels belong to matches where two blocks are located within a
certain distance.

Figure 2.7: Visualization of the performance check of the CMFD features under
rotation. White denotes matched feature pairs where both blocks came from copy-
moved regions. Gray denotes matched pairs where at least one block is in a non-copied
region.

2.2.3.2 Same Affine Transform Selection

We propose a straightforward yet effective replacement for the shift vectors, that can
expressly handle affine transformations. The core idea is to explicitly estimate the
rotation and scaling parameters from a few blocks, expressed as an affine transfor-
mation matrix. Starting from an initial estimate, we apply region growing on block
pairs with similar transformation parameters.

Consider the i-th matched pair i
Mf of feature vectors

i
Mf1 and i

Mf2, i
Mf = ( i

Mf1,
i

Mf2).
In order to determine the rotation and translation between block pairs, we need to
examine the coordinates of the block centers. Let coord( i

Mfj) denote the coordinates
(in row vector form) of the block center from where i

Mfj was extracted. Further, let

a i = coord( i
Mf1), a ′

i = coord( i
Mf2). (2.5)

If i
Mf stems from a copy-move operation with rotation and scaling, then a ′

i is related
to a i via an affine transformation:

a ′
i = a i ·A + b , (2.6)

where A is a 2 × 2 matrix containing rotational and scaling parameters, and b is
a translation vector. The six unknowns in A and b can be found if at least three
matched pairs 1

Mf,
2

Mf,
3

Mf are available.
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Equation 2.6 can be satisfied by searching for matched block pairs that are spa-
tially close to each other, i.e. within a distance t1. We recover the transformation and
treat it as an initial solution to a rotated and/or scaled copied (RS-CMFD) region.
Then, we search for further matched block pairs that fit this hypothesis, which is
iteratively refined. If the number of block pairs that satisfy the hypothesis exceeds
a certain limit t2, we consider the transformation a candidate for a copy-moved re-
gion. We report the involved blocks as well as the transformation parameters as an
RS-CMFD result. SATS follows the same principles as shift vectors for robustness
to outliers: clustering of similar results, and required minimum number of similar
transformations. Thus, it is expected that SATS be equally robust to this type of
noise. The details of the proposed verification method is shown in Algorithm 1.

Algorithm 1 SATS: Rotation and scale invariant match filtering.

for every matched pair 1
Mf = ( 1

Mf1,
1

Mf2) do
Let the hypothesis-set H = { 1

Mf};
for matches i

Mf do
if d(coord( 1

Mf1), coord( i
Mf1)) < t1 and d(coord( 1

Mf2), coord( i
Mf2)) < t1 then

H = H ∪ i
Mf;

end if
end for
if |H| < 3 then
continue; // At least three spatially close block pairs

end if
From H, compute A and b as described in the text
for every i

Mf where coord( i
Mf1) is close to matched blocks in H do

compute a ′
i = a i ·A + b as in Eqn. 2.6

if d(coord( i
Mf2)),a ′

i) < t1 then
H = H ∪ i

Mf
if |H| mod 10 ≡ 0 then
recompute A and b to increase stability of the estimate

end if
end if

end for
if |H| > t2 then
store A, b and mark the blocks in H as copy-moved.

end if
end for

Thus, SATS naturally extends the known shift vector selection. Given a rotation-
invariant feature set, it can handle arbitrary rotations. The incorporation of different
rotation-invariant features is smoothly integrated in the RS-CMFD pipeline. One
could equally seamlessly use rotation-and-scale-invariant features. Additionally, we
also provided a variant of SATS to serve as a post-processing step for keypoint-based
methods.

The runtime complexity is affordable in practice, despite of the two nested loops in
Algorithm 1. This comes from the fact that we select suitable neighbors for the initial
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Figure 2.8: Four images from [Mahd 07]. Top row: original images, bottom row:
manipulated images. From left to right: kamen, beton, soldiers, helikopter.

hypothesis greedily. If the candidates fail the neighborhood test, we immediately
examine the next region. Theoretically, greedy selection can lead to suboptimal
results, but we found the performance to be sufficiently good in practice. Without
such assumptions, the complexity mainly consists of: a) an iteration over all blocks
and b) a per-block neighborhood search for suitable pairs. More precisely, let nB be
the total number of blocks in the image, nCB the number of copied blocks and N the
neighborhood size. Then the worst-case runtime is O(nBnCBN). It is reasonable to
assume that nCB � nB. Thus, the complexity is mainly influenced by the number of
blocks in the image, with a (potentially large) coefficient for the neighborhood. With
the aforementioned greedy approach, we dampen the effect of this coefficient as well.

An implementation of SATS, called fastSATS, can be downloaded from the web
page of our lab3. When timing our code, we noticed that the running time of fastSATS
is negligible in comparison with the other steps in the CMFD pipeline (see column
“postprocessing” in Tab. 2.10 on page 40).

2.2.3.3 Performance Evaluation for SATS

We selected ten test images to evaluate SATS. In each of the images one or more
regions were selected for copying. The size of the regions varies among the images.
Five of these images stem from our benchmark dataset. The five remaining images
are created by Mahdian and Saic [Mahd 07] and are shown in Fig. 2.8. When we
conducted this study, we considered these images as relatively typical benchmark
images for the related work in copy-move forgery detection. As we did not directly
have the copy-moved snippets for these images, we copied rectangular regions from
these images, copied and rotated them. Small copied regions are more difficult to
detect, while larger copied regions are computationally more demanding for SATS.
The copied regions were rotated by 0◦ to 180◦ angles, in steps of 15◦. Thus, our
dataset consisted of 10 · 13 = 130 images. Ground truth labels were created for every
image using our framework for benchmarking CMFD algorithms (see Sec. 2.1).

3http://www5.informatik.uni-erlangen.de

http://www5.informatik.uni-erlangen.de
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Detection Error Measures We employed as error metrics the percentage of er-
roneously matched blocks nFP (false positives) and erroneously missed blocks nFN

(false negatives). Note that, as long as a copied region is detected, a high nFP rate is
considered to be worse than a high nFN rate. High nFP rates can lead to a confusing
overdetection result, which: a) requires a man-in-the-loop to examine every result
and b) might even conceal the truly tampered regions.

Comparison to the Originally Proposed Methods We evaluated SATS using
the rotation invariant features Bravo, Circle and Zernike. In our implementation
of SATS, we set the neighborhood size N to 16 (i. e. we search a 4 × 4 grid). The
distance of matched block pairs t1 was set to 7 and the minimum number of con-
nected matches t2 was set to 30. For computational efficiency, the underlying feature
extraction was performed on every second block. When the spatial offset between
two true positive blocks is odd, a pixelwise exact match is not possible anymore.
Thus, there is a trade-off between computational efficiency and feature performance.
Furthermore feature extraction was only computed on those blocks with a minimum
entropy of 4.0, following the idea of [Bayr 09]. This drastically decreases the runtime
and prevents false matches due to too uniform blocks. For the matching step we used
a kd-tree as it gives fewer false positives than lexicographic sorting [Chri 10a] (these
steps were of course also included in the evaluation of the original methods).

Table 2.5 summarizes the performance of SATS in comparison to the original
methods. The results show the average performance over the entire dataset. For
all three features, SATS drastically reduces the false positive rate nFP, making false
alarms very unlikely. This is mainly due to the clustering of transformation hypothe-
ses controlled by t2.

A further drawback of the original methods of Circle and Zernike is the proper
adjustment of the Euclidean distance threshold (used as similarity criterion). This
threshold depends on the image size while, when using SATS, we have a threshold,
which is independent of the image size but dependent of the patch size we want to
detect.

Prior art: “same-shift-vectors” Proposed: SATS
Feat. nFP nFN nFP nFN

Bravo 4± 3 96± 9 0± 0.4 22± 2
Circle 24± 19 66± 30 0± 0.0 41± 32
Zernike 0.4± 1 88± 24 0± 0.0 23± 1

Table 2.5: Comparison of the original CMFD method and the proposed SATS ap-
proach. The average nFP and nFN rates and the standard deviation are computed
over the entire dataset and are given as percentages.

Table 2.6 shows the detailed results for one of the most successful features,
Zernike. The average and standard deviation over all rotation angles is depicted.
Note that, consistently over all image sizes, about 75% of the copied block pairs are
found. A common convention of most copy-move authors is to mark a copy-moved
region as detected, if at least one block pair is correctly matched. Under this defi-
nition, our proposed method exhibits a 100% detection rate of copy-move forgeries.
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However, the use of a stricter evaluation measure, like nFP and nFN rates, provides a
better insight on the performance of a method.

SATS with Zernike
Image x-dim. y-dim. nFP nFN

soldiers 420 300 0.00%± 0.0% 23.0%± 0.9%
concrete 640 480 0.00%± 0.0% 23.6%± 0.4%
kamen 640 480 0.00%± 0.0% 23.3%± 0.3%
helicopter 640 480 0.00%± 0.0% 21.8%± 0.9%
giraffe 800 533 0.00%± 0.0% 22.1%± 0.4%
tree 1024 683 0.00%± 0.0% 21.8%± 0.6%
cattle 1280 854 0.00%± 0.0% 22.7%± 0.8%
beach wood 3264 2448 0.00%± 0.0% 23.1%± 1.2%
kore 3872 2592 0.00%± 0.0% 22.8%± 0.9%
swan 3888 2592 0.00%± 0.0% 22.0%± 1.2%

Table 2.6: SATS performance of the Zernike features, and the sizes of the respective
test images. The columns show the average and the standard deviation over all
rotation angles.

We also tested our approach with different degrees of JPEG compression, ranging
from JPEG quality 50% to 100% in steps of 10%. Since the performance of SATS-
Zernike and Bravo did not significantly vary with the rotation angle, we only
tested a 90◦ rotation. The results over the different images were highly stable, with
a nFP rate of 0% and nFN rates that were comparable to those of the uncompressed
images.

2.2.4 Comparison of existing methods

We conclude the examination of CMFD algorithms with a comprehensive evaluation
of the most important feature sets that have been proposed at the time of writing.
We incorporate the insights from the previous sections, and use approximate nearest
neighbors for matching (see Sec. 2.2.2) and SATS for postprocessing of the matches
(see Sec. 2.2.3). The evaluation is conducted on all images of the proposed dataset
(see Sec. 2.1). We analyse the performance of 15 block-based and keypoint-based
feature sets. The experimental setup is challenging, we examine various types of
postprocessing on the manipulated images, as well as on the manipulated regions. Our
experiments show that Sift features are ideally suited for a real-time online screening
of large databases, while the best performing block-based methods, in alphabetical
order DCT, DWT, KPCA, PCA and Zernike, are best for an offline, in-depth
examination of an image.

First, we describe the setup of the CMFD pipeline and the employed error metrics.
We then present a series of experiments. We start with an evaluation on image level,
then on pixel level (using both as presented in Sec. 2.1). Then, we downsampled the
input images to 50% of their original size and report the detection rates. Afterwards,
we comment on the computational and memory requirements of the algorithms. Fi-
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nally, we discuss the obtained insights and give recommendations for implementing
a real-world CMFD system.

2.2.4.1 Algorithm setup

Matching Matching with a kd-tree yields a relatively efficient nearest neighbor
search. Typically, the Euclidean distance is used as a similarity measure. In prior
work, it has been shown that the use of kd-tree matching leads, in general, to better
results than lexicographic sorting, but the memory requirements are significantly
higher [Chri 10a]. In our setup we matched feature vectors using the approximate
nearest neighbor method of Muja et al. [Muja 09]. It uses multiple randomized kd-
trees for a fast neighbor search.

Postprocessing We use our improved postprocessing method SATS, as presented
in Sec. 2.2.3 [Chri 10b]. It groups locations of feature vectors to clusters which have
undergone the same affine transformation. Although not explicitly reported in this
paper, we experimented with all of these methods. Ultimately, we chose a threshold
based on the SATS-connected area to filter out spurious detections, as SATS provided
very reliable results and can be applied on both, block-based and keypoint-based
features.

Our pipeline for this evaluation is a specific instance of the general pipeline, as
it is stated in Sec. 2.2.1. From our investigations of the matching step and the
postprocessing step, we used the approximate nearest neighbors for matching, and
the Same Affine Transform Selection for postprocessing.

Given an image, the detected regions are computed as follows.

1. Convert the image to grayscale when applicable (exceptions: the features of
Bravo-Solorio et al. [Brav 11] and Luo et al. [Luo 06], which require all color
channels for the feature calculation)

2. For block-based methods:

(a) Tile the image in nB overlapping blocks of size b × b, with a step size of
one pixel.

(b) For every block, compute a feature vector i
Mf, where 1 ≤ i ≤ nB.

For keypoint-based methods:

(a) Scan the image for keypoints (i. e. high entropy landmarks).

(b) Compute for every keypoint a feature vector i
Mf. These two steps are

typically integrated in a keypoint extraction algorithm like SIFT or SURF.

3. Match every feature vector by searching its approximate nearest neighbor. Let
Fij be a matched pair consisting of features i

Mf and
j

Mf, where i, j denote feature
indices, and i 6= j. Let coord( i

Mf) denote the image coordinates of the block
or keypoint from which i

Mf was extracted. Then, v ij denotes the translational
difference (“shift vector”) between positions coord( i

Mf) and coord( j
Mf).
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Figure 2.9: Results at image level for different minimum number of correspondences.

4. Remove pairs Fij where ‖coord( i
Mf), coord( j

Mf)‖2 < τ1, where ‖x ,y‖2 denotes
the Euclidean distance between x and y .

5. Let |H(A)| be the number of pairs satisfying the same affine transformation A.
Remove all matched pairs where |H(A)| < τ2.

6. If an image contains connected regions of more than τ3 connected pixels, it is
denoted as tampered.

2.2.4.2 Preface to the Experiments

In the first series of experiments, we evaluated the detection rate of tampered images.
In the second series, we evaluated pixelwise the detection of copied regions, in order
to obtain a more detailed assessment of the discriminative properties of the features.

In total, we conducted experiments with about 60000 images in order to better
understand the behavior of the different feature sets. The complete result tables, as
well as the source code to generate these results, can be downloaded from the web-site
of the Pattern Recognition Lab of the University of Erlangen-Nuremberg4.

2.2.4.3 Threshold Determination

Thresholds that are specific to a particular feature set were manually adjusted to
faithfully fit the benchmark dataset. Most threshold values for the processing pipeline
were fixed across the different methods when possible to allow for a fairer comparison
of the feature performance.

• Block size b: We chose to use a block size of 16 pixels. We found this to be
a good trade-off between detected image details and feature robustness. Note
that the majority of the original methods also proposed a block size of 16 pixels.

• Minimum Euclidean distance τ1: Spatially close pixels are closely correlated.
Thus, matches between spatially close blocks should be avoided. In our experi-
ments, we set the minimum Euclidean distance between two matched blocks to
50 pixels.

4http://www5.cs.fau.de/
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• Minimum number of correspondences τ2: This threshold reflects the minimum
number of pairs which have to fulfill the same affine transformation between
the copied and the pasted region. Thus, it compromises the improved noise
suppression and the false rejection of small copied regions. τ2 strongly depends
on the features, as some features generate denser result-maps than others. Con-
sequently, τ2 has to be chosen for each feature individually. We empirically de-
termined appropriate values τ2 as follows. From our dataset, we created CMFD
benchmark images with JPEG quality levels between 100 and 70 in steps of 10.
Thus, we evaluated on the 48 tampered images for 48 × 4 = 192 images. The
JPEG artifacts should simulate a training set with slight pixel distortions. Per
block-based feature, we estimated τ2 by optimizing the F1-measure at image
level. The results of the experiment are shown in Fig. 2.9. Please note that
throughout the experiments, we were sometimes forced to crop the y-axis of
the plots, in order to increase the visibility of the obtained results. The feature
set specific values for τ2 are listed in the rightmost column of Tab. 2.7. For the
sparser keypoint-based methods, we require only τ2 = 4 correspondences.

• Area threshold τ3: The area threshold corresponds to the minimum number
of connected tampered pixels. In our experiments, we set τ3 = τ2 for the
block-based methods and τ3 = 1000 for the keypoint-based methods to remove
spurious matches5.

• Individual feature parameters: We omitted the Gaussian pyramid decomposi-
tion for the Hu-Moments (in contrast to the original method by [Wang 09b]).
This variant gave better results on our benchmark data. For Circle, we had
to use a different block size b = 17, as this feature set requires odd sized blocks
for the radius computation. For KPCA, two parameters had to be determined,
namely the number of samples M and the variance of the Gaussian kernel σ.
We set up a small experiment with two images (with similar proportions as im-
ages from our database) in which for both images a block of size 128× 128 was
copied and pasted. Then we varied the parameters and chose the best result in
terms of the F1-measure. We observed that with increasing σ andM the results
became slightly better. We empirically determined that values of M = 192 and
σ = 60 offer an overall good performance. Note that, these values are larger
than what Bashar et al. [Bash 10] used. For the remaining features, we used
the parameters as suggested in the respective papers.

2.2.4.4 Detection at Image Level

We split these experiments in a series of separate evaluations. As error metrics, we
use precision and recall per image, as recommended in Sec. 2.1.4. In the tables, we
additionally give the F1 score. We start with the baseline results, i. e. direct 1-to-1
copies (no postprocessing) of the pixels. Subsequent experiments examine the cases

5Alternatively, it would be possible to set the threshold for keypoint matching stricter, and then
to omit τ3 completely. However, we preferred this variant (i. e. a more lenient matching threshold)
in order to gain better robustness to noise.
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Method Precision Recall F1 τ2

Blur 88.89 100.00 94.12 100
Bravo 87.27 100.00 93.20 200
Circle 92.31 100.00 96.00 200
DCT 78.69 100.00 88.07 1000
DWT 84.21 100.00 91.43 1000
FMT 90.57 100.00 95.05 200
Hu 67.61 100.00 80.67 50
KPCA 87.27 100.00 93.20 1000
Lin 94.12 100.00 96.97 400
Luo 87.27 100.00 93.20 300
PCA 84.21 100.00 91.43 1000
Sift 88.37 79.17 83.52 4
Surf 91.49 89.58 90.53 4
SVD 68.57 100.00 81.36 50
Zernike 92.31 100.00 96.00 800
Average 85.54 97.92 90.98 –

Table 2.7: Results for plain copy-move at image level in percent.

of noise on the copied region, JPEG compression on the entire image, rotation and
scaling of the copied region.

Plain Copy-Move As a baseline, we evaluated how the methods perform under
ideal conditions. We used the 48 original images, and spliced 48 images without
any additional modification. We chose per-method optimal thresholds for classifying
these 96 images. Interestingly, although the sizes of the images and the manipulation
regions vary greatly on this test set, 13 out of the 15 tested features perfectly solved
this CMFD problem with a recall-rate of 100% (see Tab. 2.7). However, only four
methods have a precision of more than 90%. This means that most of the algorithms,
even under these ideal conditions, generate some false alarms. This comes mainly
from the fact that the images in the database impose diverse challenges, and the
large image sizes increase the probability of false positive matches.

Robustness to Gaussian Noise We normalized the image intensities between 0
and 1 and added zero-mean Gaussian noise with standard deviations of 0.02, 0.04,
0.06, 0.08 and 0.10 to the inserted snippets before splicing. Besides the fact that a
standard deviation of 0.10 leads to clearly visible artifacts, 7 out of 15 features drop
to under 50% recall rate, while the precision decreases only slightly, see Fig. 2.10a.
DCT exhibits a remarkably high recall, even when large amounts of noise are added.
PCA, Sift, Surf and Hu also maintain their good recall, even after the addition of
large amounts of noise. At the same time, several methods exhibit good precision.
Among these, Surf provides a good balance between precision and recall, followed
by PCA.
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(a) White Gaussian noise

2030405060708090100
JPEG-compression [quality-factor]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

2030405060708090100
JPEG-compression [quality-factor]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

blur
bravo
circle
dct
dwt
fmt
hu
kpca
lin
luo
pca
sift
surf
svd
zernike

(b) JPEG compression
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(c) Scaled copy

0 2 4 6 8 10 20 60 180
Rotation [degree]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

0 2 4 6 8 10 20 60 180
Rotation [degree]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

blur
bravo
circle
dct
dwt
fmt
hu
kpca
lin
luo
pca
sift
surf
svd
zernike

(d) Rotated copy

Figure 2.10: Results at image level for different postprocessing operations.
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Robustness to JPEG compression artifacts We introduced a common global
disturbance, JPEG compression artifacts. The quality factors varied between 100 and
20 in steps of 10, as provided by libjpeg6. Per evaluated quality level, we applied the
same JPEG compression to 48 forgeries and 48 complementary original images. For
very low quality factors, the visual quality of the image is strongly affected. However,
we consider at least quality levels down to 70 as reasonable assumptions for real-world
forgeries. Fig. 2.10b shows the results for this experiment. The precision of Surf and
Sift remains surprisingly stable, while block-based methods slowly degenerate to a
precision of 0.5. On the other hand, many block-based methods exhibit a relatively
high recall rate, i. e. miss very few manipulations. Among these, KPCA, DCT,
Zernike, Blur and PCA constantly reach a recall of 90% or higher.

Scale-invariance One question that recently gained attention was the resilience of
CMFD algorithms to affine transformations, like scaling and rotation. We conducted
an experiment where the inserted snippet was slightly rescaled, as is often the case
in real-world image manipulations. Specifically, we rescaled the snippet between 91%
and 109% of its original size, in steps of 2%. We also evaluated rescaling by 50%,
80%, 120% and 200% to test the degradation of algorithms under larger amounts of
snippet resizing. Note that we only scaled the copied region, not the source region.
Fig. 2.10c shows the results for this experiment. Most features degenerate very fast
even at small amounts of up- or down-sampling. Some methods, namely KPCA,
Zernike, Luo, DWT, DCT and PCA are able to handle a moderate amount of
scaling. For more extreme scaling parameters, keypoint-based methods are the best
choice: their performance remains relatively stable across the entire range of scaling
parameters.

Rotation-invariance Similar to the previous experiment, we rotated the snippet
between 2◦ to 10◦, in steps of 2◦, and also tested three larger rotation angles of 20◦,
60◦ and 180◦. In prior work [Chri 10b, Chri 10a], we already showed that Zernike,
Bravo and Circle are particularly well-suited as rotation-invariant features. Our
new results, computed on a much more extensive data basis, partially confirm this.
Fig. 2.10d shows the results. Zernike features provide the best precision, followed
by Surf, Circle, Luo and Bravo. In the recall-rate, Bravo and Zernike yield
consistently good results and thus seem to be very resilient to rotation. For small
amounts of rotation, KPCA and Luo perform also strongly, for higher amounts of
rotation, the Surf features perform best. FMT, Lin, Hu and Blur seem not to be
well suited for handling rotation.

Robustness to Combined Transformation In this experiment, we examined
the performance under several joint effects. We rotated the snippet by 2◦, scaled it
up by 1% and compressed the image with a JPEG-compression level of 80. In three
subsequent setups, we increased per step the rotation by 2◦, increased scaling by 2%,
and decreased the JPEG quality by 5 points. In setup 5 and 6, slightly stronger
parameters were chosen: rotation was set to 20◦ and 60◦, scaling was set to 120% and

6http://libjpeg.sourceforge.net/
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Figure 2.11: Results for different combined transformations at image level.

140%, and JPEG quality was set to 60 and 50, respectively. Fig. 2.11 shows that high
precision can be achieved for several feature sets. The best recall for small variations
is achieved by DCT and Zernike. For the fourth step, Surf and Sift are almost
on a par with Zernike. Note that also in the fourth step, a number of features
exhibit a recall below 50%, and can thus not be recommended for this scenario. For
large rotations and scaling in the combined effects (see the scenarios 5 and 6), Sift
and Surf have the best precision and very good recall.

2.2.4.5 Detection at Pixel Level

A second series of experiments considers the accuracy of the features at pixel level.
The goal of this experiment is to evaluate how precisely a copy-moved region can
be marked. However, this testing has a broader scope, as it is directly related with
the discriminating abilities of a particular feature set. Under increasingly challenging
evaluation data, experiments on per-match level allow one to observe the deteriora-
tion of a method in greater detail. We repeated the experiments from the previous
subsections, with the same test setups. The only difference is that instead of clas-
sifying the image as original or manipulated, we focused on the number of detected
(or missed, respectively) copied-moved matches.

For each detected match, we check the centers of two matched blocks against
the corresponding (pixelwise) ground truth image. All boundary pixels are excluded
from the evaluation (see also Fig. 2.3). Please note that all the measures, e. g. false
positives and false negatives, are computed using all the pixels in the tampered images
only. Note also, that it is challenging to make the pixelwise comparison of keypoint-
and block-based methods completely fair: as keypoint-based matches are by nature
very sparse, we are not able to directly relate their pixel-wise performance to block-
based methods. Thus, we report the postprocessed keypoint matches (as described in
Sec. 2.2.1).

Plain Copy-Move Tab. 2.8 shows the baseline results for the dataset at pixel
level. Similarly to the experiment at image level, all regions have been copied and
pasted without additional disturbances. Note that we calibrated the thresholds for all
methods in a way that yields very competitive (comparable) detection performances.
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Method Precision Recall F1

Blur 98.07 78.81 86.19
Bravo 98.81 82.98 89.34
Circle 98.69 85.44 90.92
DCT 92.90 82.85 84.95
DWT 90.55 88.78 88.86
FMT 98.29 82.33 88.79
Hu 97.08 74.89 82.92
KPCA 94.38 88.36 90.24
Lin 99.21 78.87 86.69
Luo 97.75 82.31 88.41
PCA 95.88 86.51 89.82
Sift 60.80 71.48 63.10
Surf 68.13 76.43 69.54
SVD 97.53 76.53 83.71
Zernike 95.07 87.72 90.29
Average 92.21 81.62 84.92

Table 2.8: Results for plain copy-move at pixel level in percent.

Robustness to Gaussian Noise We used the same experimental setup as in
the per-image evaluation, i. e. zero-mean Gaussian noise with standard deviations
between 0.02 and 0.1 has been added to the copied region. The goal is to simulate
further postprocessing of the copy. At pixel level, this experiment shows a clearer
picture of the performance of the various algorithms (see Fig. 2.12a). DCT, Sift and
Surf provide the best recall. DCT also outperforms all other methods with respect to
precision. The performance of the remaining features splits in two groups: Circle,
Blur, Bravo, SVD and Hu are very sensitive to noise, while PCA, Zernike,
KPCA and DWT deteriorate slightly more gracefully.

Robustness to JPEG compression artifacts We again used the same experi-
mental setup as in the per-image evaluation, i. e. added JPEG compression between
quality levels 100 and 20. Fig. 2.12b shows the resilience at pixel level against these
compression artifacts. The feature sets form two clusters: one that is strongly af-
fected by JPEG compression, and one that is relatively resilient to it. The resilient
methods are Sift, Surf, KPCA, DCT, PCA, Zernike, and slightly worse, DWT.
The robustness of DCT was foreseeable, as DCT features are computed from the
discrete cosine transform, which is also the basis of the JPEG algorithm.

Scale-invariance The experimental setup is the same as on the per-image level
analysis. The copy is scaled between 91% and 109% of its original size in increments of
2%. Additionally, we evaluated more extreme scaling parameters, namely 50%, 80%,
120% and 200%. As Fig. 2.12c shows, 7 feature sets exhibit scaling invariance for
small amounts of scaling. However, the quality strongly varies. The best performers
within these 7 feature sets are DWT, KPCA, Zernike, PCA and DCT. However,
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(a) White Gaussian noise
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(b) JPEG compression
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(c) Scaled copy
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(d) Rotated copy

Figure 2.12: Results at pixel level for different postprocessing operations.
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Figure 2.13: Results for different combined transformations at pixel level.

for scaling differences of more than 9%, the keypoint-based features Sift and Surf
are the only features sets that preserve acceptable precision and recall.

Rotation-invariance We evaluated cases where the copied region has been rotated
between 2◦ and 10◦ (in steps of 2◦), as well as for 20◦, 60◦ and 180◦. We assumed
this to be a reasonable range for practical tampering scenarios. Fig. 2.12d shows
the results. Most feature sets show only weak invariance to rotation. Similar to
the scaling scenario, Sift and Surf exhibit the most stable recall. From the block-
based methods, Zernike, and also Bravo and Luo are the best features for larger
amounts of rotation. Note that for the special case of 180◦, also FMT and Circle
perform very well.

Robustness to Combined Transformation Besides the targeted study of single
variations in the copied snippet, we conducted an experiment for evaluating the joint
influence of multiple effects. Thus, we analyzed images where the copied part was
increasingly scaled, rotated and JPEG-compressed. The setup was the same as on
image level. Thus, scaling varied between 101% and 107% in steps of 2%, rotation
between 2◦ and 8◦ in steps of 2◦, and the JPEG quality ranges from 80 to 65 in steps
of 5. Setup 5 and 6 have different parameters, namely a rotation of 20◦ and 60◦, a
scaling of 120% and 140%, and the quality of JPEG compression was set to 60 and
50, respectively. The performance results are shown in Fig. 2.13. In these difficult
scenarios, Surf and Sift perform considerably well, followed by Zernike, DCT,
KPCA and DWT. Note that it is infeasible to cover the whole joint parameter space
experimentally. However, we take this experiment as an indicator, that the results
of the prior experiments approximately transfer to cases where these transformations
jointly occur.

2.2.4.6 Detection of Multiple Copies

In recent work, e. g. [Amer 11], the detection of multiple copies of the same region
has been addressed. While at image level it typically suffices to recognize whether
something has been copied, multiple-copies detection requires that all copied regions
be identified. For such an evaluation, we modified the feature matching as follows.
Instead of considering the nearest neighbor, we implemented the g2NN strategy
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Method Precision Recall F1 Precision Recall F1

Blur 95.24 52.50 67.31 89.91 54.11 65.20
Bravo 97.54 52.58 68.16 88.75 58.27 67.58
Circle 95.12 60.90 73.75 89.60 62.48 71.43
DCT 19.15 5.37 8.02 66.11 55.76 55.06
DWT 52.15 14.55 21.21 81.88 69.15 71.84
FMT 94.42 54.07 68.14 88.85 60.50 69.91
Hu 94.98 54.08 68.64 89.98 54.61 65.99
KPCA 37.01 7.50 12.05 87.79 62.27 70.06
Lin 96.84 51.04 66.61 90.86 59.96 70.63
Luo 95.53 51.70 66.72 89.32 58.95 68.47
PCA 37.79 9.05 13.95 88.20 61.95 71.77
Sift 11.37 4.95 6.74 17.00 7.34 10.07
Surf 37.49 21.86 26.15 38.31 22.93 26.79
SVD 91.91 59.06 71.51 71.98 58.91 59.33
Zernike 83.15 22.00 33.52 87.55 61.87 69.64
Average 69.31 34.75 44.83 77.31 53.71 60.65

Table 2.9: Results for multiple copies at pixel level. On the left side considering the
single best match (as conducted in the remainder of the paper). On the right, we
used the g2NN strategy by Amerini et al. [Amer 11]. All results are in percent.

byAmerini et al. [Amer 11]. This method considers not only the single best-matching
feature, but the n best-matching features for detecting multiple copies. Although our
dataset contains a few cases of single-source multiple-copies, we created additional
synthetic examples. To achieve this, we randomly chose for each of the 48 images a
block of 64× 64 pixels and copied it 5 times.

Tab. 2.9 shows the results for this scenario at pixel level. On the left side, we used
the same postprocessing method as in the remainder of the paper, i. e. we matched
the single nearest neighbor. On the right side, we present the results using the g2NN
strategy. For many feature sets, precision slightly decreases using g2NN. This is not
surprising, as a multiple combinations of matched regions are possible, which also
increases the chance for false matches. Still, some methods like Blur, Bravo, etc.
are relatively unaffected by this change in postprocessing, while others experience a
remarkable performance boost. In particular, DCT, DWT, KPCA, PCA, Zernike,
i. e. the strong feature sets in the prior experiments, can significantly benefit from the
improved matching opportunities of g2NN. As we discuss later (see Sec. 2.2.4.11), we
see this as yet another indicator that these features exhibit very good discriminating
properties. The performance of Sift and Surf drops considerably, mainly due to
the fact that the random selection of small blocks often yields regions with very
few matched keypoints. Although not explicitly evaluated, we expect that selecting
copy regions with high entropy (instead of a random selection), would considerably
improve the detection rates of Sift and Surf.
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Figure 2.14: Results for interpolated downsampling of the final image prior to the
detection process.

2.2.4.7 Downsampling: Computational Complexity versus Detection Per-
formance

The evaluated methods vary greatly in their demand for resources. One widely-used
workaround is to rescale images to a size that is computationally efficient. However,
this raises the issue of performance degradation. In order to analyze the effects of
downsampling, we scaled down all 48 noise-free, one-to-one (i. e. without further
postprocessing) forgeries from our database in steps of 10% of the original image
dimensions. Note that the detection parameters, as in the whole section, were globally
fixed to avoid overfitting. In this sense, the results in this section can be seen as
a conservative bound on the theoretically best performance. We observe that the
performance of all features considerably drops. When downsampling by a factor of
exactly 0.5, results are still better than for other scaling amounts (see Fig. 2.14 for
more details). This shows that global resampling has considerable impact on the
results. Some feature sets are almost rendered unusable. KPCA, Zernike, DWT,
PCA, DCT, Luo, FMT and Bravo perform relatively well. Sift and Surf exhibit
slightly worse precision, which might also be due to a suboptimal choice of τ3 with
respect to the reduced number of keypoints in the downscaled images. However, the
recall rates are competitive with the block-based methods. For completeness, we
repeated the analysis of subsections 2.2.4.5, 2.2.4.5 and 2.2.4.5 on a downsampled
(50%) version of the tampered images. The results are presented in the appendix in
Fig. C.1 on page 170. The general shape of the performance curves is the same as in
the previous sections. However, the performance of recall is more strongly affected
by downscaling than precision.

2.2.4.8 Resource Requirements

For block-based methods, the feature-size (see Tab. 2.2) can lead to very high memory
use. For large images, this can reach several gigabytes. Tab. 2.10 (right column) shows
the per-method minimum amount of memory in MB on our largest images, obtained
from multiplying the length of the feature vector with the number of extracted blocks.
In our implementation, the effective memory requirements were more than a factor
of 2 higher, leading to peak memory usage for DCT and DWT of more than 20GB.
Note however, that the feature size of DCT and DWT depends on the block size. For
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Method Feature Matching Postpr. Total Mem.
Blur 12059.66 4635.98 12.81 16712.19 924.06
Bravo 488.23 5531.52 156.27 6180.42 154.01
Circle 92.29 4987.96 19.45 5103.43 308.02
DCT 28007.86 7365.53 213.06 35590.03 9856.67
DWT 764.49 7718.25 119.66 8606.50 9856.67
FMT 766.60 6168.73 8.07 6948.03 1732.62
Hu 7.04 4436.63 5.36 4452.77 192.51
KPCA 6451.34 7048.83 88.58 13592.08 7392.50
Lin 12.41 4732.88 36.73 4785.71 346.52
Luo 42.90 4772.67 119.04 4937.81 269.52
PCA 1526.92 4322.84 7.42 5861.01 1232.08
Sift 15.61 126.15 469.14 610.96 17.18
Surf 31.07 725.68 295.34 1052.12 19.92
SVD 843.52 4961.11 7.65 5816.15 1232.08
Zernike 2131.27 4903.59 27.23 7065.18 462.03
Average 3549.41 4829.22 105.72 8487.63 2266.43

Table 2.10: Average computation times per image in seconds, and the theoretical
minimum peak memory requirements in megabytes. Note that this is a lower bound,
for instance our implementation actually requires more than twice of the memory.

better comparability, we kept the block size fixed for all methods. In a practical setup,
the block size of these feature sets can be reduced. Alternatively, the feature sets can
be cropped to the most significant entries. Some groups explicitly proposed this
(e. g. [Pope 04], [Bash 10]). In our experiments, as a rule of thumb, 8GB of memory
sufficed for most feature sets using OpenCV’s7 implementation for fast approximate
nearest neighbor search.

The computation time depends on the complexity of the feature set, and on the
size of the feature vector. Tab. 2.10 shows the average running times in seconds over
the dataset, split into feature extraction, matching and postprocessing. Among the
block-based methods, the intensity-based features are very fast to compute. Con-
versely, Blur, DCT and KPCA features are computationally the most costly in
our unoptimized implementation. The generally good-performing feature sets PCA,
FMT and Zernike are also relatively computationally demanding.

Keypoint-based methods excel in computation time and memory consumption.
Their feature size is relatively large. However, the number of extracted keypoints
is typically an order of magnitude smaller than the number of image blocks. This
makes the whole subsequent processing very lightweight. On average, a result can be
obtained within 10 minutes, with a remarkably small memory footprint.

2.2.4.9 Qualitative Results

A more intuitive presentation of the numerical results is provided for four selected
examples, shown in Fig. 2.15. On the left, the extracted contours of the keypoint-

7http://opencvlibrary.sourceforge.net/
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Figure 2.15: Indicative performance of Surf (left) versus Zernike (right) features.
Top left: Plain copy-move example, Surf and Zernike detect all copies. Top right:
JPEG compression quality of 70 hides the copied people from the Surf keypoints.
Zernike generates many false positives in homogeneous regions. Bottom left: 20◦

rotation of the snippet is easily handled by both, Surf and Zernike. Bottom right:
Combined transformations, in addition to highly symmetric image content, result in
Surf producing a large number of false positives. The block-based Zernike features
correctly detect the copied statues.

based method Surf are shown. On the right the matches detected by the block-
based Zernike features are depicted. Matched regions are highlighted as brightly
colored areas. In the top left image, the people in the middle were covered by a
region copied from the right side of the image. Additionally the circle was closed by
copying another person. Surf and Zernike correctly detected all copied regions.
In the top right image, three passengers were copied onto the sea. The image was
afterwards compressed with JPEG quality 70. Surf yielded one correct match but
missed the two other persons. Zernike marked all passengers correctly. However, it
also generated many false positives in the sky region. In the bottom left image, a 20◦

rotation was applied to the copy of the tower. Both methods accurately detected the
copied regions. This observation is easily repeatable, as long as: a) rotation-invariant
descriptors are used, and b) the regions are sufficiently structured. Similarly to the
JPEG-compression example, Zernike produced some false positives above the left
tower. In the bottom right picture, the two stone heads at the edge of the building
were copied in the central part. Each snippet was rotated by 2◦ and scaled by 1%.
The entire image was then JPEG compressed at a quality level of 80. This image
is particularly challenging for keypoint-based methods, as it contains a number of
high-contrast self-similarities of non-copied regions. Zernike clearly detected the
two copies of the stone heads. Surf also detected these areas, but marked as copied
a large number of the background due to the structural symmetries.

2.2.4.10 Results by Image Categories

To investigate performance differences due to different texture of the copied regions,
we computed the performances according to categories. We subdivided the dataset
into the object class categories living, man-made, nature and mixed. Although man-
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made exhibited overall the best performance, the differences between the categories
were relatively small. This finding is in agreement with the intuition that the de-
scriptors operate on a lower level, such that object types do not lead to significant
performance differences. In a second series of experiments, we used the artists’ cate-
gorization of the snippets into smooth, rough and structure (see Sec. 2.1.2). Overall,
these results confirm the intuition that keypoint-based methods require sufficient en-
tropy in the copied region to develop their full strength. In the category rough, Sift
and Surf are consistently either the best performing features or at least among the
best performers. Conversely, for copied regions from the category smooth, the best
block-based methods often outperform Surf and Sift at image or pixel level. The
category structure ranges between these two extremes. The full result tables for both
categorization approaches can be found in the appendix.

2.2.4.11 Discussion

We believe that the obtained insights validate the creation of a new benchmark
dataset. The selection of the evaluation data for the CMFD algorithms is a non-
trivial task. While early attempts were mostly centered around small test sets of
merely a dozen images, more recent work has used a more extensive picture basis.
However, to our knowledge, all existing test sets are somewhat limited in one aspect
or another. For instance, preliminary experiments suggested that image size strongly
influences the detection result of CMFD algorithms. One workaround is to scale every
input image to a fixed size. However, as we show in Fig. 2.14, that interpolation itself
influences the detection performance. Furthermore, in the case of downsampling,
the size of the tampered region is also reduced, further inhibiting detection. Thus,
we conducted all experiments, unless otherwise stated, in the full image resolution
(note, however, that the images themselves had different sizes, ranging from 800×533
pixels to 3900 × 2613 pixels). This greatly increased the risk of undesired matches
in feature space, especially when a feature set exhibits weak discriminative power.
Consequently, differences in the feature performance became more prominent.

Which CMFD method should be used? During the experiments, we divided the
proposed methods in two groups. Sift and Surf, as keypoint-based methods, excel
in computational time and memory footprint. The advantage in speed is so signifi-
cant, that we consider it worth applying these methods always, independent of the
detection goal. Tab. 2.7 and subsequent experiments indicate slightly better result
for Sift than for Surf. The computation of Surf is faster, but we consider this ad-
vantage negligible. Thus, we recommend to use Sift instead of Surf. One should,
however, be aware that keypoint-based methods lack the detail that might be de-
sirable for highly accurate detection results. When regions with little structure are
copied, e. g. the cats image in Fig. C.10 top right (page 183), keypoint-based methods
are prone to miss them. In contrast, highly self-similar image content, as the building
in Fig. 2.15 can provoke false positive matches.

The best-performing block-based features can relatively reliably address these
shortcomings. Experiments on per-image detection indicate that several block-based
features can match the performance of keypoint-based approaches. We conducted ad-
ditional experiments to obtain stronger empirical evidence for the superiority of one
block-based method over another. These experiments measured the pixelwise preci-
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sion and recall of the block-based approaches. Experiments on the robustness towards
noise and JPEG artifacts showed similar results. DCT, PCA, KPCA, Zernike and
DWT outperformed the other methods by a large margin with respect to recall. Their
precision also outperformed the other methods for large amounts of noise and heavy
JPEG compression. Note, however, that as shown by example in Fig. 2.15 (top),
a bad performance in the precision leads to a considerable number of false positive
matches. When the copied region is scaled, the aforementioned five block-based fea-
tures also perform well. Under scaling, the precision of Luo and Bravo might also
be sufficient, at least if the copied region is large enough to compensate for weaker
recall. For rotated copies, these seven feature sets Zernike, Luo Bravo, DWT,
KPCA, DCT and PCA again constitute the best performing group. In general,
for detecting scaled and rotated copies, Zernike performed remarkably well. Note
also that the computation of Zernike features is very cheap, in relation to their
performance.

In a more practical scenario, running a CMFD algorithm on full-sized images
can easily exceed the available resources. Thus, we examined, how block-based al-
gorithms perform when the examined image is downsampled by the investigator to
save computational time. Not surprisingly, the overall performance drops. However,
the best performing feature sets remain relatively stable, and confirm the previous
results at a lower performance level.

In all the previous discussion, we tailored our pipeline for the detection of a
single one-to-one correspondence between source region and copied region. How-
ever, we also evaluated, at a smaller scale, the detection of multiple copies of the
same region. We adapted the matching and filtering steps to use g2NN, as pro-
posed by Amerini et al. [Amer 11], so that not the single best-matching feature, but
the n best-matching features were considered. Interestingly, the already good fea-
tures DCT, DWT, KPCA, PCA and Zernike profited the most from the improved
postprocessing. This re-emphasizes the observation that these feature sets are best
at capturing the relevant information for CMFD. With the improved postprocessing
by Amerini et al., the advantages of these features can be fully exploited.

In a practical setup, one should consider a two-component CMFD system. One
component involves a keypoint-based system, due to its remarkable computational
efficiency and small memory footprint. This allows the screening of large image
databases, or online, nearly real-time screening within a document processing pipeline.
With high precision and a typically over-the-average recall, we consider Sift features
a good candidate for such a system.

The second component should be a block-based method, for close and highly re-
liable examination of an image. We consider Zernike features as a good choice for
this component. A single Zernike feature vector consists of only 12 dimensions
(see Tab. 2.2), thus the memory requirements are relatively low. Additionally, the
computational time for Zernike features is relatively low, compared to the match-
ing performance. Note, however, that a final recommendation has of course to be
made based upon the precise detection scenario. We assume that the provided per-
formance measurements, together with the publicly available dataset, can greatly
support practitioners and researchers to hand-tailor a CMFD pipeline to the task at
hand.
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Chapter 3

Exploitation of JPEG artifacts

JPEG compression is currently the most commonly used image format for digital
photographs. Most consumer cameras store the picture already in the JPEG format.
The main advantages are the simplicity of the format, spatially local compression
operations, and the fact that it is an open standard. JPEG compression is lossy, thus
every time an image is stored in this format, the content is slightly changed. This
property has been the starting point for developing forensic algorithms. The informa-
tion loss enables analysts to distinguish whether an image has been compressed once
or multiple times with the JPEG algorithm. Depending on the scenario, an answer
to this question can be very useful in practice. For instance, assume that a photogra-
pher claims that an image is directly copied from his camera. Thus, the image should
be single-compressed. Evidence that the image, or a part of it, is double-compressed
can deliver an initial suspicion to a forensic investigator. A second example is image
cropping. For instance, between Fig. 1.1b and Fig. 1.1e on page 2, relevant infor-
mation has been removed. Cropping a JPEG image and resaving it in the JPEG
format is considered as a classical shifted double-compression scenario. Besides that,
methods that are tailored for JPEG compression fill an important gap for the forensic
investigator. The performance of most blind forensic algorithms quickly deteriorates
under increasingly strong JPEG compression.

In this section, we present a fully automated detection scheme for JPEG images
that exhibit partially single and double JPEG compression. It exploits Farid’s so-
called JPEG ghost observation [Fari 09]. First, we present an overview of related
JPEG-based algorithms in Sec. 3.2. Then, we restate the JPEG ghost observation in
Sec. 3.2, and present an overview on our algorithm in Sec. 3.3. The extracted features
are explained in Sec. 3.4, details on the classification are presented in Sec. 3.5. Our
experimental result are listed and discussed in Sec. 3.6. The code for this chapter was
written by Fabian Zach during his diploma thesis under my supervision. He provided
also the evaluation results for this section. Most ideas in this section are from me.

3.1 Related Work

Lukáš and Fridrich [Luka 03] developed one of the first methods of double JPEG-
compression detection. The authors exploit the fact that often during recompression,
different quantization matrices are used, which leads to a significant high frequency
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component in the spectrum of the coefficients. Their method yields a global “yes/no”
statement on whether the image has undergone double compression.

A different approach has been presented by Fu et al. [Fu 07], and later extended
by Li et al. [Li 08]. The key observation is that double-compressed images violate
Benford’s law. The authors extract features from the first 20 AC coefficients1 of the
quantization matrix), and classify the features with an support vector machine.

In some forensic setups, a global solution may suffice. In many cases, however, a
local cue for double-compression is sought. Lin et al. extended the idea from Lukáš
and Fridrich, so that individual blocks can also be detected as tampered [Lin 09b].
During JPEG compression, the image is subdivided in a 8×8 pixel grid. The method
assumes that the JPEG block grids of the first and second compression are exactly
aligned. This holds for background image regions in particular. The background
remains often untouched during manipulation of the image. Thus, as long as the
background is not cropped or rescaled, the grids of the first and second compression
are aligned.

In more general scenarios, so-called “shifted double-JPEG (SD-JPEG) compres-
sion” can be detected. For instance, Qu et al. [Qu 08] developed a method for
handling arbitrary block grid alignments using independent component analysis.
Ye et al. [Ye 07] proposed the detection of SD-JPEG cases via the power spectrum
of the JPEG DCT coefficients. Barni et al. proposed a method that purely relies on
non-matching grids [Barn 10]. Recently, Bianchi and Piva developed an integrated
approach for jointly detecting aligned double-JPEG compression and SD-JPEG com-
pression [Bian 12a].

All these methods assume different quantization matrices for the first and second
compression. Huang et al. [Huan 10], on the other hand, presented a method that
can detect double compression, even if the same quantization matrix is used. The
authors exploited the fact that due to numerical imprecisions, every recompression
step alters the statistics of an image.

3.2 JPEG Ghost Observation

We briefly restate Farid’s ghost observation [Fari 09]. Let I q1 be an input image that
has been compressed with JPEG quality q1. Assume that a region of the image has
previously been compressed with JPEG quality q0, where q0 < q1. To detect this
double compressed region, define a set of quality factors

Q = {q2|0 < q2 < q1} . (3.1)

Recompress image I q1 with the factors in Q, yielding a set of test images I q1,q2 . Now,
the pixel-wise squared difference of I q1 and I q1,q2 is defined as the difference image
Dq2 ,

Dq2(x, y) =
1

3

∑
i∈{R,G,B}

(I q1(x, y, i)− I q2(x, y, i))
2 , (3.2)

1The first JPEG quantization coefficient is often called DC component, the second to 64th entries
are called AC components.
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Figure 3.1: Example JPEG ghost. Left: a rectangular region has been double-
compressed with primary compression rate q0 = 35. Middle and right: in the differ-
ence images ∆60 and ∆35 a “ghost” gradually appears as a darker region. Note also
the noise in ∆60 and ∆35 due to the image texture.

where x and y denote the pixel coordinates, and i ∈ {R,G,B} the red, green and
blue color channels.

If a region of the image has previously been compressed with a compression factor
q0, q0 < q1, the squared differences become smaller for this part of the image as q2

approaches q0. This local region, termed “ghost”, appears darker than the remaining
imaage. The smaller difference values are due to the fact, as the coefficients induced
by q2 become increasingly similar to q0, similar artifacts are introduced in the image.
For robustness to image noise and texture, these computed differences are averaged
across small windows of size w. Thus, the differences are computed as

∆q2(x, y) =
1

3b2

∑
i

w−1∑
wx=0

w−1∑
wy=0

(I q1(x+ wx, y + wy, i)−

I q2(x+ wx, y + wy, i))
2 ,

(3.3)

and normalized in the range between 0 and 1.
Fig. 3.1 shows an example of such a ghost. A rectangular double compressed

region has been embedded with q0 = 35 (left). In the difference images ∆60 and
∆35, this region appears visually. The exploitation in image forensics is quite direct:
examine a number of difference images ∆q2 for varying q2 values. If a dark region
appears, consider it as doubly compressed. The method is particularly appealing due
to its straightforward idea and simplicity of implementation.

However, in practice, this approach is often not applicable. The amount of human
interaction can become disproportionally time-consuming for human experts for two
main reasons. First, a mixture of differently textured regions leads to interfering noise
patterns. In order to recognize a ghost, it is often necessary to closely examine the
images (see e. g. [Batt 09a]). Second, the number of difference images can become very
large. A ghost is only detected, if the JPEG grid of ∆q2 is exactly aligned with the
JPEG grid of the compression using q0. For all possible 64 JPEG grid alignments,
difference images must be created. Thus, a human expert has to browse 64 · |Q|
images. Depending on the scenario, this can easily amount to 300 difference images
for examination.

We propose a pattern recognition method that performs this selection automat-
ically for the user. For images under examination, the user can either resort to the
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fully automated process, or use the automation as a preprocessing step and then
visually inspect the ghost.

3.3 Algorithm Overview
The proposed algorithm consists of 5 steps.

1. Read out the JPEG quality level q1 of the image under examination. If it has
been resaved in a different image format, such as PNG, estimate the former
JPEG quality level.

2. For every of the 64 possible JPEG block alignments, recode the image with
JPEG quality levels between 30 and q1.

3. Slide a window over the image under examination. For every JPEG block
alignment, compute features Jf1 through Jf6 on the image window.

4. Classify the feature vector as double- or single-compressed.

5. Apply morphological opening and closing on the blocks that are marked as
double-compressed. We continue with the JPEG block alignment with the
maximum number of windows classified as double-compressed. If this number
exceeds a chosen threshold, the image is considered double-compressed.

The next sections add details to these steps, in particular to feature extraction and
classification. The output of this algorithm is either an automated decision at image
level (“partially double-compressed: yes/no”), or a single, aggregated output image
as shown in Fig. 3.4. In particular, the latter representation is a substantially easier
representation than the hundreds of difference images, as proposed in the original
method.

3.4 Feature Extraction
The information about a JPEG ghost is contained in the differences of one single
window over different quality levels. Consider ROIs which have been single- or double
compressed. Example difference curves for this case are shown in Fig. 3.2. Here, the
differences are computed over four windows of an image with compression quality
q1 = 80, over 50 quality levels 30 ≤ q2 ≤ 80 on a window size w = 16. All differences
are normalized between 0 and 1. The green curve denotes the differences for single
compressed windows. Note that the choice of the window size can be varied, and is a
tradeoff between detection detail and robustness. The red curves show the same ROIs,
but this time double compressed with q0 = 75. Note that, although differences on
single-compressed images are consistently higher than on double-compressed images,
these curves are not straightforward to distinguish across different windows: for most
datapoints, the single-compressed curve in the left plot lies in below the double-
compressed curve in the right plot. These differences are due to different image
texture.
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Figure 3.2: Difference curves from example JPEG ROIs. The same ROI has been
single- and double-compressed and is plotted in a joint diagram. In green, the differ-
ence curves for single compression are shown, in red for double compression.

Our method is based on the analysis of these difference curves. The core idea of
this feature set is to target the steeper decay of the double-compression difference
curve (see Fig. 3.2). We estimate the quality level q1 as the global minimum over the
curves derived from all windows in the image. We then proceed as follows. Let c(x)
be the value of the difference curve for quality level x. We extracted six features that
are defined on c(x) for 30 ≤ x ≤ q1. Note that this range implies that we can not
detect ghosts with q0 < 30. However, this has been mainly an engineering decision,
as we considered cases of q0 < 30 as very unlikely. Let furthermore

w1(x) =
x− 30

q1 − 30
(3.4)

denote a linear weighting function that puts more emphasis on high JPEG qualities,
and

w2(x) = 1− w1(x) (3.5)

a linear weighting function that emphasizes low JPEG qualities. We employ the
following features:

1. The weighted mean value of the curve,

Jf1 =
1∑q1

x=30w1(x)

q1∑
x=30

w1(x) · c(x) . (3.6)

2. The median of all function values on c(x) for 30 ≤ x ≤ q1, i. e. Jf2 = µ1/2 where(
P (c(x) ≤ µ1/2) ≥ 1

2

)
∧
(
P (c(x) ≥ µ1/2) ≥ 1

2

)
(3.7)

and P (c(x) ≤ x) denotes the cumulative distribution function of the difference
values.
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3. The slope m, Jf3 = m of the regression line y = mx + h through c(x) for
30 ≤ x ≤ q1.

4. The y-axis intercept, h = Jf4, of the regression line y = mx + h through c(x)
for 30 ≤ x ≤ q1.

5. The weighted number of points of c(x) with c(x) < 0.5,

Jf5 =
1∑q1

x=30w2(x)

q1∑
x=30

w2(x) · g5(x) , (3.8)

where

g5(x) =

{
1 if c(x) < 0.5
0 else

(3.9)

6. The average squared distance of the actual curve and the linear function

l(x) = 1− x− 30

q1 − 30
, (3.10)

i. e. the line with endpoints (30, 1) and (q1, 0). More formally,

Jf6 =

q1∑
x=30

g6(x) , (3.11)

where

g6(x) =

{
(l(x)− c(x))2 if l(x) > c(x)
0 else

(3.12)

Note that these features can be computed on an isolated window, i. e. no spatial
assumptions or dependencies have been added to the detection of JPEG ghosts. As
a consequence, the feature computation can be directly parallelized.

Feature Jf1 exploits the fact that for high quality levels, the double-compressed
curves are generally lower. Double-compressed areas also exhibit a tendency to more
shallow regression lines, exploited in particular in the features Jf2, Jf3 and Jf4. Fi-
nally, the squared distance of the error curve to the diagonal line in the error diagram
is generally larger for double-compressed images. This relation is captured in feature
Jf6.

For each feature, we computed a histogram based on more than 2.5 million im-
age windows, see Fig. 3.3. The compression quality levels of these windows were
randomly chosen between 50 and 95, with a fixed distance q0 − q1 = 20. Feature
values for single-compressed windows are plotted in green, while features for double-
compressed windows are shown in red. From top left to top right, features Jf1 to
Jf3 are shown. From bottom left to bottom right features Jf4 to Jf6 are plotted. As
seen in Fig. 3.3, the proposed features exhibit good separability between single- and
double compressed areas. None of the features is perfect, in the sense that there is
in every histogram an area where both features co-occur. However, all histograms
exhibit distinct peaks for the classes “single-compressed” and “double-compressed”.
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(a) Jf1 (b) Jf2 (c) Jf3

(d) Jf4 (e) Jf5 (f) Jf6

Figure 3.3: Histograms for each of the six features, Jf1, Jf2, . . . , Jf6, shown in a top
to bottom, left to right order. Red histograms are from double compressed windows.
Green ones correspond to single-compressed windows.

3.5 Classification

Every block was classified separately, solely based on the features from this block.
We experimented with different classification algorithms, namely thresholding, Neu-
ral Networks, Random Forests, AdaBoost and Bayesian classification. The openCV
implementations of the algorithms were used.

The values for thresholding were determined by computing the mean values of the
feature distributions for single- and double compressed areas. The actual threshold
is then determined as the mean of means for each feature. A block was considered
double compressed, if at least three quarters of the feature values exceeded their
respective threshold. The Neural Network was a Multilayer Perceptron with a 10-
node hidden layer. The activation function is a sigmoid function with α = β = 1. For
the Random Forests, we used 50 trees for classification, while for Discrete AdaBoost
100 trees. The cost functions of all classifiers were set to a balanced state of false
positive and false negative rates.
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Note, that this classification is conducted for a single window on one out of the
64 possible JPEG block alignments. If applied on an unknown image, this does
not suffice: an investigator would still be forced to browse through 64 images in
order to get an overview. To avoid this situation, we chose a straightforward post-
processing scheme, in order to obtain an automated decision on top of the classified
windows. For every of the 64 possible JPEG block alignments, we created a binary
map where blocks classified as single-compressed are set to 0. Blocks classified as
double-compressed are set to 1. On each of these maps, we applied morphological
opening with cross-topology in order to remove outliers that were wrongly classified
as double-compressed. Counting the remaining ones in the maps, we keep only the
map with the maximum number of entries. If the number of ones in this map exceeds
a particular threshold, the image is classified as double-compressed. The JPEG block
offset that has been used to create this map is the estimated JPEG block alignment
of the ghost.

Additionally, this map can be nicely colored and presented as a visual represen-
tation to the forensic investigator, as shown in Fig. 3.4.

3.6 Experiments
We evaluated our method on the Uncompressed Colour Image Database (UCID) by
Schaefer and Stich [Scha 04], which was also used in the original presentation of the
JPEG ghost approach [Fari 09]. It consists of 1338 images of size 512× 384. For each
image, we created three variants: A single-compressed version, i. e. an “authentic”
image. A version containing a small double-compressed region, as used in [Fari 09]
for evaluation. In the third version, only a small region is single-compressed, and
the background region is double-compressed, as recommended by [Lin 09b]. When
considering all 4014 test images, we have in total twice as many single- as double-
compressed pixels. The differently compressed regions were of size 192×192 pixels. In
our experiments, for the training of the classifiers, we used 10 percent of the images
from all three variants. For each image from the UCID database, we randomly
drew the JPEG compression quality q1 in a range of 50 to 95, and set q0 = q1 − δ,
where 5 ≤ δ ≤ 20. The window sizes have been varied as well, between 8 × 8 and
64 × 64 pixels. Very smooth image regions barely contain compression artifacts.
Thus, following [Fari 09], windows with an intensity variance below 5 points have
been excluded from the evaluation.

All results are presented as specificity/sensitivity pairs, as described in Sec. 2.1.4.
To do so, we define nTP, nTN, nFP and nFN as

nTP = P (double-compressed|double-compressed) (3.13)
nTN = P (single-compressed|single-compressed) (3.14)
nFP = P (double-compressed|single-compressed) (3.15)
nFN = P (single-compressed|double-compressed) . (3.16)

Experiments on Individual Image Windows Tab. 3.1 shows the raw results for
the evaluation on individual windows, without any post-processing like the morpho-
logical operators. Here, “Thresholding”, “MLP”, “RF”, “Boosting” and “Bayes” denote
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classification by thresholding, multi-layer perceptron, random forests, discrete Ad-
aBoost and the Bayesian classifier, respectively. δ = q1 − q0 denotes the difference in
the primary and secondary compression quality levels q0 and q1. In order to have a
relatively balanced number of single and double compressed pixels, we only computed
on the correct shift of the doubly-compressed region. However, when we evaluated
the whole pipeline, we tested all 64 shifts of the JPEG grid.

δ 8× 8 16× 16 32× 32 64× 64

Thresholding
5 0.798/0.702 0.805/0.704 0.816/0.717 0.840/0.596
10 0.815/0.728 0.821/0.730 0.833/0.745 0.837/0.755
20 0.844/0.778 0.849/0.783 0.857/0.796 0.861/0.804

MLP
5 0.866/0.826 0.855/0.880 0.865/0.891 0.897/0.833
10 0.865/0.864 0.869/0.873 0.835/0.935 0.917/0.847
20 0.888/0.910 0.895/0.906 0.865/0.935 0.925/0.892

RF
5 0.804/0.889 0.811/0.901 0.838/0.925 0.889/0.890
10 0.831/0.901 0.834/0.914 0.850/0.941 0.908/0.893
20 0.865/0.938 0.864/0.937 0.879/0.935 0.931/0.913

Boosting
5 0.834/0.886 0.841/0.893 0.847/0.919 0.907/0.870
10 0.852/0.896 0.858/0.910 0.865/0.934 0.924/0.869
20 0.895/0.934 0.902/0.938 0.912/0.957 0.938/0.916

Bayes
5 0.469/0.984 0.483/0.983 0.505/0.981 0.562/0.976
10 0.479/0.986 0.497/0.984 0.520/0.983 0.579/0.979
20 0.506/0.985 0.520/0.984 0.553/0.983 0.622/0.977

Table 3.1: Experiments on UCID database for shifted ghost detection on misaligned
DCT grids at a per-window level.

Results are presented as pairs of specificity and sensitivity. The best performance
per classifer on all combinations of δ and the region size is printed in bold face. As
expected, typically the highest tested compression distance of δ = 20, together with
the largest examined window size 64 × 64 yields best results. Note that AdaBoost
performed best below the maximum windows size. Note also that for δ = 10 and
δ = 5, boosting, followed by neural networks (MLP) and random forests (RF) all
provide very strong results. Furthermore, the performance of these three methods
degrades gracefully for smaller windows. Thus, as a preprocessing step for guiding
a human expert towards a JPEG ghost location, we consider these three classifiers
highly suitable. At the same time, the good discrimination for small values of δ
clearly improves over the results reported in [Fari 09], which reports δ ≥ 20 as a good
quality distance for detection. In [Lin 09b], detection rates vary between 50% and
70% for δ ≤ 10.

To judge the method’s performance in a real-world scenario, we can not assume
to know δ. However, note that at least at a region size of 32× 32 pixels, the results
MLP, Random Forests and Boosting are also for δ = 5 highly competitive.

Automated Tampered Image Detection For better comparison to other meth-
ods, we evaluated the proposed algorithm also on full images. For comparison to the
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δ 8× 8 16× 16 32× 32 64× 64

Lin
5 0.583/0.640 - - -
10 0.658/0.597 - - -
20 0.705/0.605 - - -

Thresholding
5 0.806/0.766 0.816/0.760 0.812/0.755 0.830/0.481
10 0.820/0.759 0.827/0.758 0.830/0.737 0.852/0.439
20 0.832/0.880 0.858/0.883 0.867/0.868 0.933/0.484

MLP
5 0.783/0.870 0.783/0.871 0.749/0.889 0.963/0.355
10 0.774/0.874 0.777/0.870 0.776/0.857 0.946/0.377
20 0.864/0.941 0.892/0.957 0.865/0.947 0.866/0.517

RF
5 0.756/0.929 0.762/0.934 0.726/0.949 0.978/0.375
10 0.913/0.857 0.897/0.873 0.882/0.883 0.968/0.416
20 0.905/0.960 0.904/0.973 0.908/0.972 0.959/0.519

Boosting
5 0.823/0.867 0.832/0.867 0.811/0.883 0.982/0.378
10 0.918/0.880 0.916/0.899 0.916/0.895 0.989/0.412
20 0.997/0.939 0.996/0.956 0.993/0.960 0.997/0.507

Bayes
5 0.576/0.846 0.646/0.841 0.742/0.822 0.882/0.606
10 0.594/0.892 0.772/0.815 0.840/0.845 0.938/0.684
20 0.533/0.997 0.647/0.997 0.839/0.988 0.960/0.955

Table 3.2: Experiments on UCID database for ghost detection on aligned DCT grids
at image level.

method by Lin et al., we split this section in two experimental parts: In the first
part, we assumed perfect JPEG block alignment. In the second part, we evaluated
the more general (and more realistic) scenario of shifted-double JPEG compression.

Recognition of partially double-compressed JPEG images was conducted as stated
in Sec. 3.5. On the marked windows from the previous section, we applied a 3 × 3
morphological opening with cross-topology on these markings to remove outliers.
Then, we considered an image tampered, if 10% of the windows are marked. Note
that an an embedded foreground-ghost contains about 20% double-compressed pixels,
a background-ghost about 100% − 20% = 80%. As before, we created three images
from every UCID image. Once completely single-compressed, once with an embedded
foreground-ghost, and once with an embedded background-ghost.

Tab. 3.2 shows the result for JPEG ghosts that were exactly aligned with the
JPEG grid. We used the same notation as in the previous Subsection.

For comparison, we computed the results of Lin et al. [Lin 09b] on our test set. As
this method operates on 8× 8 windows, only these results are presented. Note that
the method by Lin et al. is more general, in the sense that it can also detect double-
compression where q0 > q1, which is not possible with the JPEG ghost approach.
However, this comes at the expense of the accuracy of the method in the presence of
very small differences in the compression parameters. Thus, if the initial assumption
q0 < q1 for JPEG ghosts is fulfilled, the proposed method provides much higher
specificity and sensitivity rates.
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δ 8× 8 16× 16 32× 32 64× 64

Thresholding
5 0.742/0.772 0.755/0.708 0.750/0.698 0.763/0.468
10 0.762/0.794 0.779/0.733 0.791/0.728 0.795/0.646
20 0.784/0.836 0.802/0.795 0.806/0.786 0.810/0.659

MLP
5 0.982/0.904 0.993/0.934 0.973/0.915 0.967/0.765
10 0.978/0.932 0.975/0.913 0.981/0.968 0.984/0.755
20 0.977/0.955 0.963/0.939 0.862/0.953 0.988/0.833

RF
5 0.923/0.960 0.940/0.952 0.969/0.952 0.992/0.843
10 0.938/0.957 0.955/0.954 0.961/0.957 0.993/0.803
20 0.969/0.972 0.978/0.972 0.948/0.963 0.994/0.806

Boosting
5 0.990/0.955 0.987/0.944 0.984/0.947 1.000/0.809
10 0.978/0.951 0.984/0.948 0.986/0.950 0.998/0.775
20 0.993/0.971 0.995/0.969 0.995/0.971 0.999/0.818

Bayes
5 0.907/0.981 0.919/0.982 0.923/0.983 0.951/0.983
10 0.923/0.983 0.945/0.983 0.951/0.983 0.966/0.986
20 0.987/0.985 0.993/0.987 0.995/0.988 0.997/0.988

Table 3.3: Experiments on UCID database for shifted ghost detection on misaligned
DCT grids at image level.

The best success rates do not occur at the larger window sizes. This is due to the
fact that our inserted foreground ghosts of 192 × 192 pixels are comparably small.
When applying morphological opening on the windows that have been marked as
double-compressed, more accurate detectors loose too many windows on the bound-
ary of the marked region. This renders very large window sizes less successful. One
notable exception is the Bayesian classifier. As can be seen from Tab. 3.1, Bayesian
classification exhibits very low specifity, i. e. creates many erroneously marked re-
gions. The morphological operator removes a large number of these false positive
markings, and makes also detection with larger window sizes possible. On the con-
verse, the remaining classifiers exhibit their peak performance at window sizes around
16× 16 pixels. Again, Discrete Adaboost clearly outperforms the other methods.

In shifted double-compression, the grid of the inserted region is not required to
properly align with the JPEG grid of the background. To detect such tampered
images, we computed all 64 shifts and selected the one with the highest response
of double-compressed blocks (see Tab. 3.3 for the results). A surprising result is
that shifted double JPEG compression can be discriminated than the non-shifted
version: while e. g. the overall best result in Tab. 3.2 is 0.997/0.939, several results
in Tab. 3.3 perform better, e. g. the Bayesian classifier on a 64 × 64 grid for δ = 20
with 0.997/0.988. We assume that this comes from the shifted recompression with
quality factors q2 during the ghost detection. During feature extraction (see Sec. 3.4),
q1 must be estimated. This estimation, however, has a strong tendency to default to
q1 = 100, as the shifted recompression is not aligned with the JPEG grid from q1.
As a consequence, q1 is estimated as 100, which raises the gap between q0 and the
estimated q1. Apparently, this adds discriminating power to the features. In future
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work, we plan to further investigate this effect. For the moment, we just note that all
classifiers except of the simple thresholding provide strong results on picture-level.

Figure 3.4: Two example markings on individual windows. Green and red are single-
and double compressed, respectively. Gray denotes low contrast regions. Left: the
rectangular double compression region could only in the high-contrast windows be
recovered. Right: the double compression region is clearly visible. In a classification
at image level, the left example is a false negative case, the right example true positive.

Based on our experimental evaluation, we recommend to use the boosted classifier
for JPEG ghost detection. It yields very good detection results, even on block sizes
of 8 × 8 pixels. Thus, when classifying individual windows, this method preserves
in many cases a high level of detail in the marked blocks (for example, see Fig. 3.4.
At image level, it performs still very reliably. The relation between specificity and
sensitivity on image level can be adjusted with the detection threshold.

Results on larger quality differences like δ = 20 were very reliable. However,
this is not a hard limit, as our experiments suggest that δ can be decreased to an
empirical minimum of 5 points. In such cases, other methods often exhibit difficul-
ties in correctly pointing out the location of double-compression, e. g. [Fari 09] and
[Lin 09b] reported a highly increased error rate for δ < 20 and δ < 10, respectively.
In practice, we assume that the proposed method yields the biggest advantages in
scenarios where δ < 20. Here, automated per-block classification can create rela-
tively fine-grained markings. In adversial situation, like low-contrast regions, or low
values of δ, a human observer can directly examine these markings by looking at a
single image which are similar to Fig. 3.4. We believe that this is much more feasible
than browsing dozens of low-contrast black-and-white difference images in the style
of Fig. 3.1. Alternatively, the experiments suggest that in a fully automated pipeline,
the fully automated assessment of the images can also well be used.



Chapter 4

Illumination Color Estimation

Color is widely used in computer vision, but in a very basic, primitive way. One
reason for employing very basic color primities is that the color information of a pixel
is always a mixture of illumination, geometry and object material. Consider, for
example, changes in illumination, which are not unlikely: the spectrum of sunlight
changes over the daytime, shadows can fall on the object, or artificial light is switched
on. Fig. 4.1 shows two examples for different color appearances. The pictures are part
of the dataset by Barnard et al. [Barn 02b]. The scene is once exposed to relatively
neutral (white) light, and once to illuminants that approximate the environment light
at night. Thus, for robustness, methodologies that employ color should explicitly
address such appearance variations.

Figure 4.1: Example of the influence of illumination on the perceived object color.
The same scene is shown, once exposed to white illumination, once exposed to illu-
minants that approximate illumination at night. The pictures are part of the dataset
by Barnard et al. [Barn 02b]).

Human vision can adapt to changing illumination in many real-world situations
(see, e. g., [Land 71, Funt 04]). This observation motivated the investigation of com-
putational methods for the neutralization of illumination in machine vision. Thus,
in computer vision, the term color constancy subsumes techniques that either aim
at determining the color of the scene illumination, or at producing an illumination-
invariant, colored representation of the scene. Both problems are commonly consid-
ered equivalent1.

1Under the simplifying, but highly common von Kries hypothesis, both problems are indeed
equivalent. See Sec. 4.1 for details.
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In 1998, Funt et al. [Funt 98] asked “Is Colour Constancy Good Enough?”. Their
evaluation showed failure cases of existing color constancy algorithms. In principle,
the same question can be asked also today. The reason for this long-term struggle with
color constancy lies in the fact that an analytical solution is severely underdetermined:
as the perceived color of every pixel is a mixture of illumination and material colors,
a general solution has to assign values to two unknowns per known value. Thus,
current research focuses on the search for reasonable constraints or assumptions to
make color constancy algorithms practical for the application on real-world images.
In Sec. 4.1, we introduce some underlying theory for color and reflectance that is
required for better comprehension of the color constancy methods.

Related work is briefly described in Sec. 4.2. One commonly used assumption is
that a scene is typically exposed to a single dominant illuminant. However, in many
scenes, one can observe more than one illuminant. Thus, it is not clear whether
the current model of uniform illumination is intrinsically too limited. In Sec. 4.4, we
show some examples for typical scenes under non-uniform illumination. In such cases,
perfect color balancing can only be achieved if the assumption of uniform illumination
is relaxed. We present a number of contributions towards multi-illuminant color
constancy.

First, in order to be able to benchmark color constancy methods on multi-illuminant
scenes, we investigate two approaches to create ground truth data for such setups.
For both approaches, we created multi-illuminant datasets and a new computational
method to obtain pixelwise ground truth. The details are presented in Sec. 4.3.

We also investigated a number of approaches for multi-illuminant color constancy
in Sec. 4.4. We first examined the possibility of narrowing the spatial support of
single-illuminant estimators. Although this approach is in principle feasible, its sim-
plicitly makes it difficult to incorporate further cues on the scene composition, if they
are available. As a consequence, we finally propose a novel energy minimization-based
color constancy algorithm that performs highly competitively on scenes containing
multiple, differently colored illuminants. The first dataset in Sec. 4.3 and the imple-
mentation and evaluation in Sec. 4.4.1 were done by Michael Bleier during his project
work under my supervision. The pictures in the second dataset were captured by
Shida Beigpour and Joost van de Weijer. The ground truth computation has been
done by me. The algorithm in Sec. 4.4.2 is joint work with Elli Angelopoulou. Finally,
the energy-minimization method in Sec. 4.4.3 was joint work with Shida Beigpour,
Joost van de Weijer and Elli Angelopoulou. The code was mostly written by Shida
and me, important ideas were contributed by Joost and Elli.

4.1 Basics of Color Analysis
Color is typically denoted as a a vector of three components, consisting of the red,
green and blue intensities that can typically be observed with an off-the-shelf digital
color camera. Very often, it is preferred to use a brightness-normalized representation
of color, called chromaticity , which, for a given color p, can be defined as

χ(p) =
1

pR + pG + pB
·

 pR
pG
pB

 , (4.1)
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where pR, pG and pB denote the red, green and blue components of p. To access the
red, green or blue component of χ(p), we define

χ(p) =

 χR(p)
χG(p)
χB(p)

 . (4.2)

Note that this brightness normalization removes one dimension from the data, be-
cause all channels now sum up to 1. Some authors used an alternative definition of
chromaticity where they replace the sum in the denominator of Eqn. 4.1 by the Eu-
clidean norm. In this work, we use the definition of chromaticity as stated in Eqn. 4.1
unless stated otherwise.

The most widely used assumption is that the light reaching the camera is due to
light that has been reflected from a surface. Thus, several reflectance models have
been proposed to describe the formation of color images. We present the two most
popular choices, Lambertian reflectance and dichromatic reflectance, in Sec. 4.1.1.
The von Kries model, i. e. the most common choice for the transformation from
an input pixel color and an input illumination color to a neutral representation is
presented in Sec. 4.1.2. Lastly, in Sec. 4.1.3, we present criteria for evaluating the
accuracy of automatically extracted illuminant color estimates.

4.1.1 Lambertian and Dichromatic Reflectance

The color response in a pixel can be modeled as the joint influence of the illumination
color, direction and intensity, the color and geometry of a reflecting surface and the
camera function. We discuss these points in greater detail below, and state for the
moment that the commonly used reflection models are mainly influenced by the
choice of the surface reflectance. While a physically accurate description of surface
reflectance is difficult, reflectance can be roughly subdivided into a diffuse and a
specular component. Photons under diffuse (body) reflectance penetrate the object
surface (interface) and adopt the color of the chromophores in the object. Photons
under specular (surface) reflectance are reflected from the surface without entering
the material at all. Note that for specular reflectance, the angle of reflection is
almost exactly equal to the angle of incidence, mirrored about the surface normal.
Body reflectance distributes the reflected light in all directions. Fig. 4.2 illustrates
this difference.

In the Lambertian reflectance model , all pixels are assumed to result from an ideal
diffuse surface [Wysz 82, pp. 273-274], i. e. the reflected light is uniformly distributed
in all directions. Under this assumption, the intensity of a pixel pc in color channel
c ∈ {R,G,B} is

pc = cos(θ)

∫ ∞
0

ρ(λ)e(λ)čc(λ)dλ , (4.3)

where λ denotes the wavelength of the light, θ the angle between the surface normal
and the lighting direction, ρ(λ) the surface albedo (i. e. the wavelength-dependent
reflectivity of the material), e(λ) the wavelength-dependent intensity of the light
source, and čc(λ) the camera color response function for channel c. Note that čc(λ)
is a sensor-dependent function. It describes the transmittance behavior of the red,
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Figure 4.2: Illustration of diffuse and specular reflectance, according to [Lee 86,
Klin 90] (see text for details).

green and blue filters of the camera. Particular post-processing like image gamma
or Bayer pattern interpolation are not modelled. θ denotes the angle between the
light source and the surface normal. The so-called “geometry factor” cos θ is inde-
pendent of wavelength, and can thus be written outside the integral2. This model,
or variants of it, is most widely used in color constancy research. For reference, see
e. g. [Finl 01a, Weij 07a, Rose 03, Finl 96]. Although it does not cover common obser-
vations in real-world images like interreflections, specularities or even image gamma,
its simplicity makes mathematical reasoning particularly straightforward. This can
be seen if the model is further simplified, such that sharpened sensors are assumed.
Sensor sharpening has been investigated in a number of works, e. g. by Drew and
Finlayson [Drew 00], Barnard et al. [Barn 98, Barn 01] and Funt and Jiang [Funt 03].
Here, a transform of the raw sensor data is sought, such that the correlation between
the color channels is minimized. Ultimately, the red, green and blue sensor color
responses should approximate disjoint impulse functions. Using this assumption, the
integral in Eqn. 4.3 can be removed. Then, the Lambertian model for each color
channel c ∈ {R,G,B} becomes a multiplication of the components,

pc = cos(θ)ρcec . (4.4)

Here, pc, ec and ρc denote the per-channel responses of p, e(λ) and ρ(λ), respectively.
We use this model in particular in Sec. 4.3.2 on page 71 of this thesis.

Very few surfaces exhibit pure Lambertian reflectance. Thus, Shafer proposed the
dichromatic reflectance model3 [Shaf 85], which describes the reflectance of a surface
as a sum of specular and diffuse reflectance. In this model, pc is expressed as

pc =

∫ ∞
0

md(x )Sd(λ)e(λ) +ms(x )Ss(λ)e(λ)čc(λ)dλ , (4.5)

where the geometric influences are more generally captured by md(x ) and ms(x ) for
the diffuse and specular intensity, depending on the position of the light source, the
surface normal and the position of the camera. Different models can be used for
the functions md(x ) and ms(x ). For example, ms(x ) could be modelled as Fresnel

2Note that one of the assumptions of Lambertian reflectance is the invariance of the perceived
intensity to the viewer position. Thus, the geometry factor only includes θ.

3Note that Shafer actually used the term “reflection” instead of “reflectance”. However, in later
work, we got the impression that the term “reflectance” was more widely used.
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reflectance. This model has been validated for so-called dielectric materials4 by Cook
and Torrance [Cook 81], but is also commonly used in less constrained environments
(like, for instance, on human skin [Blan 03]).

One very common additional assumption is the Neutral Interface Assumption,
which states that for specular reflectance, ms(x ) can be ignored. Then, Eqn. 4.5
simplifies to

pc =

∫ ∞
0

(md(x )Sd(λ)e(λ) +ms(x )e(λ)) čc(λ)dλ . (4.6)

In this case, the color of the illuminant is the same as the color of the specular portion.
Finally, one can assume Lambertian reflectance for the diffuse part of Eqn. 4.6, which
leads eventually to

pc =

∫ ∞
0

(md(x )ρ(λ)e(λ) +ms(x )e(λ)) čc(λ)dλ . (4.7)

We use this model as a basis for our work in Sec. 4.4.2 and Sec. 5.2.
The dichromatic reflectance model assumes a single illuminant. Extensions of this

definition to two illuminants have been proposed by Maxwell et al. [Maxw08] and
Riess et al. [Ries 09c]. However, experimental evidence of the benefits of such an
extension is lacking so far, and it is currently not clear how such an extension can be
algorithmically exploited.

4.1.2 The von Kries Model for Color Correction

One of the most popular ways to correct for the color of the illuminant is the von
Kries model [Krie 70]. The von Kries model was originally developed to explain hu-
man vision. Subsequently, it was also applied to color correction in machine vision.
According to the von Kries hypothesis, illumination effects can be per color channel
independently adapted to produce a white balanced image. Under certain condi-
tions, this can be approximated by a diagonal transform between a pixel p and an
illumination-neutralized vector p̆. This is commonly expressed5 in the form

p̆ =

 e−1
R 0 0
0 e−1

G 0
0 0 e−1

B

p , (4.8)

i. e., an illumination-neutralized pixel is obtained from dividing the input pixel channel-
wise by the color of the illuminant. Note that the diagonal transform is typically
only approximately correct [Wysz 82, pp. 431-432]. One prominent reason for the
introduced error is that in practice, camera color response functions overlap with
respect to the wavelength λ. To overcome this, either a non-diagonal matrix has to
be used for correction, or the images have to be preprocessed with sensor sharpen-
ing [Drew 00, Barn 01, Drew 09] in order to better fulfill the diagonal model. However,
sensor sharpening relies on an often cumbersome camera calibration step for comput-
ing a transformation from overlapping camera-sensitivity functions to ones that are

4Tominaga lists as some common dielectric materials for instance plastics, paints, ceramics,
vinyls, tiles, fruits, leaves and different types of woods [Tomi 91].

5For reference, see for instance e. g. [Gijs 11, Barn 02a].
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maximally decorrelated [Barn 98, Alva 08]. Thus, most of the color constancy algo-
rithms ignore the non-diagonality of a correct color transform and use the von Kries
model as a sufficiently good approximation to the underlying physical model. In this
work, we also adopt the simplified von Kries model (see Sec. 4.4.1). Under this as-
sumption, a three-component vector suffices to transform a pixel exposed to colored
illumination to a pixel under neutral illumination, as stated in Eqn. 4.8. In summary,
the problem of estimating the color of the illuminant becomes equivalent to correcting
the color under the von Kries hypothesis. Thus, unless expressly stated otherwise in
this thesis, we do not distinguish these two concepts.

4.1.3 Evaluation of Color Constancy Methods

To assess the correctness of an RGB-estimate of the illuminant color, different error
metrics have been proposed. We briefly restate the most influential variants.

Several authors evaluated the algorithm performance indirectly, in three steps.
First, the illumination is estimated on scenes with known objects. Then, the illu-
minant estimate is used to create an illuminant-invariant representation. Finally,
the performance of a color-based object recognition system is evaluated to quantify
the effectiveness of the color correction [Swai 91, Funt 98, Schi 00, Schi 96, Ebne 09].
This indirect way of measuring the performance with respect to the usefulness of the
result is very interesting from a machine vision viewpoint. In this case, the desired
result is not the illuminant estimate itself, but instead a white-balanced image, i. e.
the successful application of the illuminant estimate. However, care has to be taken
that the obtained performance metric is not biased by parameters of the recognition
system.

As a consequence, several other authors proposed distance metrics between the
estimated illumination color and a separately obtained ground truth illuminant. The
ground truth is typically measured by placing a Macbeth color chart [XRite In 12]
within the scene. If the scene is carefully exposed to only one illuminant, the color of
the illumination can be obtained from the gray and white areas of the color checker.

As a distance measure between the estimated illuminant color ẽ and the ground
truth illuminant color e , the Euclidean distance and the angular distance have been
used, as it is also recommended by Hordley and Finlayson [Hord 06] in their thorough
study on the evaluation of color constancy algorithms. The Euclidean distance is
computed from 2D-chromaticities of the estimated and the ground truth illuminant,
i. e.

εEuclidean =

√
(χR(ẽ)− χR(e))2 + (χG(ẽ)− χG(e))2 , (4.9)

where χR(ẽ) denotes the red chromaticity component of the estimated illuminant ẽ ,
χR(e) denotes the red chromaticity component of the ground truth illuminant e , and
so on.

The angular distance is defined on the 3D-chromaticities as

εang = acos

(
χ(ẽ)Tχ(e)

‖χ(ẽ)‖‖χ(e)‖

)
, (4.10)

where the chromaticities are defined as in the previous equation, and the norm denotes
the length of a vector.
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Figure 4.3: Example scenes from the dataset by Barnard et al. [Barn 02c].

To summarize the performance of an illuminant estimator over a number of im-
ages, Barnard et al. [Barn 02a, Barn 02b] used the root mean square error (RMSE)
on dEuclidean in their in-depth evaluation of color constancy methods. Hordley and
Finlayson examined the distribution of dEuclidean and dAngular [Hord 06]. It turned out
that both distributions are neither Gaussian nor symmetric, which makes RMSE a
bad choice to summarize the algorithm performance. Instead, the authors propose
a number of metrics to characterize the distribution of the errors. One suggestion is
the currently most commonly used median of dAngular. The authors note that the an-
gular error should be accompanied by additional metrics. In many publications, the
maximum error and the mean of dAngular are typically reported. Note that the mean
is according to [Hord 06] not an optimal choice. Nevertheless, due to its popularity,
we also use it in our analysis. Thus, in this work, we typically report the median and
mean angular error.

4.2 Related Work

We briefly review the main directions of research on single-illuminant color constancy.
We start with a section on overview papers, and present then a number of related
methods in detail. Note, however, that this presentation is necessarily a selection
from the large body of existing methodologies.

Surveys and datasets In 2002, Barnard et al. [Barn 02a, Barn 02b] conducted an
extensive survey on color constancy algorithms. The accompanying dataset is still be
considered an important benchmark for single-illuminant methods. Example images
from the dataset are shown in Fig. 4.3. In 2011, Gijsenij et al. [Gijs 11] complemented
this evaluation by a broader evaluation on more recent methods. According to this
survey, the (at that time) strongest algorithms operate on a classifier selection based
on semantic image information. As a basis for the evaluation, Gijsenij et al. use
the grayball dataset by Ciurea and Funt [Ciur 03] and the color-checker dataset by
Gehler et al. [Gehl 08]. Example images are shown in Fig. 4.4 and Fig. 4.5, respec-
tively.

Virtually all publications in the last ten years benchmark their respective ap-
proach using at least one of these three datasets. The dataset by Barnard et al. is a
very carefully captured set of 51 scenes under laboratory conditions using 11 illumi-
nants with a resolution of 637× 468 pixels. Typically, for evaluation, 321 images are
selected, stemming from 31 scenes that exhibit diffuse and dichromatic reflectance.
Ground truth was obtained by measuring the color of the illuminants separately with
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Figure 4.4: Example scenes from the grayball dataset by Ciurea and Funt [Ciur 03].

Figure 4.5: Example scenes from the colorchecker dataset by Gehler et al. [Gehl 08].

a Macbeth color chart. The dataset by Ciurea and Funt pursuits a different goal. The
authors aimed at creating real-world ground truth data. A gray ball was mounted
in front of a camera to obtain the color of the illuminant. The dataset consists of
11346 white-balanced, JPEG-compressed images from 15 video clips with a resolu-
tion of 360 × 240 pixels, captured with a Sony VS-2000 camera. For an unbiased
comparison, the image regions containing the gray sphere have to be masked out
when benchmarking illuminant estimation methods. Although the authors were crit-
icized for the poor quality of the images, the dataset was widely adopted for two
reasons. First, capturing real-world ground truth data is a challenge on its own, and
second this was for several years the only publicly available, large real-world dataset.
Gehler et al. proposed a high-resolution dataset in 2008, consisting of 568 images
with a resolution between 1359 × 2041 and 2193 × 1460 pixels. To obtain ground
truth, a color checker is placed within the scene. This color checker must be masked
out when evaluating on the dataset. Shi and Funt [Shi 11] noted that the original
ground truth was computed under image gamma, which is why they offer a recom-
puted ground truth from the linear versions of these pictures to download from their
web page. Since its publication, it is often used as a replacement for the grayball
dataset.

Few datasets have been proposed that can be used for cases where scenes con-
tain non-uniform illumination. Foster et al. [Fost 04] captured static outdoor scenes
using a multispectral camera. The illuminant spectrum has been measured for part
of the scene with a gray reflectance target. RGB images can be obtained from these
scenes using a known camera response function, as described for, e. g., the work by
Barnard et al. [Barn 02c] (see Fig. 4.6 (left) for two example images). To use this
dataset for the evaluation of multiple illuminants, Gijsenij et al. [Gijs 12b] embed-
ded two illuminants per scene, following a three-step approach: first, the measured
illuminant spectrum is removed from the scene, using the diagonal model within the



4.2. Related Work 65

Figure 4.6: Example images from the multi-illuminant datasets by Fos-
ter et al. [Fost 04] (left), Gijsenij et al. [Gijs 12b] (middle) and Ebner [Ebne 09] (right).

von Kries hypothesis6. Then, the scene is split in two halfs, and both sides are mul-
tiplied with different ground truth illuminant spectra. Finally, the spectral image
is converted to an RGB image. Note that Foster et al. [Fost 04] already point out,
that the single illuminant color that is measured by the gray reflectance target is
in some cases a poor approximation to the actual, inhomogeneous scene illumina-
tion. However, lacking better alternatives, this approach can provide semi-natural
multi-illuminant ground truth.

Gijsenij et al. [Gijs 12b] created a laboratory dataset, where one illuminant was
located on the left and one illuminant was located at the right of a centrally placed
object in front of gray background (see Fig. 4.6 (middle)). To determine the ground
truth, the gray background was taken as-is7, while the illuminant colors on the fore-
ground object have been manually annotated. Upon manual investigation, however,
it turned out that this process is very error-prone. Thus, we consider this approach for
creating multi-illuminant ground truth as too unreliable to be used in practice. Other
works, like e. g. by Ebner [Ebne 09] (see Fig. 4.6 (right)), either evaluate on very few
images or completely lack quantitative evaluation. Multi-illuminant algorithms will
be discussed in Sec. 4.4 in greater detail.

To overcome these limitations, we investigated two alternate approaches to create
ground truth information. In Sec. 4.3.1, we assume Lambertian reflectance and neg-
ligible influence of interreflections. The ground truth is measured from a repainted
version of the scene. In Sec. 4.3.2, we use the same assumptions, but in an im-
proved, more robust and non-intrusive setup using multiple images that are exposed
to different illuminants.

6Assuming that the measured spectrum is a product of illuminant times albedo, removing the
illuminant consists of a per-channel division of the measured spectrum by the measured illuminant.

7Assuming that the background albedo is neutral, the reflected color of the background corre-
sponds to the mixture of the illuminants.
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Generalized Gray World Buchsbaum [Buch 80] proposed a hypothesis for color
constancy stating that the average reflectance of a scene is a known quantity. Any
deviation from this quantity is due to colored illumination. This assumption is com-
monly called Gray World hypothesis , as in the absence of particular prior knowledge
on the scene, one can still assume that the average of all observed reflectances is
neutral (gray).

Van de Weijer et al. [Weij 07a] coined the generalized Gray World hypothesis,
which puts the Gray World assumption in a larger statistical framework. Let p(x ) =
(pR(x ), pG(x ), pB(x ))T denote the color of a pixel at position x . Furthermore, let
σp(x ) denote p(x ) after a Gaussian blur filter with standard deviation σ is applied
to the images. van de Weijer et al. define the generalized Gray World hypothesis for
obtaining an illuminant color estimate ẽ as

kχ(ẽ(x ))) =

(∫ ∣∣∣∣∂nGW
σp(x )

∂xnGW

∣∣∣∣τGW

dx

) 1
τGW

. (4.11)

Here, τGW, nGW and σ are parameters to the estimator. The illumination is estimated
as a function of the nGW-th derivative of the image, computed per color channel
independently. Due to the use of the derivatives, this algorithm is also called Gray
Edge algorithm. However, several published algorithms are integrated within this
framework: for instance, one obtains the well-known white patch method by Land
and McCann [Land 71] (also referred to as max-RGB) if nGW = 0 and τGW is set
to infinity. The choice of the parameters is a difficult problem in practice. Thus, in
this and the follow-up work, often multiple performance numbers are reported, which
include the best parameter settings for a particular dataset.

For properly chosen parameters, the Gray Edge algorithm is still one of the best
performing algorithms. As the intuition for the good performance is unclear, Gi-
jsenij et al. [Gijs 09, Gijs 12a] conducted a studies to examine the suitability of differ-
ent edge types for color constancy. The authors concluded that edges that occur due
to specularities are better suited for Gray Edge than edges due to surface geometry
or shadows, and these again are better suited than edges due to texture changes.
Thus, one can speculate that a proper choice of σ and τGW particularly emphasizes
the contribution of relatively bright specularities to the illuminant estimates.

Several follow-up methods have been proposed on the basis of the generalized
Gray World method. For instance, van de Weijer et al. [Weij 07b] proposed to seg-
ment the image in semantic categories. Then, a number of generalized Gray Edge
estimates is created as hypotheses. The final illuminant color is determined by a
hierarchical probabilistic inference on the labels and the estimates. The performance
gain is due to the fact that the semantic labels allow to compensate structural weak-
nesses of the algorithm. For instance, one can use particularly trained estimators for
homogeneous, strongly colored categories like grass. In another semantically moti-
vated work, Lu et al. [Lu 09] examined ways to roughly estimate the scene geometry
for selecting good Gray Edge parameters. Bianco et al. [Bian 08, Bian 10] proposed
to improve the parameter selection by classifying images in indoor and outdoor using
features for color, texture and edge distribution.
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Gamut-Constrained Methods A classic method to estimate the color of the
illuminant is the so-called gamut mapping, originally proposed by Forsyth [Fors 90].
The assumption is that the set of observed sensor responses (i. e., pixel colors) forms
a convex 3D-shape whose position and scale depends on the color of the illuminant.
Thus, the task is to map the gamut of an unknown image to a reference gamut,
constructed from images under a known illuminant. The mapping parameters can
then be used to color correct the unknown image, or to explicitly output the difference
in the unknown illuminant and the illuminant of the reference gamut. To compute
the reference gamut, all Gamut Mapping methods depend on training data.

However, given an input image under unknown illumination, the mapping to the
canonical gamut is not unique. Forsyth originally proposed to select the mapping that
maximizes the volume of the mapped gamut inside of the canonical gamut [Fors 90].
Most of the follow-up literature centers around alternate heuristics to select the best
mapping. For instance, Barnard [Barn 00] proposed to relax the diagonal model to
select the feasible solution. Finlayson [Finl 96] proposed to conduct Gamut Mapping
in chromaticity space to increase the robustness. Finlayson et al. [Finl 06] also showed
that if the lights that might occur in a scene are known, the accuracy of Gamut
Mapping can be greatly improved. Recently, Gijsenij et al. [Gijs 10a] successfully
demonstrated how to combine Gamut mapping with the generalized Gray World
algorithm.

Perceptual Land and McCann [Land 71] proposed the well-known Retinex method
to capture the sensation of lightness, in contrast to physical reflectance or perceived
reflectance. To illustrate this, Funt et al. [Funt 04] provided in follow-up work an
example of the difference to other methods: consider a cube with white reflectance
where one side is lit by the sun, the other is shadowed. A physical viewpoint decom-
poses the reflectance in albedo and illumination. The perceived reflectance is white,
as the human cognition assumes the darker side to be in shadow, and compensates
this impression. The color sensation, however, differs. There, the sunny side is (for
instance) more yellowish, and the blue side more bluish.

Besides this unusual claim (from a computer vision viewpoint), Retinex gained
enormous popularity in different research directions, such as high dynamic range
imaging [Meyl 06, Kim11], intrinsic image decomposition8 [Gehl 11, Shen 11] and, of
course, color constancy itself [Brai 86, Jobs 97, McCa 99, Gijs 11].

Several variants of the algorithm have been proposed, until Funt et al. [Funt 04]
proposed a standardized implementation, which is currently most commonly used.

Statistical Methods Brainard and Freeman [Brai 97] proposed to learn linearly
transformed surface color distributions within a Bayesian framework. A similar, ap-
proach called “color by correlation” was proposed by Finlayson et al. [Finl 01a]. Also
based on the Bayesian theorem, Rosenberg et al. [Rose 03] and Gehler et al. [Gehl 08]
proposed to learn histograms of scene colors for color constancy. Alternatively,
Cardei et al. [Card 02] proposed to use a neural network classifier to solve the color
constancy problem. Recently, Chakrabarti et al. [Chak 12] achieved very good results

8For more details, see also Sec. 5.3
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on several standard datasets using a Maximum Likelihood estimator on image patch
statistics.

Similar to the work in gamut mapping, all these methods are strongly dependent
on the training data. Thus, within one set of scenes, the performance is often rel-
atively strong. But it is still an open problem to achieve competitive results when
training and testing set differ, which is often the case in scenarios with few constraints.

Physics-Based Methods The dichromatic reflectance model by Shafer [Shaf 85]
built the foundation for a series of physics-based illumination-related algorithms (see
also Eqn. 4.5 on page 60). Most authors use additionally the Neutral Interface As-
sumption, i. e. the assumption that the color of the specularity corresponds to the
color of the light source. Notable examples for algorithms that are based on the
dichromatic reflectance model are the segmentation of specularities [Klin 88, Bajc 96,
Tan 05], albedo segmentation [Klin 90, Geus 01]. In the field of color constancy,
Lee [Lee 86] exploited the fact that pixels containing different mixtures of specu-
lar and diffuse reflectance form lines in 2D-chromaticity space that intersect in the
color of the illuminant. Finlayson and Schaefer [Finl 01c] proposed to use the Planck-
ian locus as an additional constraint to be able to estimate the color of an illuminant
from a single surface patch. Tan et al. [Tan 04] considerably extended Lee’s idea to
the definition of the inverse-intensity chromaticity space (IIC). We built parts of our
work on the IIC space. Thus, the details of the method by Tan et al. are presented
in greater detail in Sec. 4.4.2.

The dichromatic model states that for all pixels from a single surface color align
on the so-called dichromatic plane in RGB-space. Schaefer et al. [Scha 05] presented
a hybrid method that used the physics-based dichromatic planes to constrain the
statistical color by correlation method. Recently, Toro and Funt [Toro 07] proposed
a direct exploitation of the dichromatic planes. In contrast to prior work, their
approach does not require a pre-segmentation of surface colors in an image.

Few physics-based methods operate on purely diffuse pixels. One example is the
work by Geusebroek et al. [Geus 03]. Here, the authors propose to exploit spatial and
spectral derivatives in the scene to achieve illumination invariance.

Multiple Illuminants Some illuminant estimation methods are explicitly designed
to handle illumination that varies across the scene. The first method was presented
by Barnard et al. [Barn 97]. Within a relatively complicated algorithm, the method
contains additional constraints to Gamut mapping, such that the localization problem
is solved by a gamut-constrained segmentation step, and the colors of the illuminants
are obtained from a predefined set of common real-world illuminants. Besides the
rather hands-on algorithm, the preselected illuminants limit the applicability of the
method to well-defined cases. Additionally, the method requires smooth transitions
of the illumination. Ebner [Ebne 09] followed a different approach by applying a
diffusion operator on the pixel intensities. It is based on the assumption that the
content of the image consist of large grayish areas, and the illumination varies very
smoothly. Then, the diffusion removes the image content and only the low-pass il-
lumination information remains. Unfortunately, the assumptions of this algorithm
are very limiting in practice, and often lead to inaccuracies, especially in colorful
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scenes [Hsu 08]. Kawakami et al. [Kawa 05] proposed a physics-based method specifi-
cally designed to handle illumination variations between shadowed and non-shadowed
regions in outdoor scenes. Due to its explicit assumption of hard shadows and sky-
light/sunlight combination (or even more general Planckian illuminants), this method
does not generalize well on arbitrary images. Gijsenij et al. [Gijs 12b] recently pro-
posed an algorithm to compensate two light sources in a scene. It applies generalized
Gray Edge estimators for single illuminants on a grid segmentation of the image.
With the additional assumption of two light sources and sub-grid postprocessing, the
method achieves good results on a small benchmark dataset that has been created by
the authors. For cases where additionally the chromaticity of the two illuminant is
known, Hsu et al. [Hsu 08] proposed an algorithm for high quality white-balanced im-
ages. Thus, this method only solves the localization problem, but with high accuracy.
Unfortunately, the color of the input illuminants can often only be obtained under
laboratory conditions, which makes it difficult to apply this algorithm in practice.
Thus, none of the existing multi-illuminant estimation methods can handle arbitrary
images and as such, none of them has been extensively tested on a large variety of
real images.

4.3 Datasets for Multi-Illuminant Recovery

Until two or three years ago, almost all work on color constancy assumed single-
illuminant scenes. However, in real-world images, the assumption of a single homo-
geneous illuminant is typically violated. Thus, an extension to multiple illuminants
is a natural question in order to make illuminant color estimation more broadly ap-
plicable.

The presence of multiple illuminants makes the color constancy problem con-
siderably more challenging: for single-illuminant methods, it suffices to estimate a
three-component vector, i. e. the color of the illuminant. If multiple illuminants are
present, it is required to estimate a) the colors of the illuminants, and b) their relative
contribution per pixel. The number of unknown illuminant colors increases linearly in
the number of illuminants. However, the problem of localizing the region of influence
per illuminant is completely new, and adds the illuminant mixture parameters per
pixel as another (large) set of unknowns. Additionally, we require a new protocol for
quantitative evaluation. As the mixture of the illuminants may change between every
pixel, high-resolution (ideally pixelwise) ground truth is required. More precisely, it
does not suffice anymore to place a Macbeth color chart in the scene, as it is often
done to determine the color of a single illuminant. Instead, more advanced methods
for creating ground truth have to be found.

Prior multi-illuminant work is sparse, and mainly proposed to operate on synthetic
data. To obtain “true” multi-illuminant data, we investigated two ways of creating
such datasets. First, in Sec. 4.3.1, we discuss ground truth that is obtained after
recoloring the scene under investigation with diffuse gray paint. In Sec. 4.3.2, we
investigate a novel approach to generate ground truth from a set of input images
under partially known illuminants.
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Figure 4.7: Example images from the proposed multi-illuminant dataset using gray
paint (non-linear representation for visualization).

4.3.1 Ground Truth from Fixed, Static Scenes

We drew inspiration by a dataset on intrinsic image decomposition, which was re-
cently proposed by Grosse et al. [Gros 09]. The goal of this work is to benchmark
algorithms that aim to separate albedo from shading. To do so, the authors firmly
attached the objects to a base plate. Then, pictures from the object were taken from
defined positions. In a second step, the objects were painted white. A second series of
pictures was then taken from the same positions. Thus, for every object there exists
an image pair, where one image contains shading and albedo, and one contains only
shading.

We transferred this idea to color constancy. Four scenes (see Fig. 4.7) were taken
under 17 different illumination conditions, 9 of which were truly multi-illuminant,
for a total of 36 multi-illuminant images. Our scene is mostly composed of diffuse
materials. Exceptions are the tin object in the second scene in Fig. 4.7, the knife
and some of the fruits in the third scene. The different lighting setups were created
by two Reuter lamps [Reuter 12] with LEE color filters [LEE Filt 12]. One Reuter
lamp was positioned on the left side of the scene and was combined with the LEE
filters 201, 202 and 281. The other Reuter lamp was positioned on the right side and
was used with the LEE filters 204, 205 and 285. We also took images with only one
filtered light on at a time, both Reuter lamps on without any filters and one under
ambient illumination. As ground truth we spray-painted each scene gray and took a
series of images under the exact same 17 illumination conditions. We used RAL 7035
and RAL 7047 spray paints9 which were verified with a Macbeth color checker. The
color of the illuminant can now be directly obtained from the gray painted objects.
One limitation of this approach is that interreflections are not preserved in the gray
painted scenes.

The data was captured with a Canon EOS 550D camera and a Sigma 17-70 lens.
The aperture and ISO settings were the same for all the images. The RAW data
was converted using dcraw [Coff 12] with gamma set to 1.0 and without any white
balancing. Different fixed shutter speeds were used across the 17 different illumination

9The RAL colors are standardized colors, nowadays maintained by the German organization
“RAL Deutsches Institut für Gütesicherung und Kennzeichnung e.V.” [RAL gGmb12].
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Figure 4.8: Example scenes containing two illuminants. Pictures courtesy of Trine
Juel [Juel 08], Risa Ikeda [Iked 10] and David Domingo [Domi 05].

conditions in order to avoid under- and over-exposure. Note that the collected data,
as well as the code for this work can be downloaded from the web10.

We use this dataset to evaluate parts of our work as presented in Sec. 4.4.1.
One limitation of this approach to obtain ground truth is that it does not faithfully
preserve the interreflections between the scene objects. Thus, we can recommend this
approach only when for capturing clean scenes that containisolated objects.

4.3.2 Ground Truth from Multiple Light Situations

Another limitation of the previously presented approach is the tedious and destruc-
tive capturing process. Thus, this method does not scale above well-defined, small
laboratory settings (consider, e. g., an outdoor scene that has to be completely spray-
painted for ground-truth recovery).

To address this issue, we investigated a second, non-intrusive method that recov-
ers multi-illuminant ground truth from multiple images under different illuminations.
It assumes exactly two illuminants, Lambertian reflectance, a linear sensor response,
sharpened sensors and no interreflections. Although the restriction to two illumi-
nants might appear very limiting, we note that the largest part of the images from
many scenes in the wild can be well approximated with two illuminants. As shown
by example in Fig. 4.8, scenes that are mainly influenced by two illuminants are for
instance outdoor scenes containing shadow and sunlight, indoor scenes that are par-
tially illuminated through windows, or scenes at night captured with camera flash
light. Thus, we assume that the restriction to two illuminants is compensated by the
largely increased applicability of the method.

4.3.2.1 Real-world Two-illuminant Datasets

We created two datasets containing two dominant illuminants, one under laboratory
conditions, and one containing indoor and outdoor real-world images. The images
were captured with a Sigma Foveon X3 camera. This model is capable of capturing
per pixel red, green and blue intensities, instead of interpolating image information,
e. g. from a Bayer pattern. Image gamma has been deactivated, and camera output
has been set to raw 12 bit mode. The exposure time has been fixed, such that specu-
larities are not clipped. One known limitation of this model is that the separation of

10http://www5.cs.fau.de
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the color channels is relatively poor for raw images [Coff 12]. Thus, for the real-world
images, we decided to apply the perceptual sharpening by Vázquez i Corral [Vazq 11].

Under laboratory conditions, we selected three illuminants, referred to as “red”,
“white” and “blue”, due to their relative color differences. The illuminants were firmly
mounted on a structure, such that one illuminant was located on the left, the other
on the right of the scene. We created 11 scenes containing a selection of specular and
diffuse objects and varying number of objects. One scene was empty, i. e. only the
gray ground plane is shown (see Fig. 4.11 on page 77). 5 scenes contain one or two
mugs in different colors. One scene contained a diffusely reflecting stuffed animal.
The 4 remaining scenes contain multiple objects, with varying amount of specularities
(see the first three images in Fig. 4.10 on page 76 for an example). Note that the
high intensity of the red illuminant strongly influences the overall appearance of the
scene. For a complete list of the scenes, see Appendix D).

For the creation of the real-world scenes, we selected 20 scenes. 17 of these scenes
contain one environmental light, like sun light or incandescent/indoor illumination,
and one colored light from a colored projector image. Two images, “dark tools” and
“orange”, contain sunlight and ambient illumination, and “poster” contains a mixture
of incandescent light and sunlight. Sample images are shown in Fig. 4.9. In the top
row, three representative scenes are shown. On the left, “faucet” shows a mixture of
incandescent light and projector light. In the middle and on the right, “orange” and
“poster” are shown. In the bottom row, the relative influence of the two illuminants is
shown color-coded in red and blue. The algorithm to compute this relative influence
is subject of this section, and explained below.

4.3.2.2 Theoretical Model for Multi-Illuminant Ground Truth Computa-
tion

In order to determine the illuminant ground truth for two light sources per pixel, two
subproblems have to be solved. First, the color of the illuminants is required. Sec-
ond, one must determine the (potentially overlapping) spatial distribution how these
illuminants influence the scene. We call the second task the Localization Problem.

We address the first problem, i. e. the recovery of the ground truth illuminant
color, in the next section. In this section, we describe a solution for the localization
problem to determine the spatial influence of the illuminants. Thus, we assume for
the moment that the chromaticities of the illuminants are known.

General Procedure We determine the relative influence of both illuminants on
an image pixel from multiple input images. The main result of this section is to
show that, under certain assumptions, it is straightforward to compute the relative
influence of two illuminants per pixel if multiple images are available. More precisely,
assume that the scene and camera setup is static, and three images are available:
one that is exposed to both illuminants, and two images where only one of these two
illuminants is switched on. Assume also that the colors of both illuminants are known.
We are going to show that for each pixel, the relative influence of the illuminants in
the two-illuminant image is equal the relative brightness of the illumination-corrected
single-illuminant images.
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(a) Faucet (b) Orange (c) Poster

(d) Illumination influence
in faucet

(e) Illumination influence
in orange

(f) Poster illumination in
poster

Figure 4.9: Example images from the proposed real-world dataset, and the influence
areas of the two illuminants in red and blue. Left: mixture of incandescent light
and projector light. Middle: mixture of sunlight and shadow. Right: mixture of
incandescent light and sunlight.

Proof Without loss of generality, let the scene illumination consist of a bluish il-
luminant from the left and a more reddish illuminant from the right. For simplicity,
we refer to these illuminants as blue and red lights, respectively. We denote this
image as I(B;R). To compute the ground truth, we require two additional images, one
that is only exposed to the blue illuminant, and one that is only exposed to the red
illuminant. We denote these images as I(B;∅) and I(∅;R), respectively. Note that all
three images must be taken from the same position, and the scene must be static
between capturing these images. If the camera color response function is linear, then

I(B;R) = I(B;∅) + I(∅;R) , (4.12)

holds, i. e. a direct addition of the single-illuminant images results in the two-
illuminant image. Excluding third illuminants and effects from interreflections, the
illuminant in a pixel at position x in I(B;R) must be a linear combination of the illu-
minants in I(B;∅) and I(∅;R) at position x . Thus, given the chromaticities χ(e (B)) and
χ(e (R)) of the blue and red illuminants, we seek a pixelwise weighting factor wGT,
such that

χ(e (B;R)(x )) = wGTχ(e (B)) + (1− wGT)χ(e (R)) (4.13)
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is the illuminant chromaticity of the pixel at position x in image I(B;R). We assume
the illuminant chromaticity to be constant over the image11, and thus x is omitted.
A function to compute wGT is given in Eqn. 4.19 at the end of the proof.

To properly model non-uniform illumination, we need to define the Lambertian
reflectance model with sharpened sensors more precisely. In contrast to Eqn. 4.4 (see
Sec. 4.1.1) we incorporate the (potentially) spatially varying intensity of the light
source explicitly. Let p(B;∅)

c (x ) be the intensity of I(B;∅) at pixel x in channel c.
p

(B;∅)
c (x ) can then be written as

p(B;∅)
c (x ) = cos(θ(B;∅)(x ))ρc(x )k(B;∅)(x )χc(e

(B)) . (4.14)

Here, ρc(x ) and θ(B;∅)(x ) denote the albedo in channel c and the angle between light
source and surface normal for the blue light in pixel x . The intensity of the blue light
e (B) may be spatially variant, which is why it depends on x . χc(e (B)) denotes the
chromaticity of e (B) in channel c. Because χc(e (B)) is intensity-invariant, an intensity
factor k(B;∅)(x ) is added. It is defined as

k(B;∅)(x ) =
e

(B)
c eb,c(x )

χc(e (B))
=

e
(B)
c

e
(B)
c∑

i∈(R,G,B) e
(B)
i

=
∑

i∈(R,G,B)

e
(B)
i . (4.15)

Thus, k(B;∅)(x ) denotes the spatially varying sum of intensities of the light source
over all color channels. As such, k(B;∅)(x ) does not depend on the choice of the color
channel c. I(∅;R) is analogously defined to I(B;∅).

We now outline the procedure of obtaining pixelwise ground truth:

1. As the chromaticities of the blue and red illuminants are assumed to be known,
one can transform I(B;∅) and I(∅;B) into images under neutral (white) illumina-
tion. Using the diagonal version of the von Kries model of illuminant change
(see Eqn. 4.8 on page 61), this can be accomplished by dividing every color
channel by the respective illuminant intensity. We denote by Ĭ(B;∅) and Ĭ(∅;R)

the illuminant-normalized version of I(B;∅) and I(∅;R).
Note that Ĭ(B;∅) and Ĭ(∅;R) are not identical, although the scene is assumed to
be static when capturing I(B;∅) and I(∅;B). This is mainly due to

(a) the spatially varying light intensities,
(b) different angles between the light sources and the surface normals, and
(c) effects due to object and scene geometry, e. g. different shadow geometries.

2. These brightness differences in Ĭ(B;∅) and Ĭ(∅;R) are used to compute the mixture
of the illuminants.

From the outline above, point 1 is a direct application of the von Kries model and
the given assumptions. We show it for Ĭ(B;∅), Ĭ(∅;R) can be treated analogously. Ĭ(B;∅)

is obtained for each color channel c separately by computing

Ĭ(B;∅)
c =

I
(B;∅)
c

χc(e (B))
for c ∈ {R,G,B} . (4.16)

11Note that this assumption would be invalid if for instance differences in large-scale atmospheric
effects could be observed within the image. However, we neglect this case.
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Note that this color correction is wrong in occlusion regions, i. e. shadow regions of
Ĭ(B;∅) However, we found in practice (see below) this error to be negligible.

Let p̆(B;∅)(x ) denote the intensity of Ĭ
(B;∅)
c in pixel x . Then, Eqn. 4.16 and

Eqn. 4.14 can be written per pixel as

p̆(B;∅)(x ) =
p

(B;∅)
c (x )

χc(e (B))

=
cos(θ(B;∅)(x ))ρc(x )k(B;∅)(x )χc(e

(B))

χc(e (B))

= cos(θ(B;∅)(x ))ρc(x )k(B;∅)(x ) .

(4.17)

We proceed to show point 2 from the outline above. In analogy to p̆(B;∅)(x ), let
p̆(∅;R)(x ) be the intensity in channel c of Ĭ(∅;R) at x . As both images are aligned,
consider the ratio

p̆(B;∅)(x )

p̆(∅;R)(x )
=

cos(θ(B;∅)(x ))ρc(x )k(B;∅)(x )

cos(θ(∅;R)(x ))ρc(x )k(∅;R)(x )
=

cos(θ(B;∅)(x ))k(B;∅)(x )

cos(θ(∅;R)(x ))k(∅;R)(x )
. (4.18)

Equation 4.18 shows that the difference in the ratio of the color channels of Ĭ(B;∅) and
Ĭ(∅;R) comes exactly from the different geometry factors multiplied by the potentially
different light source intensities. The weight wGT from Eqn. 4.13 can be directly
computed from this relationship. In our implementation, we clipped the weighting if
one intensity was more than 40 times larger than the other, which lead to the function

wGT =


1 if p̆(B;∅)(x )

p̆(∅;R)(x )
> 40

0 if p̆(B;∅)(x )

p̆(∅;R)(x )
< 1

40
p̆(B;∅)(x )

p̆(B;∅)(x )+p̆(∅;R)(x )
otherwise

. (4.19)

Here, the fact that wGT is a linear function of p̆(B;∅)(x ) and p̆(∅;R)(x ) is a direct
consequence of the linearity assumption of the camera responses in Eqn. 4.12.

Figure 4.10 illustrates this computation. In the top row, the input images under
the blue and red illuminant are shown. In the bottom row, the image under blue
and red illumination is shown on the left, and the computed weights are shown
on the right. The weighting function has been linearly scaled between saturated
red for wGT = 0 to saturated blue for wGT = 1. Several images in our dataset
contain specular reflections. Although we use the Lambertian reflectance model for
the computation of the influence of the illuminants, we found upon manual inspection
that the introduced error can be tolerated. As specularities are typically very bright
in relation to the remaining pixels, highly specular intensities are always more than 40
times brighter than the reflected intensity from the other image. Thus, in the ground
truth, these pixels are completely assigned to the illuminant where the specularity
stems from.

4.3.2.3 Obtaining the Illuminant Color Chromaticities

When deriving the solution to the localization problem in the previous section, the
recovery of the illuminant chromaticities has been post-poned. The classical method
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(a) “blue” light left (b) “red” light right

(c) “blue” left, “red” right (d) Visualization of w(x )

Figure 4.10: Example images from the proposed multi-illuminant dataset (non-linear
representation for visualization).

is to measure the illuminant chromaticities with a Macbeth color chart. Ideally, the
chart is positioned in an empty scene perpendicular to the light source, such that
the maximum intensity is reflected from this light source. The chromaticity is then
computed as an average of the neutral reflectance patches on the Macbeth chart.
To minimize noise from the capturing process, typically the brightest, non-clipped
patch is selected. This is typically either the white patch (if the camera exposure was
carefully set) or a light gray patch.

For some of the images that we have captured for benchmarking, such as the scene
shown in Fig. 4.10, information from a Macbeth color chart was not available. Instead,
only an empty scene containing a gray floor plate could be used for color picking (see
Fig. 4.11), which was not oriented towards the light source. This fact, together with
inhomogeneities in the gray surface, lead to considerable differences in the estimation
of the ground truth illuminants, depending on which pixels were selected. Table 4.1
shows the chromaticities that were obtained by selecting different groups of pixels
from the ground truth patch. In the row “manual selection”, we aimed at selecting
particularly clean pixels. The last row shows the maximum angular difference dAngular

(see Eqn. 4.10 on page 62) between these estimates. While for instance the first and
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(a) empty scene, “blue” light left (b) empty scene, “red” light right

Figure 4.11: Example empty scene as only source of ground truth information.

Illuminant
Selection strategy Red White Blue
all pixels .440 .340 .221 .395 .348 .257 .353 .354 .293
bright pixels .458 .334 .207 .404 .344 .251 .365 .348 .287
darker pixels .441 .339 .220 .394 .348 .258 .351 .358 .291
manual selection .429 .344 .227 .389 .348 .263 .341 .358 .301

Max. angular error 3.41 1.90 2.92

Table 4.1: Color picking results for the ground truth illuminants.

the third row are in high agreement, the second and fourth row exhibit in the red
channel more than 3 degrees difference.

To address the ambiguity in the region selection, we assumed that it is worth to
investigate a novel, alternative approach to estimate the illuminant chromaticities.
We again exploit the fact that several images are taken from the same scene with fixed
camera and light positions. As shown in the previous section, images from the same
scene differ per pixel only in the color and intensity of the illuminant. We exploit
this fact by setting up two constraints for a least squares solution for estimating the
chromaticity of the illuminant:

1. For pixels that are exposed to only one illuminant, the ratio inbetween color
channels is fixed. We use the same notation as above. Without loss of gener-
ality, we reuse the scenario that there is an image I(B;R) under blue and red
illumination, and separate, aligned images I(B;∅) and I(∅;R) that are exposed to
only the blue or only the red illuminant. Let p(B;∅)(x ) the intensity of I(B;∅)

at pixel x in channel c, for c ∈ {R,G,B}. Using the same assumptions and
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notation as in the previous section, the ratio e. g. between the red and green
channel for image I(B;∅) is

p
(B;∅)
R (x )

p
(B;∅)
G (x )

=
cos(θ(B;∅)(x ))ρRk

(B;∅)(x )χR(e (B))

cos(θ(B;∅)(x ))ρGk(B;∅)(x )χG(e (B))

=
ρRχR(e (B))

ρGχG(eb(x ))χG(e (B))
,

(4.20)

where the notation is the same as in the chapter above, i. e. θ(B;∅)(x ) is the
angle between the light source and the surface normal, ρR the red channel of the
albedo, k(B;∅)(x ) denotes the intensity of the light source and χR(e (B)) denotes
the red component of the blue illuminant chromaticity. Equation4.20 shows that
the ratio between the color channels is the ratio of the chromaticity components
of the illuminant, multiplied with the ratio of the albedo components. For a gray
scene (such as shown in Fig. 4.11), the ratio of the albedo cancels. Additionally,
this formulation does not depend on the geometry factor ωb(x ), i. e. the ratio
does not vary with the location x of the pixel. Note that this argument is
independent of the choice of channels, i. e. it can be applied to all combinations
of color channels.

2. The ratio between two pixels under different illuminants at the same position
depends on illuminant chromaticity and brightness. This step requires to use
an additional input images. To relate e. g. the blue and the red illuminants,
both must be located at the same side. Thus, let p(∅;B)

c (x ) and p
(∅;R)
c (x ) the

intensity at pixel x in channel c for another input image resulting from the blue
and right illuminant, respectively, mounted on the right side. Then,

p
(∅;B)
c (x )

p
(∅;R)
c (x )

=
cos(θ(∅;B)(x ))ρck

(∅;B)(x )χc(e
(B))

cos(θ(∅;R)(x ))ρck(∅;R)(x )χc(e (R))

=
cos(θ(∅;B)(x ))k(∅;B)(x )χc(e

(B))

cos(θ(∅;R)(x ))k(∅;R)(x )χc(e (R))
,

(4.21)

where due to the collocation of the red and blue illuminant, the geometry factors
are equal, i. e.

cos(θ(∅;B)(x )) = cos(θ(∅;R)(x )) . (4.22)

Thus, the geometry term cancels. Computing the chromaticities over the color
channels, the intensity terms kb(x ) and kr(x ) can be cancelled as well. Thus,
the ratio of the chromaticities of the pixels corresponds to the ratio of the
illuminant chromaticities:

χc(p
(∅;B)(x ))

χc(p(∅;R)(x ))
=
χc(e

(B))

χc(e (R))
. (4.23)

The ratios from Eqn. 4.20 and Eqn. 4.23 can be computed for all combinations of
illuminants (i. e., red, white and blue) on the left and on the right side of the scene.
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Illuminant
Strategy Red White Blue
Least squares solution
from the empty scenes

0.446 0.338 0.217 0.403 0.345 0.251 0.364 0.351 0.286

Table 4.2: Least squares results for the ground truth illuminants.

Entering these ratios in a linear system of equations yields the illuminant colors. For
instance, Equation 4.20 translates to the condition

χR(e (B))− χG(e (B))
p

(B;∅)
R (x )

p
(B;∅)
G (x )

= 0 , (4.24)

and analogously Equation 4.23

χc(e
(B))− χc(e (R))

χc(p
(∅;B)(x ))

χc(p(∅;R)(x ))
= 0 . (4.25)

Setting these equations up for each color channel, each of the sought illuminants
and for both, the left and right side, the unknown ground truth illuminants are fully
specified up to a multiplicative factor. To avoid the trivial solution where all variables
are set to 0, one variable can be forced to 1. This does not lead to any problems, as
the final result is anyways rescaled to an overall sum of 1. In our implementation, we
solved these equations with a least squares optimizer. Table 4.2 shows the obtained
results for our laboratory data. One advantage of the method over naive color picking
are the suppression of geometric effects and brightness differences. On the downside,
this approach requires a complete set of images showing all combinations of illuminant
positions. Thus, we believe that this approach should only be applied if for some
reason direct measurements from a Macbeth color chart are not available or can not
be used.

4.3.2.4 Full Algorithm for Ground Truth Computation

In a separate experiment, we verified that the linearity assumption of the images
(see Eqn. 4.12) is approximately correct on the raw output of the sensor. Thus, the
raw images have been used to create the laboratory dataset. For the ground truth
computation on the laboratory data, we first estimate the colors of the illuminants
using the least squares solution. To do so, we require a full set of single-illuminant
input images, i. e., images where either the left or the right illuminant is activated
on changing positions. Then, we estimate the distribution of the illuminants for
every two-illuminant image. As input, we use the two single-illuminant images that
add up to the two-illuminant image (as described by Eqn. 4.12). The overlapping
color channels of the Sigma Foveon X3 sensor grossly violate the assumption of sharp
sensors. Thus, to determine the distribution of illuminants, we only use the green
channel12. The presented algorithm does not cover regions that are not directly

12Using the green channel instead of a combination of color channels sometimes improves the
robustness, if the camera does not fully satisfy the theoretic assumptions (for another application,
see e. g. [John 07a])
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(a) Weights on linear input (b) Weights on visually enhanced input

Figure 4.12: Example for the error in the ground truth computation, if the input
images underwent a non-trivial non-linear transformation before ground truth com-
putation.

illuminated by any of the two illuminants. We visually verified that such regions
occur rarely in our scenes. Additionally, such regions are typically very dark, such
that the majority of these regions are excluded from processing, due to high image
noise. Specularities are also not modelled within the algorithm. However, in our
data, all specular regions are correctly assigned to their respective illuminant. Thus,
we assume that the presented method is — although physically only approximately
correct — sufficiently accurate for benchmarking color constancy algorithms.

The raw output of the Sigma Foveon X3 sensor looks relatively grayish, due to
the overlap of the sensor response functions. To create images with more realistic
colors, such as from consumer cameras, the images taken from the real-world scenes
were visually enhanced using the method by Vázquez i Corral [Vazq 11]. In total,
four images were captured per scene: one containing both illuminants, one contain-
ing only one illuminant, and both scenes again containing a Macbeth color chart for
estimating the chromaticity of the illuminants. The missing single-illuminant image
was obtained by subtracting the single-illuminant image from the mixed-illuminant
image. With the hand-picked ground truth from the Macbeth color chart and the
multiple input images under different illuminants, we computed the illuminant dis-
tribution analogously as for the laboratory data.

4.3.2.5 Inaccuracies in the Outdoor Dataset

Creating the missing single-illuminant image via subtraction (see previous section)
is valid as long as the input images are linear. Unfortunately, the color enhance-
ment [Vazq 11] is a non-linear transform. Thus, using this preprocessing step intro-
duces noticeable errors in the ground truth computation. One potential workaround
to lower this error might be to first perform the subtraction, and then convert the
images, which has for technical reasons not been further pursued. Figure 4.12 illus-
trates an example of the introduced inaccuracies. The base image is “cameras”, as
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(a) Sun and ambient light (b) Part of the image
only ambient

(c) Difference image

Figure 4.13: Linear version of the “orange” image. Left: sunlight and ambient light
on the whole region. Middle: the shadowed area is ambient only, while the remaining
image area contains again sunlight and ambient light. Right: subtraction of the left
image minus the middle image. This should yield pure sunlight — however, the joint
sunlit and ambiently lit area is canceled.

shown in Fig. D.3c on page 188. On the left, the ground truth weights are shown
as obtained from linear input, on the right from visually enhanced input. Note the
largely increased noise on the right, in areas that are smooth when linear data is
used. As a consequence, we originally captured more than 20 images and removed
the cases where the noise level was considered inacceptable.

Another inaccurate case are the two sun light/shadow images, “dark tools” and
“orange”. In these cases, one input image was fully exposed to the sun (see Fig. 4.13a),
one was partially shadowed (see Fig. 4.13b). However, for our algorithm, we assume
that we can observe two images, in each of which only one of the two illuminants is
present. Thus, in the case of outdoor images, we would require one image that is fully
shadowed (i. e., contains only ambient light), and one image that is exposed to pure
sun light. In this case, correct ground truth could be computed. However, in our
case, the illumination that is observed in the sun light image is in reality a mixture of
sun light and ambient light. Additionally, no image under full shadow was available.

To obtain a pure sun light image, we would need to subtract the image containing
sun light plus ambient light from a pure shadow image, i. e. pure ambient light. For
our actual data, this fails in two areas: a) in regions where combined sun/ambient
light image is shadowed (i. e. no pure sun light is observed), and b) in regions where
the shadow image is still exposed to the sun.

Noting this issue, we aimed to quantify the introduced error by measuring the
Macbeth color checker responses on pure shadows, pure sun light, and combined
sun/ambient light. For sunny areas, we estimated the error of the illuminant distri-
bution to be about 1◦. For areas that are shadowed in the sunny image, the error
is larger. Ultimately, we decided to leave these two images in the dataset, for three
reasons. First, we thought that realistic outdoor images are a valuable addition to
the dataset for research purposes. Second, we considered an error of 1◦ to be tolerable
for the sunny regions, and third, the shadowed areas in the sun/ambient images are
relatively small, compared to the total number of pixels. However, for future work,
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(a) (b) (c)

Figure 4.14: Examples for multi-illuminant situations. (a) Two dominant light
sources, spatially separated (b) Two dominant light sources mix smoothly on the
floor (c) Complex illumination situation.

we strongly recommend to capture true shadow images to minimize the error in the
ground truth.

4.4 Multi-Illuminant Estimation

Most state-of-the-art color constancy methods were designed for recovering a sin-
gle, dominant illuminant. In real-world images, this assumption is often violated.
Fig. 4.14 shows some examples of multi-illuminant situations. On the left image, the
game console acts as a local second dominant light source on the face of the boy. In
the middle, two dominant light sources mix smoothly on the floor of the church. On
the right, several local light sources create a complex multi-illuminant scene.

It is not straightforward how to incorporate these different effects in a single
multi-illuminant CC algorithm. When the influence of an illuminant is spatially
limited to a distinct object (like the face in the left image), object segmentation
and subsequent single-illuminant estimation may lead to a satisfactory recovery of
the illumination colors (see, e. g., the face-specific illuminant estimation by Bianco
and Schettini [Bian 12b]). In a different scenario, the church floor in the middle
image is also a single “object” from a segmentation viewpoint. However, its surface
is illuminated by distinct light sources at different locations. Thus, an object-based
illumination extraction is inappropriate in this case. Pixel diffusion-based approaches
like the one by Ebner [Ebne 09] can be expected to solve the church floor example,
but are expected to fail on object boundaries as in the left image.

How does estimating multiple illuminants differ from estimating one single illu-
minant? Color constancy for scenes under non-uniform illumination adds a new level
of complexity to the algorithms: in addition to the estimation of the chromaticities
of the illuminants, one is also required to solve the localization problem. Thus, the
distribution of the influence of each illuminant in the image must be estimated. We
consider this as a segmentation task, although it could also be considered as a blind
deconvolution or source separation problem.
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In this section, we investigate several directions for multi-illuminant estimation.
In Sec. 4.4.1, we report experiments with methods that are direct extensions of
single-illuminant estimators. In Sec. 4.4.2, a novel physics-based, but spatially coarse
multi-illuminant estimator is presented. Finally, in Sec. 4.4.3, we propose a novel
method that operates on a Conditional Random Field (CRF). Experimental results
are promising, also in respect to prior work by Gijsenij et al. [Gijs 12b].

4.4.1 Color Constancy with Small Spatial Support

Color constancy for multiple illuminants can be considered equivalent to color con-
stancy for uniform illumination with (infinitely) small spatial support. Thus, we
investigated whether existing color constancy methods, originally developed assum-
ing uniform illumination, can be applied on smaller image regions. In order to ob-
tain such localized estimates, we examine how the uniform-illuminant assumption of
state-of-the-art color constancy methods can be relaxed. We use image sub-regions
to compute the illuminant color locally. We then compensate for the loss of accuracy,
by combining multiple independently obtained local estimates. Most of the existing
fusion strategies try to solve the combination problem by extracting additional fea-
tures from the image, e. g. color and texture statistics. Based on these features the
best algorithm is selected or a weighted average of the estimates is computed. If the
best algorithm could always be selected, we could gain in theory significant perfor-
mance. Recent evaluations show that algorithm combination based on image features
does not perform substantially better than the best performing algorithm [Gehl 08].
Computing regression on the estimates has been shown to be more robust than se-
lecting a single estimate [Bian 10]. Thus, we expand this idea to make it applicable
to local estimates. An important part of such a comparative analysis is quantitative
evaluation. To our knowledge, currently available databases do not provide sufficient
information for evaluating multiple illuminant algorithms. Thus, we use our own
multi-illuminant ground truth data, as presented in Sec. 4.3.1 on page 70. We then
evaluate on this database different color constancy as well as fusion algorithms. We
conclude that machine-learning based regression consistently outperformed all other
combination strategies, as well as individual estimates.

4.4.1.1 Gamut Mapping and Bayesian Color Constancy

For this study, we used (among other algorithms) also gamut-constrained methods
and Bayesian color constancy. Thus, we first add technical details on these methods.

Gamut-Constrained Methods A key component of the gamut constrained meth-
ods is the definition of a canonical gamut G (O), which denotes the convex set of sensor
responses O = {1o, . . . , no} to n surface reflectances under a canonical illuminant:

G(O) =

{∑
i

αi
io

∣∣∣∣∣ io ∈ O, αi ≥ 0,
∑
i

αi = 1

}
, (4.26)

where αi denote scaling parameters. A mapping between the gamut of an unknown
illuminant and the canonical gamut is reveals then the illuminant color. Based
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on Forsyth’s original algorithm [Fors 90], a number of variations have been devel-
oped [Finl 96, Finl 00, Finl 06, Gijs 10a].

The most well-known of these methods is Gamut Mapping , originally proposed
by Finlayson. When transforming an image gamut G(I) to the canonical gamut
G(O), gamut mapping uses a diagonal matrix transform T. Because only a limited
number of surfaces is observed within a single image, the unknown gamut can only
be approximated by the observed image gamut. The set of all possible mappings
from G(I) to G(O) is calculated and the best mapping (with respect to a selection
criterion) is selected.

In more detail, let Tp,o be a diagonal matrix that maps a point p = (pR, pG, pB)T

in the image gamut to a point o = (oR, oG, oB)T in the canonical gamut,

∀p ∈ G(I), pT ∈ G(O) , (4.27)

where Tp,op = o. The set of possible mappings for one point p in the image gamut
can be calculated as

M(p) =

{
ap,o

∣∣∣∣∣ ap,o =

(
oR
pR
,
oG
pG
,
oB
pB

)T

, o ∈ G(O)

}
. (4.28)

These sets are likewise convex. The feasible set M̌ can be calculated by intersecting
all elements ofM(p) for each point p ∈ G(I) in the image gamut, i. e.,

M̌ =
⋂

p∈Γ (I)

M(p) . (4.29)

Their intersection is also a convex set. Each map in M corresponds to a possible
illuminant. For the final decision, Forsyth proposed to choose the diagonal matrix
transform with the maximum trace from the feasible set, which results in the most
colorful gamut.

Finlayson and Hordley [Finl 96, Finl 00] showed that Gamut Mapping can be also
performed in a 2D chromaticity space, as only intensity information is lost. We refer
to this method as 2D-Gamut Mapping.

The three-dimensional vector of sensor responses p = (pR, pG, pB)T is projected
onto the plane at pB = 1, yielding 2-D chromaticities in the red and green channel. For
2D-Gamut Mapping, the diagonal transform has only two parameters. Additionally,
the feasible set is constrained by the set of possible illuminants. Using Monte Carlo
estimation, the explicit computation of the intersection between illuminants and the
feasible set can be avoided. Rather, random points in 3D-sensor space are generated.
The illuminant is the mean or median of a set of randomly chosen points lying within
the feasible set.

Bayesian Color Constancy Bayesian color constancy generates a probabilistic
model for surface reflectances and illuminants. Assuming statistical independence of
illuminants and surfaces, Bayes’ rule is used to decide for the illuminant e according
to a loss function gB(ê , e ′) [Brai 97, Rose 03].
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Let the probability of coocurrence of illuminants and surface reflectances be
known. The illuminant e that minimizes the average loss is

e = argmin
e ′

∑
e ′

gB(ê , e ′)P (e ′|I ) , (4.30)

where I is the observed image, and the loss function gB is the Euclidean distance
between ê and e ′. Using Bayes’ rule, set

P (e ′|I ) =
P (I |e ′)P (e ′)

P (I )
= kB P (I |e ′)P (e ′) , (4.31)

where P (I ) has a uniform prior density and kB is a constant over the variables of
interest.

Rosenberg et al. [Rose 03] proposed to model the likelihood P (I |e ′) using re-
flectances. The illuminant prior P (e ′) can be estimated from training data, or as-
sumed to be equally distributed.

4.4.1.2 From Uniform to Non-Uniform Illumination

We segment the image in a set of superpixels, i. e., small image sub-regions such
that all pixels in a single superpixel satisfy the same property, in our case color
value. A collection of color constancy algorithms is then applied on each superpixel
independently. The per-superpixel output of the algorithms is fused afterwards. For
the superpixel segmentation, we used the algorithm by Veksler et al. [Veks 10, Boyk 01,
Kolm04, Boyk 04], though other segmentation methods can also be employed. It
segments the image into non-overlapping, compact superpixels based on their RGB
values (see, for example, Fig. 4.15).

(a) (b)

Figure 4.15: Example superpixel segmentation on an image from the Gehler database
with the method by Veksler et al.. Left: original image, right: the segmentation
typically preserves object boundaries.

The underlying assumption is, that the illumination is approximately locally con-
stant on a single superpixel. We then apply state-of-the-art color constancy algo-
rithms on a per-superpixel basis. The superpixel segmentation can address, without
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any fine-tuning, a large range of multiple scenarios. Since the superpixels follow ob-
ject boundaries, our method can handle object-specific illuminants as in Fig. 4.14a.
Because superpixels are small, a large object that is illuminated differently at dis-
tinct locations (like the church floor in Fig. 4.14b) is subdivided and its subregions
are separately processed.

However, when applying the algorithms locally, a trade-off between spatial resolu-
tion and color constancy performance has to be made. For instance, gamut mapping
and Bayesian color constancy draw their accuracy from extensive statistics over the
range of colors in the image. A superpixel offers only a limited selection of the ob-
servable colors. Hence, a performance drop for statistics-based methods is expected.
Equivalently, zero-order gray world is clearly affected from the fact that superpixels
typically contain pixels of similar colors. In order to partially alleviate these prob-
lems, we constrained the possible illuminants to the convex set of illuminants in our
training data.
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Figure 4.16: Error rates on rectangular subregions of different sizes.

As part of our analysis, we evaluated how the size of local subregions can affect
the performance of color constancy algorithms. We selected 80 images from the re-
processed Gehler database [Gehl 08, Shi 11] with approximately uniform illumination.
We excluded the parts of the image containing the Macbeth chart. Rectangular
regions of different sizes were selected, and Bayesian color constancy and several
instances of the generalized Gray World and Gamut Mapping were applied on it.
We use the median angular error on these regions (see Eqn. 4.10 on page 62) as a
performance measure. As shown in Fig. 4.16, blocks of size less than 100× 100 pixels
typically exhibit increased error rates. One notable exception is the two-dimensional
Gamut Mapping. Here, the fine-tuned set of possible illuminants dominated the
overall estimation result, leading to a very low error rate.
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4.4.1.3 Fusion of Multiple Illuminants

In order to improve the illumination estimation on small regions, we fused the outputs
of different algorithms based on their error statistics. We evaluated different fusion
approaches. As a straightforward baseline method, we computed the average of
all combined estimates. Besides this, we used two approaches based on machine
learning regression. First, we used Gradient tree boosting as a classical machine
learning algorithm to combine multiple weak predictors to a single strong one. As an
alternative, we used Random forest regression. It consists of a set of tree predictors,
which are trained on randomly chosen, different training sets. The output is computed
as the average response over all trees in the forest.

The implementations of both machine learning algorithms were taken from the
openCV library [Open 12]. For Gradient tree boosting, we used a squared loss function,
200 learning iterations and a maximum depth of 20. The Random forest regression
was trained with a maximum depth of 50 with at most 100 trees. Note that, in
difference to prior work, we did not use additional features to guide the fusion process.
Instead, only the estimates (plus for the training set the ground truth, of course) were
available for computing the regression. Thus, this approach can be seen as a “brute
force” approach to localized illuminant estimation. Its outcome should serve as a
cue whether we can use variants of these established algorithms also for illumination
estimation on non-uniformly illuminated scenes.

4.4.1.4 Evaluation

In our evaluation, we used as a performance measure the angular error εang as stated in
Eqn. 4.10 on page 62. The results over multiple estimates are most often aggregated
by computing the median of the errors. Additionally, we computed the mean, root
mean square error and the maximum error for every estimator.

For the evaluation we used leave-one-out cross validation. The base estimators
for the fusion schemes have been trained on the database by Gehler et al., using the
reprocessed ground truth by Shi and Funt [Shi 11]. Accordingly, the fusion algorithms
have also been trained on this database. Thus, our own captured testing data was
for the algorithms completely unknown.

Evaluation on Uniform Illumination First, we validated our implementations
on the reprocessed database by Gehler et al. and Shi and Funt [Gehl 08, Shi 11].
To our knowledge, this is the largest real-world dataset which is available as raw
data. The reflection target has been masked out. The results show the overall
performance of our implementations of individual algorithms — as there are always
implementational ambiguities. They also serve as a basis for comparison to the
subsequent evaluation on images containing non-uniform illumination. Even in the
Gehler database, there are images taken under multiple illuminants, even though a
single illuminant is provided as ground truth. This is a source of error which is more
prominent in the indoor scenes. Thus, we subdivided the images in outdoor and
indoor images (see Tab. 4.3 and Tab. 4.4).

“Do nothing” assumes a white illuminant, and “Average illuminant” estimates
always the average of all the training illuminants. For the generalized Gray World
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Algorithm Angular error in ◦
RMS Mean Median Max

Do nothing 13.6 13.5 13.6 21.2
Average illuminant 3.0 2.3 1.9 18.7
White patch Retinex 10.5 8.4 6.6 37.3
Gray World 7.6 6.4 5.3 25.2
1st order Gray Edge 5.6 4.7 3.8 24.3
2nd order Gray Edge 5.3 4.2 3.2 24.3
Best Gray World / Edge 5.3 4.2 3.2 24.3
Gamut Mapping (max) 8.4 6.6 5.2 31.6
Gamut Mapping (mean) 5.0 4.6 4.5 17.4
Bayesian Color Constancy 4.1 3.2 2.5 19.5
Average estimate 6.1 4.9 3.6 21.1
Gradient tree boosting 3.5 2.6 1.9 18.6
Random forest regression 3.6 2.7 2.2 18.7

Table 4.3: Root mean square, mean, median, and maximum errors for outdoor images
from the reprocessed Gehler et al. database.

we used the following settings: We varied the Minkowski norm with 1 ≤ p ≤ 10,
0 ≤ σ ≤ 4 in steps of 1. We explicitly report only the results for “White patch
Retinex” (n = 0, p → ∞, σ = 0), “Gray World” (n = 0, p = 1, σ = 0), “1st order
Gray Edge” (n = 1, p = 1, σ = 1), “2nd order Gray Edge” (n = 2, p = 1, σ = 1), and
the best performing generalized Gray World algorithm based on the median angular
error. For Gamut Mapping, “Gamut Mapping (max)” denotes 3D Gamut Mapping
that chooses the illuminant based on the maximum trace. “Gamut Mapping (mean)”
denotes 2D Gamut Mapping with the mean selection strategy. Only the 2D Gamut
Mapping uses illuminant constraints. “Bayesian color constancy” denotes Bayesian
illumination estimation using the Euclidean distance as loss function. For the fusion
of the estimates, “Average estimate” denotes the mean of the outputs of the fused
estimators, “Gradient tree boosting” and “Random forest regression” denote the two
machine learning-based regression approaches.

From Tab. 4.3, we observe that the error of choosing the mean illuminant is very
small for outdoor images. Thus, the variability of illuminants is small for the outdoor
images. The 2D Gamut Mapping variants benefit the most from that fact. The best
performing generalized Gray World algorithm for outdoor images was n = 2, p = 1,
σ = 1. Using regression and a collection of estimators, we were able to obtain results
that are better than the best performing single algorithm. For the training and testing
itself, we used k-fold cross-validation. Interestingly, the average illuminant from the
ground truth performs still slightly better with respect to the mean and RMS error,
which suggests that the variability of illuminants is not very high in this dataset.
For indoor images (see Tab. 4.4), the best performing Gray World method was Gray
Edge with n = 1, p = 1, σ = 1. Here, the variation of illuminants is significantly
higher, as can be seen from the higher error of the “Average illuminant”. Note that
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among the fusion schemes, Random forest regression performs best and improves the
final error for approximately 0.9◦, compared to the single estimators.

Algorithm Angular error in ◦
RMS Mean Median Max

Do nothing 14.4 13.8 13.4 27.4
Average illuminant 8.1 7.0 6.5 22.8
White patch Retinex 12.6 10.9 10.7 48.1
Gray World 7.7 6.6 6.3 24.8
1st order Gray Edge 5.3 4.7 4.3 15.0
2nd order Gray Edge 6.4 5.6 4.9 17.3
Best Gray World / Edge 5.3 4.7 4.3 15.0
Gamut Mapping (max) 10.9 9.5 8.9 27.4
Gamut Mapping (mean) 8.2 7.1 6.7 20.6
Bayesian Color Constancy 7.0 5.9 5.4 20.0
Average estimate 8.2 7.0 6.5 29.4
Gradient tree boosting 5.3 4.5 3.9 15.7
Random forest regression 4.7 3.9 3.4 16.2

Table 4.4: Root mean square, mean, median, and maximum errors for indoor images
from the reprocessed Gehler et al. database.

Evaluation on Non-Uniform Illumination The 36 multi-illuminant images have
been segmented in superpixels. The segmentation was transferred to the ground truth
images, and the per-segment ground truth was determined by averaging the ground
truth over the superpixels. This averaging introduces inaccuracies on an illumination
boundary. However, we considered it reasonable, because the algorithms produce
illuminant estimates per-superpixel, and as such this is the level of detail in which
we require ground truth.

An example segmentation and estimation is shown in Fig. 4.17. The segmentation
parameters were chosen, so that an image was subdivided into approximately 30
superpixels, with the individual superpixel size varying between approximately 10, 000
and 50, 000 pixels.

We trained the illuminant estimators on the indoor images from the reprocessed
Gehler database. The results are shown in Tab. 4.5. The best gray world configura-
tion was n = 0, p → ∞, σ = 1. Note that the individual errors on each superpixel
are largely increased, and range from a median of about 4.6 degrees to 13.7 degrees.
This has been expected. The superpixel segmentation aims to provide areas of ap-
proximately the same color, which is theoretically poor input for almost all applied
estimators. For instance, Gamut Mapping expects colorful images, while gray world
expects balanced colors. Picking a superpixel with mainly only one color under-
mines such algorithms. However, this effect is apparently limited. For instance, in
the present case, the 1st and 2nd order gray world algorithms perform considerably
worse than the statistical methods.
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(a) (b)

(c) (d)

Figure 4.17: Example segmentation, ground truth and illuminant estimation (colors
are scaled for the purpose of printing) (a) Original image (b) ground truth (c) Result
of gray world (d) Result of 2D Gamut Mapping

In this scenario, we performed all necessary training steps on the Gehler indoor
database. Thus, for Gamut Mapping and Bayesian Color Constancy, as well as the
fusion algorithms, the tested database was unknown beforehand. Similarly, also the
“Average Illuminant” refers to the average of the ground truth of the database by
Gehler et al.. In this experiment, regression by boosting did not improve the results.
However, regression based on Random forests could lower the median error to 4.1
degrees. The improved estimates yield an error level that again clearly improves over
the single illuminant estimates. This is a surprising result, as the underlying estimates
by themselves are comparably weak, and no additional image features are used for
guidance of the fusion process. As a consequence, we conclude that to some extent,
color constancy under non-uniform illumination can be addressed by ensembles of
locally applied single-illuminant estimators.

4.4.1.5 Discussion

We evaluated single illuminant estimation algorithms and fused versions of these
algorithms in three scenarios. The two cases on the database by Gehler et al. can be
used as a baseline reference for the performance of our implementation. Among these,
the indoor pictures exhibit a greater variability. Thus, when evaluating on the newly
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Algorithm Angular error in ◦
RMS Mean Median Max

Do nothing 11.7 10.4 10.0 21.6
Average illuminant 8.3 7.7 7.8 15.4
White patch Retinex 7.0 5.8 5.1 21.6
Gray World 5.7 5.1 5.0 14.4
1st order Gray Edge 14.9 14.2 13.7 29.0
2nd order Gray Edge 13.4 12.8 12.6 27.3
Best Gray World / Edge 6.3 5.4 4.6 21.6
Gamut Mapping (max) 7.2 5.9 5.2 21.3
Gamut Mapping (mean) 7.1 6.4 6.3 14.6
Bayesian Color Constancy 8.1 6.5 4.8 20.7
Average estimate 8.4 7.8 7.7 16.2
Gradient tree boosting 6.8 6.2 6.0 17.5
Random forest regression 5.0 4.4 4.1 12.9

Table 4.5: Root mean square, mean, median, and maximum errors non-uniform
illumination estimation on superpixels.

captured data, we trained our algorithms on the Gehler indoor images. As we only
captured 4 scenes for this experiment, we did not attempt to perform cross-validation
on the limited data. In general, machine learning algorithms have difficulties when
training on one database and evaluating on another. During our experiments, we also
noted this behavior. Nevertheless, results show that we managed to avoid overfitting
to some extend. The methods generalize sufficiently, such that their good performance
can be confirmed on the unknown data.

We consider several aspects of the evaluation section worth to discuss in greater de-
tail. At first, it is counter-intuitive that the statistical methods, i. e. Gamut Mapping
and Bayesian Color Constancy, yield at all useful results on the superpixel estima-
tion. Indeed, we observed that a drop color variation yields to several problems with
the statistical algorithms. However, note that in the present case, the superpixels are
still relatively large with respect to the level of detail in the image. As a consequence,
at least two surfaces and some shading artifacts are typically contained within one
superpixel.

Another particularity of this approach is the fact that no additional image features
are used to support the fusion of the estimates. Thus, the fusion methods can be seen
as a way of integrating brute force results on the multi-illuminant problem. Thus, the
results suggest – although this should be confirmed in more extensive experiments
– that the error behavior of existing algorithms contains useful patterns to estimate
the true illuminant.

As a consequence, we see in these results two main points. First, evaluating a large
number of existing algorithms for every superpixel in the image dramatically increases
the computational cost. Additionally, methods like 2D-Gamut Mapping can become
slow if the observed Gamut is very small. More efficient algorithms are necessary
for a more practical solution to the multi-illuminant problem. At the same time, we



92 Chapter 4. Illumination Color Estimation

are surprised how well the lack of color information can be compensated by adding
more estimators. Looking at the error rates, we eventually reached a median error
of 4.1◦ on non-uniform illumination, which is even better than the best performing
estimator on the single-illuminant indoor dataset by Gehler et al..

4.4.2 Physics-based Multi-Illuminant Estimation and Local-
ization

Although the results on off-the-shelf single-illuminant estimators are encouraging,
one can assume that tailored algorithms might be better suited for multi-illuminant
estimation. One particular drawback of most methods in the previous section is their
dependence on the training data. One can expect that the performance of these
methods considerably drops when applied on arbitrary images in the web. Addition-
ally, the localization problem of multiple illuminants (see page 82) is not directly
addressed, rather avoided by directly classifying each superpixel on its own.

Thus, we investigated and extended a physics-based method to perform rough
illuminant segmentation on real-world images without prior training. More precisely,
we used the method by Tan et al. [Tan 04], and propose an extension to it that relaxes
the requirement of clean, segmented specularities. We call the core of this method
“Illuminant Estimation by Voting”. A segmentation on local illuminant estimates
provides a first step towards a solution of the localization problem.

4.4.2.1 Inverse-intensity chromaticity (IIC) space

Most surfaces exhibit a mixture of diffuse and specular reflectance. Thus, we adopt
the dichromatic reflection model and the Neutral Interface Assumption, as presented
in Eqn. 4.6 on page 61. Assuming sharpened sensors and a linear camera, one can
rewrite Eqn. 4.6 at pixel x in a simplified form as a sum of diffuse and specular
reflectance,

p(x ) = md(x )sd(x ) +ms(x )ss , (4.32)
where sd(x ) = (sdR(x ), sdG(x ), sdB(x ))T and ss = (ssR, s

s
G, s

s
B)T denote the per-channel

responses of specular and diffuse reflectance. Here, analogously to Eqn. 4.6, the
specular component ss does not depend on x . Thus, we are currently assuming one
single illuminant, which will be relaxed later. We operate on chromaticities χc(p) of a
pixel color p where c ∈ {R,G,B} denotes the color channel of the chromaticity. For
summations over the color channels, we define the index i ∈ {R,G,B}. In a similar
manner, one can define the diffuse chromaticity ζc(x ) at pixel x and the specular
chromaticity γc in channel c as

ζc(x ) =
sdc(x )∑
i s
d
i (x )

, (4.33)

γc =
ssc∑
i s
s
i

. (4.34)

In terms of chromaticities, the dichromatic reflectance model in Eqn. 4.6 on page 61
can then be rewritten as

pc(x ) = wd(x )ζc(x ) + ws(x )γc , (4.35)
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where

wd(x ) = md(x )
∑
i

sdi (x ) , (4.36)

ws(x ) = ms(x )
∑
i

ssi . (4.37)

In this formulation, wd and ws act as geometry- and brightness-dependent weighting
factors.

A convenient color space for analyzing the chromaticity relationship between
purely specular, purely diffuse and mixtures of specular and diffuse reflection is the
inverse-intensity chromaticity space introduced by Tan et al. [Tan 04]. According
to that work, by dividing Eqn. 4.35 by

∑
i pi(x ), the chromaticity at x , χc(p(x ))

becomes:
χc(p(x )) =

wd(x )ζc(x ) + ws(x )γc
wd(x )

∑
i ζi(x ) + ws(x )

∑
i γi

. (4.38)

Solving Eqn. 4.38 for ws(x ) and inserting this back in Eqn. 4.35 one gets:

pc(x ) = wd(x )(ζc(x )− γc)
(

χc(p(x ))

χc(p(x ))− γc

)
(4.39)

which leads to the definition of sc(x ) as:

sc(x ) = wd(x )(ζc(x )− γc) . (4.40)

Thus, a linear relationship between the image chromaticity χc(p(x )) and the inverse-
intensity 1/

∑
i pi(x ) can be established,

χc(p(x )) = sc(x )
1∑

i pi(x )
+ γc . (4.41)

In this representation, sc(x ) can be seen as the slope of a line with intercept
γc. The domain of the line is determined by 1/

∑
i pc(x ), the range is given by

0 ≤ χc(p(x )) ≤ 1. The space spanned by 1/
∑

i pi(x ) and χc(p(x )) is called inverse-
intensity chromaticity space [Tan 04]. The chromaticity value where this line inter-
sects the vertical axis gives the illuminant chroma estimate for channel c.

The inverse-intensity diagram shown in Fig. 4.18a is an idealized graphical rep-
resentation of the distribution of pixels in inverse-intensity chromaticity space. The
horizontal axis corresponds to the inverse-intensity 1/

∑
i pc(x ), and the vertical axis

χc(p(x )), the illuminant chromaticity. This figure visualizes the ideal distribution
of pixels of a monochrome object in IIC space. The diffuse pixels lie on a single
horizontal line, while pixels that exhibit specular reflection align according to their
specific sc(x )-values in lines between the illuminant color on the vertical axis and
the diffuse line. In the context of the more widely used RGB color histograms, the
horizontal line of the IIC space corresponds to the diffuse line which in RGB space
emanates from the origin. Similarly, in RGB space the specular pixels (which in IIC
space emanate from the illuminant chroma) form lines whose direction is the color of
the incident light.
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Figure 4.18: Left: Idealized pixel distribution of a monochrome object in inverse-
intensity chromaticity space. Middle: An image with few distinct albedoes. Right:
the distribution of pixels in IIC space for the blue chromaticity. Highly specular
pixels are shown in red.

Note that, though the formulation is mathematically elegant, it is, in general, not
possible to obtain sc(x ) directly in order to estimate the illuminant color. Typically,
different values of sc(x ) can occur within a single specular region. According to
Eqn. 4.40, distinct sc(x )-values can result from variations in the underlying geometry,
wd. However, specular pixels with the same underlying albedo and the same geometric
factors wd(x ) and ws(x ) have the same slope in the IIC space. For a complete
discussion, see [Tan 04].

4.4.2.2 IIC distributions of real-world images

Though an explicit calculation of the illuminant chromaticity γc is in most cases not
feasible, one can exploit the distribution of pixels in inverse-intensity chromaticity
space in order to detect the χc(p(x )) intercept.

Tan et al. [Tan 04] developed a methodology which analyzes the location of very
highly specular pixels in IIC space. They estimated the illuminant color by using a
Hough transform of the specular pixels with parameters sc(x ) and γc. They demon-
strated that for images with few distinct albedo values it is feasible to exploit the
spatial distribution of specular pixels and obtain a reliable estimate of the illumi-
nant color. A sample distribution for an image with few distinct albedos is shown in
Fig. 4.18b and Fig. 4.18c.

However as scenes become more complex, the distribution of pixels in IIC space
does not form clearly separable clusters (see Fig. 4.19). Though one could try to
identify specularities and focus the analysis on the specular pixels, the results are not
reliable enough for precise illuminant color estimation [Finl 01b, Ries 09a].

Rather, we propose using pixels that exhibit a mixture of specular and diffuse
reflectance. In both IIC space and RGB space, each specular cluster includes all the
pixels that are not purely diffuse. The larger the specular component, the farther the
pixels will lie from the diffuse line. In particular in IIC space the closer the pixels
will lie on the χc(p(x ))-intercept. However, as can be seen in Fig. 4.18c, the highly
specular pixels comprise only a small part of a specular cluster. Under the assumption
of a single underlying albedo, the intercept γc can still be extracted from the bisector
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(a) (b)

Figure 4.19: An arbitrary image and its distribution of pixels in IIC space (blue
chromaticity).

(along the axis of elongation) of the entire specular cluster. Thus, in obtaining an
estimate of the illuminant, one can exclude all highly specular pixels and use all the
remaining pixels with a mixture of diffuse and specular reflection. This offers certain
distinct advantages:

1. It uses a larger number of pixels making the estimate less sensitive to outliers.

2. It excludes pixels whose values are at the upper limit of the sensor’s dynamic
range and are thus unreliable (e. g., due to color clipping, blooming) [Gijs 09,
Klin 88, Finl 01b].

3. It typically examines pixels whose values are neither to large nor too small.
Hence, it uses that part of information in an image, where the typical commer-
cial camera is designed to give the best fidelity.

Fig. 4.20a shows an image downloaded from the web and the domains of the different
families of physics-based color constancy algorithms. Three regions representative
of highly specular (in red), purely diffuse (in blue) and a mixture of specular and
diffuse (green) are hand-selected. The corresponding clusters in IIC space are shown
in Fig. 4.20b.

Furthermore, to increase the robustness of the illuminant color estimate we pro-
pose the collection of multiple independent local estimates which can be combined
in deriving a more reliable global estimate. Local estimates can be obtained by per-
forming the IIC distribution analysis in small image regions as shown in Fig. 4.20c
and Fig. 4.20d. The use of small image regions has the additional advantage that
it increases the probability that the pixels within a patch have the same underlying
albedo. The subsequent section describes in greater detail the process of collecting
appropriate local samples.



96 Chapter 4. Illumination Color Estimation

(a) (b) (c)

 0

 0.1

 0.2

 0.3

 0.4

 0  0.5  1  1.5  2

B
lu

e
 C

h
ro

m
a

Inverse intensity

(d)

Figure 4.20: Left: Illustration of the domain of the proposed method in comparison
with other existing physics-based color constancy techniques. Right: Hand selected
image regions (using a close-up of Fig. 4.19a) and their corresponding distribution in
IIC space (blue chromaticity).

4.4.2.3 Sample selection

One of the key ideas of the proposed methodology is the derivation of a robust global
illuminant estimate e through the use of multiple local estimates iẽ . This global
estimate is obtained from n independent and identically distributed (iid) samples.

The overall goal is to minimize the angular estimation error εang (see Eqn. 4.10
on page 62) between the true illuminant e and the final estimate ẽ .

Our approach is to sample over the entire image. This leads to a set S = {iẽ |i =
1 . . . n} of independent and identically distributed (iid) estimates. This set consists
of a subset of “positive” samples P , whose angular distance to the true illuminant
e is small, and a subset of “negative” samples N with a large distance of the true
illuminant. Thus,

S = P ∪N . (4.42)
Then, the elements of P form a unimodal distribution around the true illuminant

e , such that

lim
|P|→∞

argmax hist(P) = e , (4.43)

where hist(P) denotes the histogram of the illuminant estimates in P .
The elements of N can be arbitrarily distributed. Our goal is to reduce the

influence of N while preserving P , so that finally

lim
|S|→∞

argmax Hist(S) = e . (4.44)

In order to increase the probability that an estimate iẽ obtained from a local
region will be a good estimate (i.e. iẽ ∈ P), the image region where this estimate is
computed should satisfy the following properties:

• uniform albedo. Both the mathematical analysis in Section 4.4.2.1 and the study
of specular clusters in Section 4.4.2.2 assume uniform albedo. Thus, any local
region used in estimating the illuminant color should satisfy this assumption.
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• elongated, non-horizontal clusters in IIC space. Our goal is to identify non-
diffuse clusters. Since in IIC space diffuse clusters are horizontal, we wish
to exclude image regions that generate such IIC distributions. Furthermore,
in order to more accurately estimate the non-diffuse cluster bisector (see Sec-
tion 4.4.2.2), we require that the corresponding cluster is clearly elongated.

The iid sampling and screening of samples in our implementation is performed
as follows. We first segment the image in superpixels of approximately uniform
chromaticity values. A superpixel is a locally connected region of pixels that share
low-level properties, like in our case similar chromaticity values. We use the graph-
based segmentation by Felzenszwalb and Huttenlocher [Felz 04], but any segmentation
method that decomposes an image into regions with approximately the same albedo
could also be employed.

We sample with replacement small regions within superpixels with probability
proportional to the size of the superpixel. Any iid sampling which results in small
regions of approximately uniform albedo could be employed.

In practice, we sample small rectangles over the entire image and single pixel
positions x within these rectangles. The region used in computing a local estimate
iẽ is composed of all the pixels which lie in the intersection of the rectangle and the
superpixel Fi such that x ∈ Fi.

The next step is to examine the shape of the distribution of pixels in the candidate
region. One way of doing this is via PCA. Let RIIC be the set of pixels under
investigation in IIC space, λ1 its largest eigenvalue, λ2 its second largest eigenvalue.
Then the eccentricity ecc(RIIC) is

ecc(RIIC) =

√
1− λ2

λ1

. (4.45)

We consider only sets RIIC that exhibit a minimum eccentricity (in our experi-
ments typically 0.2). In order to avoid purely diffuse pixels we compute also the slope
of the eigenvector belonging to λ1. A set RIIC must also satisfy a minimum slope
(0.003, in our experiments). See Section 4.4.2.5 for further discussion on the region
size. The actual illuminant estimate is computed from the χc(p(x ))-intercept of this
eigenvector, as an approximation for γc in Eqn. 4.41.

Please note that like [Tan 04] we exclude pixels with duplicate values in our sample
validation analysis, since our focus is on the spatial distribution of pixels in IIC space.
We also exclude any pixels that are very close to the limits of the dynamic range of
the camera (i.e. saturated and very dim pixels).

4.4.2.4 Multiple Illuminants

The algorithm that has been presented so far can directly be used to obtain multiple
illuminant estimates. Once local illuminant estimates are obtained per superpixel,
the local information can be combined as follows for the final computation of the
number and color of the dominant illuminants in the scene.

1. Group local estimates into regions with consistent/similar illuminant color.

2. Obtain a new estimate per illuminant region.
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An example of this process is shown in Fig. 4.21. The details of each of the afore-
mentioned steps are provided in the following subsections.

(a) (b) (c)

Figure 4.21: (a) Original image. (b) Local illuminant estimation. (c) Segmented
regions, colored according to the illuminant estimate.

We extended our algorithm as described above to handle multiple illuminants by
examining the estimates per superpixel more closely. Note two assumptions. First,
multiple illuminants are often clearly visible in the superpixel map, see Fig. 4.21b for
an example. Second, outlier estimates occur typically isolated, both spatially and in
the distribution of estimated colors. In order to extract the regions of the dominant
regions, we do the following steps.

1. Create an illuminant map by recoloring every superpixel by its local illuminant
estimate.

2. Downscale the map, such that the larger dimension of this image is only 140
pixels.

3. Group regions of similar estimates with the Quick Shift algorithm [Veda 08].

The downscaling suppresses a large amount of relatively small noisy regions. Its
purpose is to speed up the Quick Shift algorithm. Quick Shift is a method for seeking
modes in densities, which is why we preferred it over [Felz 04] for grouping similar
estimates. In our case, we obtained the best results by applying it on the joint spatial
and chromaticity domain, using red and blue chromaticities. Quick Shift creates trees
of data points and distances between these nodes, such that similar regions can be
segmented by separating subtrees from this graph. By discarding smaller segments,
we typically obtain three to six major regions in the downscaled image.

For refining the estimation, we use the estimated illuminant regions for iid sam-
pling instead of the whole image. The resulting per-region illuminant estimates can
further be merged. In this work, we merged regions that were smaller than a prede-
fined threshold of 10% of the image region.
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Scene Median εang

Gamut Mapping 3.1◦

Gray World 8.8◦

White Patch Retinex 5.0◦

Color-by-Correlation 8.6◦

Physics-based diff+spec 4.4◦

Table 4.6: Algorithm performance (comparison numbers by [Gijs 10b]) on benchmark
laboratory images by Barnard et al. [Barn 02b].

Scene Median εang

Regular gamut+offset-model 5.7◦

Gray World 7.0◦

White Patch Retinex 6.7◦

Color-by-Correlation 6.5◦

1st-order Gray Edge 5.2◦ (∗)
2nd-order Gray Edge 5.4◦ (∗)
Physics-based diff+spec 4.4◦

Table 4.7: Algorithm performance on benchmark real-world images, using the images
by Ciurea and Funt [Ciur 03]. The numbers marked with an (∗) are computed over a
subset of the dataset.

4.4.2.5 Experiments

For validating the performance of the method, we conducted quantitative evalua-
tion on the single-illuminant datasets by Barnard et al. [Barn 02b] and Ciurea and
Funt [Ciur 03] (see Sec. 4.2 on page 63). Instead of estimating the illuminant per
superpixel, a global consensus is formed over the whole image. The error metric used
in the evaluation of the two benchmark datasets is the angular error dAngular, as de-
fined in Eqn. 4.10 on page 62. As we randomly draw subregions per superpixel, we
obtained 10 estimates and computed the mean error per image.

We also present qualitative results for single- and multi-illuminant estimation
on images downloaded from websites like flickr [Yaho 12]. In the next section, this
methodology is embedded in a more complex algorithm, and quantitatively evaluated
on the proposed multi-illuminant dataset from Sec. 4.3.2.

Parameter selection For the segmentation of the chromaticity images by Felzen-
szwalb and Huttenlocher [Felz 04], the parameters were fixed by visual inspection to
σ = 0.3, k = 200, and minimum segment size m = 15. The sampling rectangle size
was set to 7 × 31 pixels. Our tests, however, indicated that the lab database was
more challenging for our methodology. Hence, for the lab images we tried different
rectangles and concluded that a larger size of 30×55 pixels gave the best performance.

Benchmark laboratory images Table 4.6 summarizes the performance of the
presented methodology in comparison to state-of-the-art algorithms on the dataset
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(a) Town (b) Woman (c) Castle (d) Sculpture

(e) Pool (f) People (g) Cows (h) Chapel

Figure 4.22: Subset of the selected real-world images, including two challenging cases
in Fig. 4.22h and Fig. 4.22g.

by Barnard et al. [Barn 02b]. Our physics-based technique is only outperformed by
the Gamut Mapping, which, however, is dependent on a training stage.

Benchmark real-world images The database of Ciurea and Funt [Ciur 03] in-
cludes images that are more representative of the pictures taken by arbitrary users.
As can be seen in Table 4.7, the proposed physics-based method achieves a consider-
able improvement over (at the time of development) state-of-the-art methods. The
referenced angular errors marked with an asterisk (∗) are taken from [Lu 09] and
are evaluated only on a subset of 711 images. The remaining measurements are ex-
tracted from [Gijs 10a] and are, like our evaluation, computed on the entire set of
11,000 images.

Out of the 15 provided scenes, the best result was obtained for “FalseCreek1”
(εang = 1.57◦), while “CIC2002_3” resulted in the worst performance (εang = 11.46◦).
The “CIC2002_3” is a sequence of indoor images, where there is high probability
that the single illuminant assumption is violated. This observation is consistent with
other indoor sequences of this dataset, as well as with arbitrary images we tested
from the web (see Section 4.4.2.5).

Approximately uniformly illuminated real-world images Since our algo-
rithm was designed for illuminant estimation of images typically found on the web, we
also performed a qualitative evaluation on a set of almost 250 images we downloaded
from various websites. The database contains images both of indoor and outdoor
scenes (see Fig. 4.22). It includes a variety of different subjects, such as nature,
people, animals and architecture. The outdoor images were acquired at different
daytimes and under various weather conditions.
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Scene γr γg γb

Town 0.37± 0.02 0.34± 0.01 0.29± 0.02
Woman 0.33± 0.01 0.34± 0.01 0.33± 0.00
Castle 0.31± 0.02 0.33± 0.01 0.36± 0.02
Sculpture 0.31± 0.07 0.36± 0.05 0.33± 0.08
Pool 0.42± 0.04 0.37± 0.02 0.21± 0.02
People 0.48± 0.06 0.38± 0.06 0.14± 0.04
Cows 0.34± 0.01 0.32± 0.00 0.34± 0.01
Chapel 0.28± 0.02 0.30± 0.01 0.42± 0.03

Table 4.8: Stability of the algorithm performance on arbitrary real-world images. For
the images of Fig. 4.22, the mean results and standard deviations of ten estimation
runs are listed.

To illustrate the performance of the physics-based estimation method on different
lighting and scene contents, we present estimates we obtained on a subset of represen-
tative images. The example images are shown in Fig. 4.22 and contain three outdoor
scenes (upper row) and three indoor scenes (lower row), all captured under different
illumination conditions. Fig. 4.22h and Fig. 4.22g show two challenging cases. Ta-
ble 4.8 lists the corresponding estimates. For each scene, the mean estimate of ten
randomized runs is given in combination with the standard deviation.

One can observe that the red component of the illuminant color in the outdoor
scenes decreases from left (“Town”, Fig. 4.22a) to right (“Castle”, Fig. 4.22c). At
the same time, the blue component is increasing. This tendency is captured quite
well in the estimation results (Table 4.8). Furthermore, a comparison with the CIE
standard illuminants leads to a reasonable interpretation of the estimates. The result
of “Town” (Fig. 4.22a) corresponds to CIE D50 (eD50 = (0.37, 0.34, 0.30)T), which is
the standard used for horizon light. The estimate of “Woman” (Fig. 4.22b) is almost
identical to CIE D65 ( eD65 = (0.33, 0.33, 0.33)T), which describes noon daylight. For
“Castle” (Fig. 4.22c) the result corresponds to CIE D75 (eD75 = (0.32, 0.33, 0.35)T),
which is used for no direct sunlight. The chromaticity values of the different CIE
standard illuminants are computed using the CIE 1931 2◦ standard observer in sRGB
color space. There is a further interesting remark regarding “Woman” (Fig. 4.22b):
in the estimates, the chromaticities of the three channels of the illumination color are
well balanced, although the surfaces in the scene are significantly dominated by blue
and red. This aspect indicates that the illumination estimation is not significantly
affected by the presence of pure diffuse patches.

The estimation results for the indoor scenes fit nicely to the chromaticities of
CIE A (eA = (0.48, 0.33, 0.19)T), which describes a tungsten light bulb. Furthermore,
the visual impression of increasing red chromaticity and decreasing blue chromaticity
from left (“Sculpture”, Fig. 4.22d) to right (“People”, Fig. 4.22f) is well captured in
the estimation results.

An important aspect of the evaluation on natural images is the stability of the
global estimate. The standard deviations of the results listed in Table 4.8 are very
small. A key component of the proposed methodology is the use of identically and
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(a) Dancer (b) Guide (c) Doors

Figure 4.23: Subset of the selected real-world images. The images are annotated with
the segment numbers.

independently distributed samples of non-diffuse image regions. This stability in the
results indicates that our technique for sample collection and verification is effec-
tive. For indoor scenes, the standard deviation is slightly increased. This observa-
tion is consistent with the quantitative evaluation on the database of Ciurea and
Funt [Ciur 03] (see Section 4.4.2.5).

The images in Fig. 4.22h and Fig. 4.22g, and their estimation results (Table 4.8)
show the limitations of the proposed method. In “Cows” (Figure 4.22g), the illuminant
estimation fails. The estimated illuminant is composed of almost the same proportion
of red, green and blue though it is apparent that the value of the red chromaticity
should slightly dominate. As the grass on the ground and the coat of the buffalo are
highly textured, it is difficult to find a sufficient quantity of patches which pass the
selection step. This drawback could be reduced by an appropriated preprocessing of
the images. Another limitation of the method is its applicability to non-dielectric
surfaces. As the estimation approach is based on the dichromatic reflectance model,
the illuminant estimation results for “Chapel” (Fig. 4.22h) seem unreasonable.

Multiple Illuminants Quantitative results of the first part of the method are pre-
sented within the more advanced framework for multi-illuminant estimation in the
next section. In this section, we present qualitative results on multi-illuminant seg-
mentation on images downloaded from websites like flickr. We collected about 30
mixed-illuminant scenes, and examined also the images used by Hsu et al. [Hsu 08].
The code for our method can be downloaded from the web13. The error metric used
in the evaluation of the two benchmark datasets is the angular error εang as stated
in Eqn. 4.10 on page 62. For the segmentation of the chromaticity images by Felzen-
szwalb and Huttenlocher [Felz 04], the parameters were fixed by visual inspection to
σ = 0.3, k = 200, and minimum segment size m = 15. The sampling rectangle size
was set to 7× 31 pixels.

The spatial location of the segments is denoted by their overlaid respective num-
bers in the images. In Fig. 4.23a, flash light illuminates the heads of the spectators,

13http://www5.cs.fau.de/
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Scene Segment 1 Segment 2

Dancer (0.327, 0.336, 0.337) (0.330, 0.334, 0.336)
Guide (0.312, 0.343, 0.345) (0.347, 0.336, 0.316)
Doors (0.309, 0.339, 0.352) (0.294, 0.337, 0.369)

Scene Segment 3 Segment 4
Dancer (0.415, 0.306, 0.279) (0.354, 0.319, 0.327)
Guide (0.343, 0.327, 0.330) (0.331, 0.334, 0.335)
Doors (0.379, 0.334, 0.287) -

Table 4.9: Per segment illuminant chromaticity estimates for the multi-illuminant
images.

while the remaining scene is mainly reddish illuminated. In Fig. 4.23b, the tourist
in the foreground is illuminated from behind by a blueish light source. The rest of
the scene contains mainly light from the lamps. Finally, Fig. 4.23c is taken from the
dataset by Hsu et al. [Hsu 08]. Table 4.9 shows the illuminant estimates per segment.
The tendency of the illuminant colors is well captured by the localized estimates.

4.4.3 CRF-based Multi-Illuminant Estimation

The method that was presented in the previous section suffers from several draw-
backs. First, only one dominant illuminant can be estimated per region, and spatial
context is limited to the segmentation of the estimates. A more elegant formulation
could estimate a set of scene illuminants, and a per-region contribution to each of
these. Likewise, the localization problem can also be addressed with respect to these
illuminant candidates. Finally, the lack of ground truth for arbitrary real-world scenes
under non-uniform illumination makes it difficult to judge the real performance.

The algorithm that is proposed in this section addresses these concerns. We
consider the estimation of multiple illuminants as an energy minimization problem
on local estimates. The proposed algorithm to solve this task jointly estimates the
colors of the illuminants and their spatial distribution. To quantify the performance
of the method, we used our multi-illuminant dataset that was proposed in Sec. 4.3.2.

4.4.3.1 Methodology

We propose to solve the multiple illuminant estimation problem by using a Condi-
tional Random Field (CRF) framework. The nodes in the graph represent patches,
the labels correspond to illuminant colors, and the edges connect neighboring patches.
In such a representation local illuminant estimation becomes equivalent to finding
the maximum a posteriori (MAP) labelling of the CRF. Such a framework facilitates
both the local computation of illuminant color, as well as the incorporation of spatial
information about the distribution of illuminants.

More specifically, a conditional random field can be viewed as an undirected graph-
ical model, globally conditioned on observations. Let G = (V , E) be a graph where
V = {1, 2, . . . , n} is the set of nodes representing the n patches and E is the set of
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edges connecting neighboring patches. We define a discrete random field X over the
graph G. Each node i ∈ V is associated with a random variable in X , which can take
on a value u i from the illuminant-color label set L = {l 1, l 2, . . . , lk}. At each node
i ∈ V we also have a local observation Fi, which is the set of (R,G,B) values of all
the pixels belonging to the corresponding patch together with their spatial locations.
The probability P (X = ŭ |F) of a particular labelling ŭ = {u1,u2, . . . ,un} condi-
tioned on the observations F of the entire image will be denoted as P (ŭ |F). Then
according to the Hammersley-Clifford theorem

P (ŭ |F) ∝ exp

(
−
∑
C∈CAll

ξC(ŭC|F)

)
, (4.46)

where ξC(ŭC|F) are potential functions defined over the observations F and the vari-
ables ŭC = {u i, i ∈ C} belonging to clique C. A clique C is a set of random variables
which are conditionally dependent on each other and CAll is the set of all cliques in G.
Finding the labelling ŭ∗ with the maximum a posteriori (MAP) probability is then
equal to

ŭ∗ = argmax
ŭ∈U

P (ŭ |F ) = argmin
ŭ∈U

E(ŭ |F) (4.47)

where U is the set of all possible labellings on X and E(ŭ |F) is the corresponding
Gibbs energy defined as

E(ŭ |F) =
∑
C∈CAll

ξC(ŭC|F) (4.48)

Hence, computing the MAP labelling is equal to finding the labelling which min-
imizes the energy E(x|F). In our case, this means that obtaining the MAP assign-
ment of illuminants to patches can be accomplished by finding that assignment which
minimizes the corresponding Gibbs energy. Considering only up to pairwise clique
potentials, the energy function becomes

E(ŭ |F) =
∑
i∈V

φ (u i|Fi) + wPW

∑
(i,j)∈E

ψ ((u i,u j)|(Fi,Fj)) (4.49)

where φ denotes the unary potential and ψ the pairwise potential. The unary po-
tentials φ penalize the discrepancy between the observations, i.e. the colors of the
pixels in a patch Fi, and the solution, i.e. the illuminant-color label assigned to the
patch. The pairwise potentials ψ provide a definition of smoothness by penalizing
changes in the labels of neighboring patches. Then the constant wPW > 0 controls
the balance between smoothness and data fit. In the next section we propose sev-
eral unary potentials which allow us to represent several well-known illumination
estimation algorithms as CRFs.

4.4.3.2 Unary Potentials

We show that by picking one particular unary potential we can write several exist-
ing color constancy methods as an error minimization problem. When we use the
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pairwise potential to enforce a single label for all patches, we obtain the same result
as with traditional single illuminant estimation methods. Reducing the influence of
the pairwise potential results in multi-illuminant estimates for the scene. To pre-
vent overfitting to the local data we propose also several adaptations to the unary
potentials.

Statistics-based Illuminant Color Estimates Illuminant estimation methods
are generally evaluated based on the angular error, which for two normalized illumi-
nants (typically the estimated illuminant ẽ and true illuminant e) is given by

ϕ(ẽ , e) = arccos((ẽ)Te). (4.50)

For obtaining illuminant estimates on local patches, we use the generalized Gray
World estimates by van de Weijer et al. [Weij 07a], as introduced in Eqn. 4.11 on
page 66. In this section, we adopt a slightly different, but equivalent notation. One
Gray World estimate in patch i is denoted as

iẽGW ≈ τGW

√√√√ ∑
p(x )∈Fi

∣∣∣∣∂nGW
σp(x )

∂xnGW

∣∣∣∣τGW

. (4.51)

In this formulation, the generalized Gray World algorithm is applied locally to a
patch Fi. As in Eqn. 4.11 on page 66, nGW denotes the order of differentiation, τGW

the Minkovski norm, and σ the standard deviation of a Gaussian smoothing kernel
prior to the computation.

We now define the statistics-based unary potential φs, which defines the cost for
patch i to take on illuminant u i, as

φs(u i|Fi) = wFit
wr
(
ϕ(u i,

iẽGW)
)
, (4.52)

where wFi is a scalar weight per patch, and twr denotes an error norm to the power of
wr. For example, choosing t(e) = e2 yields the least squares error.

Choosing as an error norm t(e) = 1− cos(e) and for wFia weight that is propor-
tional to the magnitude of the generalized Gray World estimate, we obtain

φs(u i|Fi) =

∥∥∥∥∥∥ τGW

√√√√ ∑
p(x )∈Fi

∣∣∣∣∂nGW
σp(x )

∂xnGW

∣∣∣∣τGW

∥∥∥∥∥∥
2

(
1− cos

(
ϕ
(
u i,

iẽGW
)))

. (4.53)

If we choose nGW = 1 and τGW = 1, then minimizing Eqn. 4.49 with this unary po-
tential results in the standard gray-edge algorithm by van de Weijer et al. [Weij 07a].

We proceed by proposing several adaptations to the unary potential to optimize it
for multi-illuminant estimation. If we increase the influence of the pairwise potential,
by choosing a large wPW in Eqn. 4.49, we can enforce the whole image to have the
same label, and therefore the same estimate for the illuminant. If we look at the
other extreme where we pick wPW = 0 every patch would take on the label of the
illuminant which is closest (in a angular error sense) to its local estimate. However,
the local estimates of the statistical color constancy algorithms are very noisy and in
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general this will lead to unsatisfying results. This can be countered by choosing an
intermediate wPW (by means of cross validation), that enforces multiple neighboring
patches to take on the same label, and thereby reducing the noise of the statistical
estimate. We will look at two adaptations to the unary potential which improve
robustness with respect to noisy statistical measurements.
Robust error norm: To reduce the influence of outliers on the energy, we found
the usage of a robust error norm indispensable. Throughout this algorithm we use
the following error norm

t (εang) = robustσ (εang) = 1− exp

(
−
ε2ang

2σ2

)
(4.54)

Its main effect is that outliers have less influence on the overall energy.
Uneven color balance: Statistical methods are known to be biased towards large
segments of the same color. To counter this we propose the following adaptation:

φs(u i|Fi) =


∥∥∥∥∥∥ τGW

√√√√ ∑
p(x )∈Fi

∣∣∣∣∂nGW
σp(x )

∂xnGW

∣∣∣∣τGW

∥∥∥∥∥∥
2


wDamp

robustσ (ϕ (ii,xi)) . (4.55)

The parameter wDamp allows to dampen the results of uneven color balance in the
image. Consider the standard gray-world assumption (τGW = 1 and nGW = 0). If we
then choose q = 0, the unary potential is equal to

φs (u i|Fi) =
(
1− cos

(
ϕ
(
u i,

iẽGW
))
,
)
, (4.56)

which is one of the more popular implementations of gray-world. Here, instead of
considering one value per pixel, one value for each patch is chosen. This was proposed
by Barnard et al. [Barn 02b] to counter the dominance of large uniformly colored
regions in images. In the results we consider q ∈

{
0, 1

2
, 1
}
.

Physics-based color constancy We also make use of physics-based estimates, as
presented in Sec. 4.4.2. Per patch i, we obtain an illuminant estimate iẽ IIC To find
regions with partial specularities, we used the specularity segmentation by Lehmann
and Palm [Lehm01]. It selects bright, achromatic pixels in the image, guided by two
thresholds τb and τs. In our implementation, we set τb = 0.2 and τs = 0.8.

A patch is considered specular if the sum of intensities of its specular pixels exceeds
a threshold τsp. In this case, we set wsp = 1, otherwise wsp = 0. We use this weight
in the physics-based unary potential:

φp (u i|Fi) = wsprobustσ(ϕ(u i,
iẽ IIC)) (4.57)

We use the same robust error norm as for statistical methods as given by Eqn. 4.54.

Combining Statistical and Physics based Illuminant Estimation The both
statistical and physics-based illuminant estimation can be incorporated in a CRF
framework using different unary potentials. An advantage of defining each method
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as an energy minimization problem is that there is a natural way for combining them
into a single color constancy method by defining the local potential as

φs (u i|Fi) = (1− wUW)φs (u i|Fi) + wUWφ
p (u i|Fi) . (4.58)

where wUW is weighting the importance of the physics-based unary potential versus
the statistical-based unary potential. Minimizing this energy will combine infor-
mation from statistical cues as well as specularities into the final local illuminant
estimate.

Constrained Illuminant Estimation Constraint illuminant estimation methods
have been popular because they allow to incorporate prior knowledge about the il-
luminants. Several methods have been proposed which constrain the illuminant set
to be on the Planckian locus [Finl 06]. Incorporating such constraints is straight-
forward in our framework. The constraints can be enforced on the illuminant label
set L. Here, we use a simple constraint were we exclude illuminants which are too
saturated, such that {

∀i|ϕ
(

l i,
1√
3

(1 1 1)T
)
< τSat

}
. (4.59)

As a second constraint on the illuminants, we use the fact that in the majority of
the multi-illuminant scenes only two illuminants are present. Given a pair of labels
l i and l j, the optimal labeling ŭ∗(i, j) for the observation F is determined with

ŭ∗(i, j) = argmin
ŭ∈Li,j

E (ŭ |F) , (4.60)

where Li,j is the set of all possible labellings on X restricting the illuminants to l i
and l j. The two illuminant constraint is enforced by finding those two illuminants
which minimize the energy function. Thus, the selected illuminants are computed
with

ŭ = argmin
(l i,lj)∈L2

(E(ŭ∗(i, j)|F)) (4.61)

Note that this also allows for single illuminant estimation in the case that i = j.

4.4.3.3 Pairwise Potential

The purpose of the pairwise potential functions, ψ ((u i,u j)|(Fi,Fj)) is to ensure,
when appropriate, the smooth transition of labels in neighboring vertices. Similar
to Boykov et al. [Boyk 98], we consider pairwise potentials that resemble a well. In
MRFs, especially as described in [Boyk 98], ψ(u i,u j) = u(1−δij), where u is the well
“depth” and the function (1− δij) controls the shape of the well. Here, u is defined as
a constant and is based on the unit impulse function, δ(i, j) = δ(u i − u j), to define
the well shape.

In a CRF (see also [Kohl 09]) the “depth” depends on the observations h(Fi,Fj)(1−
δ(i, j)). Thus, our pairwise potential function has the form

ψ ((u i,u j)|(Fi,Fj)) = h(Fi,Fj)(1− δ(i, j)) . (4.62)
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We also propose the use of a smoother well function which permits small deviations
in illuminant colors between neighboring patches. Thus, our well is defined as

(1− δ(i, j)) = (1− coswPWsh(ϕ(u i,u j))) , (4.63)

where wPWsh controls the sharpness of the impulse-like function.
If two neighboring labels are distinct, then there are two possibilities. It can be

that the two patches, though spatially close, are illuminated by distinct illuminants,
in which case, we should allow for a transition in labels and not significantly penalize
the difference in their values. It may, however, be the case that we assigned an
erroneous label and the two patches are illuminated by the same illuminant. The
depth function h(Fi,Fj) attempts to distinguish between these two cases.

In this work, we use the insight of Logvinenko et al. [Logv 05] that the shape
of an edge (curvature, fuzziness and closedness) conveys discriminatory information
about illuminant versus material edges. Influenced by this idea, we use the length
of the border between two adjacent patches as an indicator of whether the patches
should be sharing incident illumination, i. e.,

h(Fi,Fj) = length(boundary(Fi,Fj)) . (4.64)

Longer boundaries imply that the distinct color of the patches is due to differences in
material and, hence, the illuminant labels of the adjacent patches should be similar.

However, the proposed framework is general and allows the incorporation and/or
combination of multiple methods that can provide information on the discontinuity
of illuminants in the scene. For example, one could employ the Retinex [Land 77]
heuristic that illumination is expected to vary slowly, thus large changes in surface
reflectance are due to differences in material. A Retinex-inspired depth function could
then be h(Fi,Fj) = exp

(
−βR‖F̄i−F̄j‖2

)
, where F̄i is the average (R,G,B)T value in

patch pi. Yet another option is to employ photometric quasi-invariants [Weij 05] which
help distinguish between shading edges and material edges. Note that if multiple
cues for illuminant transitions are available, the different functions h can be directly
combined via summation.

4.4.3.4 MIRF: Overall algorithm

In this section, we present the full algorithm for multi-illuminant estimation. We call
it Multi-Illuminant Random Field (MIRF). In the first step we divide the image into
subregions or patches. There are several ways used in the literature for obtaining
adequate patches. In contrast to the work in Sec. 4.4.1 and Sec. 4.4.2, we decided
against using superpixels because they are more likely to follow object boundaries
rather than subtle illuminant changes. Hence, a grid provides more diverse patch
content, and thus more information for the statistical estimators.

Next, we obtain a local illuminant estimate for each patch using the Eqn. 4.51 and
the per-patch version of our physics-based estimator as presented in Sec. 4.4.2. To
add more robustness, these illuminants are then clustered to k illuminants based on
their chroma. Additionally, we add a single illuminant estimate ẽGW to the illuminant
set by applying Eqn. 4.11 on the whole image. To reduce the computational cost,
we reduce the number of labels by averaging the ones whose angular distance is less
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than half a degree. We calculate the unary potentials using equation Eqn. 4.55 and
Eqn. 4.57.

In the next step, for every pair of labels we solve the energy minimization prob-
lem of Eqn. 4.60. We use the matlab implementation by Bagon [Bago 06] of the
algorithm by Boykov et al. [Boyk 04, Boyk 01, Kolm04] as an efficient approximate
algorithm for multi-label energy minimization tasks. The Gibbs energy in Eqn. 4.49
can directly be translated to a multiway graph cut problem. Such a formulation has a
globally optimal solution for the case of two illuminants, and an approximately opti-
mal solution for three or more illuminants. Within the graph cut framework, different
solution strategies can be chosen. In our case, we used the so-called alpha-expansion
method. As output, we obtain the proper labeling (the assignment of the labels to
patches) along with the residual error, i. e. the estimation error for the whole image
(see Eqn. 4.60). The pair of two labels which minimizes the error is then chosen,
which is a solution to Eqn. 4.61.

Finally, the label colors are assigned to their respective patches, and the estimated
illumination map M is generated. In the last step of the algorithm, a Gaussian
smoothing filter with standard deviation σp is applied to M as a post processing step
in order to reduce artifacts created by the patch boundaries. The methodology is
compactly presented in Algorithm 11.

Algorithm 2 Method
1: Apply an a × a grid on the image to divide it to a set of patches (subregions)
{F1,F2, . . . ,Fn}

2: Extract the local illuminant colors for each patch.
3: Cluster the illuminants using the K-means algorithm to obtain nk cluster centers.

Add the single estimate ẽGW.
4: Reduce the number of labels by averaging two estimates whose angular distance

is less than .5 degrees.
5: Calculate the unary potentials using Eqn. 4.55 and Eqn. 4.57.
6: for all pairs l i and l j ∈ L do
7: Calculate ŭ∗u∗(i, j) using Eqn. 4.60.
8: end for
9: Find the pair of illuminants L̃ which yields the lowest error when assigned to the

image patches.
10: Back project L̃ and create an illumination map IM.
11: Post processing: Apply Gaussian smoothing on IM to fade out the artificial edges

of the grid (artifacts).

4.4.3.5 Evaluation

In this section we compare the performance of the proposed method MIRF to several
other approaches. We evaluate our results on three datasets, our proposed multi-
illuminant dataset of laboratory images, our proposed multi-illuminant on real-world
images (for both, see Sec. 4.3.2), and the outdoor dataset that was part of the work
by Gijsenij et al. [Gijs 12b]. As an error metric, we obtain an error per image by
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computing the mean of the pixelwise angular error (see Eqn. 4.10 on page 62) between
the estimated illuminant color and the ground truth maps. Pixels that were too
dark (i. e., for our 12 bit images, pixel intensities below 50) have been excluded from
evaluation due to their relatively large noise component. Over these per-image errors,
we computed the median and mean errors per dataset.

As a baseline, we computed results for a number of established algorithms that
address color constancy under uniform illumination. So far, little prior work exists
for estimating non-uniform illumination. We implemented the recent method by
Gijsenij et al. [Gijs 12b], as it showed very competitive performance in a number of
experiments.

Both, the method by Gijsenij et al. [Gijs 12b] and MIRF use as input illuminant
estimates with small spatial support. Such illuminant estimates can be obtained from
different estimators. We chose to use gray world (“GW”), which can be obtained from
Eqn. 4.11 on page Eqn. 4.11 by using the parameters n = 0, m = 1, σGW = 0, white
patch (“WP”, with n = 0,m =∞, σGW = 0), first order gray-edge (“GE1”, with n = 1,
m = 1, σGW = 1) and second-order gray edge (“GE2”, with n = 2, m = 1, σGW =
1). Additionally, we use the physics-based estimator, as presented in Sec. 4.4.2,
denoted as “IEbV” (derived from “illuminant estimation by voting”). We used these
base estimators for comparing the performance of the three families of methods as
described above. Additionally, we provide the error if the illuminant color is assumed
to be already perfectly balanced to white. The “do nothing” (“DN”) estimator shows
these results. For the evaluation on our proposed dataset, we resampled the images
to 20% of their original size to reduce the computational load.

Parameters A number of parameters have been fixed for the evaluation of MIRF.
As patches we used a rectangular grid with cells of 20× 20 pixels for the downscaled
version of our proposed dataset, and cells of 10 × 10 pixels for the outdoor images
by Gijsenij et al. [Gijs 12b]. In both cases, this corresponds to a cell size of about
15× 20 pixels. The number of cluster centers k for the k-means algorithm has been
set to the square root of the number of grid cells. To obtain the physics-based
estimates, we set the Lehmann and Palm parameters tb = 0.2 and ts = 0.8, and
the overall specularity threshold tsp = 10 for pixel intensities between 0 and 1. The
subgrid size for single physics-based estimates was 20× 20 pixels with a step size of
10 pixels14, as proposed in [Ries 11]. The settings for the CRF framework were as
follows: the saturation threshold for illuminant labels τSat (see Eqn. 4.59) is set to
15◦. The parameter σ in Eqn. 4.54 for robust thresholding on the unary potentials
has been set to 2.5◦. Finally, the standard deviation for the Gaussian smoothing on
the reprojected illuminant labels has been set to 10.

Besides these globally fixed parameters, we determined three parameters via two-
fold cross validation on each dataset. These were the weighting between unary and
pairwise potentials wPW (see Eqn. 4.49), the power wDamp (see Eqn. 4.55) for com-
puting the unary potentials, and finally, if data costs from different estimators are

14Note that for the downscaled images from our dataset, this leads to only one estimate per patch,
i. e. the voting part is effectively clamped off. However, if the method is applied on larger images
(or patches, respectively), the histogram voting is used.
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Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

Do nothing 10.6◦ 10.5◦ - - - -
Gray World 3.2◦ 2.9◦ 6.4◦ 5.9◦ 3.1◦ (-3%) 2.8◦ (-3%)
White patch Retinex 7.8◦ 7.6◦ 5.1◦ 4.2◦ 3.0◦(-41%) 2.8◦(-33%)
1st order Gray Edge 3.1◦ 2.8◦ 4.8◦ 4.2◦ 2.7◦(-13%) 2.6◦ (-7%)
2nd order Gray Edge 3.2◦ 2.9◦ 5.9◦ 5.7◦ 2.6◦(-19%) 2.6◦(-10%)
IEbV 8.5◦ 8.3◦ - - 4.5◦(-47%) 3.0◦(-64%)

Table 4.10: Comparative results on the proposed laboratory dataset.

combined, wUW (see Eqn. 4.58) for the relative influence of physics-based and statis-
tical estimators.

Comparing Single- and Multi-illuminant Methods In Tab. 4.10, we present
the mean and median errors on our proposed laboratory dataset. In the column
“single-illuminant”, these results are based on a single global illuminant estimate.
The columns “Gijsenij et al.” and “MIRF” report results for the multi-illuminant
methods by Gijsenij et al. [Gijs 12b] and our proposed algorithm “Multi-Illuminant
Random Field”. It turns out, that some single-illuminant estimators, namely gray
world, first and second order gray edge, already perform relatively well on our dataset.
This comes from the fact that in many cases, the ground truth illuminant colors are
not very distant from each other. Thus, the overall error can be small, even if only one
of the two illuminants (or a color in between both illuminants) is reported as global
estimate. However, in all cases, MIRF improves over these estimates. The physics-
based estimates for IEbV yield a considerably weaker performance in the mean error,
which might be due to the fact that the individual patches are relatively small,
such that the voting becomes ineffective. The method by Gijsenij et al. performed
surprisingly weak, even worse than the single-illuminant estimators. We investigated
this case more closely. It turned out that relatively often, weak candidate estimates
are selected by the method, which penalizes the overall algorithm. MIRF avoids this
particular problem, as the remaining energy from the energy minimization is used as a
criterion for the quality of a solution. In the next paragraph, we excluded this source
of error, to directly compare the performance for determining only the distribution
of illuminants.

Table 4.11 shows a similar tendency in the results, but this time on our proposed
real-world dataset. Note that the overall errors are higher, which is mainly due to the
fact that the images have been perceptually enhanced, such that the overall spread of
the colors in the image is larger. The largest gain is obtained using localized estimates
of the physics-based estimates. This performance gain comes mostly from the robust
error metric, which suppresses gross outliers in the physics-based estimates.

In Tab. 4.12, we report results on the outdoor dataset by Gijsenij et al. [Gijs 12b].
Note that the reported numbers for the method by Gijsenij et al. deviate from what
the authors reported in their paper. When investigating their method, we noted that
the evaluation in [Gijs 12b] was conducted on the non-gamma-corrected images15.

15Without gamma correction, we obtain the same numbers as reported in [Gijs 12b].
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Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

Do nothing 8.8◦ 8.9◦ - - - -
Gray World 5.2◦ 4.2◦ 4.4◦ 4.3◦ 3.7◦(-16%) 3.4◦(-19%)
White patch Retinex 6.8◦ 5.6◦ 4.2◦ 3.8◦ 4.1◦ (-2%) 3.3◦(-13%)
1st order Gray Edge 5.3◦ 3.9◦ 9.1◦ 9.2◦ 4.0◦(-25%) 3.4◦(-13%)
2nd order Gray Edge 6.0◦ 4.7◦ 12.4◦ 12.4◦ 4.9◦(-18%) 4.5◦ (-4%)
IEbV 6.0◦ 4.9◦ - - 5.6◦ (-7%) 4.3◦(-12%)

Table 4.11: Comparative results on the perceptually enhanced real-world images.

Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

Do nothing 4.4◦ 3.6◦ - - - -
Gray World 15.0◦ 13.8◦ 12.2◦ 13.8◦ 10.0◦(-18%) 10.1◦(-27%)
White patch Retinex 10.3◦ 11.3◦ 10.0◦ 8.4◦ 7.7◦(-23%) 6.4◦(-24%)
1st order Gray Edge 10.1◦ 10.1◦ 8.5◦ 7.6◦ 7.1◦(-16%) 4.7◦(-38%)
2nd order Gray Edge 8.7◦ 8.5◦ 8.1◦ 7.4◦ 7.2◦(-11%) 5.0◦(-32%)
IEbV 10.0◦ 7.3◦ - - 9.3◦ (-7%) 7.3◦ (-0%)

Table 4.12: Evaluation results on the gamma corrected version of the outdoor dataset
by Gijsenij et al. [Gijs 12b]

In our implementation, we performed gamma correction on the input images, as
it was also originally intended by [Gijs 12b]. The overall errors are higher than in
the previous two experiments. First, the images of this dataset are relatively small
snippets, consisting mostly of two relatively homogeneous regions in sunlight and
shadow. Thus, the underlying localized illuminant color estimators have to estimate
on relatively uninformative input. Note that we did not evaluate on the laboratory
data by Gijsenij et al., as we found upon manual inspection that the ground truth
for these images is not very reliable.

Benchmarking Separate Components of the Algorithm Estimating multiple
illuminants can be considered as two interleaved tasks, namely estimating the illu-
minant colors and their spatial distribution. The recovery of the spatial distribution
was not required for single-illuminant estimators. Hence, we empirically investigated
the capability of finding the proper spatial distribution, by providing the methods in
this experiment the ground truth illuminant colors. The results on our laboratory
dataset are shown in Tab. 4.13. In the left two columns, it can be seen that the per-
formance of the method by Gijsenij et al. greatly improved, compared to Tab. 4.10.
Thus, we conclude that the selection of the correct illuminant color is one of the
major challenges in the method of Gijsenij et al.. In the right columns, we show the
performance of the proposed method. The best performing method is first order gray
edge, with a median error of 1.7◦. This shows that the spatial distribution of the
illuminants is well approximated by our proposed framework.
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Gijsenij MIRF
Mean Median Mean Median

Gray World 2.4◦ 2.3◦ 2.3◦ 2.3◦

White patch Retinex 2.2◦ 2.1◦ 2.0◦ 1.9◦

1st order Gray Edge 2.1◦ 2.0◦ 1.8◦ 1.7◦

2nd order Gray Edge 2.2◦ 2.1◦ 1.9◦ 1.8◦

Table 4.13: Performance on our laboratory data for recovering the spatial distribu-
tion. The ground truth illuminant colors are provided to the methods.

In another experiment, we investigated the relative gain of the various improve-
ments we have introduced (see Tab. 4.14). As an example illuminant estimation
algorithm, we used the gray world (“GW”) estimator. If we remove the constraint
of two illuminants and allow an arbitrary number of illuminants, the error increases
significantly on our two datasets. Similarly, the robust error norm (see Eqn. 4.54)
yields an important performance gain on both our datasets. Removing the parame-
ter wDamp which counters uneven color balances only affects results on the Gijsenij
dataset. Finally, removing the saturation constraint τSat on the illuminants results in
a performance drop on all datasets.

Combination of Statistical and Physics-based Estimates Table 4.15 demon-
strates another benefit of the framework. By defining the unary potentials as a
weighted sum of the physics-based and the statistical unary potentials, we are able to
combine cues from multiple methods in a natural way. To determine the parameters,
we performed a full cross-validation over wPW, wDamp and wUW. It turns out, that a
combination of physics-based and statistical estimates can indeed further improve the
results (confer Tab. 4.15 (left) and Tab. 4.10), in particular for the white patch (WP)
and first order Gray Edge (GE1) estimates. On the other hand, the performance of
the combination of IEbV with GE2 (second order Gray World) slightly dropped, thus
there is no guarantee that a combination of the unary potentials brings a performance
gain.

The right columns of Table 4.15 show the performance on our proposed real-world
dataset. It is interesting to note that the impact of combined unary potentials on
the overall performance is quite different from the experiments on the laboratory
data. Here, the majority of the results is slightly worse than the results reported in

Laboratory data Real-world data et al. Gijsenij
Mean Median Mean Median Mean Median

MIRF 3.1◦ 2.8◦ 3.7◦ 3.4◦ 10.0◦ 10.1◦

all lights 4.6◦ 4.0◦ 4.2◦ 4.0◦ 10.0◦ 10.2◦

without Eqn. 4.54 3.9◦ 3.7◦ 4.3◦ 4.0◦ 10.1◦ 10.1◦

wDamp = 1 3.0◦ 2.8◦ 3.6◦ 3.3◦ 10.7◦ 10.3◦

without τSat 3.6◦ 3.3◦ 4.6◦ 3.2◦ 11.2◦ 10.1◦

Table 4.14: Gray world results for different configurations of MIRF for each dataset.
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Laboratory data Real-world data
Combination variant Mean Median Mean Median
IEbV-GW 3.0◦ 2.8◦ 4.2◦ 4.3◦

IEbV-WP 2.6◦ 2.5◦ 4.0◦ 3.4◦

IEbV-GE1 2.6◦ 2.4◦ 4.5◦ 4.2◦

IEbV-GE2 2.8◦ 2.8◦ 4.7◦ 3.9◦

Table 4.15: Combination of physics-based and statistical methods on our laboratory
data.

Tab. 4.11. This behavior, however, is not consistent. For instance, the mean error
of IEbV-WP lies slightly below the reported error in Tab. 4.11, similarly the median
error for IEbV-GE2. From these results, we conclude that the framework is general
enough to allow the straightforward integration of multiple cues. However, whether
such a combination indeed brings the desired performance gain has to be investigated
on a case-by-case basis.

Automatic White Balance Example results for automatic white balancing are
shown in Fig. 4.24. All images are contrast enhanced for improved visualization.
In the top row, from left to right, the input scenes “toys”, “lion”, “camera”, and
“detergents” are presented. The second row shows perfectly white balanced output
using the computed ground truth. The third row shows white balancing results for
a single global Gray World estimator. The resulting images suffer from a color cast,
as both illuminant colors in the scene are corrected with only one estimate. Using
the same estimator within the framework by Gijsenij et al. [Gijs 12b] (fourth row)
clearly improves over the global estimator. However, the images look more grayish
and with faded colors as the local estimations were not able to fully separate the
effect of illumination from the object color. Also the “lion” is more reddish on the
right side. Finally, in the last row, the output of the proposed MIRF is shown. In
this case, the improved performance results from the improvement in the selection
of the illuminant color, thus the global color cast is removed. Some inaccuracies in
the estimation of the spatial distribution of the illuminants may lead to local color
casts (e.g., several bluish “blobs” overlay considerable regions of the “camera” image).
However, the overall performance of MIRF is in general quite solid, as demonstrated
in the “toys” and “detergents” images.

In summary, we proposed an extensible framework for estimating and localizing
the influence of multiple illuminants. The results are very encouraging, and outper-
form the current state-of-the-art. The framework offers a number of opportunities to
integrate existing methodologies and future insights. For instance, the depth func-
tion h in the pairwise potentials is currently barely used. Thus, we expect that the
framework can still be fine-tuned, to further improve the estimation of non-uniform
illumination.
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Figure 4.24: Examples for automated white balancing (WB). From top to bottom
the rows present: original image from the camera, the WB images using the ground
truth, global Gray World, Gijsenij et al. [Gijs 12b], and MIRF. Note that the images
are enhanced to sRGB for visualization. The captions on the images denote their
estimation error.
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Chapter 5

Illumination Cues in Image Forensics

Color and direction of the scene illumination adhere to physical laws. With complete
knowledge about the scene objects and the scene geometry, all brightness variations
and color shifts can be directly explained. From a forensic viewpoint, this opens
the door to physics-based cues for exposing image manipulations. When an image is
spliced, i. e. a part of the image stems from another source, it is difficult to precisely
adjust the snippet to the illumination situation of the host image. In this chapter,
we propose methods to detect such inconsistencies.

We characterize algorithms that operate on illumination effects as “high-level”
methods, as opposed to the statistics-driven approaches in the chapters 2 and 3. Both
classes of methods complement each other: Statistical methods exploit properties of
the digital representation of an image. High-level methods, in contrast, are only
minimally dependent on the host medium. Thus, high-level methods could equally
well be applied on analogue photographs or maybe even on high-quality printouts,
where statistical methods lack the pixel information. This generality comes at the
expense that high-level methods are more difficult to apply. Typically, user input is
required, and often enough, a human expert must assess the output of the methods.
Thus, given the current state-of-the-art, a full automation of these approaches is in
many cases not possible.

Computational assessment of high-level forensic cues is also interesting as a sup-
port to human experts in their manual inspection. Farid and Bravo [Fari 10b] and
Ostrovsky et al. [Ostr 05] point out that the human visual system performs relatively
poorly in judging lighting and shadow inconsistencies in photographs.

In this chapter, we first review related work on high-level forensic cues in Sec. 5.1.
Then, we propose a physics-based method for finding inconsistencies in the illumina-
tion color in Sec. 5.2. Finally, in Sec. 5.3, we propose a practical extension to the work
by Johnson and Farid [John 07a] to extend the practical applicability of illumination
direction as a forensic cue.

The work in Sec. 5.2.1 was entirely done by me. Tiago Carvalho did most of the
work in Sec. 5.2.2, I contributed some ideas to the general direction of the work and
on the evaluation (which is still work in progress). The implementation in Sec. 5.3
is joint work of Dominik Schuldhaus, Szabolcz Vita, Sven Pfaller and me. The ideas
are contributed by me. Dominik wrote a first prototype, Szabolcz expanded the
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code and transferred it to C++, and Sven eventually investigated intrinsic image
decomposition, and implemented the intrinsic contour estimation algorithm.

5.1 Related Work
Illumination-based methods for forgery detection are either geometry-based or color-
based. Color-based methods search for inconsistencies in the interactions between
object color and light color [Ghol 08, Ries 10, Wu11]. Geometry-based methods aim
at detecting inconsistencies in light source positions between specific objects in the
scene [Fari 10a, John 05, John 07a, John 07b, Kee 10, OBri 12].

Gholap and Bora [Ghol 08] introduced physics-based illumination cues to im-
age forensics. The authors examined inconsistencies in specularities based on the
dichromatic reflection model. Specularity segmentation on real-world images is chal-
lenging [Ries 09a]. Therefore, the authors require manual annotation of specular
highlights. A second drawback of this approach is that it relies on the presence of
specularities on all regions of interest making them difficult to deploy in many real-
world scenarios. To avoid this problem, Wu and Fang [Wu11] assume purely diffuse
reflectance (i.e., scenes without specularities), and train a mixture of Gaussians to
select a proper illuminant color estimator. The angular distance between illuminant
estimates from selected regions can then be used as an indicator for tampering. Un-
fortunately, the authors require the manual selection of a “reference block”, where
the color of the illuminant is estimated with sufficient accuracy. Unfortunately, the
selection criteria for such a reference block are not quite clear. This restricts the ap-
plicability of the method to scenes containing favorable background, and the selection
itself requires a human expert.

Two methods have been proposed to use the direction of the incident light for ex-
posing digital forgeries. Johnson and Farid [John 07a] proposed a method which com-
putes a low-dimensional descriptor of the lighting environment in the image plane (i. e.
in 2D). It estimates the illumination direction from the intensity distribution along
manually annotated object boundaries of homogeneous color. Kee and Farid [Kee 10]
extended this approach to additionally exploit known 3D surface geometry. The
authors demonstrate, for the case of faces, that a dense grid of 3D normals can im-
prove the estimate of the illumination direction. To achieve this, a 3D face model is
registered with the 2D image using manually annotated landmarks.

Johnson and Farid [John 07b] also proposed solutions for special cases. For in-
stance, to investigate spliced images where the image parts containing people stem
from different sources, they proposed a method for detecting forgeries using specular
highlights in the eyes. Saboia et al. [Sabo 11] automatically classified these images by
extracting additional features, such as the viewer position. The applicability of both
approaches, however, is somewhat limited in practice by the fact that people’s eyes
must be visible and available in high resolution.

Determining the direction of the incident illumination is also occasionally ad-
dressed in computer vision work. For instance, Li et al. [Li 03] propose a method to
estimate the light direction based on shadow boundaries and highlights in the image.
However, the applicability of the method is limited to convex objects on planar sur-
faces. Takai et al. proposed a method to estimate the position of near light sources by
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placing two gray spheres within the scene [Taka 09]. In a forensic scenario, however,
the conditions for image capturing can not be controlled. Thus, one can not assume
to have such gray spheres placed in the scene under investigation.

In this chapter, we build upon these ideas and add own algorithms. For the
exploitation of the illuminant color, we develop a novel algorithm in Sec. 5.2, based
on insights from the previous chapter. In Sec. 5.3, we extend the method by Johnson
and Farid for exploiting illumination direction in forensics for a preprocessing step
that normalizes the albedo along the contours of objects.

5.2 Illumination Color
In cases when two objects are apparently exposed to the same illumination, a foren-
sic cue can be constructed. The basic idea, independently developed by Gholap
and Bora [Ghol 08] and us [Ries 10], is to set up constraints for consistent versus in-
consistent illumination. This was also our motivation for the fundamental research
presented in Chap. 4. The general approach is to estimate the illuminant color lo-
cally, e. g. per person in the scene, and to compare these estimates. To accomplish
this, we require robust methods for illuminant estimation that require little spatial
support.

One concern in forensics is the false positive rate, i. e. reporting a tampered region
although the image is authentic. In the context of the illumination color estimation,
physics-based methods provide by definition a fully explicable model. If the model
constraints are approximately fulfilled, the result is well predictable and explicable.
This property can greatly increase the trust in a decision. In contrast, statistical
approaches require a thoroughly compiled training set to compensate the underlying
heuristics.

We investigated both directions. In Sec. 5.2.1, we first present the idea, gen-
eral considerations and a manual, physics-based approach for investigation forgeries.
Then, in Sec. 5.2.2, we propose a machine learning-based approach for an automated
original/tampered decision. We pick up the discussion of the previous paragraph in
Sec. 5.2.3.

5.2.1 User-driven Assessment

We propose a new method for the assessment of illumination-color consistency over
the scene by extracting local illumination estimates. At the time of the development
of this method, we were not aware of a similar approach in image forensics. The
method is based on an extension of an illumination estimation method that is based
on the physical principles of image formation. In contrast, most state-of-the-art
methods for illuminant color estimation are machine-learning based. However, it is
our belief that deviations from the expected result can be easier explained using a
physics foundation than by machine-learning results, as detailed in Sec. 5.2.1.5. We
believe this is a highly desirable property in forensics applications. Depending on the
number of light sources of the scene, we show that these local estimates can provide
further insights on the scene construction. For instance, if a photographer took an
image at night using flashlight (which is typically a relatively bluish light source), we
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Figure 5.1: Illustration of the method. An image containing multiple illuminants (top
left) is annotated in the regions of the illuminants of interest (top right, red and green
markers). Then, the illuminant map is computed, local estimates for the illuminant
color over the image (bottom left), as well as a distance map of every region to these
illuminants (bottom right). Inconsistencies in these representations are interpreted
as traces of tampering.

can obtain a rough relative depth estimate from the decay of the blue channel in the
illuminant estimates. Inconsistencies in the illumination distribution can be used to
distinguish original and spliced images. In detail, the contributions of this subsection
are a) the development of a physics-based method for the recovery of the illuminant
color for different objects in the scene, b) the introduction of an illumination map
based on a distance measure on the estimated results, and c) The demonstration of
the feasibility of employing this illuminant map in forensic analysis.

5.2.1.1 Overview of the Method

We propose a manual approach for assessing the color of the illumination. The
method involves the following steps, as illustrated in Fig. 5.1.

1. The image is segmented in regions of approximately the same object color.
These segments are called superpixels. A superpixel is required to a) be directly
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illuminated by the light sources under examination and b) roughly adhere to
the physical model presented in Sec. 4.4.2.

2. A user selects such superpixels whose incident illuminant he wants to further
investigate. Each group of superpixels represents one illuminant color under
investigation.

3. Estimation of the illuminant color is performed twice. First, the estimation
is done on every superpixel separately. Second, the estimation is done on the
user-selected superpixel groups for greater robustness.

4. The user-selected groups form the reference illuminants. A distance measure
from these illuminants to every superpixel estimate is computed. We visualize
these per-superpixel distances in what we call a distance map to support the
analysis of the illumination color consistency.

In special cases, this method can be fully automated. On the other hand, since the
estimation of the illuminant color is an underconstrained problem, there will always
exist scenes that can not be correctly processed. We believe that a limited degree
of human interaction is a valid tradeoff between the accuracy of the method and its
usability.

5.2.1.2 Local Illuminant Estimation

In our forensic scenario, one must assume that the whole picture is composed from
different sources. Thus, to estimate the illuminant color, only small, isolated regions
of the image can be used. So far, limited research has been done in this direction.
The work by Bleier et al. [Blei 11] indicates that many off-the-shelf single-illuminant
algorithms do not scale well on smaller image regions. Additionally, the methods
investigated by Bleier et al. are either statistical, or rely on assumptions that can
barely be verified in a forensic scenario. As a consequence, we decided to use a
localized variant of our single-illuminant estimator, as presented in Sec. 4.4.2 and
Sec. 4.4.2. The algorithmic steps are listed below. The main variation of the fully
automated version of the algorithm is that the reference illuminant colors for the
comparison are computed from user-selected areas. Thus, in terms of Sec. 4.4, we
avoid the localization problem in multi-illuminant estimation.

1. For every dominant illuminant in the scene, a user is required to select regions
that a) follow the dichromatic reflectance model and b) are mostly lit by that
light source.

2. Segment these regions in superpixels with roughly uniform chromaticity.

3. Further subdivide these superpixels in a rectangular grid. We call each such
rectangular subregion a patch.

4. Transform every patch to inverse intensity space.

5. Apply tests on the shape of the patch’s pixel distribution. If the distribution
passes, obtain a local illuminant color estimate for this patch.
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6. Obtain a color estimate for each dominant illuminant, based on a majority vote
on local estimates of the user-selected regions.

For the superpixel segmentation, we used the publicly available code by Felzen-
szwalb and Huttenlocher [Felz 04] on the image chromaticities, though any segmen-
tation method could be used. We choose the segmentation parameters 0.1 ≤ σ ≤ 0.3
and 100 ≤ k ≤ 300. Typically σ = 0.3 and k = 300 gave satisfying results, dividing
the image in not too small regions of similar object color. The grid size is adaptive
to the image size, typically between 16 and 32 pixels in the horizontal and vertical
directions. The overall goal when determining superpixel size and grid size is a trade-
off between spatial detail, which is provided by smaller superpixels, and estimation
robustness, which comes from a sufficiently large number of grid cells (at least 10)
within a superpixel. For the experiments in this section, we did not compensate im-
age gamma. This could be done with additional preprocessing, using for instance the
method by Lin et al. [Lin 04].

5.2.1.3 Illuminant Color for Image Forensics

Once the illuminant color estimates for the user-annotated regions are computed,
the whole image can be examined for illumination color inconsistencies, as described
in Sec. 5.2.1.4. Since the estimation of the illuminant color is a severely under-
constrained problem, we briefly discuss failure cases and possible workarounds in
Sec. 5.2.1.5. Please note that our illumination estimation method performs compara-
bly to other state-of-the-art single illuminant estimation methods. This will be shown
in Sec. 5.2.1.6.

5.2.1.4 Detecting Inconsistencies in Illumination

The same process (see Sec. 5.2.1.2 and Sec. 4.4.2) that was used in computing the
illuminant color estimates at the user-specified regions is now extended to the entire
image. The voting, however, is now performed within each superpixel. Thus, every
superpixel contains an individual illuminant estimate. We store these illuminant
estimates in a new image, where each superpixel is colored according to its estimated
illuminant color. We call this new image illumination map. This map gives already
quite meaningful results for the analysis.

For forensic analysis, we aim to quantify the relationship between the illumi-
nant estimates. In a scene with truly one dominant illuminant, this can be done by
comparing the angular errors of the individual illuminant estimates. However, most
real-world scenes contain a mixture of illuminants. Their influence on the scene is
closely connected to the positions of the objects relative to the positions of the light
sources. Since the geometric composition of the scene is typically unknown, we resort
to developing a tool for supporting the visual assessment of the scene, which we call
distance map. Figure 5.2 shows an example. From left to right, the input image,
illumination map and distance map is shown.

The distance map captures how well the illuminant estimation at each superpixel
fits to the estimated dominant illuminants. For improved clarity, we assume two
dominant illuminants e1 and e2 that were obtained from two user-selected regions.



5.2. Illumination Color 123

Figure 5.2: Original image, illumination map and distance map for the image under
examination. Foreground persons are estimated with a bluish color, probably due
to flashlight, while persons in the background are increasingly red illuminated. The
distance map between foreground and background illumination spots captures this
relationship as a black-to-white transition.

We aim to create a grayscale-image that depicts the relative influence of both light
sources. The distance map is created by assigning the value 0 (black) to the user-
defined region corresponding to illuminant e1. Similarly, the second user-defined
region, which gave rise to dominant illuminant e2, is assigned the value 1 (white).
Then, for all the remaining pixels, the distance value del(x ) of a local estimate e l(x )
is computed as

del(x ) = (e l(x )− e1)T(e2 − e1) . (5.1)

The values in the distance map form a grayscale image with values in the range [0, 1] if
the estimate is located between e1 and e2. Values outside of this range are cropped,
but could also be otherwise marked as outliers. Such a map captures the relative
influence of both light sources in each pixel.

The illumination map and the distance map are used together for the analysis of
the image. In order to be consistent, a local illuminant estimate in an image must a)
either exhibit a relative illuminant contribution that fits in the spatial layout of the
scene or b) fail to fulfill the underlying physical model. In the latter case, it must be
ignored for the analysis.

By adjusting the values of the criteria on the pixel distributions1, it is possible
to obtain fewer estimates that fit the physical model better (at the expense of larger
regions with sparse or no estimates). On the other hand, less strict parameters lead to
a more complete map, where also more outliers are expected. In general, we preferred
lenient settings in our experiments. For the slope we set a lower bound of 0.003, and
for the eccentricity 0.5. A stricter set of values, i.e. 0.01 for the slope and 0.95 for
the eccentricity, typically results in fewer outliers.

5.2.1.5 Caveats and Workarounds

In some cases, the estimation of the illuminant color can not be successfully applied.
Fortunately, for a physics-based method like the proposed one, the reasoning about

1Adjustable parameters are the superpixel size, grid size, and the thresholding parameters on the
eigenvector slope and eccentricity in Eqn. 4.45, see page 97
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failure cases is often easier than for machine-learning methods. While failures in the
latter case often arise due to limitations of the training data or algorithm-dependent
assumptions on the color distributions, physics-based methods mainly fail due to
violations of the assumed reflectance model. This makes it possible to argue about
possible problems and look for workarounds.

We present some cases where our method is problematic. First, the camera re-
sponse is assumed to be linear. This is leveraged by the fact that we exploit only the
relationship between illuminant estimates, and do not consider absolute estimates.
Nevertheless, a gamma estimation method, e.g. [Lin 04], can be used to normalize the
image. Some non-dielectric surfaces are especially difficult to handle, e.g. fluorescent
materials (see Fig. 5.3) and metals. Other failure cases involve areas that are mostly

(a) (b) (c) (d)

Figure 5.3: Failure cases for the proposed illuminant color estimation method. Fig-
ures 5.3a and 5.3c are the original images, Figures 5.3b and 5.3d the respective illu-
mination maps. In Fig. 5.3b, the illuminant estimate in the shadowed area under the
head of the left actor is biased towards the object color. In Fig. 5.3d, the fluorescent
suit of the actor overproportionally pushes the illuminant estimate towards extreme
values.

diffuse, or highly textured, or in shadow (see Fig. 5.3). Finally, the method is inher-
ently limited by the assumption that the color of the specularity closely approximates
the color of the illuminant.

We found that by visual inspection it is often possible to distinguish failure cases
from real inconsistencies. It is also possible to follow specific rules to minimize the
risk of misjudging the scene under observation. The most robust approach is to use
only identical or very similar materials for the analysis, e.g. faces in a crowded scene.
We reflect this by demanding the user to select regions that a) are of interest for the
examination and b) roughly adhere to the model.

5.2.1.6 Experiments

For qualitative results on multiple illuminants, we collected approximately 430 images
containing scenes with multiple illuminants or unusual single-illuminant setups from
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Figure 5.4: Tampered image. Illumination map as well as distance map show a clear
difference between the first two and the third person. Since the three stand close
together in the image, it can be assumed that this difference is due to tampering.

various sources, mostly flickr [Yaho 12]. Besides these images, which were assumed
(or known, respectively) to be original, 10 forgeries have been examined using the
proposed method. We present three cases where image geometry and illumination
create discontinuities. Figure 5.4 shows a case where the change in the illumination
color is barely explicable with the scene setup. Both the illumination map as well as
the distance map exhibit a sharp transition between the two persons in the foreground
and the third in the back, which could only be feasible if there was a greater distance
between them.

The example in Fig. 5.5 shows outdoor illumination with one dominant illuminant.
Again, we compare the skin regions of the people, in order to have roughly comparable
object materials. The selected regions are the directly lit skin of the inserted person
versus the directly lit skin of other guests. The illumination map shows blueish
estimates for the inserted man. The distance map makes this difference even more
visible. Note that the estimates of the coast line in the background should be ignored
(although they fit well in this particular case). The underlying pixels must be assumed
to be purely diffuse, and thus do not satisfy our assumptions.

Figure 5.6 contains a more complex case. The woman in the right is inserted in
the image. Illumination map and distance map are plausible, compared to the people
that stand similarly close to the restaurant. However, by adding the scene geometry
we obtain a strong clue that this scene is not original. Since the woman is turned
away from the restaurant, the illuminant color on the woman’s chest should share
greater similarity with the body parts of the other people that are turned away from
the restaurant lights.
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Figure 5.5: Original image (top left) and tampered image (top right). A comparison
of the skin regions of the people exposes the inserted man in the distance map.

5.2.2 Automated assessment of the Illumination Consistency

One drawback of the presented approach is the dependence on a human expert to
judge the authenticity of an image based on illuminant map and distance map. We
found that it is non-trivial to clarify the details of the method to untrained sub-
jects. Thus, we investigated further constraints, in order to transfer the authenticity
decision from humans to an automated algorithm. In this section, we present a pre-
liminary investigation towards such a system. We limit ourselves to the comparison
of illuminant estimates that were obtained from similar materials in the scene. More
precisely, we used illuminant estimates on face regions to detect spliced images, rely-
ing on the fact that pictures of persons are often subject to manipulations [Fari 11].
The authenticity is determined via machine learning on feature vectors that were ex-
tracted from illuminant maps. First, we present an overview of the algorithm. Then,
we present the algorithmic details for every step. Throughout this section, illuminant
maps are abbreviates as IM.

5.2.2.1 Interpretation of Illuminant Maps

We aim to classify the illumination for each pair of faces in the image as either
consistent or inconsistent. The proposed method consists of five main components:
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Figure 5.6: Original image (top left) and tampered image (top right). At first glance,
illumination map and distance map show plausible results on the tampered image.
However, the illuminant estimates are obtained from the front of the inserted woman,
which is turned away from the restaurant lights. Therefore, the expected illumination
should be more bluish, like e.g. at the back of the person in the middle.

1. Local Illuminant Estimation: we create illuminant maps from different local
illuminant estimators that were applied on superpixels. As an extension of the
method in Sec. 5.2.1, we do not only use the proposed physics-based estimator,
but also a generalized gray world estimator.

2. Face Extraction: an operator sets a bounding box around each face that should
be investigated. Alternatively, an automated face detector can be employed.
We then crop each illuminant map to every bounding box, such that only the
illuminant estimates of the face regions remain. This is the only step that may
require human interaction.

3. Computation of Illuminant Features: for all face regions, texture-based and
gradient-based features are computed on the IM values.

4. Paired Face Features: our goal is to assess whether two faces in an image
are consistently illuminated. For each pair of faces in the image, we create a
combined feature vector by concatenating the features from the two faces that
constitute the pair.
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Figure 5.7: Overview of the proposed method.

5. Classification: we use machine learning to automatically classify the feature
vectors. We consider an image as a forgery if at least one pair of faces in the
image is classified as inconsistently illuminated.

Figure 5.7 summarizes the main steps of the proposed method. The remainder of
this section presents the details of these steps.

5.2.2.2 Dense Local Illuminant Estimation

To detect inconsistencies in the illumination color, we need a dense set of localized
estimates. We segment the input image into regions of approximately constant chro-
maticity (so-called superpixels) with the algorithm proposed by Felzenszwalb and
Huttenlocher [Felz 04]. Then we estimate the color of the illuminant per superpixel.
By recoloring the superpixels with the estimated illuminant chromaticities, we obtain
an illuminant map. We use two separate methods to obtain a version of this map: the
statistical generalized gray world estimates, in particular the gray edge algorithm (see
Eqn. 4.11 on page 66), and our variant of exploiting the inverse-intensity chromaticity
space (see Sec. 4.4.2 and Sec. 5.2.1).

5.2.2.3 Face Extraction

Unconstrained estimation of the illuminant color can be error-prone and affected by
the reflectance properties of the materials in the scene. However, it is possible to
improve the accuracy of the relative error between two estimates by focusing only on
objects of approximately the same material. For this work, we limit our examination
of illumination consistency to human skin and, in particular, to faces. Pigmentation is
the most obvious difference in skin characteristics between different ethnicities. This
pigmentation difference depends on many factors as quantity of melanin, amount
of UV exposure, genetics, melanosome content and type of pigments found in the
skin [Igar 07]. However, this intra-material variation is typically smaller than that of
all materials possibly occurring in a scene.
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(a) Original (b) Gray world with
similar parts high-
lighted

Figure 5.8: An original image and its gray world map. Highlighted regions in the
gray world map show a similar appearance.

All faces in the image that should be part of the investigation have to be annotated
with a bounding box. In principle, this can be done automatically, through the use of
a face detector [Schw09]. However, we prefer a human operator for this task for two
main reasons: a) this minimizes false detections or misses of faces; b) scene context is
important when judging the lighting situation. For instance, consider an image where
all persons of interest are illuminated by flashlight. The illuminants are expected
to agree with one another. Conversely, assume that a person in the foreground is
illuminated by flashlight, and a person in the background is illuminated by ambient
light. Then, a difference in the color of the illuminants is expected. Such differences
are hard to distinguish in a fully-automated manner. For this paper, we focused
on faces that are exposed to supposedly similar illumination, which can be visually
verified by the operator.

We illustrate this setup in Figure 5.8. The faces in Figure 5.8a can be assumed
to be exposed to the same illuminant. As Figure 5.8b shows, the corresponding gray
world illuminant map for these two faces also has similar values.

5.2.2.4 Interpreting Illuminant Maps as Texture Maps

Our main indicator for detecting inconsistencies in the illumination are the illumi-
nation maps. Thus, we consider an illuminant map as a texture, that exhibits a
particular statistical structure, which may be disturbed when the image is tampered.

SASI Many different texture descriptors have been proposed in the literature thus
far. One of the most effective [Pena 12] is the Statistical Analysis of Structural Infor-
mation (SASI) [Cark 03] descriptor.

SASI [Cark 03] is a generic descriptor that measures the structural properties of
texture. It computes the autocorrelation on multi-resolution sliding windows over the
image. Given that each window is composed by a different orientation and resolution,
a clique window Bc represents the window with index c under a specific orientation
and resolution. For each of these clique windows, an autocorrelation coefficient is
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Figure 5.9: Overview of the proposed HOGedge algorithm.

computed. Ultimately, every clique window Bc provides a different autocorrelation
image. We use the means and standard deviations extracted from these autocorrela-
tion images to compose the image feature vector.

The most important advantage of SASI for our application is its good capability of
capturing small granularities and discontinuities which are present in texture patterns.
These patterns appear mainly in sharp corners and abrupt changes such as the ones
present in illuminant maps, especially in the face region of composite images.

HOGedge: A New Algorithm for Interpreting Edges in Illuminant Maps
When a spliced forgery is created, the resulting local discontinuities affect mainly
the edges of an illuminant map at the splicing boundary. To characterize this local
information, we propose a new algorithm named HOGedge. It is based on the well-
known HOG-descriptor, and computes visual dictionaries of gradient intensities in
edge points. The full algorithm is described in the remainder of this section. Fig. 5.9
shows an algorithmic overview of the method.

The algorithm for characterizing a face using HOGedge descriptor is divided into
two parts. First, we construct a visual dictionary using training examples. Then, we
construct the final feature vector for every image in a dataset using a learned visual
dictionary.

Given a face region from an illuminant map, we first extract edge points using
the Canny edge detector [Cann 86]. This produces a large number of spatially close
edge points. To reduce the number of points, we filter the Canny output using the
following rule: starting from a seed point, we eliminate all other edge pixels in a
region of interest (ROI) centered around the seed point. The edge points that are
closest to the ROI (but outside of it) are chosen as seed points in the next iteration.
Figure 5.10 depicts an example of the resulting points.

We compute Histograms of Oriented Gradients (HOG) [Dala 05] to describe the
edge points. HOG is based on evaluating normalized local histograms of image gradi-
ent orientations in a dense grid. The HOG descriptor is constructed by dividing the
region of interest into spatially small regions (“cells”). Each cell provides a local 1-D
histogram of quantized gradient directions using all cell pixels. To construct the final
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(a) IM de-
rived from
gray world

(b) Canny
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(c) Filtered
Points

Figure 5.10: (a) The gray world IM for the left face in Figure 5.8a. (b) The result
of the Canny edge detector when applied on this IM. (c) The final edge points after
filtering using a square region.

feature vector, the histograms of all cells within a larger spatial region are combined
and contrast-normalized using an accumulated measure of local histograms. We use
the HOG output as a feature vector for the subsequent steps.

The number of edge points, and therefore the number of HOG vectors, varies
depending on the face under examination. To obtain one feature vectors of equal
length, we employ visual dictionaries [Csur 04]. Visual dictionaries constitute a robust
representation of an object as a collection of regions. The only information of interest
is the appearance of each region [Winn 05].

To construct the visual dictionary, feature vectors from original and tampered
images are required. We compose a visual dictionary with 2n visual words by clus-
tering each set with n centers using the k-means algorithm [Bish 06]. Every visual
word is represented by a cluster center. Thus, the visual dictionary comprises the
most representative feature vectors of the training set.

For evaluating the feature vectors, the HOG feature vectors are mapped to the
visual dictionary. Each feature vector in an image is represented by the closest word
in the dictionary with respect to the Euclidean distance. A histogram of word counts
represents the distribution of feature vectors in a face.

Face Pair To compare two faces, we combine the same descriptors for each of the
two faces. For instance, we can concatenate the SASI-descriptors that were computed
on a gray edge illuminant map. The idea is that a feature concatenation from two
faces is different when one of the faces is an original and one is spliced. Thus, for
an image containing n faces with n ≥ 2), the number of joint feature vectors is
(n(n− 1))/2.

Classification Assuming all selected faces are illuminated by the same light source,
we tag an image as manipulated if one pair is classified as inconsistent. Individual
feature vectors, i. e. SASI features or HOGedge features on either gray world or IIC-
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(a) Original image. (b) Spliced image.

Figure 5.11: An original image (left) and a spliced image (right).

based illuminant maps, are classified using a support vector machine (SVM) classifier
with a radial basis function (RBF) kernel.

The information provided by the SASI features is complementary to the infor-
mation from the HOGedge features. Thus, we use a machine learning-based fusion
technique for improving the detection performance. Inspired by the work of Lud-
wig et al. [Ludw09], we use a late fusion technique named SVM-Meta Fusion. We
classify each combination of illuminant map and feature type independently (i. e.
SASI-Gray-World, SASI-IIC, HOGedge-Gray-World and HOGedge-IIC) using a two-
class SVM classifier to obtain the distance between the image and the classifier deci-
sion boundary. SVM-Meta fusion consists of merging the marginal distances provided
by all individual classifiers to build a new feature vector. Another SVM classifier then
classifies the combined feature vector.

5.2.2.5 Experiments

To validate our approach, we performed two sets of experiments using a new database
with 200 images involving people. The database we created is composed of 200
indoor and outdoor images, with an image resolution of 2048 × 1536 pixels. Each
image contains two or more people. From this dataset, 100 images are original, the
remaining 100 images are doctored. The forgeries have been composed by adding one
or more people in a source image that already contained one or more people. When
necessary, we performed color and image adjustments to construct photo realistic
forgeries. Figure 5.11 shows two example images from the dataset.

Performance Evaluation We compare five variants of the method. Throughout
this section, we manually annotated the faces by marking a bounding box around the
face In the classification stage, we use a five-fold cross validation protocol, an SVM
classifier with an RBF kernel, and classical grid search for adjusting parameters in
training samples [Bish 06]. Since each image provides a different number of feature
vectors, we also use a proportional weight of classes to equalize them in the training
stage. Let worig represent the number of feature vectors extracted paired faces in
non-manipulated (pristine) images during training, and wmanip represent the number
of feature vectors extracted from paired faces of composite images also during train-
ing. To use a proportional class weighting, we set the weight of non-manipulated
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image class to wmanip/ (worig + wmanip) and the weight of composite image class to
worig/ (worig + wmanip).

As for the experiments, we compare these five experimental setups:

• SASI-IIC: we extract SASI-features from an IIC-based illuminant map. The
SASI descriptor is calculated over the Y channel from the Y CbCr color space.
We configure SASI algorithm as presented in [Pena 12]2. O

• SASI-Gray-World: we calculate gray world illuminant maps using nGW = 1,
τGW = 1 and σ = 3. The SASI descriptor is extracted from gray world IMs
using the same configuration as SASI-IIC.

• HOGedge-IIC: we compute the HOGedge descriptor on the IIC-based illu-
minant map. For the HOGedge descriptor, it is necessary to adjust some pa-
rameters. The (empirically determined) best parameters are: edge detection
is performed on the Y channel of the Y CbCr color space, with a Canny lower
bound of 0 and an upper bound of 10. The square region for edge point filtering
is set to 32×32 pixels. Furthermore, we use 8-pixel cells without normalization
in HOG, and 100 visual words for both the original and the tampered images
(i. e. the dictionary consists of 200 visual words).

• HOGedge-Gray-World: this configuration is similar to HOGedge-IIC. We
compute gray world illuminant maps with the same parameters as above, nGW =
1, τGW = 1 and σ = 3. The empirically determined best performing parameters
for HOGedge-Gray-World were the same as for HOGedge-IIC, with one excep-
tion: the size of the visual word dictionary is set to 75 visual words from each
class (thus, the dictionary contained 150 visual words).

• Metafusion: We implemented a late fusion algorithm as explained in Sec-
tion 5.2.2.4 using SASI-IIC, SASI-Gray-World, and HOGedge-IIC. HOGedge-
Gray-World is excluded from the input methods, due to its weaker performance
(see the evaluation below).

Figure 5.12 depicts a ROC curve of the performance of all methods using bounding
box annotations. A user was required to click the corners of bounding boxes to crop
out the faces. We used sensitivity and specificity to assess the accuracy on doctored
and original images, respectively. The area under the curve (AUC) is computed to
obtain a single numerical measure for each result.

Metafusion performs best, resulting in an AUC of 85.3%. In particular for high
specificity (i. e. few false alarms), the method yields a much higher sensitivity com-
pared to the other variants. Specifically, in a real forensic scenario, when an analyzed
photograph is classified as composite using this variant of the method, it provides
high confidence about the image authenticity. This kind of confidence is an important
initial step when an expert needs to decide about image authenticity, decreasing the
quantity of necessary future work.

The second best variant is SASI-Gray-World, with an AUC of 84.0%. In particular
for a specificity below 80.0%, the sensitivity is comparable to Metafusion. SASI-IIC

2We gratefully thank the authors for the source code.
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Figure 5.12: Comparison of all algorithm variants. Metafusion performs best.

achieved an AUC of 80.3%, followed by HOGedge-IIC with an AUC of 69.9% and
HOGedge-Gray-World with an AUC of 64.7%.

5.2.3 Discussion

We presented two directions to exploit illuminant color as a forensic cue. The manual
approach strictly follows a principled, physics-based pipeline. The automated method
relieves the user from a technically challenging, potentially subjective assessment of
the illuminant maps. Thus, both approaches have their validity, and can be seen
as complementary: for a first check, the automated method can be applied, and
then, for a more detailed analysis, regions of interest can be manually examined. For
manual assessment, a more detailed analysis should be established in future work.
For instance, it would be interesting to investigate consistency criteria directly in
inverse intensity-chromaticity space.

Besides the work of Gholap and Bora [Ghol 08] and Wu and Fang [Wu11], illumi-
nation color has not yet been addressed in image forensics. Thus, also the presented
work here can be seen as a prototypical proof-of-concept, with several open questions
that deserve further investigation. We discuss one issue here in greater detail, as we
consider it most relevant in relation to the previous chapter on illuminant estimation,
and refer the reader for remaining future work to chapter 6.

One interesting point which was not not been further investigated due to large
resource requirements is the relation of illuminant estimation to source identifica-
tion. This question is indirectly raised through the work by Deng et al. [Deng 11]. In
this paper, the authors exploit the fact that applying the same white-balancing algo-
rithm twice to an image does not change the result. Thus, if a the white-balancing
method of a camera is known, the camera type can be identified if repeated applica-
tion of the camera’s white-balancing algorithm leads to identical images. However,
camera white-balancing algorithms are often protected as intellectually property of
the manufacturer. Thus, Deng et al. generalize these findings by applying different
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white-balancing algorithms to a training set of images, and compute image quality
metrics [Avci 03, Eski 95] as feature vectors. A support vector machine can then be
used to classify unknown images by their camera type.

Considering the close relation between illuminant color estimation and white bal-
ancing, which property of a spliced image is actually exploited — the difference in
the (physical) illumination, in the sense of Chap. 4, or different white balancing al-
gorithms of the source cameras used for capturing the images? In the first case,
a physics-based method is preferred, due to its rigorous formulation. In the latter
case, statistical methods could show better performance, as camera white-balancing
algorithms are often variants of gray world or white patch methods. Thus, statis-
tical methods can be expected to better model the in-camera color processing than
physics-based methods. We consider this question the most interesting for developing
future, more robust color-based cues for forensic algorithms.

5.3 Illumination Direction

The direction of the incident light has been proposed as a forensic cue by Johnson
and Farid [John 07a]. The distribution of the direction of incident light, together with
the surface normals of an object of interest, are combined in a potentially powerful
geometric algorithm for exposing image manipulations.

A user is required to mark the contours of an object. The proposed method
by Johnson and Farid computes then the brightness distribution over the contour
normals. Brightness distributions from different object within an image can then be
compared, e. g. by computing the correlation. Like most high-level forensic methods,
this algorithm does not depend on digital imagery. It can as well be applied on
analogue photographs or even paintings.

However, in our experiments, it turned out that this method is relatively difficult
to apply in practice. One reason are the relatively strict constraints that are imposed
on the contour. Regions of self-shadowing, non-convex edges and specularities have
to be excluded. Furthermore, the contour normals must span a minimum of about
130 degrees, and the contour must consist of uniform albedo.

As shown in Fig. 5.13, real-world images often do not satisfy these conditions.
In the left picture, to compare the both pedestrians, the pose and different layers of
cloth make it difficult to apply the method. In the right image, a small angle of the
surface normals per cloth make a reliable recovery of the illuminant direction also
challenging. Both cases are discussed in greater detail in Sec. 5.3.5.2.

In this section, we aim to extend the applicability of this method by investigating
intrinsic image decomposition as a way to relax the constraint of uniform albedo.
We first present the method by Johnson and Farid in Sec. 5.3.1. Previous work in
intrinsic image decomposition is presented and discussed in Sec. 5.3.2. We propose
a new method, intrinsic contour estimation (ICE), in Sec. 5.3.3. It is specifically
tailored for the application with the basic algorithm. A preliminary comparative
evaluation has been conducted. The results that were obtained so far are presented
and discussed in Sec. 5.3.5.
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Figure 5.13: Failure cases for (our implementation of) the algorithm by Johnson and
Farid. In both cases, it is not possible to find a uniform albedo, piecewise contour
around the object that spans more than 130 degrees. Left picture courtesy of Ed
Yourdon [Your 08].

5.3.1 Basic Method for Comparing Lighting Environments

Ramamoorthi and Hanrahan [Rama 01] showed that the irradiance (i. e., incident in-
tensity) on a Lambertian sphere can be recovered from observations of the brightness
distribution on the surface of the sphere. The solution is obtained by representing
the intensity distribution as spherical harmonics, i. e., spherical coordinates centered
at the object. Additionally, Basri and Jacobs [Basr 03] showed that different distribu-
tions of incident lights on Lambertian surfaces can be relatively accurately represented
by a nine-dimensional subspace.

Putting these two findings together, Johnson and Farid proposed the baseline
method for lighting environments as a forensic cue [John 07a]. The authors propose
to use a nine-dimensional subspace of the spherical harmonics to estimate the distri-
bution of incident light on convex objects. For two or more objects in the scene, the
lighting environments can be correlated. If the difference of two lighting environments
exceeds a threshold, the image is assumed to be manipulated.

In the next paragraphs, we derive this algorithm more formally, following the
presentation in [John 07a]. Assume that we operate on an object of constant albedo
under Lambertian reflectance, and the camera response function is linear. Then, the
amount of incident light on a surface patch is identical to the observed intensity,
up to an unknown multiplicative factor (see [John 07a]). Assume furthermore, for
simplicity, that we operate on a grayscale image. With these assumptions, let p(ν(x ))
the intensity of a pixel p. As the albedo is assumed to be constant, differences in the
intensity depend only on the surface normal ν(x ) at pixel x . Thus,

p(ν(x )) =

∫
Ω

e(v ,x )r(v ,ν(x ))dv . (5.2)
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Figure 5.14: Illustration of the spherical harmonics basis functions. Picture courtesy
of [John 07a].
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Table 5.1: First 9 basis functions of the spherical harmonics ηi,j(v), for v =
(vx vy vz)

T.

Here, Ω captures all possible angles v of the incident light e(v ,x ) at pixel x , and
r(v ,ν) denotes the surface reflectance function. As we assume constant albedo, the
dependence of r(v ,ν) to x can be neglected.

The direction of incident light e(v ,x ) can be expressed in terms of spherical
harmonics3 [Rama 01] as

e(v ,x ) =
∞∑
i=0

i∑
j=−i

hi,j(x )ηi,j(v) , (5.3)

where hi,j(x ) are weighting factors, and ηi,j(v) denotes the basis function of the
spherical harmonics. The basis functions are illustrated in Fig. 5.14, the actual basis
functions up until i = 2, for v = (vx vy vz)

T are listed in Tab. 5.1. As can be seen
from Fig. 5.14, the ηi,j(v) oscilates along the surface of a sphere. The number of
period increases with i, the orientation of the oscilation varies with j.

The reflectance function r(v ,ν) in Eqn. 5.2, under the assumption of Lambertian
reflectance (see Sec. 4.1.1 on page 59), is

r(v ,ν(x )) =

{
vT · ν(x ) if vTν(x ) > 0

0 otherwise , (5.4)

3For a general introduction to spherical harmonics, see e. g. [Groe 96].
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i. e. the cosine between the direction of the incident light and the surface normal,
or 0 if the surface is not directly illuminated by the light source. Additionally, this
intensity can directly be observed with a digital camera, as intensities of Lambertian
reflectance do not depend on the position of the observer.

Equation 5.4 can also be rewritten in terms of spherical harmonics. For Lam-
bertian reflectance, the amount of incident light depends only on the angle of the
incident light to the surface normal. Thus, most terms cancel, such that (after some
calculations), it turns out that

r(v ,ν(x )) =
∞∑
i=0

r̂iri,0
(
(0 0 vTν(x ))

)
. (5.5)

depends only on harmonics with j = 0 (see [John 07a]). r̂i incorporate the Lambertian
reflectance assumption into Eqn. 5.5.

Equation 5.3 and Eqn. 5.5 can directly be inserted in the illumination model in
Eqn. 5.2. Then, after some simplifications (see [John 07a]), p(n) becomes

p(ν(x )) =
∞∑
i=0

i∑
j=−i

√
4π

2i+ 1
r̂ihi,jηi,j(ν(x )) . (5.6)

Basri and Jacobs showed that illumination changes of Lambertian surfaces can be
modeled by a nine-dimensional subspace [Basr 03]. Thus, if i is limited to 0 ≤ i ≤ 2,
we obtain the nine basis functions as listed in Tab. 5.1, which leave only a small
model error compared to using the full range of 0 ≤ i ≤ ∞. However, in practice, it
is only in special cases possible to obtain reliable three-dimensional surface normals
from a single image4. Johnson and Farid employ a trick to make the described scheme
feasible for general images by considering only the contour of the objects. Here, under
the additional assumption of orthographic projection, the z-component of the surface
normals is 0, and the x- and y-components can be estimated by fitting a curve to the
object contour. Then, from the nine base functions η0,0 through η2,2, only five remain.
Additionally, the coefficients r̂i can be explicitly solved for Lambertian reflectance.

Taking these facts together, Eqn. 5.6 can be directly transferred in a linear system
of equations. One line of the equations consists of

p(ν(x )) =ξ + h1,−1
2π

3
η1,−1(ν(x )) + h1,1

2π

3
η1,1(ν(x ))

+ h2,−2
π

4
η2,−2(ν(x )) + h2,2

π

4
η2,2(ν(x )) .

(5.7)

where

ξ = h0,0

√
π

2
− h2,0

√
5π

16
. (5.8)

Collecting the unknown coefficients ξ, h1,−1 . . .h2,2 in h , different intensities (obser-
vations) in p̂, and the remaining coefficients in a matrix M , Eqn. 5.7 can be more
compactly written as

p̂ = M h , (5.9)
4One such special case was demonstrated by Kee and Farid [Kee 10], by fitting 3-D face models

to persons in the scenes under investigation.
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which can be solved for h with a least squares approach, i. e.

h = (M TM )−1M Tp̂ . (5.10)

To avoid effects of noise, a Tikhonov regularization term is added. Thus, the overall
objective function is

εlight = ‖M h − p̂‖2 + λlight‖Ch‖2 , (5.11)

where λlight is a weighting factor, and

C = diag(1 2 2 3 3) (5.12)

denotes a diagonal matrix to enforce a lower energy in the higher order harmonics.
The solution to Eqn. 5.11 is

η = (M TM + λlightC
TC )−1M Tp̂ , (5.13)

which can directly be implemented. For details, please refer to [John 07a].
For forensic purposes, Johnson and Farid propose to compute the correlation of

the coefficient vectors from two lighting environments, η1 and η2 as

corr(η1,η2) =
ηT

1 Qη2√
ηT

1 Qη1 ·
√
ηT

2 Qη2

, (5.14)

where
Q = diag(0

π

6

π

6

15π

512

15π

512
) (5.15)

denotes a diagonal matrix containing the weighting of the coefficients. For a full
derivation of the error function, please refer to [John 07a]. In practice, the object
contour can be obtained by user annotations. In the quite extensive experimental
part of their work, Johnson and Farid demonstrate that these annotated contours
should span at least angles of about 130 degrees. If only a smaller part of the contour
is available, the solution in Eqn. 5.13 becomes unstable.

Although theoretically compelling, the presented algorithm suffers from a number
of assumptions. One relatively strict assumption is that the object albedo is constant.
This forces a user to select only contours of the same material. In conjunction with
the demand that a contour should span a minimum of 130 degrees, this algorithm is
difficult to apply on several real-world images, as shown in Fig. 5.13 on page 136.

To alleviate this constraint, we investigated strategies to neutralize the intensity
differences of different albedos. Such a method can act as a preprocessing step to
the presented algorithm, and effectively extends the applicability of the method. In
Sec. 5.3.2, we investigate algorithms for intrinsic image decomposition, which in the-
ory should accomplish this task. Unfortunately, the results from these methods were
not satisfying. Additionally, many of these methods suffer from excessive ressource
requirements. Thus, we propose a specific, hand-tailored method in Sec. 5.3.3, called
Intrinsic Contour Estimation. We conclude this chapter with an evaluation of these
approaches in Sec. 5.3.5.
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Figure 5.15: Example “teabag2” for intrinsic image decomposition (from [Gros 09]).
The input image (left) is separated in two images, one containing the shading com-
ponent (middle), the other containing the reflectance component (right). In this
particular case, the reflectance image still contains slight shading artifacts.

5.3.2 Intrinsic Image Decomposition

The goal of intrinsic image decomposition is to separate a single input image into two
images, one containing the shading, the other the reflectance of the scene. Figure 5.15
shows an example decomposition for the image “teabag2” from the publicly available
dataset by Grosse et al. [Gros 09]. On the left, the input image is shown. In the
middle and on the right, the ground truth shading and reflectance images are shown.

Assume that a shading image of reasonable quality can be obtained for a scene
under investigation. Then, the lighting environment estimation by Johnson and Farid
could directly operate on this shading image. In cases where it is difficult to find
suitable contour segments on the original objects, the shading image can make the
application of Johnson’s and Farid’s method possible.

The commonly used image model is typically relatively simple. A pixel p(x )
is assumed to directly split in a scalar shading component s̃(x ) and a reflectance
component r̃(x ),

p(x ) = s̃(x )r̃(x ) . (5.16)

As the righthand side of Eqn. 5.16 contains one variable more than the left hand
side, additional constraints are required to find a solution. A common additional
constraint is that shading changes smoothly, while transitions in reflectance (due to
texture or object boundaries) are typically sharper. Current state-of-the-art intrinsic
image decomposition algorithms mainly differ a) in the definition of the boundary
between shading and reflectance edges and b) the propagation of these edges across
regions without edge information.

As a basic building block, the retinex algorithm is commonly used, originally pro-
posed by Land and McCann [Land 71] (see also Sec. 4.2). The algorithm can be seen
as an estimator for the reflectance image: large (color-) edges are preserved, as they
are assumed to carry image information, while small differences are suppressed. The
difference between the retinex output and the original image can be used as an esti-
mate for the shading image. Given the fact that retinex was originally proposed in
1971, it is surprising that it is still of relevance to the community. It is a simple, ver-
satile method that is broadly applicable. However, one recent criticism with retinex
was that its generality prevents it from providing high quality solutions to the in-
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trinsic image decomposition problem in particular. Tappen et al. [Tapp 05] proposed
one of the first “modern” algorithms for intrinsic image decomposition. In this work,
the authors propose to find the reflectance and shading edges via classification of the
image derivatives. Conflicting classifications are resolved via belief propagation. In
a follow-up paper, Tappen et al. [Tapp 06] improved over this result by introducing
a weighting function to the edges, instead of considering each edge of equal impor-
tance. Shen et al. [Shen 08] proposed to extend retinex with a constraint that small
patches of equal chromaticities should have the same values in the reflectance com-
ponent r̃(x ). Bousseau et al. [Bous 09] proposed an interactive approach to intrinsic
image decomposition. Thus, the classification of regions of different reflectance is
mostly transferred to the user. Based on the user annotations, the estimation of the
shading image is used with the so-called matting Laplacian, originally proposed by
Levin et al. [Levi 08].

Grosse et al. [Gros 09] presented a comparison of different techniques for intrinsic
image decomposition, together with a carefully captured dataset, consisting of 20 iso-
lated objects. One example image, “teabag2”, is seen in Fig. 5.15. The dataset comes
with a protocol for evaluating the algorithm, which subsequently became a standard
for the community. Recently, Gehler et al. [Gehl 11] and Shen and Yeo [Shen 11]
developed two algorithms that are based on energy minimization schemes. In the
case of Gehler et al. [Gehl 11], the objective function is to minimize a sum of three
energy terms, which are computed globally on the image. These terms consist of
a) a shading prior that penalizes sharp changes in the shading, b) a retinex-based
decision function on whether an edge is due to shading or due to reflectance, and
c) a reflectance sparsity prior, which rewards a small total number of colors in the
reflectance image. The reported quantitative results on the dataset by Grosse et al.
can be considered state-of-the-art.

The second method, by Shen and Yeo [Shen 11], is in its core also inspired by
retinex. The reflectance image is obtained from a theoretically elegant L1-constrained
least squares optimization. Within this optimization function, the image is decom-
posed with a weighted red-black wavelet (see Uytterhoeven and Bultheel [Uytt 97]).
This is a so-called second-generation wavelet, which is subsequently used to group
similar spatially connected chromaticities. One of the assumptions by Shen and Yeo
is, that these chromaticities share the same reflectance, and all variations within such
a region are due to shading. Further terms in the objective function ensure the spar-
sity of the total number of the reflectances. Quantitative results of this method on
the dataset by Grosse et al. [Gros 09] are also highly competitive.

5.3.3 Incorporating Geometry with Intrinsic Contours

For this work, we experimented with the last two methods that were presented in the
previous subsection, i. e., by Gehler et al. [Gehl 11] and Shen and Yeo [Shen 11]. In the
case of the method by Gehler et al., the implementation is publicly available and could
be adapted to our application. For the method by Shen and Yeo, we aimed to carefully
reimplement the method. Validating this reimplementation, however, we were not
able to achieve the reported performance on the dataset by Grosse et al. [Gros 09].
Thus, we report in this sections only results on the method by Gehler et al..
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Figure 5.16: Example results of the method by Gehler et al. on data with less
constraints than the dataset by Grosse et al. [Gros 09]. Left: input image, right:
shading image. The shading image still contains considerable brightness differences
between skin and shirt.

This method showed also state-of-the art performance on the dataset by Grosse.
Unfortunately, we were not able to obtain a similar performance on real-world images.
For example, Fig. 5.16 shows the example output of the method by Gehler et al.
on two of our benchmark images. In both cases, the input images contain large
brightness differences between the skin and the shirts of the subjects. The resulting
shading images, after applying the intrinsic image decomposition, contained in many
cases severe artifacts from the underlying object color (shown right of the input
images in Fig. 5.16). Thus, we were not able to use the output of these methods as
a preprocessing step for neutralizing the brightness differences induced by different
materials. As a consequence, we developed a new method, which is explained in this
section.

For extending the range of useful surface normals within the method of Johnson
and Farid [John 07a], two additional facts can be used. First, limited information
about the image geometry is available, namely the user-annotated contours of the
object of interest. Second, we do not require a full shading image. Instead, it suffices
if only the contours of an object exhibit the characteristics of a shading image. Thus,
an intrinsic contour algorithm (in contrast to an intrinsic image algorithm) already
serves our purpose. In our proposed method, only the reflectances along the object
contour are considered. Thus, our goal is to isolate the shading differences along the
contour. This is why we propose to call this approach intrinsic contour estimation.

It turns out that estimates of the contour normals are extremely valuable to the
recovery of intrinsic contours. To illustrate this, we assume a single, distant point
light source, and two surface patches at the object contour with two different albedos
1ρc and 2ρc in channel c. Adopting the simplified Lambertian model from Eqn. 4.4
(see page 60), the two observed pixel intensities in channel c are

pc(x 1) = cos(θ1(x 1))ec
1ρc(x 1) (5.17)

pc(x 2) = cos(θ2(x 2))ec
2ρc(x 2) , (5.18)

Where ec denotes the illuminant intensity in channel c, and θ1(x 1) and θ2(x 2) denote
the geometry factors of the pixels x 1 and x 2. Assuming a single distant light source,
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the incidence direction can be assumed to be the same for pc(x 1) and pc(x 2). If
additionally the contour normals at both points are equal, it follows that

θ1(x 1) = θ2(x 2) , (5.19)

since θ is, the angle between the direction of the incident light and the surface normal.
Using this observation, the differences in pc(x 1) and pc(x 2) can be directly explained
as albedo differences, i. e.

pc(x 1)

pc(x 2)
=

1ρc
2ρc

, (5.20)

if the surface normals of pc(x 1) and pc(x 2) are equal.

5.3.3.1 Algorithm overview

Equation 5.20 can be directly exploited in an algorithm. Assume that a contour
has been annotated by the user. We use a polynomial of order two to find the
normals on this contour (except of implementation details, this part is identical with
the original algorithm by Johnson and Farid [John 07a]). To determine areas of the
same albedo, we can either request the user to annotate these differences, or to
use an arbitrary clustering algorithm for grouping the pixels by their chromaticities.
Another option would be to introduce a gradient-based criterion, similar to prior
work in intrinsic image decomposition. In our implementation, we used the k-means
clustering algorithm, and set k = 5 in the experiments. In Sec. 5.3.5.2, we used
manual annotation of the different clusters.

For every group of pixels with approximately similar chromaticity, we create a
chart, where the x-axis denotes the orientation of the normals, subdivided in 36 bins
(i. e., steps of 10 degrees). At the y-axis, the intensities of the respective pixels is
noted. Ideally, for the albedo to be neutralized, all intensities in one bin should
be equal. Intensity adjustment can now be conducted, if at least one bin contains
pixels from different groups. The correction factor per group is determined from the
solution of a linear system of equations. This step is detailed in the next subsection.
The normalized intensities are then directly used as input to the method of Johnson
and Farid.

5.3.3.2 Intensity Adjustment

Under the assumption of a distance light source, if two diffuse pixels with different
albedo share the same surface normal (see Eqn. 5.19), then Eqn. 5.20 shows that the
quotient of the pixel intensities corresponds to the quotient of the albedos. Inter-
estingly, the quotient itself is independent of the orientation of the surface normal.
Thus, the quotient relates all pairs of pixel intensities that were observed on one
albedo to a second albedo, as long as this pair shares the same surface normal.

We use this constraint to set up a linear system of equations. Rewriting Eqn. 5.20,
one obtains

pc(x 1)
1ρc

− pc(x 2)
2ρc

= 0 , (5.21)

Every pair of intensities with the same surface normal can form such a line in a linear
system of equations. Note that the unknown albedos 1ρc and 2ρc are constant in all
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lines. Thus, these equations can be solved for 1ρc and 2ρc, using e. g. singular value
decomposition.

In practice, we relax the task of finding pixels with the same surface normal a bit.
To do so, we examined two approaches. First, we subdivided the range of possible
angles of the normals in 24 to 36 bins. All pixels from different materials within
the same bin were selected to determine the solution for Eqn. 5.21. However, for
some test cases, we observed little angular overlap between the surface normals. A
sharp binning can lead to situations where Eqn. 5.21 can not be set up, due to the
lack of similarly oriented normals. To alleviate this problem, we decided to use a
soft threshold as second approach. In this case, a line in Eqn. 5.21 is weighted by a
weight wICE, which is computed from the angle between the surface normals as

wICE =

 exp

(
arccos(ν(x1)Tν(x2))

2

σ2
ICE

)
if arccos

(
ν(x 1)Tν(x 2)

)
≤ 2σICE

0 otherwise
, (5.22)

where wICE denotes a suitably chosen weighting factor. In our implementation, we
empirically determined σICE an angle of 18.75◦. The threshold for setting wICE to 0
is derived from σICE by interpreting it as a cutoff threshold for the tail of Gaussian
curves. The area of a Gaussian curve outside a range of two times the standard devi-
ation corresponds to about 5% of the total area, which appeared to be a reasonable
threshold for our application. This implies that in order to be able to correct the
intensities between two materials, there must be at least one pair of surface normals
between two materials whose angle is within a range of 2× σICE = 37.5 degrees. For
the computation of the intensity correction, we use the green channel of the image, as
Johnson and Farid also propose to use the green channel for their method [John 07a].

5.3.4 Dataset

To evaluate our method, we collected a dataset consisting of 10 subjects with a
resolution of 3888×2592 pixels. under illumination from different angles. Three light
bulbs were attached on a scaffold. Assuming a chest height of 1.5m above the ground,
the angles between the light sources and the subjects were chosen as 0◦ (i. e., incident
light from the right, mounted at a height of 1.5m), 45◦ (i. e., incident light from the top
right) and 90◦ (i. e., incident light from above the subject). Every lighting situation
was captured twice, once with only one of these three light sources switched on, and
once with additional diffuse room light. To diffuse the room light, a light source
was oriented towards the opposite wall of the room (behind the photographer), such
that a relatively smooth illumination was obtained. Figure 5.17 shows an example
image with and without background illumination. For our evaluation, we excluded
the images that were captured without background illumination, for two reasons.
First, upon examination of the images, it turned out that contrast is higher and
shadows are considerably harder in the images without background illumination.
Thus, images with background illumination make a more natural impression. The
second, more technical reason to exclude images without background illumination
was that all algorithms performed surprisingly well on these images, such that a
meaningful comparison was not possible there.
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Figure 5.17: Activated background illumination versus single light source. The con-
trast is considerably lower by additional background light (left) than without (right).
At the same time, the left image looks more realistically.

In the top row of Fig. 5.18, samples for the images with background illumination
are shown, under angles of 0◦, 45◦ and 90◦. In the bottom row, the labelled images
for the image under 45◦ are shown. For each image, we created a full mask (left), in
order to make sure that the surface normals point outside of the object, i. e. towards
the black part of the mask. In the middle and on the right, two object contours are
shown. The contour in the middle satisfies the assumptions of the original method
by Johnson and Farid [John 07a]: it denotes a single material, and spans a large
angular range for the surface normals. In all cases, we aimed to select the best suited
material for the original method. On the right, we additionally marked contours of a
second material, the skin of the subject. This contour serves as input to our proposed
algorithm. Pictures of all subjects are shown in the appendix in Fig. E.1 on page 191.

One thing to note is that the contours have to be carefully annotated. It is
not straightforward for a non-expert to conduct this annotation, due to a number
of hidden assumptions. First, only those contours correspond to the computational
model that belong to smooth surfaces in three dimensions. For instance, the opening
of the short sleeves of the shirt are not smooth in the z-direction, and thus have
to be excluded. Additionally, folds and self-shadows on the cloth can lead to severe
estimation errors. Textured surfaces, like the hair of the subject in Fig. 5.18 also
have to be excluded, as such contours can also lead to high estimation errors. For
the same reason, we noted in several cases that also strong hair on the arms of the
subjects had to be excluded.

5.3.5 Evaluation

We split the evaluation in two parts. First, we compare the performance of the
original method with two variants of the proposed preprocessing, intrinsic image
decomposition by Gehler et al. [Gehl 11] and intrinsic contour estimation. Then, we
investigate less constrained cases, and illustrate the advantages of intrinsic contour
estimation.
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Figure 5.18: Example images from our intrinsic contour dataset. In the top row from
left to right: example setup with incident light from 0◦, 45◦ and 90◦ with activated
background illumination. In the bottom row, the labeled data for the middle image
is shown.

5.3.5.1 Laboratory Data

For the evaluation of the laboratory data, we downscaled the images to a size of
900×600 pixels. In an initial experiment, we verified that the accuracy of the methods
is not significantly influenced, but the runtime of the method by Gehler et al. greatly
benefits from the downscaling.

We used the original method by Johnson and Farid [John 07a] without any pre-
processing, and the same method using as preprocessing steps the intrinsic image
composition algorithm by Gehler et al. [Gehl 11], and the proposed intrinsic contour
estimation. All three methods were applied once on the shorter contours that enclose
only a single material, and once on the full contours containing multiple materials.
As benchmark images, we used the 3 images per subject with activated background
illumination, where the angle of the dominant incident light is 0◦, 45◦ and 90◦. Thus,
we evaluated in total on 10 · 3 = 30 images. For quantitative evaluation, we investi-
gated the distribution of the incident light from all directions, which can be directly
computed from the output of the method by Johnson and Farid [John 07a].

An example distribution can be seen in Fig. 5.19. On the left, the (single-material)
normals for subject 7 under 45◦ illumination are shown. On the right, the intensity
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Figure 5.19: Left: Single-material contour normals on subject 7, and reprojected
estimated direction of the dominant light source. Right: pixel intensities per angle
of the normals (red), and estimated intensity curve of the incident light (green).

distribution per normal angle is plotted in red. The green curve denotes the intensity
distribution, as computed with the method by Johnson and Farid. The vertical
dashed line indicates the peak of this curve. For visual verification of the result, we
reprojected the orientation of the peak in the input image on the left, shown as small
stroke on the chest of the subject. This peak should theoretically coincide with the
angle of the dominant light source5. For the present example, this is almost exactly
the fulfilled.

We computed the mean and median errors between the peak in the distribution
and the ground truth direction of the dominant illuminant. Additionally, we defined
a “successful” recovery of the dominant illuminant as estimates with a lower error
than 22.5◦, i. e. half of the angular difference between two illuminants.

Table 5.2 shows the per-algorithm performance for this experiment. In the columns
on the left, the performance on the shorter contour, consisting of a single material,
is shown. All three methods perform similarly, with median errors between 9.1 and
10.9 degrees. Also the number of images where the estimates are a maximum of
22.5◦ off are approximately the same, ranging from 24 to 26 cases. This validates our
preprocessing, in the sense that the preprocessing does not considerably weaken the
results if only observations from one material are available. In the right columns, we
present the results on multiple materials. Not unexpected, the original method can
not handle this case. The 33% of the cases that lie within an angular error of 22◦

are only by chance correct. However, we consider this experiment interesting as a
baseline for the results using the preprocessing by Gehler et al. [Gehl 11]. In this case,
we obtain for only 3 more images an error of less than 22.5◦ compared to the original
method. This clearly demonstrates that in most cases, this algorithm for intrinsic

5Note that this assumption is only approximately correct, as the method by Johnson and Farid
assumes distant light sources, which was not realized in our laboratory setup.
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Single-colored contour Multi-colored contour
Median Mean Within 22.5◦ Median Mean Within 22.5◦

Original 10.7 13.6 25/30 (83%)
Gehler 9.1 12.5 26/30 (86%)
ICE 10.9 14.1 24/30 (80%)
Original 40.2 56.5 10/30 (33%)
Gehler 33.0 50.7 13/30 (43%)
ICE 12.6 13.0 26/30 (86%)

Table 5.2: Median and mean angular error on the lighting environment database, and
the number images for which the estimation error of the dominant light direction was
less than 22◦ degrees. In the left columns, the best single-colored contour per image
is used, in the right columns, mixed-color contours are used.

image decomposition is not able to achieve a sufficiently accurate shading image for
our application. Finally, intrinsic contour estimation obtains on multiple materials
again comparable results to the single-material cases. The median angular error is
slightly increased to 12.6◦, but overall 86% of the estimation errors lie within 22.5◦.
The per-image results of the best variant per method are shown in the appendix, in
Tab. E.1 on page 190.

For the remainder of this section, we show the behavior of the proposed algorithm,
and some typical failure cases. One pathological case of the original method is the lack
of surface normals pointing in the direction of the dominant light source. Figure 5.20
shows such a situation. The dominant light source illuminates subject 4 from an angle
of 0◦. However, the angles of all surface normals lie between approximately 22.5◦ and
170◦. Consequently, the estimated peak is located at 23.2◦, which comes from the fact
that the distribution of the normal angles provides no information between −170◦

and 20◦. Reducing this information gap is the main objective of the proposed intrinsic
contour estimation. However, using ICE on this image reveals another failure point,
this time for the proposed algorithm. Figure 5.21 shows the intensity plots when ICE
is applied on the image in Fig. 5.20. Both plots contain two groups of pixels: the
pixels from the shirt are plotted in red, the pixels from the skin are plotted in green.
On the left, the raw input data is plotted, where the skin pixels appear much brighter
than the shirt pixels. Also the range of input normals is extended towards the critical
angle of 0◦. On the right side, the brightness distribution is shown after applying
ICE. Qualitatively, the adjustment looks correct and plausible. However, for a single
surface angle, the spread of the intensities was greatly increased for the dark shirt
pixels. One reason for that might be that the noise level for cameras is generally
higher for very dark pixels. Consequently, the estimate does not improve in this case
over the original method. Addressing this issue is subject to future work. In principle,
a reasonable way to add greater robustness to noise may be to directly integrate the
proposed ICE algorithm into the core of the original algorithm by Johnson and Farid,
i. e. into Eqn. 5.13 on page 139.
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Figure 5.20: Failure case for single-material intensities and the estimated intensity
curves. Here, subject 4 is shown under an illumination angle of 0◦. However, none of
the surface normals points into this direction, which leads to an estimation error of
23.2◦.

5.3.5.2 Advantages of Intrinsic Contour Estimation

In practice, annotating contours that provide reliable estimates is surprisingly diffi-
cult. When pictures of people in more natural poses are examined, it is often the
case that the original algorithm lacks reliable data. Consider the left example image
in Fig. 5.13 on page 136. The contours of both persons are partially occluded, mainly
due to their motion, bags and additional clothing. From the viewpoint of a user, it is
difficult to reliably mark useful contours contours along the subjects, if only a single
material may be used. Figure 5.22 shows such example markings. On the left, we
limited ourselves to a single material, namely the pullover of the woman, wrapped
around the hips, and the shirt of the man. Estimating the direction of the dominant
illuminant on these segments yields widely diverging angles. In the right part of the
image, a second material was added per person, namely the skin of the woman and
the trousers of the man. In this case, the estimates of the dominant light direction
lie more closely together, though there is still a considerable error, at least in the
estimate for the woman.

We discuss further cases outside of our laboratory data, to show that an impor-
tant advantage of ICE lies in the robustness, in particular when it comes to user
interaction. When setting up the environment for capturing the laboratory dataset,
we made also a test image that is shown in Fig. 5.23. In this case, background illumi-
nation was activated, and the dominant light source was mounted at an angle of 45◦.
The second and third image of Fig. 5.23 show the results of annotating either admis-
sible skin regions or admissible shirt regions. The estimation results show a typical
drawback of the original method: As in both cases, the normal angles are oriented in
exactly opposite directions, the estimated dominant light direction is pointing in the
direction of the brighter half of the normals. Thus, a user can not be sure that the
direction of the illuminant is correctly estimated, if the surface normals exhibit such
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Figure 5.21: Failure case for multi-normal intensities and the estimated intensity
curves, using the same image as in Fig. 5.20. Left: shirt pixels are plotted in red, skin
pixels are plotted in green. Right: intensity-adjusted plot, using the ICE algorithm.
The relatively high noise level in the black pixels of the shirt dominates the skin
pixels.

a special structure. Conversely, when incorporating the intrinsic contour estimation,
both materials can be added. In this case, normal angles from almost all directions
are available.

Figure 5.24 shows a similar case. For the shirt and the jacket, the normals do
not point in opposite directions. Instead, the normals of the shirt are apparently
pointing away from the light source, while the contour normals on the jacket roughly
point towards the light source. However, the angular support for both materials

Figure 5.22: Annotations of single-material contours versus multi-material contours
on the image shown in the left image of Fig. 5.13.
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Figure 5.23: Annotations of single-material contours versus multi-material contours.
In this case, the user can not make a confident choice for single-material contours
(see text for details).

is rather small, and consequently the solution to Eqn. 5.13 on page 139 is severely
underconstraint. In this sense, it is not surprising that the estimated direction of
the light source is in both cases simply pointing towards the center of the normals.
Conversely, if contours from both materials can be selected, the joint normal angles
span a range of almost 180◦, which greatly increases the confidence in the estimate.

Figure 5.24: Annotations of single-material contours versus multi-material contours.
In this case, both the shirt and the jacket provide only small angular support, which
also clearly shows in the single-material estimates. The joint estimate, however, can
be assumed to be approximately correct.



152 Chapter 5. Illumination Cues in Image Forensics



Chapter 6

Outlook

The results in this thesis open a number of opportunities for further research. We
point out a number of aspects, which we consider most promising, or most interesting
to the scientific community.

Benchmarking in Image Forensics As image forensics is a relatively new re-
search direction, there barely exists standartized data for benchmarking forensic
algorithms. Consequently, most comparatative evaluations are conducted on indi-
vidually selected benchmark data, which makes it difficult to get an impartial and
thorough overview of the expected relative performance of the algorithms.

One reason for this lack of data might be a modeling problem. Every algorithm in
image forensics makes implicit assumptions about the behavior and techniques used
by some unknown manipulator. For instance, in this work, we assume that additive
Gaussian noise, JPEG compression, rotation and scaling approximate typical pro-
cessing steps of a copy-move forgery. Apart from the fact that we conducted several
successful experiments on real copy-move forgeries (not presented in this work), we
do not know whether our data model is a good approximation of the truth. Thus,
it would be interesting to investigate the creation of image manipulations from the
viewpoint of a digital artist. For instance, image professionals and amateurs could
be recorded while performing a manipulation that is described only on a very high
level. For instance, the task could be to “show that politician A had contacts with
politician B”. The artistic implementation should be completely up to the user. We
believe that the research for forensic methods could greatly benefit from the analysis
of such data.

Copy-Move Forgery Detection Recent algorithms for copy-move forgery detec-
tion are also able to detect copied regions that have undergone affine transforma-
tions. As affine transformations are typically implemented as interpolation opera-
tions, forensic resampling detectors are in principle also able to detect this subclass
of copy-move forgeries. At the same time, resampling detectors are typically compu-
tationally much more efficient than copy-move forgery detectors. On the downside,
resampling detectors are known to be highly susceptible to noise. Thus, it would
be interesting to further investigate reasonable practical application boundaries be-
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tween these two approaches. One should also consider creating a hybrid algorithm
that incorporates the advantages of both methodologies.

Exploitation of Compression Artifacts Current state-of-the-art algorithms show
good performance in discriminating regions with single- and double-JPEG compres-
sion. However, work on triple- or quadruple-compression is still largely unexplored.
One first step in this direction has been done by Huang et al. [Huan 10]. However, fur-
ther analysis would provide a complete study of compression artifacts. Additionally,
it would be highly interesting to combine such an algorithm for n-times compression
detection with a theoretical analysis on the discriminability of multiple subsequent
recompression steps.

Estimation of the Illuminant Color Color constancy is a classical computer
vision problem, in the sense that the separation of material and light color from
a single image is severely underconstrained. However, if additional information is
available, for instance the surface normals per pixel, the separation of illumination and
material can become considerably easier. Interestingly, intrinsic image decomposition,
photometric stereo, shape from shading and other computer vision tasks share this
property: if one complementary cue is added, then these tasks can be solved with
high accuracy.

Consequently, with the increasingly available computational power, it would be in-
teresting to investigate approaches that do not consider color constancy as an isolated
problem, but instead aim to jointly solve multiple computer vision tasks at the same
time. Barron and Malick [Barr 12] recently proposed a method that aims at a joint
solution for color constancy, intrinsic image decomposition and shape-from-shading.
However, this work is just a first step, and we assume that the joint investigation of
computer vision problems still offers many opportunities for further improvements.

Forensic Exploitation of the Illumination Color Color constancy algorithms
are typically bound to restrictive assumptions in order to work properly, like a linear
camera function, or non-overlapping color filters. In practice, however, the repre-
sentation of color is highly dependent on the capturing device. Thus, it is currently
unclear whether inconsistencies in the output of illuminant color estimators, are due
to differently illuminated scenes, or (for instance) different camera response functions
or different camera settings. This question plays a minor role for the result — color
descriptors can be used to detect inconsistencies in digital forgeries. However, for
the development of improved detection algorithms, this question can become impor-
tant. Thus, as future work, one may want to investigate the color responses on a
dataset captured with different camera models and different camera settings. Up
to now, such a dataset does not exist: for instance, the color checker dataset by
Gehler et al. [Gehl 08] is captured with only two different cameras, and a random
selection of motifs. In the Dresden image database [Gloe 10], the same scenes are
captured with different cameras and camera settings, but no color chart for objec-
tive color analysis is present in these scenes. To foster further research in foren-
sic color cues, we require a dataset that combines the capturing conditions of the
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Dresden image database with the presence of a color chart in the scene, as in the
Gehler et al. [Gehl 08] dataset.

Such a dataset, would also facilitate the investigation of color in a broader con-
text. For instance, one could consider the incorporation of cues on the Bayer-pattern
interpolation of the camera (see, e. g., [Pope 05]) or the camera response function (see,
e. g., [Ng 09a, Ng 09b]) in order to verify the plausibility of color distributions in the
scene under investigation.

Intrinsic Contours for Estimation the Lighting Environment We presented
a preprocessing step for the estimation of lighting environments. A direct improve-
ment would be to directly integrate the intrinsic contour algorithm into Eqn. 5.9
on page 138. To achieve this, one could additionally exploit the constraint intro-
duced by Basri and Jacobs [Basr 03] that Lambertian surfaces can be represented in
a nine-dimensional subspace. For the albedo coefficients, this finding can be used to
constrain the rate of change for intensities with similar surface normals.

An additional promising direction of investigation is the combination of the direc-
tion of the illuminant with the illuminant color. Geometry, illumination and surface
color provide complementary information. Thus, it is reasonable to assume that a
method that unifies both high-level forensic approaches is much more effective than
considering each of them in isolation.
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Chapter 7

Summary

Digital photography almost completely replaced analogue pictures. At the same time,
advanced image processing tools make it straightforward to edit or modify digital im-
ages. In court, for police agencies, for insurance or media companies, this raises the
challenge of discriminating original images from malicious forgeries. In image foren-
sics, researchers aim to provide computational tools to support human experts in
deciding about the authenticity of an image. In many images, one can not assume
that a security scheme, for instance a digital watermark, has been embedded by the
capturing device. Thus, blind image forensics investigates authenticity criteria that
can be obtained from either a) detecting artifacts from a particular tampering oper-
ation or b) confirming the authenticity of an image by verifying artifacts introduced
during the image formation process.

In this thesis, we present methods for both of these directions. We propose and
improve statistical cues that indicate a particular tampering operation, and investi-
gate illumination-based, physical properties of the depicted scene. To achieve this,
we also developed methods for estimating the color of the light in scenes under inho-
mogeneous illumination.

The first part of this thesis covers the investigation of algorithms for copy-move
forgeries detection (CMFD). In this scenario, it is assumed that one or multiple
regions are copied and pasted within the same image. Additionally, it may be the
case that the pasted copies have undergone further processing, like rotation, scaling
or the addition of noise. Prior to this thesis, a large number of feature sets and
algorithms has been proposed for CMFD. The general approach is to extract feature
descriptors from local image windows. Then, descriptors with a small distance in
feature space are matched. If the regions from where these matched descriptors
have been extracted cluster to larger areas, it is assumed that the matches within
these areas belong to a copy-move forgery. We review existing work, and cast these
methods within a unified CMFD pipeline. Upon thorough investigation of the three
most important steps in this pipeline, we propose novel solutions and recommend
concrete design choices for the design of CMFD techniques. We first show that
matching descriptors with approximate nearest neighbors (instead of lexicographic
sorting) improves the recall for 9 out of 13 block-based feature sets by at least 3
points, in the case of the PCA feature set, this improvement reaches even 17 points.
For all examined features, the detection precision is slightly decreased. However,
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except for the features Hu, SVD and DWT, the loss in precision is smaller than the
gain in the recall. Thus, for feature matching, we recommend the employment of the
approximate nearest neighbor search.

For grouping matches where the copied parts have been rotated or scaled, we
propose the algorithm Same Affine Transform Selection (SATS). It simultaneously
performs a grouping of feature matches and an estimation of the affine transform be-
tween matched feature blocks. Experimental results show that SATS reliably detects
copied regions, without raising the false positive rate.

Finally, we conducted a large-scale comparison of 15 proposed feature sets. We
used the same 13 block-based features as before, and additionally Sift and Surf
as keypoint-based descriptors. Our analysis shows that keypoint-based methods are
clearly superior with respect to computational complexity, and if the copied region
has undergone large amounts of rotation and scaling. Several block-based features,
on the other hand, outperform Sift and Surf in the precision of the detected regions
if the source and the copy regions only moderately differ. Consequently, keypoint-
based features are well-suited for a quick online screening of a large number of images,
while block-based features can be recommended for a more in-depth analysis of single
images.

In the third chapter, we present a pattern-recognition approach to automatically
exploit the so-called JPEG ghost observation by Farid [Fari 09]. It allows the discrim-
ination of regions that have been once compressed with the JPEG algorithm from
regions that have been doubly compressed. Knowing the number of times a region has
been compressed can serve as indirect evidence for tampering: assume for instance,
that a JPEG-compressed image is retouched and then recompressed in the JPEG
format. In this case, the retouched region appears to be only once JPEG compressed
(due to the modification of the original image content), while the remainder of the
image appears as doubly compressed. The JPEG ghost observation can be used to
detect such cases if the second JPEG compression quality is higher than the first one.
In our proposed method, we recompress the images with different JPEG quality pa-
rameters. The per-region differences between the input image and the recompressed
versions can be plotted as curves. We define a six-dimensional feature vector on
these curves. Classification results on these features are highly competitive. For in-
stance, we achieve a sensitivity and specificity of more than 0.8 on image windows of
8 × 8 pixels and a quality difference between first and second compression of only 5
points. If the application scenario allows larger image windows or larger differences
in the compression qualities, sensitivity and specificity can be further improved to
rates higher than 0.9, using the AdaBoost classifier or Random Forests. These high
detection rates show that the tedious, error-prone process of manual assessment, as
suggested in the original work [Fari 09], can be reliably replaced by our automated
algorithm.

Besides these statistical approaches, we also investigate the physics of illumina-
tion as a cue for image tampering. As a foundation for these methods, we thoroughly
study methods for estimating the color of the illuminant (see Chap. 4). The biggest
contribution of our approach is that, unlike prior work, we do not assume globally
uniform illumination. We are among the first researchers to estimate the distribution
of non-uniform illumination within a single scene. This task contains two challenges.
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First, the number and color of n illuminants has to be estimated (instead of a single
illuminant). Second, the spatial distribution of the illuminants has to be determined
(which we refer to as the localization problem). We approach this multi-illuminant
problem in several steps. First, we present two ways to create ground truth for scenes
under non-uniform illumination. One approach relies on repainting the scene in gray
to obtain pixelwise ground truth. This is only feasible for laboratory scenes, due to
the destructive nature of the process. As a second, non-destructive method, we pro-
pose the computation of the influence of every illuminant from a set of images. Given
multiple captures of the same scene, exposed to different illuminants, we demon-
strate how to recover accurate pixelwise ground truth. The resulting images from
both approaches are used to evaluate different algorithms for multi-illuminant esti-
mation. First, we investigate whether it is possible to downscale the spatial support
for classical color constancy algorithms, and thus obtain a de-facto multi-illuminant
method. On our gray-painted dataset, Random Forest Regression on several outputs
of single-illuminant estimators achieved a median error of 4.1◦.

However, one limitation of this approach is that the spatial neighborhood of pixels
is not taken into consideration for the localization problem. To address this, we
developed a physics-based method that clusters local illuminant estimates into 3
to 5 coarse regions. A single-illuminant variant of this estimator performs well on
the publicly available benchmark datasets by Barnard et al. [Barn 02c]. Qualitative
results on multi-illuminant scenes look reasonable. One drawback of this approach
is that finding the illuminant colors and the solution of the localization problem
is disconnected. Thus, we present a third approach based on Conditional Random
Fields, which jointly solves the estimation and localization problem. To evaluate
this method, we use a novel dataset that is based on the second algorithm for ground
truth computation. A comparative analysis to the method by Gijsenij et al. [Gijs 12b]
and different single-illuminant estimators shows the efficacy of the proposed method.
Ultimately, we obtain a median angular error of 2.58◦ on laboratory data, and a
median angular error of 3.32◦ on real-world images.

In the fifth chapter, we transfer the insights from illuminant color estimation to
image forensics. We propose the use of a variant of the physics-based estimator that
has been presented in the previous chapter. Its main advantage is that there are no
assumptions on spatial context, and that its physical derivation makes failure cases
easier to predict. The core of the method is to estimate the illuminant color locally,
and to create a so-called illuminant map by reprojecting the illuminant estimates on
the image. Although initial results look promising, one challenge is that the user has
to assess the output of the illuminant estimator in order to decide whether the image
has been tampered. This requires an human expert, and is therefore not suitable for
broad application.

Consequently, we developed a machine-learning algorithm that automates the
tampering decision. It operates on the proposed physics-based illuminant estimates,
and additionally on local gray world illuminant estimates. To improve the tractabil-
ity of the results, we limit this investigation to objects of approximately the same
material, i. e. faces. Texture descriptors are extracted from the illuminant maps on
the facial regions. These descriptors are classified with an SVM-Meta Fusion algo-
rithm. Preliminary results show that an Area Under the Curve (AUC) of 78% can
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be obtained, when the user input is limited to specifying a bounding box around a
face.

In another study, we investigate the direction of incident light as a cue for im-
age manipulation. Johnson and Farid [John 07a] proposed an algorithm to estimate
and compare the directions of incident light within the image plane. A user is re-
quired to mark the contours of objects under investigation. The estimated lighting
environments are then compared via computing the correlation of spherical harmon-
ics coefficients. Although this method is theoretically strong, it suffers in practice
from a number of constraints. One constraint is that for one object, only contours
exhibiting the same material can be compared. To relax this constraint, we pro-
pose a computational method to bridge the differences in the object material without
noteworthy additional user interaction. We call this algorithm Intrinsic Contour Es-
timation. Preliminary results show, that the algorithm works comparably well on
single-material regions, but increases the robustness and confidence in the results
when the object contours consist of multiple materials.

In summary, forensic researchers aim to provide a set of tools to decide whether
an image is original or not. Depending on the situation, different subsets of these
tools are applicable to the images under investigation. In this thesis, we provide
novel techniques for a broad range of forensic approaches, from statistical tampering
artifacts to consistency criteria on the physics of the scene. The algorithms differ
in their maturity: while we consider the statistical approaches to be in principle
ready for application in practice, the higher level approaches are, due to the largely
increased complexity, still in research stage. However, the insights of this work show
that the applicability of illumination-based methods can be further improved, towards
the high robustness and user-friendliness that is required in practice.
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Acronyms

AUC area under the curve
CC color constancy
CFA color filter array
CIE commission internationale de l’éclairage
CMFD copy-move forgery detection
CRF conditional random field
CV computer vision
DCT discrete cosine transform
DN do nothing
DSP digital signal processor
GE1 first-order gray edge
GE2 second-order gray edge
HOG histogram of oriented gradients
IIC inverse-Intensity Chromaticity
JPEG Joint Photographic Experts Group
MAP maximum a posteriory
MLP multi-layer perceptron
MRF Markov random field
PCA principal component analysis
RANSAC random sample consensus
RS-CMFD rotated-scaled copy-move forgery detection
RGB red, green, blue (color channels)
ROC receiver operator characteristics
SATS same affine transform selection
SD-JPEG shifted-double JPEG compression
SIFT scale-invariant feature transform
SVM support vector machine
WP White Patch
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Appendix B

Notation

Symbol Meaning
<index>
<algo>< var ><illum>

<channel> subscripts and superscripts before and after a variable
<var> have different meaning: subscript <channel> in-
dicates the color channel; superscript <illum> denotes
the lighting conditions; subscript <algo> indicates some
applied processing (e. g. Gaussian smoothing); super-
script <index> denotes the index of the variable if mul-
tiple instances of the same variable are considered.

Temporary variables
i, j counters
n upper limit of a counter, or number of elements
a , b vectors of coordinates
α, β matrix element, or other, temporarily required place

holder
Images and pixels

I image
x , x ’ spatial positions in 2D or 3D
p grayscale intensity of a pixel (i. e., from an image with

one channel)
p color pixel (in this thesis, typically a three-component

vector consisting of red, green and blue intensities)
p(x ) color pixel at position x
pc intensity of p at channel c ∈ {R,G,B}
Ĭ image after illumination neutralization (von Kries

model)
p̆ = (p̆R, p̆G, p̆B)T pixel after illumination neutralization (von Kries model)
χ(p) =
(χR(p), χG(p), χB(p))T

chromaticity of pixel p (brightness normalization of the
pixel color)

Illumination
λ wavelength
e(λ) spectral power distribution of the illuminant
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e illuminant color (in this thesis, typically a three-
component vector consisting of red, green and blue in-
tensities)

e(x ) illuminant color at position x
ec(x ), c ∈ {R,G,B} red, green or blue illuminant intensity at position x
ẽ = (ẽR, ẽG, ẽB)T estimated illuminant color
ẽ(x ) estimated illuminant color at position x
iẽ atomic illuminant estimate number i, in case that mul-

tiple estimates 1 ≤ i ≤ n are required
Material and reflectance

qc(λ) wavelength-dependent camera response function for
channel c ∈ {R,G,B}

ρ(λ) albedo as a function of wavelength
ρ albedo (in this thesis, typically a three-component vec-

tor consisting of red, green and blue intensities)
iρc albedo number i in channel c
ρ(x ) albedo at position x
ρc albedo at channel c ∈ {R,G,B}
θ angle between lighting direction and surface normal
Sd(λ) diffuse surface reflectance function
Ss(λ) specular surface reflectance function
sd(x ) simplified diffuse surface reflectance function at position

x
ss simplified specular surface reflectance function at posi-

tion x
md(x ), ms(x ) geometric scaling for diffuse and specular reflectance at

position x
Evaluation measures

nTP number of true positives
nTN number of true negatives
nFP number of false positives
nFN number of false negatives
prec precision
rec recall
spec specificity
F1 F1-score
εang angular error between two vectors
εEuclidean Euclidean error between two vectors

Chapter 1: Copy-Move Forgery Detection
τdist minimum Euclidean distance between two blocks, such

that they can be matched as copy-moved blocks
τminSize filtering threshold. If the cardinality of a group of copy-

moved matches is smaller than τminSize, it is ignored
τSATSdist maximum Euclidean distance of neighbored blocks for

SATS region growing
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τSATSminSize filtering threshold. If the cardinality of a SATS-group
of copy-moved matches is smaller than τSATSminSize, it is
ignored

i
Mf ith pair of matched CMFD features
i

Mf1, i
Mf2 First and second feature vector that belong to the

matched pair i
Mf

H hypothesis set of matches for SATS
coord( i

Mf1), Pixel coordinates from where i
Mf1 has been extracted

‖a , b‖2 Euclidean distance between two vectors a and b
nB number of blocks in an image, from which detection fea-

tures are extracted
nCB number of blocks in an image where the underlying im-

age content is a copy-move forgery
nNH Size of the pixel neighborhood where SATS searches for

matches
Chapter 2: JPEG Ghost Detection

I q1 JPEG image, compressed with JPEG quality q1

I q1,q2 JPEG image, first time compressed with JPEG quality
q1, then with JPEG quality q2

D Differences of the same image, with different JPEG com-
pression history

∆ Blockwise averaged version of D
Q set of JPEG quality factors
Jfi ith feature type for JPEG ghost detection

Chapter 3: Illuminant Color Estimation
čc(λ) for c ∈
{R,G,B}

camera color response function for wavelength λ in chan-
nel c

σp(x ) color pixel p, after Gaussian smoothing with standard
deviation σ has been applied to the image

k intensity scaling, e. g. used for generalized Gray World
∂nGW n-th derivative for Gray World
τGW order of the Minkovski-norm in generalized Gray World
σ standard deviation
I(B;∅) image where only blue light (left side) is activated
I(∅;B) image where only blue light (right side) is activated
I(∅;R) image where only red light (right side) is activated
I(B;R) image where two lights are activated: blue (left) and red

(right)
p(B;∅)(x ) pixel of image I(B;∅) at position x

p(∅;B)(x ) pixel of image I(∅;B) at position x

p(∅;R)(x ) pixel of image I(∅;R) at position x

p
(B;∅)
c (x ) pixel intensity at channel c ∈ {R,G,B} of image I(B;∅)
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e (B) ground-truth illuminant of the blue light source
e (R) ground-truth illuminant of the red light source
wGT weighting factor between e (B) and e (R) for ground truth

generation
e (B;R)(x ) interpolated ground-truth illuminant from e (R) and e (B)

at position x

w(x ) interpolation weight to compute e (B;R)(x )

θ(B;∅)(x ) geometry of image I(B;∅) (blue light left)
θ(∅;R)(x ) geometry of image I(∅;R) (red light right)
k(B;∅)(x ) intensity of image I(B;∅) (blue light left)
k(∅;R)(x ) intensity of image I(∅;R) (red light right)
Ĭ(B;∅) illumination-normalized image I(B;∅)

Ĭ(∅;R) illumination-normalized image I(∅;R)

p̆(B;∅)(x ) illumination-normalized pixel intensity of image I(B;∅)

for c ∈ {R,G,B}
io sensor responses that constitute the canonical gamut
O = {1o, . . . , no } set of sensor responses oi
G (O) canonical gamut
G (I) image gamut
Tp,o diagonal matrix transform between p and o
M set of possible mappings for gamut mapping
M̌ intersected set of possible mappings for gamut mapping
gB loss function in Bayesian color constancy
ê illuminant candidate in Bayesian color constancy
kB scaling factor in Bayesian color constancy
wd, ws diffuse and specular weighting factors containing geom-

etry and image intensity
ζ(x ), γ(x ) diffuse and specular chromaticities
sc(x ) reflectance slope in inverse-intensity chromaticity space

for channel c
S set of illuminant estimates
P set of approximately correct illuminant estimates
N set of wrong illuminant estimates
hist(S) histogram of illuminant estimates in S
Fi superpixel with index i
RIIC set of pixels in IIC space
λ1, λ2 largest and second largest eigenvalues of a set of points

set of pixels in IIC space
G graph
V vertices of a graph G
E edges of a graph G
X discrete random field over the graph G
u i value for a random variable in X
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l i illuminant label i
L = {l 1, . . . , ln} set of illuminant labels
L̃ set of estimated illuminant labels
ŭ labelling for a random variable in X
U set of all possible labellings on X
C clique
ŭC labelling on a clique C
CAll set of all cliques C
ξC(ŭC|F) potential functions
E(ŭ |F) Gibbs energy
ŭ∗ maximum a posteriori labelling
wFi weighting for unary potential in patch Fi
t(.) robust error function for the unary potential
wr exponent for t
wPW weight for the pairwise potential in E(ŭ |F)
φ (u i|Fi) unary potential for a conditional random field
ψ ((u i,u j)|(Fi,Fj)) pairwise potential for a conditional random field
ẽGW estimated illum color using the generalized gray world

algorithm
ẽ IIC estimated illum color using the physics-based inverse-

intensity chromaticity space
robustσ(εang) robust angular error function with dampening parame-

ter σ
wDamp dampening parameter for the weights of the unary po-

tentials
τb, τs Lehman/Palm specularity segmentation parameter
τsp specularity threshold per superpixel for physics-based

illuminant estimates
wsp specularity weight per superpixel for physics-based illu-

minant estimates
wUW weighting between statistical and physics-based unary

potentials
τSat saturation threshold for unusual illuminants
δ(i, j) unit impulse function on label assignments for neigh-

bored superpixels Fi and Fj
bound(i, j) boundary length between two superpixels Fi and Fj
h(Fi,Fj) function to compute pairwise potentials based on the

content of superpixels Fi and Fj
wPWsh exponential weight for the pairwise potentials

Chapter 4: Illumination Cues in Image Forensics
worig number of feature vectors from original faces
wmanip number of feature vectors from manipulated faces
ν(x ) normal vector of point x
p(ν(x )) intensity on a constant albedo surface, depending on the

surface normal
r(v ,ν) surface reflectance function, depending on the direction

of incident light and the surface normal
e(v ,x ) incident light at pixel x from angle v
v = (vx vy vz)

T direction of incident light
ηi,j(v) spherical harmonics basis function
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hi,j(x ) weighting factor for the spherical harmonics
wICE weighting factor for pixels with similar surface normals
σICE standard deviation for the computation of wICE

M estimation matrix for the direction of the incident light
Q weighting matrix for the lighting coefficients



Appendix C

Additional Material on Copy-Move
Forgery Detection

We add several details to the benchmarking of copy-move methods. First, we briefly
state our variant of keypoint-based postprocessing. Then, we present our experiments
on evaluating the copy-move feature on downscaled images and on the dataset after
re-organization in different categories. Finally, we show the benchmark images, sorted
by the (qualitative) texture categories rough, smooth and structure.

C.1 Postprocessing of Keypoint-based Methods

We apply a hierarchical clustering on matched feature pairs. We follow the algorithm
by Amerini et al. [Amer 11], i. e. we assign each point to a cluster and merge them ac-
cording to a linkage-method. For the linkage method we chose “single” linkage as it is
very fast to compute and as the choice of the linkage-method is not critical [Amer 11].
On the other hand, the stop condition for merging the clusters (“cut-threshold”) plays
an important role. Here, we did not use the inconsistency coefficient as proposed by
Amerini et al.. Instead, we rely on the distance between the nearest clusters. Two
clusters are merged if their distance lies within the cut-threshold. We chose to use a
cut-threshold of 25 pixels for SIFT and 50 pixels for SURF. As a special case, if we
obtained less than 100 matches, the cut-threshold is raised to 75 pixels. Note that
the cut-thresholds are chosen in a defensive way, such that typically multiple smaller
clusters remain, which are merged at a later stage of the algorithm.

If a minimum of 4 correspondences connects two of these clusters, we estimate with
RANSAC the affine transformation between the points that are connected by these
correspondences, analogously to Amerini et al. [Amer 11]. In contrast to prior work,
we further compute the optimal transformation matrix from the inliers according
to the gold-standard algorithm for affine homography matrices [Hart 03, pp. 130].
Transformations with implausibly large or small values are removed via thresholding.

For large images containing large copied areas the transformation matrices of the
clusters may often be similar. So, we decided to merge them if the root mean square
error (RMSE) between two transformation matrices is below a threshold of 0.03 for
the scaling and rotation part of the matrix, and below a threshold of 10 for the
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(a) JPEG compression
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(b) Scaled copy
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(c) Rotated copy

Figure C.1: Recomputed results for scaled images: recall is significantly worse.

translation part. For these merged clusters we reestimate the transformation with
the same procedure as above.

For each cluster we warp the image according to the estimated transformation
matrix and compute a correlation map between the image and its warped version.
From here on, we follow the algorithm by Pan and Lyu [Pan 10]. For every pixel and
its warped version we compute the normalized correlation coefficient with a window
size of 5 × 5 pixels. To remove noise in the correlation map, it is smoothed with
a 7 × 7 pixels Gaussian kernel. Every smoothed correlation map is then binarized
with a threshold of 0.4, and areas containing less than 1000 pixels were removed.
Furthermore, areas where no match lies were removed, too. Then, the outer contours
of each area is extracted and the inner part is flood-filled, which closes holes in the
contours. The output map is the combination of all post-processed correlation maps.
As a final verification step, each area from the combined output map is tested if it
also has a correspondence which lies in another marked area.
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Table C.1: Categorization of the database by object classes.

Assigned images
Category Small copied area Large copied area
living giraffe, jellyfish chaos, cattle, swan four babies
nature fisherman, no beach, berries, Scotland, white, hedge,

christmas hedge, Malawi,
beach wood, tree

man-made supermarket, bricks, statue, ship,
sailing, dark and bright, sweets,
disconnected shift, Egyptian, noise
pattern, sails, mask, window, writ-
ing history, knight moves

horses, kore, extension,
clean walls, tapestry, port,
wood carvings, stone ghost,
red tower

mixed barrier, motorcycle, Mykene, three-
hundred, Japan tower, wading, cen-
tral park

fountain, lone cat

C.2 Results after interpolated downsampling

Figure C.1 shows the detection results if the input image is downsampled prior to
examination. Downsampling saves computational time, but is in general penalized
by a worse recall.

C.3 Categorization of the dataset

In the thesis, we report results on the full dataset. However, the performance of the
feature descriptors undoubtedly depends on the content of the image and the copied
area. With a subdivision of the dataset in smaller categories, we make an attempt
towards better explaining the performance differences of the feature sets.

The design of a proper category-driven evaluation in image forensics is still an
open problem. We made a first attempt towards a proper categorization using two
different approaches. We divided the images in multiple categories, once into object
categories and once in texture categories. The results are reported in Sec. C.3.1 and
Sec. C.3.2, respectively.

C.3.1 Categorization by Object Classes

We split the images in categories where the copied regions belong to one of the
object categories living, nature, man-made or mixed. Here, mixed denotes copies
where arguably multiple object types occur. Table C.1 lists which image belongs
to which category. In Sec. C.4, downsampled versions of the images are presented
together with the names of the images. The number of images varies between the
categories. The smallest category is living containing 5 test cases, the largest category
is man-made (24 test cases). Note that the varying category sizes pose no problem, as
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Image level Pixel level
Method Living Nature MM Mixed Living Nature MM Mixed
Blur 100.00 97.56 96.00 97.30 64.37 65.83 65.64 64.40
Bravo 100.00 100.00 95.05 94.74 61.82 66.63 65.00 59.59
Circle 100.00 100.00 97.96 94.74 66.09 69.97 71.62 68.91
DCT 100.00 90.91 89.72 90.00 67.27 59.47 68.82 58.86
DWT 100.00 100.00 89.72 87.80 66.77 67.51 68.42 66.64
FMT 100.00 100.00 95.05 94.74 64.85 68.35 69.95 67.98
Hu 86.96 78.43 86.49 76.60 61.36 63.62 64.89 61.50
KPCA 100.00 100.00 91.43 92.31 68.46 68.77 70.56 70.37
Lin 100.00 100.00 97.96 97.30 67.00 67.35 69.57 66.11
Luo 100.00 97.56 96.00 94.74 58.46 65.98 65.03 59.59
PCA 100.00 100.00 89.72 94.74 71.01 67.08 69.88 69.35
Sift 33.33 82.35 88.00 88.89 19.12 58.51 71.87 69.26
Surf 75.00 94.74 90.20 94.12 36.32 73.28 75.97 66.71
SVD 83.33 80.00 85.71 78.26 66.14 60.62 68.71 60.49
Zernike 100.00 100.00 95.05 100.00 67.60 68.59 71.04 68.00
Average 91.91 94.77 92.27 91.75 60.44 66.10 69.13 65.18

Table C.2: Results for plain copy-move per object category at image level (left) and
at pixel level (right), in percent. “MM” denotes man-made.

we only compute the performance within a category1. We used the same parameters
as for the evaluations in the main paper. Tab. C.2 shows the F1 score for plain copy-
move forgeries at image level (left) and at pixel level (right). Here, “MM” stands for
man-made. Note that all four categories perform comparably at pixel level. However,
at image level, most feature sets perform best for living and nature.

The Figures C.2, C.3, C.4 and C.5 show the results for living, nature, man-made
and mixed under Gaussian noise, JPEG compression, rotation, scaling and joint
effects. Again, the evaluation parameters were the same as in the main paper. At
pixel level, several feature sets perform better for nature than for living. However,
in several scenarios, the best results are obtained in the categories man-made and
mixed. We assume that this comes from the fact that man-made objects often exhibit
a clearer structure, and as such encompass the task of copy-move forgery detection.

C.3.2 Categorization by Texture

We investigated a second categorization of the dataset, this time by texture. The
dataset is divided in copied areas providing smooth, rough and structured content.
Here, smooth and rough serves as a distinction of texture properties, which can be
approximately seen as low or high entropy in the snippet. The third category, struc-
tured, refers in most cases to man-made structures, like buildings: regular, clearly
pronounced edges and corners.

1For instance, for classification tasks, a balanced size of each category can prevent biased results.
However, this is not of concern in our copy-move forgery evaluation.
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Figure C.2: Performance in the category living at image level (left) and pixel level
(right).

This categorization was already prepared during the creation of the dataset. We
aimed to use a diverse set of scenes, providing various challenges to the detectors. One
challenge of real-world forgeries is the fact that we have little control over the creation
of the manipulation. As a consequence, the texture categories are not based on
quantitative measures. Instead, we used the artists’ result on a fuzzy task description,
like to “create a copy with little texture”. Given the fact that real-world copy-move
forgeries are done from artists as well, we found it reasonable to adopt the artists’
viewpoint on CMFD.
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Figure C.3: Performance in the category nature at image level (left) and pixel level
(right).

Tab. C.3 shows the assignment of images to categories. For our evaluation, we
did not distinguish the size of the copied areas. Thus, we compare the three major
categories smooth, rough and structured. The number of motifs per category is 17,
16 and 15, respectively.

Tab. C.4, Fig. C.6, Fig. C.7 and Fig. C.8 show the results per category. On the
left side, the results are shown at image level, on the right side at pixel level. The
most notable performance shift across categories is the relation between keypoint-
and block-based methods. Surf and Sift perform best in rough (see Fig. C.7),
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Figure C.4: Performance in the category man-made at image level (left) and pixel
level (right).

while block-based methods often have an advantage in smooth (see Fig. C.6). In the
category structure (see Fig. C.8), block-based and keypoint-based methods perform
similarly well.
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Figure C.5: Performance in the category mixed at image level (left) and pixel level
(right).

C.4 Base Images in the Forensic Evaluation Frame-
work

The database consists of 48 base images and 87 prepared image regions from these
images, called snippets. Base images and snippets are spliced, to simulate a close-to-
real-world copy-move forgery. During splicing, postprocessing artifacts can be added
to the snippets and the final output images. The software to create tampered images
and the associated ground truth is written in C++ and is best used with scripts
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Table C.3: Categorization of the database by texture properties.

Assigned images
Category Small copied area Large copied area
Smooth ship, motorcycle, sailing, discon-

nected shift, noise pattern, berries,
sails, mask, cattle, swan, Japan
tower, wading

four babies, Scotland, hedge,
tapestry, Malawi

Rough supermarket, no beach, fisherman,
barrier, threehundred, writing his-
tory, central park

lone cat, kore, white, clean
walls, tree, christmas hedge,
stone ghost, beach wood, red
tower

Structured bricks, statue, giraffe, dark and
bright, sweets, Mykene, jellyfish
chaos, Egyptian, window, knight
moves

fountain, horses, port, wood
carvings, extension

written in Perl. Within the Perl-scripts, series of output images can be created
by iterating over a parameter space. For instance, all spliced images with JPEG
compression are obtained by iterating over the JPEG quality parameter space. We
call one such parameterization a configuration. Upon acceptance of the paper, all
images, snippets, code, scripts and configuration files are made publicly available
from our web page. Note that with the separate building blocks, it is straightforward
to add a copy-move tampering scenario that has not been addressed so far. For
instance, assume (hypothetically) that one aims to evaluate instead of Gaussian noise
Laplacian noise on the inserted regions. Then, all that is required to the author is to
add a Laplacian noise function to the C++ code, and to add a matching configuration
to the perl scripts.

Fig. C.9, Fig. C.10 and Fig. C.11 show a preview of the images and the regions
of plain copy-move forgeries. Every database entry extends over two rows of images.
In the first row, the image containing the “reference” tampered regions are shown.
The second row shows the associated ground truth (with white being the copy-source
or copy-target regions). Note that several aspects vary over the images. First, the
size of the copied regions, second the level of detail in the copied region. Compare
e. g. in Fig. C.11 the images in the top row. The statues exhibit relatively clear
edges in comparison to the next two images where clouds, or sky and sea are copied,
respectively. As presented, the copied regions are meaningful, i. e. either they hide
image content, or they emphasize an element of the picture. Note, however, that the
software allows the snippets to be inserted at arbitrary positions. Thus, one could
equally well create semantically meaningless forgeries. This is implicitly the case
when the copied region is rotated and resampled. In such cases, the image content
becomes (naturally) implausible.
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Table C.4: Assignment of images to the categories smooth, rough and structured.

Method Smooth Rough Struct. Smooth Rough Struct.
Blur 91.89 94.12 96.77 83.47 89.52 85.73
Bravo 91.89 91.43 96.77 87.51 91.92 88.67
Circle 97.14 96.97 93.75 88.48 93.86 90.54
DCT 89.47 88.89 85.71 77.90 89.47 88.12
DWT 91.89 91.43 90.91 86.94 91.65 88.06
FMT 91.89 96.97 96.77 86.56 92.13 87.76
Hu 80.95 80.00 81.08 82.13 84.07 82.59
KPCA 91.89 94.12 93.75 87.48 92.83 90.59
Lin 91.89 100.00 100.00 83.82 90.81 85.56
Luo 94.44 91.43 93.75 86.77 90.72 87.79
PCA 91.89 94.12 88.24 86.62 92.68 90.40
Sift 73.33 96.97 78.57 48.18 85.99 55.61
Surf 87.50 93.75 90.32 60.18 79.90 69.11
SVD 79.07 80.00 85.71 75.00 90.87 85.96
Zernike 97.14 96.97 93.75 89.41 91.19 90.32
Average 89.48 92.48 91.06 80.70 89.84 84.45
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Figure C.6: Performance in the category smooth at image level (left) and pixel level
(right).
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Figure C.7: Performance in the category rough at image level (left) and pixel level
(right).
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Figure C.8: Performance in the category structure at image level (left) and pixel level
(right).
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Figure C.9: Database images from the category smooth, with annotated ground truth
for the “reference forgery”, i. e. without rotation or scaling of the copied region.
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Figure C.10: Database images from the category rough, with annotated ground truth
for the “reference forgery”, i. e. without rotation or scaling of the copied region.
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Figure C.11: Database images from the category structure, with annotated ground
truth for the “reference forgery”, i. e. without rotation or scaling of the copied region.



Appendix D

Data for the Analysis of
Multi-Illuminant Scenes

Fig. D.1 shows the 11 laboratory scenes for the multi-illuminant dataset. Note that
the empty scene “gt” has only been used to estimate the colors of the light sources,
not for the evaluation. Every scene is captured under different illuminants from
the left side and the right side. In detail, every scene was captured 14 times: six
images with only the red, white or blue illuminant on the left side or on the right
side (i. e., classical single-illuminant scenes), and eight combinations where on both
sides illuminants were switched on (i. e., white-white, white-blue, white-red, blue-
white,. . . ). One case, namely red-red, was omitted, as no two red illuminants were
available. For the scene “diff”, all 14 intermediate images are shown in Fig. D.2.

Figure D.3 shows the 20 real-world scenes. Most of the pictures are indoor scenes.
The only two cases with sunlight/shadow illumination are “dark tools” and “orange”.
Here, our model introduces a slight inaccuracy due to the fact that no full shadow
scene was available (see Sec. 4.3.2.5 on page 80 for details).
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(a) blue mug (b) pink mug (c) yellow mug

(d) gt (e) lion (f) diffuse

(g) specular and diffuse 2 (h) specular and diffuse (i) medium specularities

(j) blue and pink mug (k) blue and yellow mug

Figure D.1: Scenes from the laboratory multi-illuminant ground truth dataset.
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(a) left: ∅, right: w (b) left: ∅, right: r (c) left: ∅, right: b

(d) left: w, right: ∅ (e) left: r, right: ∅ (f) left: b, right: ∅

(g) left: w, right: w (h) left: w, right: r (i) left: w, right: b

(j) left: b, right: w (k) left: b, right: b (l) left: b, right: r

(m) left: r, right: w (n) left: r, right: b

Figure D.2: Scene “diff”, under red, white and blue illuminants from the left and the
right side. Note that there is no image that is exposed to illuminant “red” from both
sides.
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(a) all gray (b) bike (c) cameras (d) compressor

(e) dark tools (f) detergents (g) dishes (h) extinguisher

(i) faucet (j) leafs (k) mathy hat (l) metal glass

(m) model (n) orange (o) poster (p) printer paper

(q) rack (r) revistes (s) screens (t) smile

Figure D.3: Scenes from the real-world multi-illuminant ground truth dataset.



Appendix E

Data for Illumination Cues in Image
Forensics

We present additionally the per-image results of the evaluation in Fig. E.1. All
pictures of the dataset are shown in Fig. E.1.
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Angular Error
Subject Angle Single material Gehler et al. (single mat.) ICE (multi mat.)

1 0◦ 31.2 19.3 26.7
45◦ 17.9 16.8 14.7
90◦ 1.0 0.3 0.7

2 0◦ 10.8 9.1 9.8
45◦ 10.1 16.1 5.6
90◦ 17.5 15.4 22.8

3 0◦ 4.5 6.6 1.0
45◦ 18.2 16.8 17.2
90◦ 10.5 9.1 14.0

4 0◦ 23.2 15.8 25.3
45◦ 14.4 8.7 11.9
90◦ 7.0 7.0 8.0

5 0◦ 33.0 30.9 18.2
45◦ 8.7 6.3 1.0
90◦ 13.0 14.4 15.8

6 0◦ 21.0 21.0 5.9
45◦ 7.3 2.8 0.7
90◦ 13.7 15.4 13.3

7 0◦ 9.1 8.0 17.2
45◦ 5.2 8.4 8.4
90◦ 7.7 5.9 7.7

8 0◦ 25.6 25.3 20.3
45◦ 9.4 8.0 16.1
90◦ 31.9 30.2 40.4

9 0◦ 2.4 2.1 12.3
45◦ 7.0 8.7 7.3
90◦ 6.3 6.3 9.1

10 0◦ 6.6 5.6 10.1
45◦ 21.7 23.2 13.0
90◦ 11.6 12.3 14.4

Table E.1: Per-image results of the angular errors, under three different lights. in
the lighting environment database. The errors are given for every of the evaluated
methods. The failure cases are printed in bold. Intrinsic Contour Estimation (ICE)
achieves comparable performance on contours along multiple materials.
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Figure E.1: Intrinsic Contour Dataset. The light sources are oriented with angles of
0◦, 45◦ and 90◦ (i. e., from the right, bottom right, and bottom) towards the subjects.
Additionally, background light was switched on.
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