
Software-based Performance and Complexity Analysis
for the Design of Embedded Classification Systems

Matthias Ring, Ulf Jensen, Patrick Kugler and Bjoern Eskofier
Digital Sports Group, Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany

matthias.ring@informatik.stud.uni-erlangen.de, {ulf.jensen, patrick.kugler, bjoern.eskofier}@cs.fau.de

Abstract
Embedded microcontrollers are employed in an in-

creasing number of applications as a target for the im-
plementation of classification systems. This is true for
example for the fields of sports, automotive and medi-
cal engineering. However, important challenges arise
when implementing classification systems on embedded
microcontrollers, which is mainly due to limited hard-
ware resources.

In this paper, we present a solution to the two main
challenges, namely obtaining a classification system
with low computational complexity and at the same time
high classification accuracy. For the first challenge, we
propose complexity measures on the mathematical op-
eration and parameter level, because the abstraction
level of the commonly used Landau notation is too high
in the context of embedded system implementation. For
the second challenge, we present a software toolbox that
trains different classification systems, compares their
classification rate, and finally analyzes the complexity
of the trained system. To give an impression of the
importance of such complexity measures when dealing
with limited hardware resources, we present the exam-
ple analysis of the popular Pima Indians Diabetes data
set, where considerable complexity differences between
classification systems were revealed.

1. Introduction
There has been an increase in studies that implement

classification systems on embedded devices, which is
due to the miniaturization and increasing performance
of microcontrollers and sensors. Examples can be found
in the brain-computer interface field [9], the digital
sports field [2], or the computer vision field [7].

All these studies faced challenges that emerge when
designing perfect-fitting hardware-software combina-
tions. We identified the major challenges and grouped
them into two categories. The first category are applica-
tions where classification systems with preferably high
classification accuracy are designed. The challenge is
to find portable hardware for efficient execution, but for

reasons of economy no hardware resources should be
unused. The second category are applications where
the hardware selection is constrained by the price, size
and energy consumption of the hardware components.
The challenge is to find the best-performing classifica-
tion system within these constraints.

To handle the challenges in both categories, com-
plexity knowledge about classification systems is nec-
essary. This is commonly expressed in the Landau nota-
tion [10] that gives asymptotical space and time bounds.
For pattern recognition algorithms, the Landau com-
plexity can be found in standard literature as [1]. How-
ever, for the usage in the context of embedded systems
the abstraction level of this notation is too high. First,
explicit algorithm runtimes cannot be determined, only
asymptotical bounds are given. Second, different opera-
tions with different runtimes are treated equally. Third,
multiple operations can be combined and interpreted as
one operation. To express more precise information,
complexity measures for the usage in embedded sys-
tems should be based on the environment where the al-
gorithms are executed. This environment is an embed-
ded microcontroller that mostly executes mathematical
instructions and processes data in numerical formats.
Hence, we propose runtime measures on the level of
mathematical operations and memory measures on the
level of mathematical parameters. To date we are un-
aware of any study that used this approach.

In this paper, we present our analysis method, and
software that trains and analyzes classification systems.
We also present the example analysis of the Pima In-
dians Diabetes data set and demonstrate the selection
of an appropriate classification system for an embedded
implementation of this data set.

2. Theoretical analysis
In the training phase of classification systems, pre-

processing, feature selection, classification and evalu-
ation algorithms are performed. We did not consider
feature extraction algorithms, i.e. we expected the input
consisting of features, not raw sensor data.

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-1-6 ©2012 IAPR 2266



However, interesting for the implementation on em-
bedded devices is the working phase where only pre-
processing and classification algorithms are executed.
Hence, these algorithms determine the complexity of
classification systems and needed to be analyzed. This
analysis can be divided into two steps. The first step,
the theoretical algorithm analysis, contains variables
that cannot be resolved until the classification system is
trained. An example is the number of features which is
different in each data set and also may be reduced in the
feature selection step. To generate a variable-free analy-
sis result, we implemented a software that performs the
second step: it trains classification systems and extracts
the necessary information to resolve the variables from
the first, theoretical analysis.

2.1. Performance and complexity measures

We defined three groups of measures to express the
performance and complexity of a classification system:
(1) the classification accuracy of the classifier, (2) the
memory requirements for parameters of the classifica-
tion system, and (3) the number and types of operations
for one classification decision. We considered arith-
metic operations, comparisons and basic mathemati-
cal function evaluations as operations. Additions and
subtractions were handled as the same operation. The
memory requirements are determined by the number
and types of algorithm parameters that have to be saved
on the embedded system. We distinguished between in-
tegers (INT) and floating point numbers (FLOAT).

2.2. Analysis of preprocessing algorithms

We considered two preprocessing algorithms in the
analysis. The first algorithm is feature-wise normaliza-
tion (NORM, [14]) that maps all numeric features into
the same range. This levels the influence of different
features with different value ranges. The second algo-
rithm is outlier detection based on quartiles [8].

As an example, the analysis of the NORM algorithm
is shown, the analysis for the second algorithm works
similar. The d-th feature of an input pattern x̂ is de-
noted by x̂d. In the training phase, the algorithm de-
termines the minimum value dmin and maximum value
dmax for each feature. The user defines the scale fac-
tor s and translation constant t . In the working phase,
the normalized pattern x is computed feature-wise with

xd = s
x̂d − dmin
dmax − dmin

+ t . (1)

For the analysis, we counted the number and types of
operations and parameters that are necessary in Eq. (1)
to normalize one input pattern. Tab. 1 summarizes the
analysis of one normalization.

Table 1. The analysis of one normaliza-
tion. The first three columns contain the
number and types of operations, the last
column contains the FLOAT parameters.
The resulting numeric values depend on
the number of features NF .

+, − · ÷ FLOAT
3NF NF NF 2 + 2NF

2.3. Analysis of classification algorithms
The No Free Lunch theorem [1] states that there is

no best classifier for all classification tasks. Compar-
ing different classifiers is a mandatory step and there-
fore we analyzed several classification algorithms: lin-
ear discriminant analysis (LDA, [1]), support vector
machine (SVM, [15]), naive Bayes (NB, [1]), near-
est neighbor (NN, [1]), C4.5 [11], multi-layer percep-
tron (MLP, [1]), PART [4] and AdaBoost.M1 (AB, [1]).

Most algorithms have a fixed number of operations
for one classification so that we can calculate the ex-
act number. However, some algorithms have a varying
number: C4.5, NN and PART. For example, the C4.5 al-
gorithm builds a decision tree that may not be balanced
and hence has a varying number of decisions for differ-
ent input patterns. In such situations, we assumed the
worst case in the theoretical analysis.

As an example, the analysis of the SVM with a ra-
dial basis kernel is shown. The analysis for the other
algorithms works similar. In brief, the SVM transforms
input patterns into a higher dimension and then finds the
affine decision boundary that generates the maximum
margin of separation between the transformed patterns.

f(x) = sgn

(
NSV∑
i=1

yiαie
−γ‖xi−x‖22 − b

)
(2)

In Eq. (2), the function f is the decision boundary, x
the input pattern and NSV the number of support vec-
tors. For each support vector xi the variable yi denotes
its class label and αi its Lagrange multiplier. The vari-
able b is a constant and γ the radial basis kernel pa-
rameter. For the analysis, we counted the number and
types of operations and parameters that are necessary in
Eq. (2) to classify one input pattern. Tab. 2 summarizes
the analysis of one classification decision.

Table 2. The analysis of one SVM classifi-
cation. The first four columns contain the
number and types of operations, the next
two columns contain the FLOAT and INT
parameters. The resulting numeric values
depend on the number of support vectors
NSV and the number of features NF .
+, − · ex ≤ FLOAT INT

2NFNSV (3+NF )·
NSV

NSV 1 (1+NF )·
NSV + 2

NSV

2267



3. Software-based analysis
Our software uses existing software packages like

WEKA [5] to train the classification systems. It in-
cludes the mentioned preprocessing and classification
algorithms. Additionally, it provides feature selection
methods. The feature selection algorithm itself has no
impact on the analysis, because it is not performed in
the working phase. However, feature selection reduces
the number of features and can achieve a better general-
ization of the classifier [13]. That in turn influences the
accuracy and some variables in the analysis (e.g. NF ).
We considered two methods: an exhaustive search [13]
and a best first search (BF, [13]). The BF starts with
an empty feature set (full feature set) and sequentially
adds (removes) the feature that improves the rating cri-
terion the most. For both methods, we computed the
rating criterion with the wrapper method [6] that trains
the classifier with the current feature set and evaluates
the accuracy with a cross validation.

We included three evaluation methods to calcu-
late the classification accuracy. First, the n-fold
cross-validation (CV, [1]) that divides the training data
into n subsets, and uses each subset once for testing
and the remaining subsets for training. Second, the
bootstrapping method [1] that randomly selects patterns
with replacement, trains the classifier with this set and
tests with the remaining, non-selected training patterns.
Third, the training-test-set method [13] that uses two
different data sets for training and testing.

The Embedded Classification Software Toolbox
(ECST, see Fig. 1) that trains and analyzes classification
systems with the presented method can be downloaded
from our website: www.tinyurl.com/ecst-project.

4. Example analysis
We present an example analysis for the Pima Indians

Diabetes data set [3]. In the discussion we demonstrate
how to select an appropriate classification system for an
embedded implementation of this data set based on the
analysis results.

The data set is a two class problem with 768 train-
ing patterns from diabetes patients and healthy controls.
Each one has eight numeric features and a class la-
bel. We executed experiments with all analyzed clas-
sifiers. The preprocessing, feature selection and eval-
uation methods were kept constant: NORM, BF and
10-fold CV, respectively. For any configurable options
in the algorithms, the default values from WEKA were
used. For the SVM a radial basis kernel (γ = 0.5) was
used and different values for the C-parameter (0.5, 1, 2,
4 and 8) were tested.

5. Results
In the SVM system the best C-parameter value

was 0.5, the BF method selected NF = 6 features and

Figure 1. A screenshot of the ECST with
the analysis result.

the SVM used NSV = 473 support vectors. Our soft-
ware combined these training results with the theoreti-
cal analysis from Tab. 1 and 2. The result is shown in
Tab. 3. The SVM system achieved the highest accuracy
(77.73%), followed by the LDA system (76.43%) and
the NB system (75.91%). Although the SVM achieved
the best accuracy, it also used the most operations and
memory. The C4.5 classification system used the fewest
operations (27 operations total) and required consider-
ably fewer memory compared to the SVM system. The
LDA system required the fewest memory (28 parame-
ters total) and used considerably fewer operations com-
pared to the SVM system. Besides NN, the accuracy
of the different systems varied in a small range, but all
achieved similar results as in the original publication of
this data set [12].

6. Discussion

The classification system with the highest accuracy
(SVM) also required the most memory and operations.
However, other systems provided comparable accuracy
with considerably fewer resources. To reduce the num-
ber of operations performed on the embedded system,
the C4.5 system is the first choice. With 99.7% fewer
operations and 97.5% fewer memory compared to the
SVM system, it achieved only 4% less accuracy. Recall
that the C4.5 analysis is a worst case scenario and the
average operations are even fewer. To reduce the mem-
ory requirements on the embedded system, the LDA
system is the first choice. With 99.2% fewer mem-
ory and 99.5% fewer operations compared to the SVM
system, it achieved comparable accuracy. Additionally,
both systems avoid the computationally expensive ex-
ponential function evaluations in the SVM kernel.

Some microcontrollers have limited instruction sets,
for example no hardware implementation of multipli-
cation and division. These operations would have to
be implemented in software, which usually consumes
more runtime than a hardware implementation. On such
embedded systems, the C4.5 classifier is the first choice,
because only comparisons are used. The few additions,

2268



Table 3. Analysis of the Pima Indians Diabetes data set. The first column names the classifier,
the second column contains the accuracy (ACC), the next three columns contain the number
of FLOAT and INT parameters, and the number and types of operations for one classification
decision follow. The table is sorted by the total number of operations in the last column.

Classifier ACC (%) FLOAT INT Total +, − · ÷
√
x ex ≤ Total

SVM 77.73 3327 473 3800 5695 4263 6 0 473 2 10439
NN 65.62 772 769 1541 4 769 1 768 0 768 2310
NB 75.91 34 0 34 25 65 25 10 10 1 136

MLP 75.78 38 0 38 41 26 10 0 5 1 83
LDA 76.43 28 0 28 30 18 6 0 0 1 55
PART 73.44 31 42 73 18 6 6 0 0 17 47

AB 73.31 30 30 60 22 4 4 0 0 11 41
C4.5 73.83 20 73 93 12 4 4 0 0 7 27

multiplications and divisions are due to the NORM pre-
processing.

Hence, our software creates a comprehensive
overview of performance, memory requirements and
computational costs of classification systems specific
for each training data set. Using the analysis results
in the development of embedded classification systems
can reduce development time, production costs and time
to market. However, there are drawbacks that have to be
approached in further studies. We did not weight opera-
tions according to their runtime. For example, exponen-
tial function evaluations should be weighted higher than
additions or subtractions. This is the same case with the
memory measures (INT and FLOAT) that can consume
different amounts of memory on a microcontroller.

Even though there is future work, the presented
method is applicable in the general development of em-
bedded systems, not only in the pattern recognition
field. It is an inspiration to unify complexity considera-
tions when working with limited hardware resources.

7. Outlook
In future versions, we are planning to integrate a fea-

ture selection method for the specific case of embedded
systems. Based on user-chosen weights for each fea-
ture, the search will be regulated to select discriminant
features that have less computational costs. The weights
will be assigned to represent differences in the compu-
tational costs. An upper weight bound could restrict the
overall computational cost of the final feature set.

8. Acknowledgements

Financial support was provided by the Embedded
Systems Institute (ESI) Erlangen, supported in part by
the Bavarian Ministry for Economic Affairs, Infrastruc-
ture, Transport and Technology and the European Fund
for Regional Development.

References

[1] R. O. Duda et al. Pattern classification. Wiley, 2001.
[2] B. Eskofier et al. Embedded surface classification in

digital sports. Pattern Recogn. Lett., 30(16):1448–1456,
2009.

[3] A. Frank and A. Asuncion. UCI machine learn-
ing repository. http://archive.ics.uci.edu/ml, visited:
02/22/2012.

[4] E. Frank and I. H. Witten. Generating accurate rule sets
without global optimization. In Proc. of the 15th ICML,
pages 144–151, Madison, USA, 1998.

[5] M. Hall et al. The weka data mining software: An up-
date. SIGKDD Explor. Newsl., 11(1):10–18, 2009.

[6] R. Kohavi and G. H. John. Wrappers for feature subset
selection. Artif. Intell., 97(1-2):273–324, 1997.

[7] R. Kumaraswamy et al. SVM based classification of
traffic signs for realtime embedded platform. CCIS,
193(3):339–348, 2011.

[8] J. Laurikkala et al. Informal identification of outliers in
medical data. In Proc. of the 5th IDAMAP, pages 20–24,
Berlin, Germany, 2000.

[9] C. Lin et al. Development of wireless brain computer in-
terface with embedded multitask scheduling and its ap-
plication on real-time driver’s drowsiness detection and
warning. IEEE T. on Bio.-Med. Eng., 55(5):1582–1591,
2008.

[10] C. Papadimitriou and K. Steiglitz. Combinatorial Opti-
mization: Algorithms and Complexity. Dover Publica-
tions, 1998.

[11] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[12] J. Smith et al. Using the ADAP learning algorithm
to forecast the onset of diabetes mellitus. In Proc. of
the SCAMC, pages 261–265, Washington, D.C., USA,
1988.

[13] S. Theodoridis and K. Koutroumbas. Pattern recogni-
tion. Academic Press, 2006.

[14] S. Tufféry. Data Mining and Statistics for Decision
Making. Wiley, 2011.

[15] V. Vapnik. The Nature of Statistical Learning Theory.
Springer, 1995.

2269


