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Abstract

We present an evaluation of state-of-the-art computer hardware archi-
tectures for implementing the FDK method, which solves the 3-D image
reconstruction task in cone-beam computed tomography (CT). The compu-
tational complexity of the FDK method prohibits its use for many clinical
applications unless appropriate hardware acceleration is employed. Today’s
most powerful hardware architectures for high-performance computing ap-
plications are based on standard multi-core processors, off-the-shelf graphics
boards, the Cell Broadband Engine Architecture (CBEA), or customized ac-
celerator platforms (e.g., FPGA-based computer components).

For each hardware platform under consideration, we describe a thoroughly
optimized implementation of the most time-consuming parts of the FDK al-
gorithm; the filtering step as well as the subsequent back-projection step. We
further explain the required code transformations to parallelize the algorithm
for the respective target architecture. We compare both the implementation
complexity and the resulting performance of all architectures under consid-
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eration using the same two medical datasets which have been acquired using
a standard C-arm device.

Our optimized back-projection implementations achieve at least a speedup
of 6.5 (CBEA, two processors), 22.0 (GPU, single board), and 35.8 (FPGA,
9 chips) compared to a standard workstation equipped with a quad-core pro-
cessor.

Keywords:
Computed tomography, FDK reconstruction, back-projection, filtering,
hardware acceleration

1. Introduction1

The FDK method [1] is used in most of today’s cone-beam CT scanners—2

such as C-arm devices, radiation therapy devices, dental CT devices, and in3

a modified way also in digital breast tomosynthesis (DBT) devices—as the4

standard image reconstruction approach. Examples of reconstructed images5

are given in Appendix A. The typical clinical workflow requires high-speed6

reconstructions in order to enable high patient throughput or to avoid an7

interruption of patient treatment during interventional procedures. From8

the physician’s perspective, it is required that the computation of the recon-9

structed volume from a set of acquired two-dimensional X-ray projections10

terminates roughly with the end of the scanning period such that no ad-11

ditional time delay is experienced and the volume data set can be analyzed12

immediately after the scan. In order to fulfill the physician’s challenging per-13

formance requirements, it is inevitable to utilize fast computing hardware.14

The amazing progress in very-large-scale integration (VLSI) design has15

led to the development of microprocessors consisting of several independent16

compute cores that can execute multiple application tasks in parallel. The17

cores belonging to one central processing unit (CPU) often share certain levels18

of the on-chip memory hierarchy (e.g., on-chip caches). These processors19

are commonly referred to as multi-core or even as many-core CPUs. CPU20

manufacturers such as Intel and AMD currently provide up to twelve compute21

cores on a single chip with forecasts predicting 32 and even more parallel cores22

per CPU chip.23

The Cell Broadband Engine Architecture (CBEA), developed by IBM,24

Sony, and Toshiba consists of a control core (Power Processing Element,25

PPE) and eight high-performance processing cores (Synergistic Processing26

2



Elements, SPEs). The programming methodology of the CBEA, however,27

poses a major challenge to software developers by demanding careful hand-28

tuning of programs to get the maximum performance out of this chip.29

Standard graphics boards based on powerful graphics processing units30

(GPUs) can serve as another hardware alternative for high-performance com-31

puting applications. Modern GPUs in general have evolved into highly paral-32

lel, multi-threaded many-core processor architectures accompanied by high-33

bandwidth graphics memory. The graphics board is a physically separated34

device that operates as a co-processor to the CPU (host). The Compute35

Unified Device Architecture (CUDA) of NVIDIA GPUs provides an easy-to-36

use computing paradigm that enables programmers to exploit the processing37

power of GPUs without requiring expertise in computer graphics.38

Reconfigurable microchips represent a fourth architecture alternative for39

accelerating computationally intensive algorithms. FPGAs (field-programmable40

gate arrays) and CPLDs (complex programmable logic devices) are the major41

representatives of reconfigurable circuits [2]. In general, FPGAs are charac-42

terized by a larger number of arithmetic units than CPLDs. Several indepen-43

dent vendors offer FPGA-based accelerator cards for use in general-purpose44

computer environments, along with suitable development kits for software45

and firmware.46

Published results using single- and multi-core CPU-based implementa-47

tions still need more than several minutes for the reconstruction of volumes48

with high spatial resolutions of 5123 or more voxels [3, 4, 5]. Therefore, many49

specialized hardware platforms were designed in the past to reconstruct vol-50

umes from cone-beam projections, ranging from dedicated hardware solutions51

that employ FPGAs [6, 7, 8] and DSPs to clusters of workstations.52

Recently, a flat-panel cone-beam back-projection algorithm was published53

using one of the two Cell processors of a dual Cell Blade [9]. The results are54

comparable to the performance of our Cell-based back-projection module.55

The same implementation approach was used for an OpenGL-based GPU56

implementation [10, 11].57

The most time-consuming instruction of the reconstruction algorithm58

is the homogeneous divide operation in the innermost loop caused by the59

perspective projection model. Our approach does not use projection rebin-60

ning [9, 10, 11] which, on the one hand, eliminates the divide operation [12]61

but, on the other hand, introduces an additional implicit low-pass filtering62

of the projection data.63

In order to implement the back-projection on GPUs, OpenGL and shad-64
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ing languages are also used frequently [13, 14]. Unfortunately, a straight-65

forward comparison of published results is rarely possible in an objective66

manner since different algorithms, datasets, and acquisition geometries are67

considered. Furthermore, only few publications address both time-consuming68

reconstruction tasks (i.e, filtering and back-projection) simultaneously [3, 4].69

This article presents a detailed overview of the aforementioned hardware70

platforms and their application to the 3-D image reconstruction task in cone-71

beam CT. We will demonstrate the reconstruction speed possible on today’s72

most relevant hardware architectures. In all our benchmarks we used two73

medical datasets from a standard cone-beam CT scanner.74

2. Feldkamp Algorithm75

The task in 3-D image reconstruction is to recover the function of X-ray76

attenuation coefficients f(x) of an object under examination, provided a set77

of line integrals78

g(λ, θ) =

∫ ∞
0

f(a(λ) + τθ)dτ . (1)

Here, the 3-D curve a(λ) describes the corresponding position of the X-ray79

source with λ varying over a finite interval of R, and the unit vector θ rep-80

resents the direction of the respective ray. The Feldkamp algorithm is based81

on a circular trajectory, see Figure 1. Each point a(λ) on the source path82

at rotation angle λ (expressed in radians) of the source-detector assembly is83

given by the vector84

a(λ) = (R cosλ,R sinλ, 0)T , λ ∈ [0, 2π[ , (2)

where the coordinates on the right-hand side refer to the fixed right-handed85

world coordinate system (WCS) defined by its origin O and the unit vec-86

tors ex = ex(λ), ey = ey(λ), and ez = ez(λ). If we assume a flat-panel87

detector located at a distance D from the current source position, the detec-88

tor value at coordinates (u, v)T refers to an integral g(λ, u, v) along a straight89

line with direction90

θ(u, v) = (ueu + vev −Dew) /
√
u2 + v2 +D2 . (3)

The detector coordinates are identified by two orthogonal unit vectors eu91

and ev and the origin (0, 0)T of the detector coordinate system (DCS) which92

is determined by the orthogonal projection of a(λ) onto the detector plane.93
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Figure 1: Ideal Feldkamp geometry. The X-ray source rotates along an ideal circle of radius
R with center pointO in the midplane about the axis of rotation that is defined by the point
O and the direction ez. The rotation direction is given by the angle λ in counterclockwise
direction. D is the orthogonal distance between a(λ) and the corresponding detector plane.
The cylindrical field-of-view (FOV) is indicated by the inner circle. Only points inside the
FOV can be reconstructed.
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The unit vector ew = eu × ev points from the origin of the DCS towards the94

source. Throughout this article we use the notation .̌ to denote quantities95

that refer to coordinates of the pixel coordinate system (PCS) or the voxel96

coordinate system (VCS).97

2.1. Algorithmic Steps98

In order to approximately reconstruct a value f(x) at any position x99

within the support of the object density function f using the Feldkamp algo-100

rithm, the following algorithmic steps must be applied successively [1]. Note101

that this description of the algorithmic steps is based on a continuous model102

of the CT device. In practice, however, projection images are only acquired103

at a limited number of projection angles. Moreover, a detector consists of104

discrete sensor elements that are arranged in a matrix structure of rows and105

columns. Additionally, several preprocessing steps (e.g. intensity and scatter106

correction) are applied on the projection images before reconstruction (see107

[15] for more details).108

Step 1 – Filtering.. Each projection g(λ, u, v) is transformed into a filtered109

projection gF (λ, u, v) according to the following steps F1 and F2:110

F1 – Cosine Weighting.. Weight the projection data according to111

g1(λ, u, v) =
D√

u2 + v2 +D2
· g(λ, u, v) , (4)

where the factor D/
√
u2 + v2 +D2 represents the cosine of the angle between112

the principal ray of the cone-beam hitting the detector in the origin of the113

DCS and the ray hitting the detector at position (u, v)T , cf. Figure 1.114

F2 – Ramp Filtering.. Ramp-filter the projection images row-wise (i.e., with115

respect to u) by computing116

gF (λ, u, v) = g1(λ, u, v) ∗ hramp(u) , (5)

where hramp denotes the ideal ramp filter (see Figure 2) and ∗ represents the117

convolution operator. This step corresponds to a 1-D convolution along lines118

on the detector that are parallel to eu(λ).119
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Figure 2: Illustration of the ramp filter hramp. On the left side the impulse response of the
ramp filter is shown. On the right side the ideal filter response is shown in the frequency
domain. It has been band-limited to 1/(2 du). Here, du denotes the width of a pixel in
direction eu.

Step 2 – Back-Projection.. Back-project the filtered projection gF (λ, u, v)120

into the image space to obtain an approximation f̂ of f at each point x =121

(x, y, z) according to122

f̂(x) =
1

2

∫ 2π

0

µ(λ, x) gF (λ, u(λ, x), v(λ, x)) dλ , (6)

where u and v are the respective detector coordinates given by123

u(λ, x) = −D 〈(x− a(λ)), eu(λ)〉
〈(x− a(λ)), ew(λ)〉

, (7)

v(λ, x) = −D 〈(x− a(λ)), ev(λ)〉
〈(x− a(λ)), ew(λ)〉

, (8)

and µ(λ, x) is a point-dependent distance weight defined as124

µ(λ, x) =
R2

〈(x− a(λ)), ew(λ)〉2
, (9)

which accounts for the divergent rays in a cone-beam. As usual, 〈., .〉 denotes125

the standard inner product.126

2.2. Implementation Approach127

Despite potential deviations from an ideal source trajectory in practical128

cone-beam CT systems such as C-arm scanners, we perform the ramp filter-129

ing step in the direction of the detector rows. Due to the typical filter mask130

7



sizes of 1024 and more non-zero elements, convolutions are practically com-131

puted in the Fourier domain due to the reduced computational complexity.132

The convolution algorithm requires the computation of the discrete Fourier133

transform (DFT) of each input signal (projection row) as well as the DFT134

of the spatial filter kernel [16]. The actual convolution of any two vectors in135

Fourier space is then performed by component-wise multiplication of their136

Fourier components. The inverse DFT (IDFT) of this product is then com-137

puted in order to transform the filtered projection rows back into the spatial138

domain. The input vectors are zero-padded up to a suitable power of two in139

order to avoid aliasing effects that may severely spoil the filtering results [17].140

Since the Fourier-based convolution of two real-valued input vectors can be141

computed simultaneously using complex FFTs, our codes always convolve142

pairs of adjacent projection rows with the given filter kernel.143

Due to mechanical inaccuracies of some CT devices such as mobile and144

stationary mounted C-arm scanners, the back-projection is commonly not145

implemented using Equations (6), (7), and (8) directly. Instead, the mapping146

from voxels in the volume to projection image positions is represented by147

introducing homogeneous coordinates and a corresponding 3 × 4 projection148

matrix P̌(λ) for each X-ray source position a(λ) along the scan path [18].149

The projection matrices are usually estimated during a calibration step that150

must be performed only when the CT scanner is installed or maintained [3].151

For an ideal geometry as described in Section 2.1, the projection matrices152

operating on points given in world coordinates can be calculated analytically153

from Equations (7) and (8) as follows:154

P(λ) =

 −D sinλ D cosλ 0 0
0 0 D 0

− cosλ − sinλ 0 R

 . (10)

The projection matrix can further be modified to include the transforma-155

tion from voxel coordinates to world coordinates and also the transformation156

from detector coordinates to pixel coordinates:157

P̌(λ) =

 1
du

0 ǔo
0 1

dv
v̌o

0 0 1

 ·P(λ) ·


dx 0 0 tx
0 dy 0 ty
0 0 dz tz
0 0 0 1

 . (11)

Here, du and dv denote the pixel sizes in u- and v-direction of the detector,158

respectively, while dx, dy, and dz denote the voxel sizes in x-, y-, and z-159
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direction of the WCS, respectively. Finally, tx, ty, and tz represent the trans-160

lation of the VCS relative to the WCS, given in world coordinates. See161

Figure 1 for a clarification of the symbols used in Equations (10) and (11).162

Thus, back-projection can now be computed according to Algorithm 1.163

A matrix entry is referenced by its row and column index. Hence, P[i, j]164

refers to the entry in the ith row and the jth column of P. Note that ar-165

ray data structures are assumed to be 0-based. The intermediate results ǔ166

and v̌ represent detector positions. For neighboring voxels, it is sufficient167

to increment the homogeneous detector coordinates by the appropriate col-168

umn of P̌(λ) [3]. The homogeneous divide operation, however, cannot be169

avoided for voxel position increments parallel to the z-axis of the VCS be-170

cause, in practical cone-beam CT systems, the projection planes are slightly171

tilted with respect to the z-axis due to mechanical inaccuracies. We inten-172

tionally avoided the use of a projection rebinning technique that virtually173

aligns the detector to one of the volume axes because it impairs the resulting174

image quality and requires additional computations for the initial rebinning175

step [12]. The actual projection value is computed by the fetch function176

using bilinear interpolation.177

Note that, in Algorithm 1, the voxel-specific distance weight µ = µ(λ, x)178

is determined by exploiting a computational trick. Since each projection179

matrix P(λ) is only defined up to a scale factor, we may normalize P(λ)180

such that P(λ)[2, 3] = 1. In this case, it follows from Equations 9 and 10181

that182

µ(λ, x) =
R2

〈(x− a(λ)), ew(λ)〉2
=

1

t2
. (12)

Consequently, only one additional multiply operation is necessary to compute183

the distance weight itself (i.e., t−1 · t−1) and another one to compute the184

weighted voxel increment µ · fetch(Ii, ǔ, v̌) afterwards.185

3. Standard Multi-Core Processors186

3.1. Implementation187

Our implementation of the FDK processing chain is characterized by188

a pipeline architecture. Within this pipeline, the filtering and the back-189

projection are executed in dedicated stages, each using a different thread190

of control [19]. This enables parallel filtering of projection n + 1 and back-191

projection of projection n. In order to perform even more computations192

simultaneously, we further refine our implementation of both the filtering193
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Algorithm 1: Voxel-based back-projection.

Data: Np projection images Ii , 0 ≤ i < Np

Input: Np projection matrices P̌i , 0 ≤ i < Np

Output: volume V consisting of Nx ×Ny ×Nz voxels
1 for (i = 0; i < Np; i = i+ 1) do
2 for (ž = 0; ž < Nz; ž = ž + 1) do
3 for (y̌ = 0; y̌ < Ny; y̌ = y̌ + 1) do
4 for (x̌ = 0; x̌ < Nx; x̌ = x̌+ 1) do

// Homogeneous image coordinates

5 r = P̌i[0, 0] · x̌+ P̌i[0, 1] · y̌ + P̌i[0, 2] · ž + P̌i[0, 3];

6 s = P̌i[1, 0] · x̌+ P̌i[1, 1] · y̌ + P̌i[1, 2] · ž + P̌i[1, 3];

7 t = P̌i[2, 0] · x̌+ P̌i[2, 1] · y̌ + P̌i[2, 2] · ž + P̌i[2, 3];

8 ǔ = r/t; // Dehomogenize

9 v̌ = s/t; // Dehomogenize

10 µ = 1/t2; // Distance weight

11 V[x̌, y̌, ž] = V[x̌, y̌, ž] + µ · fetch(Ii, ǔ, v̌)

12 end

13 end

14 end

15 end

stage and the back-projection stage to utilize the Master/Worker paralleliza-194

tion pattern [19]. When a projection image is processed by one of these195

stages, work packages are created by the master and processed by the stage’s196

corresponding worker threads.197

The convolution algorithm is implemented as described in Section 2.2.198

Using this approach, each image row of a projection image can be processed199

independently of all others. In order to efficiently compute the necessary200

DFTs, we use the in-place functions of Intel’s Integrated Performance Prim-201

itives (IPP) software library for computing complex 1-D FFTs.202

In our parallel implementation of voxel-based back-projection, we parti-203

tion the whole volume in z-direction into sub-volumes consisting of several204

volume slices. Each sub-volume is assigned to one of the available worker205

threads. The voxels of a sub-volume are then projected onto the detector206

plane and updated with the corresponding interpolated projection values by207
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the respective worker thread. Since all worker threads have read access to208

the complete projection image, efficient sharing of projection data is achieved209

between different worker threads through the cache hierarchy of the CPU.210

In order to ensure that there are no competing write accesses to the volume,211

we process the projection images sequentially in the order they are acquired.212

Today’s CPUs additionally feature so-called vector processing units (VPUs)213

which are able to perform the same instruction on multiple data elements214

concurrently (SIMD: Single Instruction, Multiple Data). Most modern com-215

pilers can automatically vectorize code in order to take advantage of these216

SIMD facilities. The performance benefit of vectorization can often be further217

improved by manually vectorizing the code using special built-in functions,218

commonly referred to as intrinsics. Intrinsics can be thought of as substitutes219

for one or more inline assembly instructions. As is shown in Algorithm 1, the220

actual compute intensive back-projection is executed within the x-loop. This221

loop iterates over all voxels in one row of a slice (fixed y- and z-coordinates)222

and performs the same computations on each of them. We therefore con-223

centrate on vectorizing this innermost loop by processing four consecutive224

voxels in x-direction simultaneously using intrinsics.225

Yet, current VPUs have two inherent shortcomings. First, they can-226

not branch independently for individual elements of the vector and second,227

they cannot efficiently access memory in irregular patterns. During back-228

projection the access to the projection values exposes both of these prob-229

lems. At the boundary of the FOV, a voxel might be projected outside of230

the detector while its neighbor’s projection is still inside. These outliers are231

detected and stored in binary masks. The corresponding projection coordi-232

nates are set to (0, 0) in order to avoid illegal memory accesses. Finally, the233

computed projection values at these positions are set to 0 to skip the voxel234

update. Due to the projection geometry, neighboring voxels are usually not235

projected onto neighboring pixels in the projection image. This results in236

non-contiguous memory accesses when loading the projection values. There-237

fore, the projection values must be read in a scalar fashion and arranged238

manually into SIMD vectors afterwards. Bilinear interpolation is then per-239

formed using these vectors on the VPU.240

3.2. Results241

In order to evaluate the performance of our implementation, we use an242

off-the-shelf Fujitsu Siemens workstation. It contains two Intel Xeon Quad-243

Core processors (E5410) running at 2.33 GHz and 16 GB RAM. A detailed244
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Vectorization
Disabled Compiler Manual Speedup

Dataset (a) 1387.0 859.8 547.9 1.6
Dataset (b) 1816.2 1135.5 722.9 1.6

Table 1: Single-threaded performance results of back-projection using the Xeon worksta-
tion.

Number of Filtering Back-Projection Overall
Threads [s] [pps] [s] [pps] [s] [pps]

Dataset (a)
1 5.8 72.0 547.9 0.8 553.8 0.8
4 3.5 118.8 138.0 3.0 140.0 3.0
8 7.9 52.7 70.6 5.9 72.1 5.8

Dataset (b)
1 14.5 37.5 722.9 0.8 736.9 0.7
4 5.6 97.9 182.0 3.0 186.0 2.9
8 6.7 81.0 93.6 5.8 96.5 5.6

Table 2: Performance results of filtering, back-projection, and both combined (overall) on
the Xeon workstation using one, four, and eight cores, respectively.

description of the reconstructed datasets can be found in Appendix A.245

As shown in Table 1, we achieve a substantial performance improvement246

of the back-projection computations by manual SIMD optimization. Our247

manual SIMD optimization using compiler intrinsics results in a speedup of248

the back-projection step by 1.6 over compiler auto-vectorization. Addition-249

ally, the performance is substantially improved by using our parallelization250

approach for multi-core CPUs. Table 2 shows the achieved performance for251

the filtering, the back-projection, and also for the overall execution of the252

pipeline. Note that we measure the performance of the individual algorith-253

mic steps both in seconds (s) and in projections per second (pps).254

The back-projection performance scales nearly linearly when using one,255

four, or eight cores of our workstation. The corresponding speedups for four256

and eight cores are 3.97 and 7.72, respectively. On the other hand, filtering257

performance is best using four cores for both datasets, although the achieved258

speedup does not scale with the number of cores. The performance even259
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degrades when using more than four cores due to synchronization overhead260

and the limited main memory bandwidth. Using all eight cores, our imple-261

mentation is able to process about 5.6 to 5.8 projections per second when262

performing both filtering and back-projection (overall execution).263

4. Cell Broadband Engine Architecture264

4.1. Implementation265

Similar to our optimized multi-core implementation we map the process-266

ing chain to a pipeline architecture in combination with the Master/Worker267

approach. The PPE acts as the master, dividing the processing of the stage268

under consideration into smaller tasks and assigning them to the available269

SPEs. To minimize the control overhead we assign rather large tasks to the270

processing elements that are further divided into smaller tasks by the pro-271

cessing elements themselves. Communication latencies are hidden via double272

buffering techniques during the dispatching and computation process.273

During filtering we assign several projection rows to an SPE at the same274

time. The SPE then processes two rows simultaneously by loading them275

into its Local Store and performing the FFT-based convolution (including276

zero-padding).277

In the back-projection step, the volume is partitioned by the PPE into278

relatively coarse sub-volumes to reduce communication costs. These sub-279

volumes are assigned to SPEs which then further divide them into small280

sub-volumes that fit into their Local Store, together with the corresponding281

projection data. The updated sub-volume data is written back to main mem-282

ory after computation. The projection data which a sub-volume depends on283

is given by the convex hull of the projection of its corner points onto the284

image plane, see Figure 3. We use a sub-volume size of 32 × 32 × 8 voxels,285

which represents a reasonable trade-off between memory requirements and286

overall data transfer. To further reduce the communication of volume data287

between main memory and the SPEs, we decided to back-project at least288

eight projection images into the current sub-volume before storing it back to289

main memory and proceeding with the next sub-volume. In order to addi-290

tionally accelerate data access, we store the sub-volumes sequentially in main291

memory. Hence, the complete volume is stored sub-volume by sub-volume,292

instead of line by line, plane by plane in main memory. In order to mitigate293

TLB (translation lookaside buffer) thrashing, we use huge pages of 16 MB294

size [20].295
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Figure 3: Parallelization strategy of our back-projection implementation using the Cell
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into sub-volumes.

14



Each SPE can simultaneously issue (vector) instructions into two differ-296

ent pipelines per cycle. The even pipeline performs fixed- and floating-point297

arithmetic while the odd pipeline executes only load, store, and byte per-298

mutation operations. For fast implementation of an algorithm on the SPEs,299

their SIMD capabilities have to be exploited and, at the same time, efficient300

instruction scheduling to the two pipelines of each SPE must be assured. In301

the back-projection loop vector instructions are used for neighboring voxels in302

x-direction. The projection data access cannot be vectorized because the re-303

quired projection values will usually not be located in consecutive and aligned304

memory as required by a vector operation. While the address computa-305

tion and voxel update require mainly arithmetic instructions (even pipeline),306

the projection data access is executed on the odd pipeline. We apply loop-307

unrolling techniques to the iteration over the voxels of a sub-volume in order308

to leverage efficient instruction scheduling. SPEs cannot access basic data309

elements randomly in a vectorized way. Up to four instructions are required310

to load a single value: rotate the address into the preferred slot of a vector311

register, load the appropriate vector from memory, rotate the required ele-312

ment into the preferred slot, and finally shuffle it into the respective slot of313

the destination vector.314

For a bilinear interpolation operation, four projection pixel values need315

to be retrieved for each voxel update. This will result in poor performance316

unless implemented efficiently. We decrease the number of instructions for317

memory access on the limiting odd pipeline by adapting the data layout of318

the loaded projection shadow before performing the actual back-projection.319

More precisely, we duplicate for each projection pixel the pixel value below320

into the same vector. This allows to retrieve two pixel values with just one321

vector load instruction and thus requires only two memory accesses per voxel.322

This reduces the number of required instructions on the odd pipeline from 59323

to 33 resulting in a speedup of 1.8 (note that only 28 arithmetic instructions324

are required on the even pipeline). See [21] for more details. The data layout325

optimization can be performed at low computational cost because it can be326

vectorized efficiently. The drawback of this method is that twice as much327

projection data must be stored in the Local Store of the SPE.328

4.2. Results329

The filtering and back-projection code is executed on a Blade server board330

covering two Cell processors running at 3.2 GHz each and 1 GB of main331

memory shared between the two chips. Swapping and caching strategies are332
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Number of
Dataset (a) Dataset (b)

SPEs [s] pps
Speed

[s] pps
Speed

-up -up

1 5.8 70.9 1.0 14.8 37.1 1.0
2 3.0 139.4 2.0 7.4 73.8 2.0
3 2.0 208.0 2.9 4.9 110.6 3.0
8 0.8 503.0 7.1 1.9 287.5 7.8

16 0.5 836.8 11.8 1.0 535.0 14.4

Table 3: Performance results of FFT-based filtering using the CBEA for the two considered
datasets.

Number of
Dataset (a) Dataset (b)

SPEs [s] pps
Speed

[s] pps
Speed

-up -up

1 166.5 2.5 1.0 220.4 2.5 1.0
6 27.9 14.8 5.97 36.9 14.7 6.0
7 24.0 17.4 7.0 31.7 17.2 7.0
8 21.0 19.7 7.9 27.7 19.6 8.0

14 12.1 34.2 13.7 16.0 33.9 13.8
15 11.4 36.4 14.6 15.0 36.3 14.7
16 10.7 38.8 15.6 14.0 38.7 15.7

Table 4: Performance results of back-projection using the CBEA for the two considered
datasets.

avoided by streaming the projection data either from network or hard disk333

while keeping the complete volume data in main memory.334

Table 3 shows the respective results for the filter execution using 1, 2,335

3, 8, and 16 SPEs. The speedup factor relative to the execution with only336

one SPE is also given, together with the number of projections that can be337

processed per second (pps). The FFT computations account for 90.78% of338

the total processing time. The data transfer time is negligible.339

In Table 4 we show the achieved results when executing only the back-340

projection using up to 16 SPEs. The speedup factor scales almost linearly,341

indicating that our back-projection implementation is not affected by mem-342
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Number of SPEs Dataset (a) Dataset (b)
(filtering/back-projection) [s] pps [s] pps

using one
1/7 24.0 17.2 31.9 17.0

Cell chip
2/6 28.6 14.8 37.0 14.7
3/5 33.5 12.4 44.3 12.3

using two
1/15 11.4 36.2 16.2 33.5

Cell chips
2/14 12.2 34.0 16.1 33.8
3/13 13.1 31.6 17.2 31.5

Table 5: Overall pipelined execution of filtering and back-projection for the two considered
datasets, bold numbers refer to optimum configurations.

ory bandwidth limitations.343

We finally execute the filtering and the back-projection in parallel in a344

pipeline software architecture. This approach has the huge advantage that345

it does not require much main memory capacity to temporarily save the fil-346

tered projection data. The number of SPEs for filtering and back-projection,347

however, has to be chosen statically before execution. Table 5 shows the cor-348

responding results for various configurations. When using only eight SPEs,349

it is sufficient to perform the filtering with one SPE. The measured over-350

all runtime is close to the measured execution time of the back-projection351

alone using seven SPEs. Thus, filtering execution is fully hidden behind352

the back-projection. It can also be seen that more than 30 projections can353

be reconstructed per second with two Cell processors, which is sufficient for354

real-time on-the-fly reconstruction that is synchronized with the acquisition355

process.356

5. Graphics Accelerator Boards357

5.1. Implementation358

Again, the processing chain of the FDK algorithm is mapped to a pipeline359

architecture. In addition to the stages for filtering and back-projection we360

introduce a projection upload stage and a volume download stage. The device361

memory for projections is allocated inside the projection upload stage, while362

the device memory for the volume is allocated inside the back-projection363

stage. The stages are then connected single-threaded in order to share the364

same CUDA device context.365
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Figure 4: Parallelization strategy of our back-projection implementation on the GPU using
CUDA. The x̌-ž plane is divided into several blocks to specify a grid configuration, and
each thread of a corresponding block processes all voxels in y̌-direction.

The filtering stage is implemented using the CUFFT library of the CUDA366

package. All additional required computations are mapped to several suc-367

cessive CUDA kernel executions. Each CUDA kernel computes all rows of a368

complete projection image simultaneously in order to efficiently exploit the369

multiprocessors on the graphics card.370

For the computation of the voxel-based back-projection on the GPU,371

we store the complete volume in global device memory. We further bind a372

texture context to the projection data. Texture memory is not only opti-373

mized for fast random memory accesses. Rather, it further enables a perfor-374

mance improvement by using the texture hardware of the GPU for hardware-375

accelerated bilinear interpolation. The corresponding projection matrix is376

stored in constant device memory. Then we invoke our back-projection ker-377

nel on the graphics device. Each thread of the kernel computes the back-378

projection for all voxels of a certain column in a volume slice, see Figure 4.379

The increased number of registers on NVIDIA GPUs of the 200 series (e.g.,380

GeForce GTX 280, Quadro FX 5800, and Tesla C1060) allows to loop over381
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GPU GeForce Tesla GeForce Tesla
8800 GTX C870 GTX 280 C1060

Architecture 8 Series 200 Series
Processor Cores 128 240

Processor Clock [MHz] 1350 1296
Gflops [MADD/MUL] 518 933

Bus Width [bit] 384 512
Memory Clock [MHz] 900 800 1107 800

Memory Bandwidth [GB/s] 86.4 76.8 141.7 102.4
Memory [GB] 0.768 1.500 1.000 4.000

Table 6: Technical overview of the considered graphics accelerator boards from Nvidia.
The Tesla C870 is identical to the Quadro FX 5600. Likewise is the Tesla C1060 identical
to the Quadro FX 5800. The difference between Quadro and Tesla is only in reliability of
the memory and OpenGL support.

a few projection images in the inner-most loop. Using this approach, a large382

portion of previously required global memory accesses can be avoided. For383

example, looping over two projections in the inner-most loop requires only384

half as many global memory accesses than processing just a single projection.385

In order to achieve high memory bandwidth on GPUs of the 200 series,386

the volume memory layout has to be padded appropriately. The memory387

architecture of these devices is taken into account by padding each row such388

that its total size in bytes is divisible by 32, but not by 512 (e.g. 32 bytes389

padding for a 5123 volume). In the following, we will refer to the adaption of390

the memory layout as address aliasing fix (aaf). This is necessary on GPUs391

of the 200 series in order to avoid a drastic reduction in device memory392

bandwidth.393

5.2. Results394

We evaluated the filtering and back-projection performance of our GPU395

implementation using six different graphics accelerators from NVIDIA (see396

Table 6). It is crucial to choose an appropriate grid configuration which397

organizes many lightweight CUDA threads in a two-level hierarchy: a grid,398

which consists of one or more blocks where each block comprises a specific399

number of threads. The grid configuration influences both the global memory400

access pattern and the texture cache usage. Our experiments reveal that it401
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Figure 5: GPU execution times for different grid configurations and different graphics
driver versions.

is more important to optimize the global memory accesses than the texture402

cache usage, see Figure 5. Note that it is essential to have at least 64 to 128403

threads in a block in x-direction, otherwise reconstruction performance is404

significantly degraded. This is more important on GPUs of the 8 series (e.g.,405

GeForce 8800 GTX, Quadro FX 5600, and Tesla C870), as can be seen in406

Figure 5 as well. For both device series, a grid configuration of 256 × 2 is407

demonstrated to be optimal. We have made the observations that different408

GPU driver versions may lead to significantly varying performance results.409

This needs to be kept in mind when comparing GPU-based performance410

data.411

In the next step we fix the grid configuration and evaluate how the back-412

projection performance is influenced when looping over a few projection413

images in the inner-most loop. Figure 6 shows the achieved performance414

results. Unfortunately, NVIDIA GPUs of the 8 series cannot execute any415

back-projection kernel with an unrolled inner-most loop due to their limited416

number of GPU registers and even on GPUs of the 200 series the projec-417

tion loop was limited to two projections when using 3-D textures and to418

three projections when using flattened 2-D textures. In this regard, ap-419

proaches which use projection rebinning techniques [12] can further improve420

the reconstruction speed since they require fewer computations and projec-421

tion matrix accesses during back-projection. However, we intentionally avoid422

rectification-based approaches. It can further be seen in Figure 6 that the423
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Figure 6: Comparison of back-projection performance on the GPU when using a loop over
several projections in the inner-most back-projection loop.

graphics driver follows different driver paths for each branch of devices. For424

example, it is more efficient to save all projections in one flattened 2-D tex-425

ture than in a 3-D texture using the GeForce devices. Using Quadro or Tesla426

devices, however, it is more efficient to use a 3-D texture. Please note that it427

is also not an alternative to use several 2-D texture references because this428

results in a much higher register usage on all considered devices and degrades429

performance significantly.430

Unrolling the inner-most loop over two projection images proves to be431

a very efficient optimization technique. The bandwidth limitation of back-432

projection is reduced due to the saved global memory accesses.433

In Table 7, we show the timing measurements for the filtering, back-434

projection, and also for the overall execution for each device under consid-435

eration. We also give the numbers of projections that can be processed per436

second (pps). Comparing the measured results of the Tesla and Quadro de-437

vices, we achieve slightly better reconstruction speed for the Tesla devices,438

although Tesla and Quadro devices of the same GPU series are based upon439

the same hardware components. This difference seems to be based on the440

overheads caused by frequent thread context changes on the Quadro devices441

since we also use the Quadro device as the primary display adapter in our test442

systems. The FFT-based filtering is not affected by memory bandwidth, and443

between GPUs of the 8 series and the 200 series the theoretical speedup of 1.8444
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Hardware Filtering Back-Projection Overall
[s] pps [s] pps [s] pps

Dataset (a)

Quadro FX 5600 2.6 158.6 8.3 50.2 12.0 34.4
Tesla C870 2.3 181.6 8.1 51.4 11.4 36.3

GeForce 8800 GTX 2.2 184.8 7.5 55.0 10.7 38.6

Quadro FX 5800 1.6 265.4 5.4 76.4 7.9 52.3
Tesla C1060 1.3 309.0 5.2 79.3 7.3 57.1

GeForce GTX 280 1.5 281.6 4.6 89.2 7.1 58.5

Dataset (b)

Quadro FX 5600 6.6 82.9 11.5 47.3 19.8 27.5
Tesla C870 6.0 91.0 11.2 48.5 18.5 29.4

GeForce 8800 GTX 5.9 91.9 10.6 51.3 17.8 30.5

Quadro FX 5800 3.9 138.5 8.5 63.9 13.5 40.2
Tesla C1060 3.5 156.5 8.2 66.1 12.6 43.1

GeForce GTX 280 3.6 153.0 6.7 80.7 11.4 47.5

Table 7: GPU performance results of filtering and back-projection for the considered
devices of the 8 series and 200 series.
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due to computing resources is nearly reached. This is, however, not the case445

for the back-projection. The difference in execution times for the Quadro446

and GeForce follows roughly the difference in device memory bandwidth447

when no loop unrolling is applied. This indicates that our back-projection448

performance is bandwidth-limited. In this regard, the loop over multiple pro-449

jections in the innermost back-projection loop proves to be a very effective450

optimization. Thus, the increase in performance between the two considered451

GPU series does not follow the speedup in device memory bandwidth any-452

more. Instead the reached speedup factor is right in the middle between the453

speedup that is possible due to the increased amount of computing resources454

and higher memory bandwidth.455

6. FPGA-Based Hardware456

Generally speaking, an FPGA is a dynamically reconfigurable microchip457

that covers logical hardware blocks (e.g., look-up tables), arithmetic units (e.g.,458

multiply-add blocks), as well as I/O functionality [2]. Todays FPGA designs459

typically run at clock rates of 100 MHz up to 500 MHz. As an example of460

an FPGA-based accelerator hardware, we focus on the ImageProX (image461

processing accelerator) board that has been developed at Siemens Health-462

care and was released in 2006. The ImageProX board uses either a 64 bit463

PCI interface (66 MHz) or a 64 bit PCI-X interface (133 MHz) to connect464

to the host PC. It covers nine Xilinx Virtex-4 FPGAs (1× Virtex-4 SX55,465

8× Virtex-4 SX35), each of which is equipped with up to 1 GB of external466

DDR2 SDRAM memory. The ImageProX board comprises two identically467

organized rings of four Virtex-4 SX35 chips each, with the even more pow-468

erful Virtex-4 SX55 FPGA representing the core control and interface unit469

of the design [8]. Note that FPGAs currently offer fixed-point arithmetic470

only. However, due to the efficient implementation of pseudo floating-point471

arithmetic, the image quality delivered by our ImageProX-based FDK imple-472

mentation is comparable to the image quality of the other platforms under473

consideration for clinically relevant data.474

6.1. Implementation475

The filter stage of our ImageProX-based implementation is completely476

implemented as part of the Virtex-4 SX55 firmware and runs fully pipelined477

at a clock rate of 200 MHz. Since two projection rows are filtered simultane-478

ously, this yields a processing speed of 400 Mega samples per second. With479
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each sample being represented as a 16 bit fixed-point value, the filter stage is480

thus able to process 800 MByte of projection data per second, which exceeds481

the peak bandwidth of the 66 MHz PCI interface and is close to the peak482

bandwidth of about 1 GByte per second of the 133 MHz PCI-X interface.483

Consequently, the filtering stage does not represent a data processing bottle-484

neck. The FFT/IFFT blocks of the ImageProX filtering stage are generated485

using the Xilinx CoreGen library. Internally, a block floating-point format is486

employed in order to achieve a significantly high numerical accuracy of the487

filtering results.488

The back-projection is accomplished simultaneously by the eight Virtex-4489

SX35 FPGAs. The volume is being reconstructed in a blockwise manner. In a490

typical reconstruction setting with nearly optimal load balancing, each of the491

SX35 chips will store approximately the same number of projection images in492

its external SDRAM memory. Hence, each of the SX35 chips is responsible493

for back-projecting its own set of projection images into the current volume494

block. Analogous to the filtering engine, the back-projection design is fully495

pipelined as well, such that a peak speed of about 25 Giga back-projection496

steps per second can be achieved in theory: 200 MHz × 8 SX35 FPGAs × 16497

back-projection pipelines per SX35 FPGA. Within the SX35 chip 16 so-called498

parallel back-projection units (PBUs) simultaneously read a portion of the499

FPGA-internal memory that stores the portion of the current projection to500

be back-projected into the volume. The current volume block to be written is501

kept in a separate portion of FPGA-internal memory. It is important to point502

out that the back-projection phase can only start as soon as all projections (or503

at least a significantly large portion of projections) have been transferred into504

the FPGA-external memories. An on-the-fly reconstruction that immediately505

processes and back-projects a projection as soon as it becomes available is506

therefore not possible using this ImageProX implementation [8].507

6.2. Results508

Table 8 shows, among others, the reconstruction performance of a PCI-509

based ImageProX accelerator board. The comparison of the back-projection510

speed and the overall reconstruction speed reveals that the reconstruction511

speed of this platform is limited by the bandwidth of the PCI bus. In theory,512

the PCI-X bandwidth is twice as high as the PCI bandwidth such that a513

correspondingly higher overall performance will result as soon as the PCI-X514

implementation is used instead.515
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Hardware Filtering Back-Projection Overall
[s] pps [s] pps [s] pps

Dataset (a)

CPU 3.5 118.8 138.0 3.0 140.0 3.0
CBEA 0.8 503.0 21.0 19.7 24.0 17.2

GPU 1.3 309.0 5.2 79.3 7.3 57.1
FPGA 3.9 107.3 11.2 36.9

Dataset (b)

CPU 5.6 97.9 182.0 3.0 186.0 2.9
CBEA 1.9 287.5 27.7 19.6 31.9 17.0

GPU 3.5 156.5 8.2 66.1 12.6 43.1
FPGA 4.4 124.5 15.0 36.3

Table 8: Reconstruction performance results of the FDK method (filtering and back-
projection) for all hardware alternatives under consideration. Performance measurements
of an Intel quad-core processor running at 2.3 GHz (CPU), of a Cell processor with eight
SPEs running at 3.2 GHz, of an NVIDIA Tesla C1060 computing accelerator (GPU),
and of the ImageProX accelerator board (FPGA) are shown. Note that, due to the
highly integrated design of the ImageProX implementation, the FPGA-specific filtering
performance cannot be given separately.

7. Discussion516

Table 8 shows a comparison of the achievable reconstruction speed for517

the FDK method using the previously described target architectures. In or-518

der to compute an FDK reconstruction on-the-fly (i.e., in real-time) using a519

current practical cone-beam CT scanner, at least 30 projections per second520

must be processed. It can be seen from Table 8 that current GPU devices521

are ideal candidates when reconstructions shall be computed on-the-fly while522

projection data is being acquired. A real-time reconstruction can also be523

achieved with two Cell processors. Yet, it is difficult to find cost-efficient524

commercial solutions that offer two Cell processors on a single mainboard.525

As far as we know, there are currently only Cell Blades commercially avail-526

able that provide two Cell processors acting as an SMP machine. Using the527

ImageProX FPGA board, it is only possible to upload and filter the pro-528

jection images on-the-fly, since our implementation requires all projection529

images in order to compute the back-projection result. However, the back-530

25



projection computation using the ImageProX accelerator takes less than five531

seconds for each of the datasets given in Table 8. Interestingly, in comparison532

to the other considered hardware architectures, the ImageProX accelerator533

delivers the fastest back-projection performance. On the other hand, it is534

nearly impossible to build systems that are able to accomplish on-the-fly re-535

constructions using only a few cores of current general-purpose processors536

(e.g., Intel- or AMD-based). Their reconstruction performance is far from537

the speed exposed by the more specialized architectures under consideration.538

The achieved results demonstrate that a performance increase of an order of539

magnitude and even more is achievable compared to recent high-performance540

general-purpose computing platforms, see again Table 8. With more than 40541

projections per second, high-end graphics accelerators currently deliver the542

highest overall reconstruction speed.543

While implementation complexity typically tends to be comparatively low544

for CPU-based systems, highly optimized CPU implementations are becom-545

ing as complicated as implementations for more specialized architectures like546

Cell processor based systems and FPGA accelerators. According to our expe-547

rience, GPU systems provide a reasonable balance between implementation548

effort and achievable reconstruction speed.549

A downside of the GPUs is their co-processor based architecture. A cor-550

responding CPU core has to be present in order to control and to synchronize551

the GPU calculations. We observed high CPU load during GPU computa-552

tions indicating that synchronization is presently still being accomplished553

using busy-waiting loops.554

8. Conclusions555

We have presented highly optimized implementations of the FDK method556

for four different state-of-the-art hardware architectures and evaluated their557

reconstruction performance using two medical datasets that were acquired558

using a standard C-arm device.559

It is highly difficult—if not impossible—to objectively compare the re-560

construction speed of different hardware architectures as long as not the561

same preconditions are fulfilled. Linear scaling and comparison of published562

results may lead to wrong conclusions concerning the achievable reconstruc-563

tion speed due to the use of different hardware, different datasets, different564

reconstruction parameters, and due to many implementations that assume565
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an acquisition with ideal geometry, which is unfortunately not the case in566

most practical CT scanners.567

The results demonstrate that a performance increase of more than an568

order of a magnitude is achievable compared to recent multi-core CPUs.569

High-end graphics accelerators currently deliver the highest overall recon-570

struction speeds. This makes them especially well suited for the real-time571

computation of cone-beam CT reconstructions, meaning that all required572

computations can be concealed by the scan time of the X-ray acquisition573

device.574
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Appendix A. Datasets578

Dataset (a) consists of 414 projection images of 1024× 1024 pixels each.579

The convolution length for the FFT-based filtering step is 2048 (includ-580

ing zero-padding). The isotropic voxel size of the 5123 volume is set to581

(0.26 mm)3 such that the entire volume is located inside the FOV. The re-582

constructed volume shows a human head.583

Dataset (b) consists of 543 projection images of 1240 × 960 pixels each.584

The convolution length is 4096 (including zero-padding), and the isotropic585

voxel size of the 5123 volume is set to (0.31 mm)3. The reconstructed volume586

shows a phantom of a human hip.587

The used data types for both preprocessed projections and reconstruc-588

tions are single precision floating-point (32-bit). Only the FPGA-based im-589

plementation uses an efficient implementation of pseudo floating-point arith-590

metic as described in Section 6.591

Images of both datasets are shown in Figure A.7.592
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