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Abstract

We present a new endoscopic 3D scanning system based on Single-Shot Structured Light. The proposed design makes it
possible to build an extremely small scanner. The sensor head contains a catadioptric camera and a pattern projection
unit. The paper describes the working principle and calibration procedure of the sensor. The prototype sensor head has
a diameter of only 3.6mm and a length of 14mm. It is mounted on a flexible shaft. The scanner is designed for tubular
cavities and has a cylindrical working volume of about 30mm length and 30mm diameter. It acquires 3D video at 30
frames per second and typically generates approximately 5000 3D points per frame. By design, the resolution varies
over the working volume, but is generally better than 200um. A prototype scanner has been built and is evaluated in

experiments with phantoms and biological samples. The recorded average error on a known test object was 92um.
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1. Introduction

1.1. Motiwation

Endoscopes are an important tool in medicine. They
are a key component in minimally invasive surgery, but
many procedures involving endoscopes can be challenging
for the physician. This is due to the impaired depth per-
ception, as most existing endoscopes acquire and display
monocular images only. One way to overcome this limita-
tion would be an endoscope capable of acquiring the pre-
cise three-dimensional geometry of its field of view. Such
an 3D-endoscope would permit synthesizing wide baseline
stereoscopic images for surgeons, providing them with an
intuitive 3D visualization rather than with flat images.
It also has the potential to assist in robotic navigation.
Moreover, it would make it easier to perform absolute 3D
measurements, such as the area and volume of a patholog-
ical structure. Finally, it might simplify solving advanced
tasks such as coverage analysis (i.e. checking if 100% of
a surface has been seen in the course of an inspection) or
registration of endoscopic images with data generated in a
preoperative CT or MR scan.

We present a novel flexible endoscope, based on Sin-
gle Shot Structured Light, that can perform accurate 3D
imaging at 30Hz while still having a fairly small diameter
of 3.6mm. The main contributions of the paper are the
calibration algorithm for the sensor and the experimental
evaluation of the measurement results on phantom models
and ex vivo tissue samples. We reconstruct the surface
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of our test objects from image sequences acquired dur-
ing controlled sensor motion. For the future it is planned
to recover the sensor motion automatically from a second
camera, which is not yet functional in the current proto-
type. However, it is already possible to create high-quality
cavity reconstructions with a mean error of below 100ym.

The paper is organized as follows: the next section dis-
cusses the state of the art regarding 3D endoscopy. Section
3 contains a short overview of the measurement principle
behind Single Shot Structured Light. Section 4 describes
the hardware setup, which consists of an axial configu-
ration of a pattern projector and a catadioptric camera.
Sections 5 and 6 discuss two important aspects of the al-
gorithms used, namely calibration of the camera and the
projector, and data processing. Experimental results with
a phantom model and biological samples are presented in
section 7. Finally, the conclusion and discussion are given
in section 8.

2. 3D Endoscopy

Solutions for 3D endoscopy that use a standard en-
doscope and obtain 3D data with only computer vision
algorithms and no additional hardware are very conve-
nient. An ideal solution would convert a single color im-
age into a 3D data set. A well-known technique for this
is Shape-from-Shading (SfS). Okatani and Deguchi (1997)
propose to use it for 3D endoscopy. However, without
any of the assumptions conventionally used, SfS becomes
a very complex task. In medical endoscopy there is neither
a remote light source with approximately parallel rays of
illumination, nor a camera that can be described via the
orthographic projection model, nor a Lambertian surface.
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Okatani and Deguchi overcome these issues to some extent
by modelling the light source as an imaginary single point
source at the projection center and by extracting equal dis-
tance contours from the image. However, their technique
still has limitations such as inherent topological ambigu-
ities and issues due to interreflections and non-uniform
reflectance. Wu et al. (2010) present a more stable SfS
reconstruction. They merge several shape data sets into
a complete 3D model of the scene where the respective
positions and orientations of the endoscope are obtained
by an additional tracking system. However, they report a
computation time of several minutes for a complete model
of a bone.

Another monocular solution for generating 3D data is
Shape-from-Motion (SfM, also known as Structure-from-
Motion) (Thormahlen et al., 2002; O. et al., 2011; Wang
et al., 2008; Zhou et al., 2010; Hu et al., 2010). It requires a
sequence of images taken by a camera that moves relative
to the scene (or vice versa). Features are tracked over at
least two consecutive frames. Given enough features, the
3D position of the tracked points can be estimated up to
a scale factor using projective geometry. The distribution
and quantity of trackable features in the scene determines
the density of the resulting point cloud. SfM implemen-
tations also often have difficulties providing live feedback.
Typically, a whole image sequence has to be processed be-
fore 3D data can be computed. The lag described in the
literature varies widely; Hu et al. (2010) report a process-
ing time of several minutes while Grasa et al. (2009); O.
et al. (2011) demonstrate an SfM system running at 25
Hz. Additional challenges are posed by non-rigid scenes,
which may prevent a reconstruction or - in the worst case
- cause artifacts. It is also important to mention that both
SfS and SfM generate 3D data only up to scale; it cannot
be used for absolute measurement, but it is suitable for
stereo view synthesis. Hu et al. report an RMS reprojec-
tion error of their tracked features of around 1 pixel. This
corresponds to a mean residual error of 1.68mm between
their reconstruction and a ground truth surface; however
it is unclear how the scale of the metric reconstruction was
determined.

A natural way to overcome the lack of depth perception
is to image the scene from two distinct viewpoints sepa-
rated by a known baseline (interpupillary distance). Such
a setup is typically realized using two imaging sensors with
two distinct lenses (Durrani and Preminger, 1995). There
are, however, also alternative set-ups such as a single lens
behind two pupil openings combined with a lenticular ar-
ray on a single sensor chip. Such a design permits a small
endoscope diameter (Tabaee et al., 2009; D. et al., 2010),
but results in a 'weak’ 3D effect. With stereo algorithms
the quality of the 3D data depends on the optical struc-
ture of the scene; featureless areas or viewpoint-dependent
glares tend to cause problems.

A widely-used alternative to stereo vision is Structured
Light where one of the stereo cameras is replaced by a
projector or, more generally, a light source. Armbruster

and Scheffler (1998) describe a rather large endoscope (tar-
geted at industrial applications) based on the well-known
phase-shifting approach for the illumination pattern (Creath,
1986). In Kolenovic et al. (2003), the authors present a
conceptually similar miniaturized holographic interferom-
eter that can acquire data at a rate of 5Hz. The cap-
sule has a diameter of 10mm and three protruding arms
to provide three different illumination directions. They
employ temporal phase shifting to get rid of the disturb-
ing zero order and the complex-conjugate image arising
in digital holography. The reported quality is impressive,
but endocopes using phase shifting tend to be unsuitable
for moving objects. Hayashibe et al. (2006) propose a 3D
endoscope based on triangulation with a scanning laser
line. The necessary triangulation angle is created by using
two endoscopes, one for illumination and one for observa-
tion, resulting in a rather large and impractical setup. In
general, many Structured Light systems described in the
literature have an overall diameter of the endoscope signifi-
cantly greater than 10 mm and are consequently too large
for many medical applications. An exception is Clancy
et al. (2011), who present a fiber-optic addon for the in-
strument channel of a rigid endoscope. They project dots
of different wavelengths onto the scene and try to identify
the wavelength in the camera image. However, given the
color filters in typical cameras, this is a difficult task and
the resulting density of 3D points is very low.

Time-of-Flight (ToF) methods have also been consid-
ered for endoscopic imaging (Penne et al., 2009). The
advantage of ToF is that it does not suffer from occlu-
sion, unlike triangulation-based methods such as Stereo or
Structured Light. At the same time, it is very challenging
to build a small endoscope with an integrated ToF-sensor.
Penne et al. (2009) did not miniaturize the hardware to
the required level, but rather used a rigid endoscope with
fiber optics for illumination and observation. The authors
report an average error of 0.89mm for measurements of
a plastic cube with a side length of 15mm at a standoff
distance of 30mm. Surface texture and volume scatter-
ing in biological tissue (a significant effect for the infrared
illumination typically used in ToF sensors) pose problems.

Detailed surveys of 3D reconstruction techniques for
endoscopic applications can be found in Mountney et al.
(2010) and Mirota et al. (2011).

3. Structured Light

Structured Light is a method for 3D reconstruction of
surfaces based on triangulation. One or multiple illumi-
nation patterns are projected onto a scene and observed
by a camera. The basic principle is illustrated in figure
1. The projected light pattern defines a set of planes (or
other suitable surfaces) in space. The intersection of the
camera ray C'X with the corresponding light plane give
the 3D coordinates of the point X. The task of finding
the right plane for a given camera ray is known as the cor-
respondence problem. However, the camera rays and the



light planes can only be calculated if both the camera and
the projector are calibrated (see section 5).

image plane =

C T

image plane

Figure 1: Active Triangulation principle. A light plane from pro-
jector P falls on the object and is observed by camera C. In a cal-
ibrated system the 3D coordinates of the object point X can be
reconstructed.

There are numerous variants (Salvi et al., 2010) of
Structured Light methods. Single Shot techniques need
only one image of the scene to reconstruct 3D data. This
has two main advantages. Firstly, it allows to measure
moving scenes, which is critical for eventual applications
on live patients. Secondly, it simplifies the miniaturization
of the projection hardware that is necessary for endoscopic
applications. Only a single static pattern has to be pro-
jected and thus no moving parts are required.

The proposed system uses a single-shot color ring pat-
tern (see figures 2 and 5). This type of pattern can be ro-
bustly detected in the camera image and yields relatively
many 3D points per frame. The sequence of the color
rings that make up the pattern is based on pseudorandom
arrays. Their defining property is that subarrays with a
minimal length L occur at most once. Therefore, observ-
ing a subarray of sufficient length (a sequence of stripes)
in the camera image allows one to deduce its index in the
projected pattern. Thus the correspondence problem is
solved. In the example pattern shown in figure 2, we in-
terpret the color changes between subsequent stripes as
array elements (also termed symbols) rather than the ab-
solute colors. Single symbols like G-B+ are not unique,
but longer sequences are guaranteed to occur only once. If
such a characteristic sequence of color changes is detected
in the camera image, the corresponding stripe indices in
the projection pattern can be recovered and triangulation
can be performed. Why are color changes used instead of
the directly observed colors? The projected colors may be
distorted by the object texture and are therefore hard to
detect reliably in the camera image. The color changes
between neighboring rings can be recognized more easily
(Schmalz and Angelopoulou, 2010).

4. Structured Light Endoscope

The Structured Light Endoscope consists of a catadiop-
tric camera and a slide projector. The design is illustrated
in figure 3. Views of the working prototype system are

Figure 2: Example color stripe pattern. The letters symbolize the
color channels. A plus sign denotes channel rising at the edge, a
minus sign a falling channel. Constant channels are omitted.

shown in figures 4 and 5. The endoscope head has a diam-
eter of 3.6mm and contains a complete Structured Light
triangulation system in an unusual axially-aligned config-
uration. This results in a relatively long triangulation base
while keeping the diameter small. For stability the hard-
ware is housed inside a cylindrical glass tube. The light
source is external and connected via a glass fiber in the
flexible shaft. This means almost no heat needs to be dis-
sipated from the head. Still, the pattern slide is exposed
to very high light intensities, which causes bleaching in
organic dyes. Therefore the pattern is realized as a multi-
layer interference filter on a glass substrate. The camera is
catadioptric, that is it uses a mirror in addition to lenses
(Swaminathan et al., 2006). In our design the mirror is
spherical, which makes for a wide field of view at the cost
of a strong fisheye distortion towards the rim of the mir-
ror. To compensate the varying camera resolution, the
outer rings of the pattern are wider, so that they appear
approximately equally spaced in the camera image. At the
moment the Structured Light pattern consists of 15 rings
with distinct colors (figure 5).

The wide-angle catadioptric measurement camera mainly
observes the space to the sides of the endoscope. It has
a blind spot directly ahead as the camera chip sees only
itself in that direction (see figure 6). Because of its small
size of 1.2mm x 1.2mm, the camera chip has a resolution of
only 400 x 400 pixels. Furthermore, a large area of the chip
cannot be used for measurements due to the blind spot.
In future hardware revisions this aspect will be improved.

A second camera with a regular narrow-angle lens ob-
serves the area in front of the endoscope and gives addi-
tional guidance for the operator. The necessary illumi-
nation is provided by two white micro LEDs located at
the front of the scanner. It also allows tracking of feature
points on the object surface for more robust registration of
the Structured Light data. The optical design of the sen-
sor is described in more detail in Schick et al. (2011). The
measurement volume of the current prototype is a cylinder
with diameter and length of approximately 30mm.

5. Calibration

The scanning system needs to be calibrated in order to
generate metric 3D data. The calibration of the proposed
system consists of two parts. The first is the camera cali-
bration, which is needed to calculate the rays of view for
each camera pixel. The second part is the projector cali-
bration, which yields a set of cones corresponding to the
edges between the projected color rings. Range data can



Figure 3: Schematic hardware setup. The light for the projector
is supplied through a glass fiber (not shown). A ring-shaped slide
projects colored cones to the side (only rays to one side are shown).
They are observed by the camera via a curved mirror (shown in
green). A second camera provides a front view (yellow rays to the
right). In this diagram, the wall thickness of the glass housing is zero
and so no refraction of the rays occurs.

Figure 4: The physical realization of the prototype design. It has a
diameter of 3.6mm and a length of 14mm.

then be computed by intersecting the rays of view with
the appropriate cones.

We provide a short derivation of the most important
formulas used for calibration and measurements with the
endoscopic Structured Light 3D scanning system. A more
complete treatment of these raytracing fundamentals can
be found in Glassner (1989). All rays are expressed in
camera coordinates. This coordinate system has the x
and y axes in the image plane, the z axis along the optical
axis and the origin in the optical center of the camera.

5.1. Camera Calibration

As the camera is a catadioptric system with a spherical
mirror, it falls in the catagory of non-single-viewpoint cam-
eras. Two approaches for calibration were investigated.
One is a standard model of a pinhole camera with radial
and tangential distortion (Zhang, 2000). This model has
8 intrinsic parameters and 6 extrinsic parameters per pose
of the calibration target. It assumes a single viewpoint, so
it is not a perfect model for our setup. However, we found
that it can still be applied. This is because the relatively
low image resolution of 400 x 400 pixels, in conjunction
with the imaging geometry, results in an object space res-
olution of between 100um and 200um at a typical distance

Figure 5: Prototype system in operation. The connection cable for
the camera causes a small shadow. In a future version transparent
wires will be used. The inner rings are less wide to compensate
camera distortion.

of 10mm. In the peripheral area the resolution is even
lower because of the large amount of distortion in the im-
age. This mostly masks the errors caused by the varying
viewpoint.

5.1.1. Pinhole Model

In the camera coordinate system, the ray of view for
image coordinates (z;,y;) of a pinhole camera is the set of
all points X with

0 (xz - Cz)dm
X=|0|+A| Wi—c)dy | =0,+AT, (1)
0 f

with the pixel pitch (d,dy), the principal point (cg,cy),
the focal length f and the free parameter A > 0. If the
camera exhibits image distortion, that has to be corrected
first, for example using Zhang’s model (Zhang, 2000).

5.1.2. Pinhole-Mirror-Tube Model

The second calibration method augments the pinhole
camera with a reflective sphere and an encasing glass tube.
The reflection and refraction processes are explicitly mod-
eled. The augmented model has 8 additional intrinsic pa-
rameters (see Table 1).

A sphere with the center C' and radius r is the set of
points X with

(X = Cn)’ =73 (2)

m

Plugging eq. 1 into eq. 2 and simplifying, the intersection
point of a ray with the sphere must fulfill

ad> + b\ +c=0 (3)

with a = T7, b = 2(0, —Cy)- T, and ¢ = (O — Cp)* =717,
Ignoring degenerate cases, the desired intersection point
with the mirror is

_b— V12 _4
0m=0p+yﬂ, 4)

The surface normal in this point is

Om —Cpy

Ny =
10m = Con



parameter type number of parameters
camera pose 6 per pose
focal length 1
principal point
radial distortion
tangential distortion
mirror position
mirror radius
tube origin
tube rotation

NN~ W WN

Table 1: Camera calibration parameters. The first five types are
used in the pinhole model with radial and tangential distortion. The
augmented model with mirror and glass tube has additional parame-
ters, listed in the last four rows. Because of spherical symmetry, the
mirror rotation is irrelevant. Also, the rotation of the tube around
its axis is degenerate. The origin of the tube is defined as the inter-
section point of its center line with the arbitrary plane z=0. Thus,
it needs only two parameters. The inner and outer tube radius, as
well as its index of refraction, are known and therefore not part of
the optimization at all.

And the reflected ray
X=0m+XT—-2N,,(Npp, - T)) = Oy, + XTI,  (6)

The glass housing is modeled as a pair of co-axial cylin-
ders. A cylinder with the point C, on its centerline, the
axis direction A, and the radius r. is the set of points X
with

(Ce=X) x Ac)* =12 (7)

Plugging eq. 1 into eq. 7 and simplifying, we obtain an-
other quadratic equation

aX+bA+c=0 (8)

with a = (Tyn X A)?, b=2((Opm — C.) X Ag) - (T, X Ae)
and ¢ = ((Op — C.) x A,)? — r2A2. Again ignoring de-
generate cases, the intersection point of the ray with the
cylinder is

—b+ Vb2 —4acT
a m

O, = O + 9)

The normal N, in the intersection point is

O, -C,

N, = ———"
”Or - CTH

(10)
where C). is the closest point to O, on the cylinder center
line, C, = C. + 7(07‘7146;6)‘46 A..

Applying Snell’s law with the refraction indices n; and
ng we get the refracted ray direction 7. from the incident
ray direction T, as

T, = ETm - <ﬂcos%‘ ++1- Sin2%> N, (11)
N9 n2

where sin?y; = o (1 — cos?v;) and ~; is the angle of the
incident ray with the surface normal. A second refrac-
tion is computed with the outer cylinder of the glass tube
to obtain the final ray of view in the augmented camera
model.

The reverse problem of finding the image coordinates
for a given point P in space, taking into account refraction
and reflection, is more complex. It can be solved by op-
timizing the image coordinates with respect to the object
space error.

5.1.3. Results

Both models are initialized with the results of the stan-
dard calibration algorithm by Zhang for the poses, focal
length and distortion parameters. For the initialization
of the additional parameters in the pinhole+mirror+tube
model, we use the default design values of the mirror and
the tube. The parameters of both models are optimized
with the non-linear Levenberg-Marquardt algorithm (More,
1978). The quantity being optimized is the object space
error, which can be defined as follows.

The distance d of a point P to a ray is simply

,_lo-P) xT]|
7]

(12)
with the cross product x.

Each calibration point has known 3D coordinates in the
world coordinate system and known image coordinates in
the camera, which can be used to calculate a ray of view
with the equations given above. For the pinhole model the
'plain’ rays are used, while for the pinhole+mirror+tube
model the rays are additionally reflected and refracted.
The sum of the ray-point distances over all calibration
points k in all poses [ is the object space error ecqm-

Ccam = »_ Y _ d(k,1) (13)
Ik

Note that many other camera calibration algorithms
minimize the distorted image plane error. This is not a
good metric for our highly distorted images. The border of
the image is “compressed”, and points in the center have a
relatively higher weight in the optimization. Therefore we
evaluated the performance of both the undistorted image
plane error and the object space error as error metrics.
The object space error gave slightly better results. Since
it is also faster to compute and its optimization is more
stable, it is the metric that is currently being used.

We also tested two different ways of generating the cal-
ibration points. One was a classic dot grid target from
Edmund Optics. The dots were localized with ellipse fits
to their contours. Unfortunately, this is error-prone, es-
pecially in the peripheral area where the image distortion
is high. The alternative method used an active target in
the form of the display of a Fuijitsu UH900 mini-notebook.
The calibration marks on this target were generated with
the algorithm outlined in Schmalz et al. (2011). This



method displays a series of coded patterns on the display
to uniquely identify each pixel. Virtual calibration marks
can then be defined with subpixel precision. With help of
the known pixel size (only 94pm in the case of the UH900)
pixel coordinates can be converted into metric coordinates.

The results of the camera calibration can be seen in
Table 2. The active target approach gives better results
than the dot grid target. Also, the extended model with
mirror and tube gives better results than the simple pin-
hole model. Of course, using more parameters naturally
reduces the residual error. Therefore we first evaluated the
error of the pinhole-mirror-tube model with default design
values for the 8 additional parameters (optimizing only the
parameters already used in the pure pinhole model). This
resulted in a marked improvement in the RMS errors and
proved that the extended model is sound. In a third run
all parameters were optimized, yielding a further improve-
ment of the residual errors. Unfortunately, there are no
ground truth calibration parameters to compare our re-
sults against, but the optimized parameters for the mirror
and the glass tube were within the manufacturing toler-
ances of their design values.

For both the classic and the active calibration six differ-
ent camera poses were used. We took care to use a compa-
rable set of poses for both calibrations. The active target
yielded 1504 marks, the dot grid 811 marks. Compared
to the spatial camera resolution of between 100pm and
200pm, the absolute values of the resulting object space
errors are small.

RMS error [mm] | classic  active
pinhole 0.0864 0.0674
pmt default 0.0802 0.0546
pmt optimized | 0.0707 0.0501

Table 2: Endoscopic camera calibration results after optimization of
the object space error. The active target gives better results than the
classic target. The full model with pinhole camera, mirror and glass
tube (abbreviated pmt) is better than the simple pinhole model, even
when the additional parameters are set to their default design values.
Optimizing the full parameter set results in a further improvement.

5.2. Projector Calibration

For the projector calibration we model the projected
rings as light cones. A planar dot grid calibration target
is acquired in several poses while the cones are being pro-
jected (figure 6). In each pose, the surface of the target
defines a plane in space. This plane can be calculated from
the locations of the dots as observed by a calibrated cam-
era. The camera simultaneously observes the color rings,
which are the intersections of the target surface plane with
the set of projected light cones. Thus each pose yields a
set of points on the surface of each projected cone. The
cones to which the points belong are identified using the
algorithm described in section 6.

An acute cone with the axis A, the vertex V and the
angle 6 < 7 is the set of all points X with

A (%) = cosf (14)

The distance of a point P to the cone is

. . T
d=|P-V]| - sin (mzn(5, 5))

with 0 = acos (ﬁ . A) —6. Eq. 14 can also be written
as

(X-V)"MX-V)=0 (15)
with

M = AAT — 1. cos®0 (16)
and

A (X-V)>0 (17)

Finally, the parameters of the cones are fitted, again us-
ing the Levenberg-Marquardt algorithm. The error metric
in this case is the distance between the calibration points
and the intersection points of the corresponding camera
rays with the cones (also see figure 8).

What is the intersection point of a ray and a cone?
Plugging eq. 1 into eq. 15 and simplifying we obtain a
quadratic equation

aX + b\ +c=0 (18)

where a = TTMT, b = TTM(O — V) and ¢ = (O —
V)TM(O —V). Excluding all degenerate cases, the sought
after intersection point is

—b— Vb —
X.=0+4+ —— Y " %rp (19)
a
To determine the parameters of the light cones in the

projector calibration, the objective function
€proj :ZZZHP(k,Z,m)—Xc(k,l,m)H (20)
m k

is minimized. Here m iterates over all cones, [ over all
target poses and k over all calibration points P visible in
the current pose.

An alternative metric to optimize would be the sum
of the orthogonal distances between the calibration points
and the cones, without calculating the intersection points
with the rays of view. However, eq. 20 gave better re-
sults, as it mirrors the way depth data is computed in the
calibrated sensor (which is also based on eq. 19).

For reasons of numerical stability, we do not optimize
each cone separately but enforce a common vertex and axis
for all the cones. However, the refraction of the light rays
in the glass tube causes a shift in the apparent z-position



Figure 6: Calibration target for the projector calibration. Left: Out-
side view. Right: Camera view. The dots are used to determine the
pose of the target relative to the calibrated camera. The projected
rings yield the calibration points for the light cones. In the right
image, the black area at the top is caused by the camera cable. The
black area in the center is caused by the camera chip looking at itself
in the mirror.

of the vertex, which depends on the opening angle of the
cone. This z-offset is determined separately for each cone
in a second optimization step.

An example input image is shown in figure 6. The
number of projector calibration points recovered from six
poses of the target is illustrated in figure 7. The outer-
most and innermost cones do not have enough points for
a reliable calibration. The calibration points for cone 9
and the optimization result can be seen in figure 8. The
different cones are nested with a varying opening angle,
sharing the same vertex (except for the small z-offset due
to refraction). The RMS residuals of the cone fittings for
the different camera calibrations are shown in figure 9.
The residuals range from 100um to 300um. Again, this is
mainly due to the limited resolution of the camera, espe-
cially in the peripheral area. The quality of the projector
calibration is approximately equal for all four camera cal-
ibrations. This suggests that the main error source is the
localization of the projected rings in the camera image.
Futhermore, since a dot grid target is mandatory for the
projector calibration (the projected rings cannot be seen
on the glossy surface of the digital display), the advantage
of the active target in the camera calibration (see Table 2)
is neutralized.
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Figure 7: Number of calibration points per cone. While the pro-
jection slide has only 15 rings, two additional rings can be defined
by counting the black area before the first and after the last proper
ring. However, because of image quality limitations, the outermost
and innermost rings do not yield enough points for a stable calibra-
tion.
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Figure 8: Light cone calibration example for a single cone. The blue
surface model is fitted to the red calibration points. Each red circle
corresponds to one view of the calibration target. The green rays
indicate the errors for one set of calibration points. We minimize the
distance along the ray of view, not the orthogonal distance of the
calibration points to the cone.

6. Structured Light Decoding

The images seen by the endoscopic camera typically
have a limited quality with low contrast and a high degree
of noise. We therefore applied the robust decoding algo-
rithm outlined in Schmalz and Angelopoulou (2010). This
method is able to cope with colored and textured objects
as well as with challenging image quality. We give a short
summary of the method here. First, a watershed trans-
form of the input image is performed. From the super-
pixels in the resulting oversegmented image a region adja-
cency graph is built. Each superpixel becomes a vertex in
the graph. The color assigned to the vertex is the median
of the original image pixels belonging to that superpixel.
The edges of the region adjacency graph describe the color
changes between neighboring vertices. They are scored ac-
cording to how well they fit possible color changes in the
projected pattern. To find correspondences between the
projected pattern and the camera image, unique sequences
of edges representing the color changes in the projected
pattern have to be found in the region adjacency graph.
If a matching sequence is found, the correspondence infor-
mation is propagated to the neighboring vertices in a best-
first-search. Once all possible regions have been mapped
to projected stripes, the stripe edge locations in the orig-
inal image are localized to subpixel precision. The trian-
gulation between the projected light planes (or cones in
our case) and the viewing rays from the camera can then
be performed to obtain 3D data. The advantages of this
graph-based decoding method are the robust color assign-
ments of the superpixels, the absence of fixed thresholds
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Figure 9: Cone parameter optimization results with four different
camera calibrations (see table 2). *Zhang’ refers to to the simple pin-
hole model with distortion. The acronym pmt denotes the ’pinhole-
mirror-tube’ model. Cones 0 to 3 could not be fitted because of a
lack of calibration points. The largest differences are found for the
outermost cones (4 to 6) as the image distortion is higher towards
the image border.

for color changes and the ability to sidestep any disrup-
tions of the pattern in the camera image by finding alter-
native paths in the region adjacency graph. Furthermore,
the implementation is fast and can be run in real-time on
current hardware.

An example input image with the projected ring pat-
tern is shown in figure 10. The associated decoding result
can be seen in figure 11. The final depth data is shown in
figure 12.

Figure 10: Example input image, gamma adjusted for better visibil-
ity. The dark spot in the center is the mirror image of the camera
chip. The dark area at the top is the shadow of the connection cable.
The contrast of the color rings is relatively low. The bright white
ring is an artifact caused by stray light and should be eliminated in
future hardware revisions.

With the current camera resolution and projector ge-
ometry, a single input image yields about 5000 data points.
However, the user is typically interested in the reconstruc-
tion of a complete 3D model of the scene. Therefore, the
endoscope has to be moved through the cavity. The indi-

Figure 11: Decoded result for the input image from figure 10 with
recovered ideal projected ring colors. Hatched areas could not be
identified uniquely. In the gray areas no color stripe information
could be recovered or was available.

vidual point clouds recovered from successive frames have
to be registered to each other and merged. The overlap
between successive images is very large if the sensor is
moving slowly compared to the frame rate of 30Hz. Reg-
istration algorithms like Iterative Closest Point (LM-ICP)
(Fitzgibbon, 2003) could be used, but there may be de-
generate cases, like constant-diameter cylindrical cavities,
where this algorithm can fail. Therefore, we propose to
guide the registration process by motion estimation with
help of the second camera. The main measurement cam-
era cannot be used for this purpose because the projected
pattern moves with the sensor head and masks the under-
lying scene motion. The auxiliary front camera does not
see the pattern and feature tracking or optical flow can be
used to derive an initial estimate of the camera translation
and rotation between two frames (Raudies and Neumann,
2009).

7. Evaluation

The prototype scanner was evaluated in four distinct
experimental setups. In a first test we measured a simple
planar test object in various poses. In another experiment,
an artificial cavity in a block of plastic was used. For this
experiment ground truth CAD data is available for com-
parison. In a third experiment we used a colon phantom.
Finally, we used the windpipe of a lamb to check the per-
formance on biological tissue.

Unfortunately, because of hardware limitations the front
camera currently cannot be used. Therefore, the scan-
ner was moved in a controlled fashion using a manual x-y
translation stage. The registration of the individual scans
was then performed with the help of the known fixed off-
sets between the datasets. As the offsets are only used for
initialization of the registration, they do not have to be
perfectly correct. In fact, it must be expected that the off-



Figure 12: Decoding result for the input image in figure 10 superim-
posed on the input image. Depth data can only be computed at the
edges between two rings. The colors indicate the z-coordinate of the
recovered points. The range in this example is 4mm (blue) to 18mm
(red).

sets that can be estimated with optical flow techniques will
be subject to error as well. The workflow for the different
reconstructions was as follows:

1. Compute a 3D point cloud from every single frame.

2. Perform an initial registration of the individual point
clouds by applying the known translation between
consecutive frames.

3. Optimize the coordinate tranformations between the
individual point clouds using ICP.

4. Merge the points clouds into one and merge points
closer than 0.3mm.

5. Smooth the resulting point cloud using the method
of Vollmer et al. (1999) with a radius of 1.5mm.

6. Perform a Poisson surface reconstruction (Kazhdan
et al., 2006) and remove large faces from the resulting
mesh (optional).

7.1. Planar target

In a simple test a planar object was measured in two
different poses relative to the sensor. The sensor calibra-
tion was based on a camera calibration with a classic dot
grid target and the pinhole+mirror+tube model. In the
first pose, the test plane was positioned approximately
10mm in front of the sensor, with its normal parallel to
the camera z-axis. In this pose almost all rings are com-
pletely visible in the camera image (figure 13). However,
due to the axial setup of the scanner, the triangulation an-
gle is relatively low for points in the forward direction. The
angle varies considerably across the working space (mainly
in z direction) and typically lies between 10 and 2 degrees.
In the frontal pose, the resulting standard deviation of the
depth values from the plane was 153um. In the second
pose the test plane was positioned approximately 9mm to
the side of the sensor head, its normal perpendicular to the

camera z-axis. Here, only part of each ring can be observed
in the camera image (figure 14), but the triangulation an-
gle is larger. Consequently, the standard deviation from
the plane was only 88um. Both figure 13 and figure 14
reveal a systematic component of the error that depends
on the ring number. This means that the cone parameters
that were computed with the procedure outlined in section
5.2 are slightly erroneous. Possibilities for correcting this
effect, e.g. better input data or better models, are a topic
for future research.

8r ~ 0.5
6F ) N N 0.4
7/ — N
4t 0.3
RN
2k / / \\ N\ \\ 0.2
‘ / \Nlotoa
g ) (/ ( W _
E o \ { 0 £
> \

-0.1

/
—6F / -0.2
ol s 2, -0.3
Vi -0.4

Y

-0.5

-10 -5 0 5 10
x [mm]

Figure 13: Depth errors of the plane in frontal view for 6794 points.
The standard deviation is 153pm. The colors encode the z-error in
a local coordinate system whose x and y axes are aligned with the
best-fit plane.
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Figure 14: Depth errors of the plane in side view for 2216 points.
The standard deviation is 88 pum. The colors encode the z-error in an
in-plane coordinate system.

7.2. Generic cavity
The result for the hollow plastic block is shown in fig-
ure 15. The input data consisted of a sequence of 41 im-



ages. Between successive images the sensor was moved in
steps of 0.5 mm along the z-direction of the sensor coor-
dinate system. The initial merged point cloud contained
258610 points; after thinning 11323 remained. This final
point cloud was aligned to the ground truth CAD model
using LM-ICP (Fitzgibbon, 2003). The average error be-
tween the reconstructed points and the original CAD data
is 92um. This result was achieved using a sensor calbration
based on the pinhole+mirror+tube model with a classic
dot grid target. With the pmt model and an active tar-
get the average error was 98um. Zhang’s pinhole camera
model with a classic target gave an average error of 108um.
Finally, Zhang’s model with the active target resulted in a
slightly larger error of 138um. This behaviour of the error
again differs from the camera calibration, where the active
pmt model fared best and the pinhole model with a classic
target fared worst. Further investigations are necessary
here. However, for all calibration methods the results are
quite good, considering the size of the reconstructed cavity
(approximately 32mm long with a diameter around 13mm)
and the low triangulation angle.

_—

32mm

Figure 15: Measurement result for an artificial cavity. The colors
encode the error relative to the ground truth CAD data (mm). The
average error was 0.092mm.

7.8. Colon Phantom

A rubber replica of a human colon was also measured
with the endoscopic sensor. The colon diameter was ap-
proximately 40mm and therefore at the upper limit of the
current, sensor prototype. Nevertheless, good reconstruc-
tion results could be obtained. A sequence of 50 frames
was recorded with the setup shown in figure 16. From this
set of images 267260 points could be recovered. After reg-
istration the average point distance was 0.108mm. A thin-
ning step reduced the number of points to 93587. Next,
a Poisson surface reconstruction (Kazhdan et al., 2006)
was performed, which resulted in a watertight mesh with-
out any holes. From this, the large artificial faces closing
the holes were removed, giving a final surface consisting of
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39288 vertices. The reconstructed shape clearly shows the
folds of the colon (figure 17). Unfortunately each fold also
causes a shadow, leading to some holes in the data.

Figure 16: Experimental setup for the colon phantom measurement.
The sensor is inside the cavity, which rests on a manual translation
stage.

Figure 17: Colon phantom surface reconstructed from 50 frames.
The folds are clearly visible, but also cause shadows which result in
holes in the recovered surface.

7.4. Windpipe

Figure 19 shows the measured surface of the windpipe,
which has a diameter of approximately 14mm. The in-
put data consisted of a sequence of 26 frames. These im-
ages yielded 131146 points with an average distance of
0.057mm. The point density is markedly higher here be-
cause of the smaller diameter compared to the colon phan-
tom. After thinning, 7417 points remained and were again
used for a Poisson surface reconstruction (Kazhdan et al.,
2006). Overly large faces were removed from the mesh.
The result shows that the sensor works even on biological
surfaces, which can be difficult because of volume scatter-
ing and highlights. The data quality is very promising.
Even the ripples at the “bottom” side could be recovered.



Figure 18: Ex-vivo lamb trachea sample.

Figure 19: Inner surface of a lamb’s windpipe created from 26 images.
No additional smoothing was applied. Note the recovered longitudi-
nal ripples at the bottom. The missing area at the top is due to the
camera connection cable.

8. Conclusion and Future Work

In this paper we presented a new flexible 3D endoscope
with a diameter of 3.6mm. To the best of our knowledge
it is the first 3D endoscope based on Single-Shot Struc-
tured Light as well as the smallest Structured Light setup
presented so far. The endoscope does not contain moving
parts and can be built in a robust and cost-efficient way.
It acquires 3D data at 30Hz with minimal lag and is not
affected by movement. The accuracy of about 0.1lmm (in-
cluding the error due to point cloud alignment and merg-
ing) is quite competitive, especially in relation to the small
size of the endoscope. Several experiments demonstrate
the endoscope’s performance with phantoms and biological
specimens. Data acquisition works even with tissues that
have challenging optical properties, e.g. the color of the
tissue proves to be unproblematic despite the use of color
rings. So far there is no experience regarding dynamic
effects like smoke or bleeding, which may occur during
clinical practice.

In the short term we intend to automate the process
of registering the individual scans to obtain a complete
3D model. One way this could be achieved is motion es-
timation via feature tracking or optical flow. The feature
tracking module is already implemented, but could not yet
be evaluated due to the malfunctioning front camera. An
alternative method to obtain the required data is to use
the main camera and rapidly switch between the color ring
pattern and simple white light illumination. This would
also allow sythesis of “natural” stereo images without the
overlaid ring pattern, which is potentially distracting. In
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a future step we plan to perform non-rigid registration be-
tween our data and CT or MRI scans.

Non-rigid scenes remain a challenge. Although 3D
data from individual frames can be reconstructed with
the proposed Single Shot technique, motion in the scene
may cause the registration step between data from sub-
sequent frames to fail, even when the sensor motion is
known. However, it may be possible to parameterize the
admissible types of surface deformation and include those
parameters in the optimization process. This is a topic for
future research.
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