
An Endosopi 3D Sanner based on Strutured LightChristoph Shmalza,b,∗, Frank Forsterb, Anton Shikb, Elli AngelopoulouaaUniversity of Erlangen-Nuremberg, Pattern Reognition Lab, Martensstrasse 3, 91058 Erlangen, GermanybSiemens AG, CT T DE HW2, Otto-Hahn-Ring 6, 81739 Munih, GermanyAbstratWe present a new endosopi 3D sanning system based on Single-Shot Strutured Light. The proposed design makes itpossible to build an extremely small sanner. The sensor head ontains a atadioptri amera and a pattern projetionunit. The paper desribes the working priniple and alibration proedure of the sensor. The prototype sensor head hasa diameter of only 3.6mm and a length of 14mm. It is mounted on a �exible shaft. The sanner is designed for tubularavities and has a ylindrial working volume of about 30mm length and 30mm diameter. It aquires 3D video at 30frames per seond and typially generates approximately 5000 3D points per frame. By design, the resolution variesover the working volume, but is generally better than 200μm. A prototype sanner has been built and is evaluated inexperiments with phantoms and biologial samples. The reorded average error on a known test objet was 92μm.Keywords: Endosopy, 3D Sanning, Catadioptri amera, Single-Shot Strutured Light1. Introdution1.1. MotivationEndosopes are an important tool in mediine. Theyare a key omponent in minimally invasive surgery, butmany proedures involving endosopes an be hallengingfor the physiian. This is due to the impaired depth per-eption, as most existing endosopes aquire and displaymonoular images only. One way to overome this limita-tion would be an endosope apable of aquiring the pre-ise three-dimensional geometry of its �eld of view. Suhan 3D-endosope would permit synthesizing wide baselinestereosopi images for surgeons, providing them with anintuitive 3D visualization rather than with �at images.It also has the potential to assist in roboti navigation.Moreover, it would make it easier to perform absolute 3Dmeasurements, suh as the area and volume of a patholog-ial struture. Finally, it might simplify solving advanedtasks suh as overage analysis (i.e. heking if 100% ofa surfae has been seen in the ourse of an inspetion) orregistration of endosopi images with data generated in apreoperative CT or MR san.We present a novel �exible endosope, based on Sin-gle Shot Strutured Light, that an perform aurate 3Dimaging at 30Hz while still having a fairly small diameterof 3.6mm. The main ontributions of the paper are thealibration algorithm for the sensor and the experimentalevaluation of the measurement results on phantom modelsand ex vivo tissue samples. We reonstrut the surfae
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of our test objets from image sequenes aquired dur-ing ontrolled sensor motion. For the future it is plannedto reover the sensor motion automatially from a seondamera, whih is not yet funtional in the urrent proto-type. However, it is already possible to reate high-qualityavity reonstrutions with a mean error of below 100μm.The paper is organized as follows: the next setion dis-usses the state of the art regarding 3D endosopy. Setion3 ontains a short overview of the measurement priniplebehind Single Shot Strutured Light. Setion 4 desribesthe hardware setup, whih onsists of an axial on�gu-ration of a pattern projetor and a atadioptri amera.Setions 5 and 6 disuss two important aspets of the al-gorithms used, namely alibration of the amera and theprojetor, and data proessing. Experimental results witha phantom model and biologial samples are presented insetion 7. Finally, the onlusion and disussion are givenin setion 8.2. 3D EndosopySolutions for 3D endosopy that use a standard en-dosope and obtain 3D data with only omputer visionalgorithms and no additional hardware are very onve-nient. An ideal solution would onvert a single olor im-age into a 3D data set. A well-known tehnique for thisis Shape-from-Shading (SfS). Okatani and Deguhi (1997)propose to use it for 3D endosopy. However, withoutany of the assumptions onventionally used, SfS beomesa very omplex task. In medial endosopy there is neithera remote light soure with approximately parallel rays ofillumination, nor a amera that an be desribed via theorthographi projetion model, nor a Lambertian surfae.Preprint submitted to Elsevier Marh 19, 2012



Okatani and Deguhi overome these issues to some extentby modelling the light soure as an imaginary single pointsoure at the projetion enter and by extrating equal dis-tane ontours from the image. However, their tehniquestill has limitations suh as inherent topologial ambigu-ities and issues due to interre�etions and non-uniformre�etane. Wu et al. (2010) present a more stable SfSreonstrution. They merge several shape data sets intoa omplete 3D model of the sene where the respetivepositions and orientations of the endosope are obtainedby an additional traking system. However, they report aomputation time of several minutes for a omplete modelof a bone.Another monoular solution for generating 3D data isShape-from-Motion (SfM, also known as Struture-from-Motion) (Thormahlen et al., 2002; O. et al., 2011; Wanget al., 2008; Zhou et al., 2010; Hu et al., 2010). It requires asequene of images taken by a amera that moves relativeto the sene (or vie versa). Features are traked over atleast two onseutive frames. Given enough features, the3D position of the traked points an be estimated up toa sale fator using projetive geometry. The distributionand quantity of trakable features in the sene determinesthe density of the resulting point loud. SfM implemen-tations also often have di�ulties providing live feedbak.Typially, a whole image sequene has to be proessed be-fore 3D data an be omputed. The lag desribed in theliterature varies widely; Hu et al. (2010) report a proess-ing time of several minutes while Grasa et al. (2009); O.et al. (2011) demonstrate an SfM system running at 25Hz. Additional hallenges are posed by non-rigid senes,whih may prevent a reonstrution or - in the worst ase- ause artifats. It is also important to mention that bothSfS and SfM generate 3D data only up to sale; it annotbe used for absolute measurement, but it is suitable forstereo view synthesis. Hu et al. report an RMS reproje-tion error of their traked features of around 1 pixel. Thisorresponds to a mean residual error of 1.68mm betweentheir reonstrution and a ground truth surfae; howeverit is unlear how the sale of the metri reonstrution wasdetermined.A natural way to overome the lak of depth pereptionis to image the sene from two distint viewpoints sepa-rated by a known baseline (interpupillary distane). Suha setup is typially realized using two imaging sensors withtwo distint lenses (Durrani and Preminger, 1995). Thereare, however, also alternative set-ups suh as a single lensbehind two pupil openings ombined with a lentiular ar-ray on a single sensor hip. Suh a design permits a smallendosope diameter (Tabaee et al., 2009; D. et al., 2010),but results in a 'weak' 3D e�et. With stereo algorithmsthe quality of the 3D data depends on the optial stru-ture of the sene; featureless areas or viewpoint-dependentglares tend to ause problems.A widely-used alternative to stereo vision is StruturedLight where one of the stereo ameras is replaed by aprojetor or, more generally, a light soure. Armbruster

and She�er (1998) desribe a rather large endosope (tar-geted at industrial appliations) based on the well-knownphase-shifting approah for the illumination pattern (Creath,1986). In Kolenovi et al. (2003), the authors present aoneptually similar miniaturized holographi interferom-eter that an aquire data at a rate of 5Hz. The ap-sule has a diameter of 10mm and three protruding armsto provide three di�erent illumination diretions. Theyemploy temporal phase shifting to get rid of the disturb-ing zero order and the omplex-onjugate image arisingin digital holography. The reported quality is impressive,but endoopes using phase shifting tend to be unsuitablefor moving objets. Hayashibe et al. (2006) propose a 3Dendosope based on triangulation with a sanning laserline. The neessary triangulation angle is reated by usingtwo endosopes, one for illumination and one for observa-tion, resulting in a rather large and impratial setup. Ingeneral, many Strutured Light systems desribed in theliterature have an overall diameter of the endosope signi�-antly greater than 10 mm and are onsequently too largefor many medial appliations. An exeption is Clanyet al. (2011), who present a �ber-opti addon for the in-strument hannel of a rigid endosope. They projet dotsof di�erent wavelengths onto the sene and try to identifythe wavelength in the amera image. However, given theolor �lters in typial ameras, this is a di�ult task andthe resulting density of 3D points is very low.Time-of-Flight (ToF) methods have also been onsid-ered for endosopi imaging (Penne et al., 2009). Theadvantage of ToF is that it does not su�er from olu-sion, unlike triangulation-based methods suh as Stereo orStrutured Light. At the same time, it is very hallengingto build a small endosope with an integrated ToF-sensor.Penne et al. (2009) did not miniaturize the hardware tothe required level, but rather used a rigid endosope with�ber optis for illumination and observation. The authorsreport an average error of 0.89mm for measurements ofa plasti ube with a side length of 15mm at a stando�distane of 30mm. Surfae texture and volume satter-ing in biologial tissue (a signi�ant e�et for the infraredillumination typially used in ToF sensors) pose problems.Detailed surveys of 3D reonstrution tehniques forendosopi appliations an be found in Mountney et al.(2010) and Mirota et al. (2011).3. Strutured LightStrutured Light is a method for 3D reonstrution ofsurfaes based on triangulation. One or multiple illumi-nation patterns are projeted onto a sene and observedby a amera. The basi priniple is illustrated in �gure1. The projeted light pattern de�nes a set of planes (orother suitable surfaes) in spae. The intersetion of theamera ray CX with the orresponding light plane givethe 3D oordinates of the point X . The task of �ndingthe right plane for a given amera ray is known as the or-respondene problem. However, the amera rays and the2



light planes an only be alulated if both the amera andthe projetor are alibrated (see setion 5).

Figure 1: Ative Triangulation priniple. A light plane from pro-jetor P falls on the objet and is observed by amera C. In a al-ibrated system the 3D oordinates of the objet point X an bereonstruted.There are numerous variants (Salvi et al., 2010) ofStrutured Light methods. Single Shot tehniques needonly one image of the sene to reonstrut 3D data. Thishas two main advantages. Firstly, it allows to measuremoving senes, whih is ritial for eventual appliationson live patients. Seondly, it simpli�es the miniaturizationof the projetion hardware that is neessary for endosopiappliations. Only a single stati pattern has to be pro-jeted and thus no moving parts are required.The proposed system uses a single-shot olor ring pat-tern (see �gures 2 and 5). This type of pattern an be ro-bustly deteted in the amera image and yields relativelymany 3D points per frame. The sequene of the olorrings that make up the pattern is based on pseudorandomarrays. Their de�ning property is that subarrays with aminimal length L our at most one. Therefore, observ-ing a subarray of su�ient length (a sequene of stripes)in the amera image allows one to dedue its index in theprojeted pattern. Thus the orrespondene problem issolved. In the example pattern shown in �gure 2, we in-terpret the olor hanges between subsequent stripes asarray elements (also termed symbols) rather than the ab-solute olors. Single symbols like G-B+ are not unique,but longer sequenes are guaranteed to our only one. Ifsuh a harateristi sequene of olor hanges is detetedin the amera image, the orresponding stripe indies inthe projetion pattern an be reovered and triangulationan be performed. Why are olor hanges used instead ofthe diretly observed olors? The projeted olors may bedistorted by the objet texture and are therefore hard todetet reliably in the amera image. The olor hangesbetween neighboring rings an be reognized more easily(Shmalz and Angelopoulou, 2010).4. Strutured Light EndosopeThe Strutured Light Endosope onsists of a atadiop-tri amera and a slide projetor. The design is illustratedin �gure 3. Views of the working prototype system are
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R+G-G-B+Figure 2: Example olor stripe pattern. The letters symbolize theolor hannels. A plus sign denotes hannel rising at the edge, aminus sign a falling hannel. Constant hannels are omitted.shown in �gures 4 and 5. The endosope head has a diam-eter of 3.6mm and ontains a omplete Strutured Lighttriangulation system in an unusual axially-aligned on�g-uration. This results in a relatively long triangulation basewhile keeping the diameter small. For stability the hard-ware is housed inside a ylindrial glass tube. The lightsoure is external and onneted via a glass �ber in the�exible shaft. This means almost no heat needs to be dis-sipated from the head. Still, the pattern slide is exposedto very high light intensities, whih auses bleahing inorgani dyes. Therefore the pattern is realized as a multi-layer interferene �lter on a glass substrate. The amera isatadioptri, that is it uses a mirror in addition to lenses(Swaminathan et al., 2006). In our design the mirror isspherial, whih makes for a wide �eld of view at the ostof a strong �sheye distortion towards the rim of the mir-ror. To ompensate the varying amera resolution, theouter rings of the pattern are wider, so that they appearapproximately equally spaed in the amera image. At themoment the Strutured Light pattern onsists of 15 ringswith distint olors (�gure 5).The wide-angle atadioptri measurement amera mainlyobserves the spae to the sides of the endosope. It hasa blind spot diretly ahead as the amera hip sees onlyitself in that diretion (see �gure 6). Beause of its smallsize of 1.2mm×1.2mm, the amera hip has a resolution ofonly 400×400 pixels. Furthermore, a large area of the hipannot be used for measurements due to the blind spot.In future hardware revisions this aspet will be improved.A seond amera with a regular narrow-angle lens ob-serves the area in front of the endosope and gives addi-tional guidane for the operator. The neessary illumi-nation is provided by two white miro LEDs loated atthe front of the sanner. It also allows traking of featurepoints on the objet surfae for more robust registration ofthe Strutured Light data. The optial design of the sen-sor is desribed in more detail in Shik et al. (2011). Themeasurement volume of the urrent prototype is a ylinderwith diameter and length of approximately 30mm.5. CalibrationThe sanning system needs to be alibrated in order togenerate metri 3D data. The alibration of the proposedsystem onsists of two parts. The �rst is the amera ali-bration, whih is needed to alulate the rays of view foreah amera pixel. The seond part is the projetor ali-bration, whih yields a set of ones orresponding to theedges between the projeted olor rings. Range data an3



Figure 3: Shemati hardware setup. The light for the projetoris supplied through a glass �ber (not shown). A ring-shaped slideprojets olored ones to the side (only rays to one side are shown).They are observed by the amera via a urved mirror (shown ingreen). A seond amera provides a front view (yellow rays to theright). In this diagram, the wall thikness of the glass housing is zeroand so no refration of the rays ours.

Figure 4: The physial realization of the prototype design. It has adiameter of 3.6mm and a length of 14mm.then be omputed by interseting the rays of view withthe appropriate ones.We provide a short derivation of the most importantformulas used for alibration and measurements with theendosopi Strutured Light 3D sanning system. A moreomplete treatment of these raytraing fundamentals anbe found in Glassner (1989). All rays are expressed inamera oordinates. This oordinate system has the xand y axes in the image plane, the z axis along the optialaxis and the origin in the optial enter of the amera.5.1. Camera CalibrationAs the amera is a atadioptri system with a spherialmirror, it falls in the atagory of non-single-viewpoint am-eras. Two approahes for alibration were investigated.One is a standard model of a pinhole amera with radialand tangential distortion (Zhang, 2000). This model has8 intrinsi parameters and 6 extrinsi parameters per poseof the alibration target. It assumes a single viewpoint, soit is not a perfet model for our setup. However, we foundthat it an still be applied. This is beause the relativelylow image resolution of 400 × 400 pixels, in onjuntionwith the imaging geometry, results in an objet spae res-olution of between 100μm and 200μm at a typial distane

Figure 5: Prototype system in operation. The onnetion able forthe amera auses a small shadow. In a future version transparentwires will be used. The inner rings are less wide to ompensateamera distortion.of 10mm. In the peripheral area the resolution is evenlower beause of the large amount of distortion in the im-age. This mostly masks the errors aused by the varyingviewpoint.5.1.1. Pinhole ModelIn the amera oordinate system, the ray of view forimage oordinates (xi, yi) of a pinhole amera is the set ofall points X with
X =
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 = Op + λTp (1)with the pixel pith (dx, dy), the prinipal point (cx, cy),the foal length f and the free parameter λ > 0. If theamera exhibits image distortion, that has to be orreted�rst, for example using Zhang's model (Zhang, 2000).5.1.2. Pinhole-Mirror-Tube ModelThe seond alibration method augments the pinholeamera with a re�etive sphere and an enasing glass tube.The re�etion and refration proesses are expliitly mod-eled. The augmented model has 8 additional intrinsi pa-rameters (see Table 1).A sphere with the enter C and radius r is the set ofpoints X with
(X − Cm)

2
= r2m (2)Plugging eq. 1 into eq. 2 and simplifying, the intersetionpoint of a ray with the sphere must ful�ll

aλ2 + bλ+ c = 0 (3)with a = T 2
p , b = 2(Op−Cm)·Tp and c = (Op−Cm)2−r2m.Ignoring degenerate ases, the desired intersetion pointwith the mirror is

Om = Op +
−b−

√
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Tp (4)The surfae normal in this point is
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‖Om − Cm‖ (5)4



parameter type number of parametersamera pose 6 per posefoal length 1prinipal point 2radial distortion 3tangential distortion 2mirror position 3mirror radius 1tube origin 2tube rotation 2Table 1: Camera alibration parameters. The �rst �ve types areused in the pinhole model with radial and tangential distortion. Theaugmented model with mirror and glass tube has additional parame-ters, listed in the last four rows. Beause of spherial symmetry, themirror rotation is irrelevant. Also, the rotation of the tube aroundits axis is degenerate. The origin of the tube is de�ned as the inter-setion point of its enter line with the arbitrary plane z=0. Thus,it needs only two parameters. The inner and outer tube radius, aswell as its index of refration, are known and therefore not part ofthe optimization at all.And the re�eted ray
X = Om + λ (T − 2Nm (Nm · T )) = Om + λTm (6)The glass housing is modeled as a pair of o-axial ylin-ders. A ylinder with the point Cc on its enterline, theaxis diretion Ac and the radius rc is the set of points Xwith
((Cc −X)×Ac)

2 = r2c (7)Plugging eq. 1 into eq. 7 and simplifying, we obtain an-other quadrati equation
aλ2 + bλ+ c = 0 (8)with a = (Tm ×Ac)

2, b = 2 ((Om − Cc)×Ac) · (Tm ×Ac)and c = ((Om − Cc)×Ac)
2 − r2cA

2
c . Again ignoring de-generate ases, the intersetion point of the ray with theylinder is
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Tm (9)The normal Nr in the intersetion point is
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Or − Cr

‖Or − Cr‖
(10)where Cr is the losest point to Or on the ylinder enterline, Cr = Cc +

(Or−Cc)Ac
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c

Ac.Applying Snell's law with the refration indies n1 and
n2 we get the refrated ray diretion Tr from the inidentray diretion Tm as
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√

1− sin2γt
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where sin2γt =
n1

n2

(

1− cos2γi
) and γi is the angle of theinident ray with the surfae normal. A seond refra-tion is omputed with the outer ylinder of the glass tubeto obtain the �nal ray of view in the augmented ameramodel.The reverse problem of �nding the image oordinatesfor a given point P in spae, taking into aount refrationand re�etion, is more omplex. It an be solved by op-timizing the image oordinates with respet to the objetspae error.5.1.3. ResultsBoth models are initialized with the results of the stan-dard alibration algorithm by Zhang for the poses, foallength and distortion parameters. For the initializationof the additional parameters in the pinhole+mirror+tubemodel, we use the default design values of the mirror andthe tube. The parameters of both models are optimizedwith the non-linear Levenberg-Marquardt algorithm (More,1978). The quantity being optimized is the objet spaeerror, whih an be de�ned as follows.The distane d of a point P to a ray is simply

d =
‖(O − P )× T ‖

‖T ‖ (12)with the ross produt ×.Eah alibration point has known 3D oordinates in theworld oordinate system and known image oordinates inthe amera, whih an be used to alulate a ray of viewwith the equations given above. For the pinhole model the'plain' rays are used, while for the pinhole+mirror+tubemodel the rays are additionally re�eted and refrated.The sum of the ray-point distanes over all alibrationpoints k in all poses l is the objet spae error ecam.
ecam =

∑

l

∑

k

d(k, l) (13)Note that many other amera alibration algorithmsminimize the distorted image plane error. This is not agood metri for our highly distorted images. The border ofthe image is �ompressed�, and points in the enter have arelatively higher weight in the optimization. Therefore weevaluated the performane of both the undistorted imageplane error and the objet spae error as error metris.The objet spae error gave slightly better results. Sineit is also faster to ompute and its optimization is morestable, it is the metri that is urrently being used.We also tested two di�erent ways of generating the al-ibration points. One was a lassi dot grid target fromEdmund Optis. The dots were loalized with ellipse �tsto their ontours. Unfortunately, this is error-prone, es-peially in the peripheral area where the image distortionis high. The alternative method used an ative target inthe form of the display of a Fuijitsu UH900 mini-notebook.The alibration marks on this target were generated withthe algorithm outlined in Shmalz et al. (2011). This5



method displays a series of oded patterns on the displayto uniquely identify eah pixel. Virtual alibration marksan then be de�ned with subpixel preision. With help ofthe known pixel size (only 94µm in the ase of the UH900)pixel oordinates an be onverted into metri oordinates.The results of the amera alibration an be seen inTable 2. The ative target approah gives better resultsthan the dot grid target. Also, the extended model withmirror and tube gives better results than the simple pin-hole model. Of ourse, using more parameters naturallyredues the residual error. Therefore we �rst evaluated theerror of the pinhole-mirror-tube model with default designvalues for the 8 additional parameters (optimizing only theparameters already used in the pure pinhole model). Thisresulted in a marked improvement in the RMS errors andproved that the extended model is sound. In a third runall parameters were optimized, yielding a further improve-ment of the residual errors. Unfortunately, there are noground truth alibration parameters to ompare our re-sults against, but the optimized parameters for the mirrorand the glass tube were within the manufaturing toler-anes of their design values.For both the lassi and the ative alibration six di�er-ent amera poses were used. We took are to use a ompa-rable set of poses for both alibrations. The ative targetyielded 1504 marks, the dot grid 811 marks. Comparedto the spatial amera resolution of between 100µm and200µm, the absolute values of the resulting objet spaeerrors are small.RMS error [mm℄ lassi ativepinhole 0.0864 0.0674pmt default 0.0802 0.0546pmt optimized 0.0707 0.0501Table 2: Endosopi amera alibration results after optimization ofthe objet spae error. The ative target gives better results than thelassi target. The full model with pinhole amera, mirror and glasstube (abbreviated pmt) is better than the simple pinhole model, evenwhen the additional parameters are set to their default design values.Optimizing the full parameter set results in a further improvement.5.2. Projetor CalibrationFor the projetor alibration we model the projetedrings as light ones. A planar dot grid alibration targetis aquired in several poses while the ones are being pro-jeted (�gure 6). In eah pose, the surfae of the targetde�nes a plane in spae. This plane an be alulated fromthe loations of the dots as observed by a alibrated am-era. The amera simultaneously observes the olor rings,whih are the intersetions of the target surfae plane withthe set of projeted light ones. Thus eah pose yields aset of points on the surfae of eah projeted one. Theones to whih the points belong are identi�ed using thealgorithm desribed in setion 6.
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M = AAT − 1 · cos2θ (16)and
A · (X − V ) > 0 (17)Finally, the parameters of the ones are �tted, again us-ing the Levenberg-Marquardt algorithm. The error metriin this ase is the distane between the alibration pointsand the intersetion points of the orresponding amerarays with the ones (also see �gure 8).What is the intersetion point of a ray and a one?Plugging eq. 1 into eq. 15 and simplifying we obtain aquadrati equation
aλ2 + bλ+ c = 0 (18)where a = T T
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T (19)To determine the parameters of the light ones in theprojetor alibration, the objetive funtion
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‖P (k, l,m)−Xc(k, l,m)‖ (20)is minimized. Here m iterates over all ones, l over alltarget poses and k over all alibration points P visible inthe urrent pose.An alternative metri to optimize would be the sumof the orthogonal distanes between the alibration pointsand the ones, without alulating the intersetion pointswith the rays of view. However, eq. 20 gave better re-sults, as it mirrors the way depth data is omputed in thealibrated sensor (whih is also based on eq. 19).For reasons of numerial stability, we do not optimizeeah one separately but enfore a ommon vertex and axisfor all the ones. However, the refration of the light raysin the glass tube auses a shift in the apparent z-position6



Figure 6: Calibration target for the projetor alibration. Left: Out-side view. Right: Camera view. The dots are used to determine thepose of the target relative to the alibrated amera. The projetedrings yield the alibration points for the light ones. In the rightimage, the blak area at the top is aused by the amera able. Theblak area in the enter is aused by the amera hip looking at itselfin the mirror.of the vertex, whih depends on the opening angle of theone. This z-o�set is determined separately for eah onein a seond optimization step.An example input image is shown in �gure 6. Thenumber of projetor alibration points reovered from sixposes of the target is illustrated in �gure 7. The outer-most and innermost ones do not have enough points fora reliable alibration. The alibration points for one 9and the optimization result an be seen in �gure 8. Thedi�erent ones are nested with a varying opening angle,sharing the same vertex (exept for the small z-o�set dueto refration). The RMS residuals of the one �ttings forthe di�erent amera alibrations are shown in �gure 9.The residuals range from 100μm to 300μm. Again, this ismainly due to the limited resolution of the amera, espe-ially in the peripheral area. The quality of the projetoralibration is approximately equal for all four amera al-ibrations. This suggests that the main error soure is theloalization of the projeted rings in the amera image.Futhermore, sine a dot grid target is mandatory for theprojetor alibration (the projeted rings annot be seenon the glossy surfae of the digital display), the advantageof the ative target in the amera alibration (see Table 2)is neutralized.
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Figure 7: Number of alibration points per one. While the pro-jetion slide has only 15 rings, two additional rings an be de�nedby ounting the blak area before the �rst and after the last properring. However, beause of image quality limitations, the outermostand innermost rings do not yield enough points for a stable alibra-tion.

Figure 8: Light one alibration example for a single one. The bluesurfae model is �tted to the red alibration points. Eah red irleorresponds to one view of the alibration target. The green raysindiate the errors for one set of alibration points. We minimize thedistane along the ray of view, not the orthogonal distane of thealibration points to the one.6. Strutured Light DeodingThe images seen by the endosopi amera typiallyhave a limited quality with low ontrast and a high degreeof noise. We therefore applied the robust deoding algo-rithm outlined in Shmalz and Angelopoulou (2010). Thismethod is able to ope with olored and textured objetsas well as with hallenging image quality. We give a shortsummary of the method here. First, a watershed trans-form of the input image is performed. From the super-pixels in the resulting oversegmented image a region adja-eny graph is built. Eah superpixel beomes a vertex inthe graph. The olor assigned to the vertex is the medianof the original image pixels belonging to that superpixel.The edges of the region adjaeny graph desribe the olorhanges between neighboring verties. They are sored a-ording to how well they �t possible olor hanges in theprojeted pattern. To �nd orrespondenes between theprojeted pattern and the amera image, unique sequenesof edges representing the olor hanges in the projetedpattern have to be found in the region adjaeny graph.If a mathing sequene is found, the orrespondene infor-mation is propagated to the neighboring verties in a best-�rst-searh. One all possible regions have been mappedto projeted stripes, the stripe edge loations in the orig-inal image are loalized to subpixel preision. The trian-gulation between the projeted light planes (or ones inour ase) and the viewing rays from the amera an thenbe performed to obtain 3D data. The advantages of thisgraph-based deoding method are the robust olor assign-ments of the superpixels, the absene of �xed thresholds7
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Figure 9: Cone parameter optimization results with four di�erentamera alibrations (see table 2). 'Zhang' refers to to the simple pin-hole model with distortion. The aronym pmt denotes the 'pinhole-mirror-tube' model. Cones 0 to 3 ould not be �tted beause of alak of alibration points. The largest di�erenes are found for theoutermost ones (4 to 6) as the image distortion is higher towardsthe image border.for olor hanges and the ability to sidestep any disrup-tions of the pattern in the amera image by �nding alter-native paths in the region adjaeny graph. Furthermore,the implementation is fast and an be run in real-time onurrent hardware.An example input image with the projeted ring pat-tern is shown in �gure 10. The assoiated deoding resultan be seen in �gure 11. The �nal depth data is shown in�gure 12.

Figure 10: Example input image, gamma adjusted for better visibil-ity. The dark spot in the enter is the mirror image of the amerahip. The dark area at the top is the shadow of the onnetion able.The ontrast of the olor rings is relatively low. The bright whitering is an artifat aused by stray light and should be eliminated infuture hardware revisions.With the urrent amera resolution and projetor ge-ometry, a single input image yields about 5000 data points.However, the user is typially interested in the reonstru-tion of a omplete 3D model of the sene. Therefore, theendosope has to be moved through the avity. The indi-

Figure 11: Deoded result for the input image from �gure 10 withreovered ideal projeted ring olors. Hathed areas ould not beidenti�ed uniquely. In the gray areas no olor stripe informationould be reovered or was available.vidual point louds reovered from suessive frames haveto be registered to eah other and merged. The overlapbetween suessive images is very large if the sensor ismoving slowly ompared to the frame rate of 30Hz. Reg-istration algorithms like Iterative Closest Point (LM-ICP)(Fitzgibbon, 2003) ould be used, but there may be de-generate ases, like onstant-diameter ylindrial avities,where this algorithm an fail. Therefore, we propose toguide the registration proess by motion estimation withhelp of the seond amera. The main measurement am-era annot be used for this purpose beause the projetedpattern moves with the sensor head and masks the under-lying sene motion. The auxiliary front amera does notsee the pattern and feature traking or optial �ow an beused to derive an initial estimate of the amera translationand rotation between two frames (Raudies and Neumann,2009).7. EvaluationThe prototype sanner was evaluated in four distintexperimental setups. In a �rst test we measured a simpleplanar test objet in various poses. In another experiment,an arti�ial avity in a blok of plasti was used. For thisexperiment ground truth CAD data is available for om-parison. In a third experiment we used a olon phantom.Finally, we used the windpipe of a lamb to hek the per-formane on biologial tissue.Unfortunately, beause of hardware limitations the frontamera urrently annot be used. Therefore, the san-ner was moved in a ontrolled fashion using a manual x-ytranslation stage. The registration of the individual sanswas then performed with the help of the known �xed o�-sets between the datasets. As the o�sets are only used forinitialization of the registration, they do not have to beperfetly orret. In fat, it must be expeted that the o�-8



Figure 12: Deoding result for the input image in �gure 10 superim-posed on the input image. Depth data an only be omputed at theedges between two rings. The olors indiate the z-oordinate of thereovered points. The range in this example is 4mm (blue) to 18mm(red).sets that an be estimated with optial �ow tehniques willbe subjet to error as well. The work�ow for the di�erentreonstrutions was as follows:1. Compute a 3D point loud from every single frame.2. Perform an initial registration of the individual pointlouds by applying the known translation betweenonseutive frames.3. Optimize the oordinate tranformations between theindividual point louds using ICP.4. Merge the points louds into one and merge pointsloser than 0.3mm.5. Smooth the resulting point loud using the methodof Vollmer et al. (1999) with a radius of 1.5mm.6. Perform a Poisson surfae reonstrution (Kazhdanet al., 2006) and remove large faes from the resultingmesh (optional).7.1. Planar targetIn a simple test a planar objet was measured in twodi�erent poses relative to the sensor. The sensor alibra-tion was based on a amera alibration with a lassi dotgrid target and the pinhole+mirror+tube model. In the�rst pose, the test plane was positioned approximately10mm in front of the sensor, with its normal parallel tothe amera z-axis. In this pose almost all rings are om-pletely visible in the amera image (�gure 13). However,due to the axial setup of the sanner, the triangulation an-gle is relatively low for points in the forward diretion. Theangle varies onsiderably aross the working spae (mainlyin z diretion) and typially lies between 10 and 2 degrees.In the frontal pose, the resulting standard deviation of thedepth values from the plane was 153μm. In the seondpose the test plane was positioned approximately 9mm tothe side of the sensor head, its normal perpendiular to the

amera z-axis. Here, only part of eah ring an be observedin the amera image (�gure 14), but the triangulation an-gle is larger. Consequently, the standard deviation fromthe plane was only 88μm. Both �gure 13 and �gure 14reveal a systemati omponent of the error that dependson the ring number. This means that the one parametersthat were omputed with the proedure outlined in setion5.2 are slightly erroneous. Possibilities for orreting thise�et, e.g. better input data or better models, are a topifor future researh.
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Figure 13: Depth errors of the plane in frontal view for 6794 points.The standard deviation is 153µm. The olors enode the z-error ina loal oordinate system whose x and y axes are aligned with thebest-�t plane.
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Figure 14: Depth errors of the plane in side view for 2216 points.The standard deviation is 88µm. The olors enode the z-error in anin-plane oordinate system.7.2. Generi avityThe result for the hollow plasti blok is shown in �g-ure 15. The input data onsisted of a sequene of 41 im-9



ages. Between suessive images the sensor was moved insteps of 0.5 mm along the z-diretion of the sensor oor-dinate system. The initial merged point loud ontained258610 points; after thinning 11323 remained. This �nalpoint loud was aligned to the ground truth CAD modelusing LM-ICP (Fitzgibbon, 2003). The average error be-tween the reonstruted points and the original CAD datais 92μm. This result was ahieved using a sensor albrationbased on the pinhole+mirror+tube model with a lassidot grid target. With the pmt model and an ative tar-get the average error was 98μm. Zhang's pinhole ameramodel with a lassi target gave an average error of 108μm.Finally, Zhang's model with the ative target resulted in aslightly larger error of 138μm. This behaviour of the erroragain di�ers from the amera alibration, where the ativepmt model fared best and the pinhole model with a lassitarget fared worst. Further investigations are neessaryhere. However, for all alibration methods the results arequite good, onsidering the size of the reonstruted avity(approximately 32mm long with a diameter around 13mm)and the low triangulation angle.

Figure 15: Measurement result for an arti�ial avity. The olorsenode the error relative to the ground truth CAD data (mm). Theaverage error was 0.092mm.7.3. Colon PhantomA rubber replia of a human olon was also measuredwith the endosopi sensor. The olon diameter was ap-proximately 40mm and therefore at the upper limit of theurrent sensor prototype. Nevertheless, good reonstru-tion results ould be obtained. A sequene of 50 frameswas reorded with the setup shown in �gure 16. From thisset of images 267260 points ould be reovered. After reg-istration the average point distane was 0.108mm. A thin-ning step redued the number of points to 93587. Next,a Poisson surfae reonstrution (Kazhdan et al., 2006)was performed, whih resulted in a watertight mesh with-out any holes. From this, the large arti�ial faes losingthe holes were removed, giving a �nal surfae onsisting of

39288 verties. The reonstruted shape learly shows thefolds of the olon (�gure 17). Unfortunately eah fold alsoauses a shadow, leading to some holes in the data.

Figure 16: Experimental setup for the olon phantom measurement.The sensor is inside the avity, whih rests on a manual translationstage.

Figure 17: Colon phantom surfae reonstruted from 50 frames.The folds are learly visible, but also ause shadows whih result inholes in the reovered surfae.7.4. WindpipeFigure 19 shows the measured surfae of the windpipe,whih has a diameter of approximately 14mm. The in-put data onsisted of a sequene of 26 frames. These im-ages yielded 131146 points with an average distane of0.057mm. The point density is markedly higher here be-ause of the smaller diameter ompared to the olon phan-tom. After thinning, 7417 points remained and were againused for a Poisson surfae reonstrution (Kazhdan et al.,2006). Overly large faes were removed from the mesh.The result shows that the sensor works even on biologialsurfaes, whih an be di�ult beause of volume satter-ing and highlights. The data quality is very promising.Even the ripples at the �bottom� side ould be reovered.10



Figure 18: Ex-vivo lamb trahea sample.

Figure 19: Inner surfae of a lamb's windpipe reated from 26 images.No additional smoothing was applied. Note the reovered longitudi-nal ripples at the bottom. The missing area at the top is due to theamera onnetion able.8. Conlusion and Future WorkIn this paper we presented a new �exible 3D endosopewith a diameter of 3.6mm. To the best of our knowledgeit is the �rst 3D endosope based on Single-Shot Stru-tured Light as well as the smallest Strutured Light setuppresented so far. The endosope does not ontain movingparts and an be built in a robust and ost-e�ient way.It aquires 3D data at 30Hz with minimal lag and is nota�eted by movement. The auray of about 0.1mm (in-luding the error due to point loud alignment and merg-ing) is quite ompetitive, espeially in relation to the smallsize of the endosope. Several experiments demonstratethe endosope's performane with phantoms and biologialspeimens. Data aquisition works even with tissues thathave hallenging optial properties, e.g. the olor of thetissue proves to be unproblemati despite the use of olorrings. So far there is no experiene regarding dynamie�ets like smoke or bleeding, whih may our duringlinial pratie.In the short term we intend to automate the proessof registering the individual sans to obtain a omplete3D model. One way this ould be ahieved is motion es-timation via feature traking or optial �ow. The featuretraking module is already implemented, but ould not yetbe evaluated due to the malfuntioning front amera. Analternative method to obtain the required data is to usethe main amera and rapidly swith between the olor ringpattern and simple white light illumination. This wouldalso allow sythesis of �natural� stereo images without theoverlaid ring pattern, whih is potentially distrating. In
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