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tWe present a new endos
opi
 3D s
anning system based on Single-Shot Stru
tured Light. The proposed design makes itpossible to build an extremely small s
anner. The sensor head 
ontains a 
atadioptri
 
amera and a pattern proje
tionunit. The paper des
ribes the working prin
iple and 
alibration pro
edure of the sensor. The prototype sensor head hasa diameter of only 3.6mm and a length of 14mm. It is mounted on a �exible shaft. The s
anner is designed for tubular
avities and has a 
ylindri
al working volume of about 30mm length and 30mm diameter. It a
quires 3D video at 30frames per se
ond and typi
ally generates approximately 5000 3D points per frame. By design, the resolution variesover the working volume, but is generally better than 200μm. A prototype s
anner has been built and is evaluated inexperiments with phantoms and biologi
al samples. The re
orded average error on a known test obje
t was 92μm.Keywords: Endos
opy, 3D S
anning, Catadioptri
 
amera, Single-Shot Stru
tured Light1. Introdu
tion1.1. MotivationEndos
opes are an important tool in medi
ine. Theyare a key 
omponent in minimally invasive surgery, butmany pro
edures involving endos
opes 
an be 
hallengingfor the physi
ian. This is due to the impaired depth per-
eption, as most existing endos
opes a
quire and displaymono
ular images only. One way to over
ome this limita-tion would be an endos
ope 
apable of a
quiring the pre-
ise three-dimensional geometry of its �eld of view. Su
han 3D-endos
ope would permit synthesizing wide baselinestereos
opi
 images for surgeons, providing them with anintuitive 3D visualization rather than with �at images.It also has the potential to assist in roboti
 navigation.Moreover, it would make it easier to perform absolute 3Dmeasurements, su
h as the area and volume of a patholog-i
al stru
ture. Finally, it might simplify solving advan
edtasks su
h as 
overage analysis (i.e. 
he
king if 100% ofa surfa
e has been seen in the 
ourse of an inspe
tion) orregistration of endos
opi
 images with data generated in apreoperative CT or MR s
an.We present a novel �exible endos
ope, based on Sin-gle Shot Stru
tured Light, that 
an perform a

urate 3Dimaging at 30Hz while still having a fairly small diameterof 3.6mm. The main 
ontributions of the paper are the
alibration algorithm for the sensor and the experimentalevaluation of the measurement results on phantom modelsand ex vivo tissue samples. We re
onstru
t the surfa
e
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of our test obje
ts from image sequen
es a
quired dur-ing 
ontrolled sensor motion. For the future it is plannedto re
over the sensor motion automati
ally from a se
ond
amera, whi
h is not yet fun
tional in the 
urrent proto-type. However, it is already possible to 
reate high-quality
avity re
onstru
tions with a mean error of below 100μm.The paper is organized as follows: the next se
tion dis-
usses the state of the art regarding 3D endos
opy. Se
tion3 
ontains a short overview of the measurement prin
iplebehind Single Shot Stru
tured Light. Se
tion 4 des
ribesthe hardware setup, whi
h 
onsists of an axial 
on�gu-ration of a pattern proje
tor and a 
atadioptri
 
amera.Se
tions 5 and 6 dis
uss two important aspe
ts of the al-gorithms used, namely 
alibration of the 
amera and theproje
tor, and data pro
essing. Experimental results witha phantom model and biologi
al samples are presented inse
tion 7. Finally, the 
on
lusion and dis
ussion are givenin se
tion 8.2. 3D Endos
opySolutions for 3D endos
opy that use a standard en-dos
ope and obtain 3D data with only 
omputer visionalgorithms and no additional hardware are very 
onve-nient. An ideal solution would 
onvert a single 
olor im-age into a 3D data set. A well-known te
hnique for thisis Shape-from-Shading (SfS). Okatani and Degu
hi (1997)propose to use it for 3D endos
opy. However, withoutany of the assumptions 
onventionally used, SfS be
omesa very 
omplex task. In medi
al endos
opy there is neithera remote light sour
e with approximately parallel rays ofillumination, nor a 
amera that 
an be des
ribed via theorthographi
 proje
tion model, nor a Lambertian surfa
e.Preprint submitted to Elsevier Mar
h 19, 2012



Okatani and Degu
hi over
ome these issues to some extentby modelling the light sour
e as an imaginary single pointsour
e at the proje
tion 
enter and by extra
ting equal dis-tan
e 
ontours from the image. However, their te
hniquestill has limitations su
h as inherent topologi
al ambigu-ities and issues due to interre�e
tions and non-uniformre�e
tan
e. Wu et al. (2010) present a more stable SfSre
onstru
tion. They merge several shape data sets intoa 
omplete 3D model of the s
ene where the respe
tivepositions and orientations of the endos
ope are obtainedby an additional tra
king system. However, they report a
omputation time of several minutes for a 
omplete modelof a bone.Another mono
ular solution for generating 3D data isShape-from-Motion (SfM, also known as Stru
ture-from-Motion) (Thormahlen et al., 2002; O. et al., 2011; Wanget al., 2008; Zhou et al., 2010; Hu et al., 2010). It requires asequen
e of images taken by a 
amera that moves relativeto the s
ene (or vi
e versa). Features are tra
ked over atleast two 
onse
utive frames. Given enough features, the3D position of the tra
ked points 
an be estimated up toa s
ale fa
tor using proje
tive geometry. The distributionand quantity of tra
kable features in the s
ene determinesthe density of the resulting point 
loud. SfM implemen-tations also often have di�
ulties providing live feedba
k.Typi
ally, a whole image sequen
e has to be pro
essed be-fore 3D data 
an be 
omputed. The lag des
ribed in theliterature varies widely; Hu et al. (2010) report a pro
ess-ing time of several minutes while Grasa et al. (2009); O.et al. (2011) demonstrate an SfM system running at 25Hz. Additional 
hallenges are posed by non-rigid s
enes,whi
h may prevent a re
onstru
tion or - in the worst 
ase- 
ause artifa
ts. It is also important to mention that bothSfS and SfM generate 3D data only up to s
ale; it 
annotbe used for absolute measurement, but it is suitable forstereo view synthesis. Hu et al. report an RMS reproje
-tion error of their tra
ked features of around 1 pixel. This
orresponds to a mean residual error of 1.68mm betweentheir re
onstru
tion and a ground truth surfa
e; howeverit is un
lear how the s
ale of the metri
 re
onstru
tion wasdetermined.A natural way to over
ome the la
k of depth per
eptionis to image the s
ene from two distin
t viewpoints sepa-rated by a known baseline (interpupillary distan
e). Su
ha setup is typi
ally realized using two imaging sensors withtwo distin
t lenses (Durrani and Preminger, 1995). Thereare, however, also alternative set-ups su
h as a single lensbehind two pupil openings 
ombined with a lenti
ular ar-ray on a single sensor 
hip. Su
h a design permits a smallendos
ope diameter (Tabaee et al., 2009; D. et al., 2010),but results in a 'weak' 3D e�e
t. With stereo algorithmsthe quality of the 3D data depends on the opti
al stru
-ture of the s
ene; featureless areas or viewpoint-dependentglares tend to 
ause problems.A widely-used alternative to stereo vision is Stru
turedLight where one of the stereo 
ameras is repla
ed by aproje
tor or, more generally, a light sour
e. Armbruster

and S
he�er (1998) des
ribe a rather large endos
ope (tar-geted at industrial appli
ations) based on the well-knownphase-shifting approa
h for the illumination pattern (Creath,1986). In Kolenovi
 et al. (2003), the authors present a
on
eptually similar miniaturized holographi
 interferom-eter that 
an a
quire data at a rate of 5Hz. The 
ap-sule has a diameter of 10mm and three protruding armsto provide three di�erent illumination dire
tions. Theyemploy temporal phase shifting to get rid of the disturb-ing zero order and the 
omplex-
onjugate image arisingin digital holography. The reported quality is impressive,but endo
opes using phase shifting tend to be unsuitablefor moving obje
ts. Hayashibe et al. (2006) propose a 3Dendos
ope based on triangulation with a s
anning laserline. The ne
essary triangulation angle is 
reated by usingtwo endos
opes, one for illumination and one for observa-tion, resulting in a rather large and impra
ti
al setup. Ingeneral, many Stru
tured Light systems des
ribed in theliterature have an overall diameter of the endos
ope signi�-
antly greater than 10 mm and are 
onsequently too largefor many medi
al appli
ations. An ex
eption is Clan
yet al. (2011), who present a �ber-opti
 addon for the in-strument 
hannel of a rigid endos
ope. They proje
t dotsof di�erent wavelengths onto the s
ene and try to identifythe wavelength in the 
amera image. However, given the
olor �lters in typi
al 
ameras, this is a di�
ult task andthe resulting density of 3D points is very low.Time-of-Flight (ToF) methods have also been 
onsid-ered for endos
opi
 imaging (Penne et al., 2009). Theadvantage of ToF is that it does not su�er from o

lu-sion, unlike triangulation-based methods su
h as Stereo orStru
tured Light. At the same time, it is very 
hallengingto build a small endos
ope with an integrated ToF-sensor.Penne et al. (2009) did not miniaturize the hardware tothe required level, but rather used a rigid endos
ope with�ber opti
s for illumination and observation. The authorsreport an average error of 0.89mm for measurements ofa plasti
 
ube with a side length of 15mm at a stando�distan
e of 30mm. Surfa
e texture and volume s
atter-ing in biologi
al tissue (a signi�
ant e�e
t for the infraredillumination typi
ally used in ToF sensors) pose problems.Detailed surveys of 3D re
onstru
tion te
hniques forendos
opi
 appli
ations 
an be found in Mountney et al.(2010) and Mirota et al. (2011).3. Stru
tured LightStru
tured Light is a method for 3D re
onstru
tion ofsurfa
es based on triangulation. One or multiple illumi-nation patterns are proje
ted onto a s
ene and observedby a 
amera. The basi
 prin
iple is illustrated in �gure1. The proje
ted light pattern de�nes a set of planes (orother suitable surfa
es) in spa
e. The interse
tion of the
amera ray CX with the 
orresponding light plane givethe 3D 
oordinates of the point X . The task of �ndingthe right plane for a given 
amera ray is known as the 
or-responden
e problem. However, the 
amera rays and the2



light planes 
an only be 
al
ulated if both the 
amera andthe proje
tor are 
alibrated (see se
tion 5).

Figure 1: A
tive Triangulation prin
iple. A light plane from pro-je
tor P falls on the obje
t and is observed by 
amera C. In a 
al-ibrated system the 3D 
oordinates of the obje
t point X 
an bere
onstru
ted.There are numerous variants (Salvi et al., 2010) ofStru
tured Light methods. Single Shot te
hniques needonly one image of the s
ene to re
onstru
t 3D data. Thishas two main advantages. Firstly, it allows to measuremoving s
enes, whi
h is 
riti
al for eventual appli
ationson live patients. Se
ondly, it simpli�es the miniaturizationof the proje
tion hardware that is ne
essary for endos
opi
appli
ations. Only a single stati
 pattern has to be pro-je
ted and thus no moving parts are required.The proposed system uses a single-shot 
olor ring pat-tern (see �gures 2 and 5). This type of pattern 
an be ro-bustly dete
ted in the 
amera image and yields relativelymany 3D points per frame. The sequen
e of the 
olorrings that make up the pattern is based on pseudorandomarrays. Their de�ning property is that subarrays with aminimal length L o

ur at most on
e. Therefore, observ-ing a subarray of su�
ient length (a sequen
e of stripes)in the 
amera image allows one to dedu
e its index in theproje
ted pattern. Thus the 
orresponden
e problem issolved. In the example pattern shown in �gure 2, we in-terpret the 
olor 
hanges between subsequent stripes asarray elements (also termed symbols) rather than the ab-solute 
olors. Single symbols like G-B+ are not unique,but longer sequen
es are guaranteed to o

ur only on
e. Ifsu
h a 
hara
teristi
 sequen
e of 
olor 
hanges is dete
tedin the 
amera image, the 
orresponding stripe indi
es inthe proje
tion pattern 
an be re
overed and triangulation
an be performed. Why are 
olor 
hanges used instead ofthe dire
tly observed 
olors? The proje
ted 
olors may bedistorted by the obje
t texture and are therefore hard todete
t reliably in the 
amera image. The 
olor 
hangesbetween neighboring rings 
an be re
ognized more easily(S
hmalz and Angelopoulou, 2010).4. Stru
tured Light Endos
opeThe Stru
tured Light Endos
ope 
onsists of a 
atadiop-tri
 
amera and a slide proje
tor. The design is illustratedin �gure 3. Views of the working prototype system are
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R+G-G-B+Figure 2: Example 
olor stripe pattern. The letters symbolize the
olor 
hannels. A plus sign denotes 
hannel rising at the edge, aminus sign a falling 
hannel. Constant 
hannels are omitted.shown in �gures 4 and 5. The endos
ope head has a diam-eter of 3.6mm and 
ontains a 
omplete Stru
tured Lighttriangulation system in an unusual axially-aligned 
on�g-uration. This results in a relatively long triangulation basewhile keeping the diameter small. For stability the hard-ware is housed inside a 
ylindri
al glass tube. The lightsour
e is external and 
onne
ted via a glass �ber in the�exible shaft. This means almost no heat needs to be dis-sipated from the head. Still, the pattern slide is exposedto very high light intensities, whi
h 
auses blea
hing inorgani
 dyes. Therefore the pattern is realized as a multi-layer interferen
e �lter on a glass substrate. The 
amera is
atadioptri
, that is it uses a mirror in addition to lenses(Swaminathan et al., 2006). In our design the mirror isspheri
al, whi
h makes for a wide �eld of view at the 
ostof a strong �sheye distortion towards the rim of the mir-ror. To 
ompensate the varying 
amera resolution, theouter rings of the pattern are wider, so that they appearapproximately equally spa
ed in the 
amera image. At themoment the Stru
tured Light pattern 
onsists of 15 ringswith distin
t 
olors (�gure 5).The wide-angle 
atadioptri
 measurement 
amera mainlyobserves the spa
e to the sides of the endos
ope. It hasa blind spot dire
tly ahead as the 
amera 
hip sees onlyitself in that dire
tion (see �gure 6). Be
ause of its smallsize of 1.2mm×1.2mm, the 
amera 
hip has a resolution ofonly 400×400 pixels. Furthermore, a large area of the 
hip
annot be used for measurements due to the blind spot.In future hardware revisions this aspe
t will be improved.A se
ond 
amera with a regular narrow-angle lens ob-serves the area in front of the endos
ope and gives addi-tional guidan
e for the operator. The ne
essary illumi-nation is provided by two white mi
ro LEDs lo
ated atthe front of the s
anner. It also allows tra
king of featurepoints on the obje
t surfa
e for more robust registration ofthe Stru
tured Light data. The opti
al design of the sen-sor is des
ribed in more detail in S
hi
k et al. (2011). Themeasurement volume of the 
urrent prototype is a 
ylinderwith diameter and length of approximately 30mm.5. CalibrationThe s
anning system needs to be 
alibrated in order togenerate metri
 3D data. The 
alibration of the proposedsystem 
onsists of two parts. The �rst is the 
amera 
ali-bration, whi
h is needed to 
al
ulate the rays of view forea
h 
amera pixel. The se
ond part is the proje
tor 
ali-bration, whi
h yields a set of 
ones 
orresponding to theedges between the proje
ted 
olor rings. Range data 
an3



Figure 3: S
hemati
 hardware setup. The light for the proje
toris supplied through a glass �ber (not shown). A ring-shaped slideproje
ts 
olored 
ones to the side (only rays to one side are shown).They are observed by the 
amera via a 
urved mirror (shown ingreen). A se
ond 
amera provides a front view (yellow rays to theright). In this diagram, the wall thi
kness of the glass housing is zeroand so no refra
tion of the rays o

urs.

Figure 4: The physi
al realization of the prototype design. It has adiameter of 3.6mm and a length of 14mm.then be 
omputed by interse
ting the rays of view withthe appropriate 
ones.We provide a short derivation of the most importantformulas used for 
alibration and measurements with theendos
opi
 Stru
tured Light 3D s
anning system. A more
omplete treatment of these raytra
ing fundamentals 
anbe found in Glassner (1989). All rays are expressed in
amera 
oordinates. This 
oordinate system has the xand y axes in the image plane, the z axis along the opti
alaxis and the origin in the opti
al 
enter of the 
amera.5.1. Camera CalibrationAs the 
amera is a 
atadioptri
 system with a spheri
almirror, it falls in the 
atagory of non-single-viewpoint 
am-eras. Two approa
hes for 
alibration were investigated.One is a standard model of a pinhole 
amera with radialand tangential distortion (Zhang, 2000). This model has8 intrinsi
 parameters and 6 extrinsi
 parameters per poseof the 
alibration target. It assumes a single viewpoint, soit is not a perfe
t model for our setup. However, we foundthat it 
an still be applied. This is be
ause the relativelylow image resolution of 400 × 400 pixels, in 
onjun
tionwith the imaging geometry, results in an obje
t spa
e res-olution of between 100μm and 200μm at a typi
al distan
e

Figure 5: Prototype system in operation. The 
onne
tion 
able forthe 
amera 
auses a small shadow. In a future version transparentwires will be used. The inner rings are less wide to 
ompensate
amera distortion.of 10mm. In the peripheral area the resolution is evenlower be
ause of the large amount of distortion in the im-age. This mostly masks the errors 
aused by the varyingviewpoint.5.1.1. Pinhole ModelIn the 
amera 
oordinate system, the ray of view forimage 
oordinates (xi, yi) of a pinhole 
amera is the set ofall points X with
X =





0
0
0



+ λ





(xi − cx)dx
(yi − cy)dy

f



 = Op + λTp (1)with the pixel pit
h (dx, dy), the prin
ipal point (cx, cy),the fo
al length f and the free parameter λ > 0. If the
amera exhibits image distortion, that has to be 
orre
ted�rst, for example using Zhang's model (Zhang, 2000).5.1.2. Pinhole-Mirror-Tube ModelThe se
ond 
alibration method augments the pinhole
amera with a re�e
tive sphere and an en
asing glass tube.The re�e
tion and refra
tion pro
esses are expli
itly mod-eled. The augmented model has 8 additional intrinsi
 pa-rameters (see Table 1).A sphere with the 
enter C and radius r is the set ofpoints X with
(X − Cm)

2
= r2m (2)Plugging eq. 1 into eq. 2 and simplifying, the interse
tionpoint of a ray with the sphere must ful�ll

aλ2 + bλ+ c = 0 (3)with a = T 2
p , b = 2(Op−Cm)·Tp and c = (Op−Cm)2−r2m.Ignoring degenerate 
ases, the desired interse
tion pointwith the mirror is

Om = Op +
−b−

√
b2 − 4ac

a
Tp (4)The surfa
e normal in this point is

Nm =
Om − Cm

‖Om − Cm‖ (5)4



parameter type number of parameters
amera pose 6 per posefo
al length 1prin
ipal point 2radial distortion 3tangential distortion 2mirror position 3mirror radius 1tube origin 2tube rotation 2Table 1: Camera 
alibration parameters. The �rst �ve types areused in the pinhole model with radial and tangential distortion. Theaugmented model with mirror and glass tube has additional parame-ters, listed in the last four rows. Be
ause of spheri
al symmetry, themirror rotation is irrelevant. Also, the rotation of the tube aroundits axis is degenerate. The origin of the tube is de�ned as the inter-se
tion point of its 
enter line with the arbitrary plane z=0. Thus,it needs only two parameters. The inner and outer tube radius, aswell as its index of refra
tion, are known and therefore not part ofthe optimization at all.And the re�e
ted ray
X = Om + λ (T − 2Nm (Nm · T )) = Om + λTm (6)The glass housing is modeled as a pair of 
o-axial 
ylin-ders. A 
ylinder with the point Cc on its 
enterline, theaxis dire
tion Ac and the radius rc is the set of points Xwith
((Cc −X)×Ac)

2 = r2c (7)Plugging eq. 1 into eq. 7 and simplifying, we obtain an-other quadrati
 equation
aλ2 + bλ+ c = 0 (8)with a = (Tm ×Ac)

2, b = 2 ((Om − Cc)×Ac) · (Tm ×Ac)and c = ((Om − Cc)×Ac)
2 − r2cA

2
c . Again ignoring de-generate 
ases, the interse
tion point of the ray with the
ylinder is

Or = Om +
−b+

√
b2 − 4ac

a
Tm (9)The normal Nr in the interse
tion point is

Nr =
Or − Cr

‖Or − Cr‖
(10)where Cr is the 
losest point to Or on the 
ylinder 
enterline, Cr = Cc +

(Or−Cc)Ac

A2
c

Ac.Applying Snell's law with the refra
tion indi
es n1 and
n2 we get the refra
ted ray dire
tion Tr from the in
identray dire
tion Tm as

Tr =
n1

n2
Tm −

(

n1

n2
cosγi +

√

1− sin2γt

)

Nr (11)

where sin2γt =
n1

n2

(

1− cos2γi
) and γi is the angle of thein
ident ray with the surfa
e normal. A se
ond refra
-tion is 
omputed with the outer 
ylinder of the glass tubeto obtain the �nal ray of view in the augmented 
ameramodel.The reverse problem of �nding the image 
oordinatesfor a given point P in spa
e, taking into a

ount refra
tionand re�e
tion, is more 
omplex. It 
an be solved by op-timizing the image 
oordinates with respe
t to the obje
tspa
e error.5.1.3. ResultsBoth models are initialized with the results of the stan-dard 
alibration algorithm by Zhang for the poses, fo
allength and distortion parameters. For the initializationof the additional parameters in the pinhole+mirror+tubemodel, we use the default design values of the mirror andthe tube. The parameters of both models are optimizedwith the non-linear Levenberg-Marquardt algorithm (More,1978). The quantity being optimized is the obje
t spa
eerror, whi
h 
an be de�ned as follows.The distan
e d of a point P to a ray is simply

d =
‖(O − P )× T ‖

‖T ‖ (12)with the 
ross produ
t ×.Ea
h 
alibration point has known 3D 
oordinates in theworld 
oordinate system and known image 
oordinates inthe 
amera, whi
h 
an be used to 
al
ulate a ray of viewwith the equations given above. For the pinhole model the'plain' rays are used, while for the pinhole+mirror+tubemodel the rays are additionally re�e
ted and refra
ted.The sum of the ray-point distan
es over all 
alibrationpoints k in all poses l is the obje
t spa
e error ecam.
ecam =

∑

l

∑

k

d(k, l) (13)Note that many other 
amera 
alibration algorithmsminimize the distorted image plane error. This is not agood metri
 for our highly distorted images. The border ofthe image is �
ompressed�, and points in the 
enter have arelatively higher weight in the optimization. Therefore weevaluated the performan
e of both the undistorted imageplane error and the obje
t spa
e error as error metri
s.The obje
t spa
e error gave slightly better results. Sin
eit is also faster to 
ompute and its optimization is morestable, it is the metri
 that is 
urrently being used.We also tested two di�erent ways of generating the 
al-ibration points. One was a 
lassi
 dot grid target fromEdmund Opti
s. The dots were lo
alized with ellipse �tsto their 
ontours. Unfortunately, this is error-prone, es-pe
ially in the peripheral area where the image distortionis high. The alternative method used an a
tive target inthe form of the display of a Fuijitsu UH900 mini-notebook.The 
alibration marks on this target were generated withthe algorithm outlined in S
hmalz et al. (2011). This5



method displays a series of 
oded patterns on the displayto uniquely identify ea
h pixel. Virtual 
alibration marks
an then be de�ned with subpixel pre
ision. With help ofthe known pixel size (only 94µm in the 
ase of the UH900)pixel 
oordinates 
an be 
onverted into metri
 
oordinates.The results of the 
amera 
alibration 
an be seen inTable 2. The a
tive target approa
h gives better resultsthan the dot grid target. Also, the extended model withmirror and tube gives better results than the simple pin-hole model. Of 
ourse, using more parameters naturallyredu
es the residual error. Therefore we �rst evaluated theerror of the pinhole-mirror-tube model with default designvalues for the 8 additional parameters (optimizing only theparameters already used in the pure pinhole model). Thisresulted in a marked improvement in the RMS errors andproved that the extended model is sound. In a third runall parameters were optimized, yielding a further improve-ment of the residual errors. Unfortunately, there are noground truth 
alibration parameters to 
ompare our re-sults against, but the optimized parameters for the mirrorand the glass tube were within the manufa
turing toler-an
es of their design values.For both the 
lassi
 and the a
tive 
alibration six di�er-ent 
amera poses were used. We took 
are to use a 
ompa-rable set of poses for both 
alibrations. The a
tive targetyielded 1504 marks, the dot grid 811 marks. Comparedto the spatial 
amera resolution of between 100µm and200µm, the absolute values of the resulting obje
t spa
eerrors are small.RMS error [mm℄ 
lassi
 a
tivepinhole 0.0864 0.0674pmt default 0.0802 0.0546pmt optimized 0.0707 0.0501Table 2: Endos
opi
 
amera 
alibration results after optimization ofthe obje
t spa
e error. The a
tive target gives better results than the
lassi
 target. The full model with pinhole 
amera, mirror and glasstube (abbreviated pmt) is better than the simple pinhole model, evenwhen the additional parameters are set to their default design values.Optimizing the full parameter set results in a further improvement.5.2. Proje
tor CalibrationFor the proje
tor 
alibration we model the proje
tedrings as light 
ones. A planar dot grid 
alibration targetis a
quired in several poses while the 
ones are being pro-je
ted (�gure 6). In ea
h pose, the surfa
e of the targetde�nes a plane in spa
e. This plane 
an be 
al
ulated fromthe lo
ations of the dots as observed by a 
alibrated 
am-era. The 
amera simultaneously observes the 
olor rings,whi
h are the interse
tions of the target surfa
e plane withthe set of proje
ted light 
ones. Thus ea
h pose yields aset of points on the surfa
e of ea
h proje
ted 
one. The
ones to whi
h the points belong are identi�ed using thealgorithm des
ribed in se
tion 6.

An a
ute 
one with the axis A, the vertex V and theangle θ < π
2 is the set of all points X with

A ·
(

X − V

‖X − V ‖

)

= cosθ (14)The distan
e of a point P to the 
one is
d = ‖P − V ‖ · sin

(

min(δ,
π

2
)
)with δ = acos

(

P−V
‖P−V ‖ ·A

)

−θ. Eq. 14 
an also be writtenas
(X − V )

T
M (X − V ) = 0 (15)with

M = AAT − 1 · cos2θ (16)and
A · (X − V ) > 0 (17)Finally, the parameters of the 
ones are �tted, again us-ing the Levenberg-Marquardt algorithm. The error metri
in this 
ase is the distan
e between the 
alibration pointsand the interse
tion points of the 
orresponding 
amerarays with the 
ones (also see �gure 8).What is the interse
tion point of a ray and a 
one?Plugging eq. 1 into eq. 15 and simplifying we obtain aquadrati
 equation
aλ2 + bλ+ c = 0 (18)where a = T T

MT , b = T T
M(O − V ) and c = (O −

V )TM(O−V ). Ex
luding all degenerate 
ases, the soughtafter interse
tion point is
Xc = O +

−b−
√
b2 − ac

a
T (19)To determine the parameters of the light 
ones in theproje
tor 
alibration, the obje
tive fun
tion

eproj =
∑

m

∑

l

∑

k

‖P (k, l,m)−Xc(k, l,m)‖ (20)is minimized. Here m iterates over all 
ones, l over alltarget poses and k over all 
alibration points P visible inthe 
urrent pose.An alternative metri
 to optimize would be the sumof the orthogonal distan
es between the 
alibration pointsand the 
ones, without 
al
ulating the interse
tion pointswith the rays of view. However, eq. 20 gave better re-sults, as it mirrors the way depth data is 
omputed in the
alibrated sensor (whi
h is also based on eq. 19).For reasons of numeri
al stability, we do not optimizeea
h 
one separately but enfor
e a 
ommon vertex and axisfor all the 
ones. However, the refra
tion of the light raysin the glass tube 
auses a shift in the apparent z-position6



Figure 6: Calibration target for the proje
tor 
alibration. Left: Out-side view. Right: Camera view. The dots are used to determine thepose of the target relative to the 
alibrated 
amera. The proje
tedrings yield the 
alibration points for the light 
ones. In the rightimage, the bla
k area at the top is 
aused by the 
amera 
able. Thebla
k area in the 
enter is 
aused by the 
amera 
hip looking at itselfin the mirror.of the vertex, whi
h depends on the opening angle of the
one. This z-o�set is determined separately for ea
h 
onein a se
ond optimization step.An example input image is shown in �gure 6. Thenumber of proje
tor 
alibration points re
overed from sixposes of the target is illustrated in �gure 7. The outer-most and innermost 
ones do not have enough points fora reliable 
alibration. The 
alibration points for 
one 9and the optimization result 
an be seen in �gure 8. Thedi�erent 
ones are nested with a varying opening angle,sharing the same vertex (ex
ept for the small z-o�set dueto refra
tion). The RMS residuals of the 
one �ttings forthe di�erent 
amera 
alibrations are shown in �gure 9.The residuals range from 100μm to 300μm. Again, this ismainly due to the limited resolution of the 
amera, espe-
ially in the peripheral area. The quality of the proje
tor
alibration is approximately equal for all four 
amera 
al-ibrations. This suggests that the main error sour
e is thelo
alization of the proje
ted rings in the 
amera image.Futhermore, sin
e a dot grid target is mandatory for theproje
tor 
alibration (the proje
ted rings 
annot be seenon the glossy surfa
e of the digital display), the advantageof the a
tive target in the 
amera 
alibration (see Table 2)is neutralized.
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Figure 7: Number of 
alibration points per 
one. While the pro-je
tion slide has only 15 rings, two additional rings 
an be de�nedby 
ounting the bla
k area before the �rst and after the last properring. However, be
ause of image quality limitations, the outermostand innermost rings do not yield enough points for a stable 
alibra-tion.

Figure 8: Light 
one 
alibration example for a single 
one. The bluesurfa
e model is �tted to the red 
alibration points. Ea
h red 
ir
le
orresponds to one view of the 
alibration target. The green raysindi
ate the errors for one set of 
alibration points. We minimize thedistan
e along the ray of view, not the orthogonal distan
e of the
alibration points to the 
one.6. Stru
tured Light De
odingThe images seen by the endos
opi
 
amera typi
allyhave a limited quality with low 
ontrast and a high degreeof noise. We therefore applied the robust de
oding algo-rithm outlined in S
hmalz and Angelopoulou (2010). Thismethod is able to 
ope with 
olored and textured obje
tsas well as with 
hallenging image quality. We give a shortsummary of the method here. First, a watershed trans-form of the input image is performed. From the super-pixels in the resulting oversegmented image a region adja-
en
y graph is built. Ea
h superpixel be
omes a vertex inthe graph. The 
olor assigned to the vertex is the medianof the original image pixels belonging to that superpixel.The edges of the region adja
en
y graph des
ribe the 
olor
hanges between neighboring verti
es. They are s
ored a
-
ording to how well they �t possible 
olor 
hanges in theproje
ted pattern. To �nd 
orresponden
es between theproje
ted pattern and the 
amera image, unique sequen
esof edges representing the 
olor 
hanges in the proje
tedpattern have to be found in the region adja
en
y graph.If a mat
hing sequen
e is found, the 
orresponden
e infor-mation is propagated to the neighboring verti
es in a best-�rst-sear
h. On
e all possible regions have been mappedto proje
ted stripes, the stripe edge lo
ations in the orig-inal image are lo
alized to subpixel pre
ision. The trian-gulation between the proje
ted light planes (or 
ones inour 
ase) and the viewing rays from the 
amera 
an thenbe performed to obtain 3D data. The advantages of thisgraph-based de
oding method are the robust 
olor assign-ments of the superpixels, the absen
e of �xed thresholds7
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Figure 9: Cone parameter optimization results with four di�erent
amera 
alibrations (see table 2). 'Zhang' refers to to the simple pin-hole model with distortion. The a
ronym pmt denotes the 'pinhole-mirror-tube' model. Cones 0 to 3 
ould not be �tted be
ause of ala
k of 
alibration points. The largest di�eren
es are found for theoutermost 
ones (4 to 6) as the image distortion is higher towardsthe image border.for 
olor 
hanges and the ability to sidestep any disrup-tions of the pattern in the 
amera image by �nding alter-native paths in the region adja
en
y graph. Furthermore,the implementation is fast and 
an be run in real-time on
urrent hardware.An example input image with the proje
ted ring pat-tern is shown in �gure 10. The asso
iated de
oding result
an be seen in �gure 11. The �nal depth data is shown in�gure 12.

Figure 10: Example input image, gamma adjusted for better visibil-ity. The dark spot in the 
enter is the mirror image of the 
amera
hip. The dark area at the top is the shadow of the 
onne
tion 
able.The 
ontrast of the 
olor rings is relatively low. The bright whitering is an artifa
t 
aused by stray light and should be eliminated infuture hardware revisions.With the 
urrent 
amera resolution and proje
tor ge-ometry, a single input image yields about 5000 data points.However, the user is typi
ally interested in the re
onstru
-tion of a 
omplete 3D model of the s
ene. Therefore, theendos
ope has to be moved through the 
avity. The indi-

Figure 11: De
oded result for the input image from �gure 10 withre
overed ideal proje
ted ring 
olors. Hat
hed areas 
ould not beidenti�ed uniquely. In the gray areas no 
olor stripe information
ould be re
overed or was available.vidual point 
louds re
overed from su

essive frames haveto be registered to ea
h other and merged. The overlapbetween su

essive images is very large if the sensor ismoving slowly 
ompared to the frame rate of 30Hz. Reg-istration algorithms like Iterative Closest Point (LM-ICP)(Fitzgibbon, 2003) 
ould be used, but there may be de-generate 
ases, like 
onstant-diameter 
ylindri
al 
avities,where this algorithm 
an fail. Therefore, we propose toguide the registration pro
ess by motion estimation withhelp of the se
ond 
amera. The main measurement 
am-era 
annot be used for this purpose be
ause the proje
tedpattern moves with the sensor head and masks the under-lying s
ene motion. The auxiliary front 
amera does notsee the pattern and feature tra
king or opti
al �ow 
an beused to derive an initial estimate of the 
amera translationand rotation between two frames (Raudies and Neumann,2009).7. EvaluationThe prototype s
anner was evaluated in four distin
texperimental setups. In a �rst test we measured a simpleplanar test obje
t in various poses. In another experiment,an arti�
ial 
avity in a blo
k of plasti
 was used. For thisexperiment ground truth CAD data is available for 
om-parison. In a third experiment we used a 
olon phantom.Finally, we used the windpipe of a lamb to 
he
k the per-forman
e on biologi
al tissue.Unfortunately, be
ause of hardware limitations the front
amera 
urrently 
annot be used. Therefore, the s
an-ner was moved in a 
ontrolled fashion using a manual x-ytranslation stage. The registration of the individual s
answas then performed with the help of the known �xed o�-sets between the datasets. As the o�sets are only used forinitialization of the registration, they do not have to beperfe
tly 
orre
t. In fa
t, it must be expe
ted that the o�-8



Figure 12: De
oding result for the input image in �gure 10 superim-posed on the input image. Depth data 
an only be 
omputed at theedges between two rings. The 
olors indi
ate the z-
oordinate of there
overed points. The range in this example is 4mm (blue) to 18mm(red).sets that 
an be estimated with opti
al �ow te
hniques willbe subje
t to error as well. The work�ow for the di�erentre
onstru
tions was as follows:1. Compute a 3D point 
loud from every single frame.2. Perform an initial registration of the individual point
louds by applying the known translation between
onse
utive frames.3. Optimize the 
oordinate tranformations between theindividual point 
louds using ICP.4. Merge the points 
louds into one and merge points
loser than 0.3mm.5. Smooth the resulting point 
loud using the methodof Vollmer et al. (1999) with a radius of 1.5mm.6. Perform a Poisson surfa
e re
onstru
tion (Kazhdanet al., 2006) and remove large fa
es from the resultingmesh (optional).7.1. Planar targetIn a simple test a planar obje
t was measured in twodi�erent poses relative to the sensor. The sensor 
alibra-tion was based on a 
amera 
alibration with a 
lassi
 dotgrid target and the pinhole+mirror+tube model. In the�rst pose, the test plane was positioned approximately10mm in front of the sensor, with its normal parallel tothe 
amera z-axis. In this pose almost all rings are 
om-pletely visible in the 
amera image (�gure 13). However,due to the axial setup of the s
anner, the triangulation an-gle is relatively low for points in the forward dire
tion. Theangle varies 
onsiderably a
ross the working spa
e (mainlyin z dire
tion) and typi
ally lies between 10 and 2 degrees.In the frontal pose, the resulting standard deviation of thedepth values from the plane was 153μm. In the se
ondpose the test plane was positioned approximately 9mm tothe side of the sensor head, its normal perpendi
ular to the


amera z-axis. Here, only part of ea
h ring 
an be observedin the 
amera image (�gure 14), but the triangulation an-gle is larger. Consequently, the standard deviation fromthe plane was only 88μm. Both �gure 13 and �gure 14reveal a systemati
 
omponent of the error that dependson the ring number. This means that the 
one parametersthat were 
omputed with the pro
edure outlined in se
tion5.2 are slightly erroneous. Possibilities for 
orre
ting thise�e
t, e.g. better input data or better models, are a topi
for future resear
h.
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Figure 13: Depth errors of the plane in frontal view for 6794 points.The standard deviation is 153µm. The 
olors en
ode the z-error ina lo
al 
oordinate system whose x and y axes are aligned with thebest-�t plane.
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Figure 14: Depth errors of the plane in side view for 2216 points.The standard deviation is 88µm. The 
olors en
ode the z-error in anin-plane 
oordinate system.7.2. Generi
 
avityThe result for the hollow plasti
 blo
k is shown in �g-ure 15. The input data 
onsisted of a sequen
e of 41 im-9



ages. Between su

essive images the sensor was moved insteps of 0.5 mm along the z-dire
tion of the sensor 
oor-dinate system. The initial merged point 
loud 
ontained258610 points; after thinning 11323 remained. This �nalpoint 
loud was aligned to the ground truth CAD modelusing LM-ICP (Fitzgibbon, 2003). The average error be-tween the re
onstru
ted points and the original CAD datais 92μm. This result was a
hieved using a sensor 
albrationbased on the pinhole+mirror+tube model with a 
lassi
dot grid target. With the pmt model and an a
tive tar-get the average error was 98μm. Zhang's pinhole 
ameramodel with a 
lassi
 target gave an average error of 108μm.Finally, Zhang's model with the a
tive target resulted in aslightly larger error of 138μm. This behaviour of the erroragain di�ers from the 
amera 
alibration, where the a
tivepmt model fared best and the pinhole model with a 
lassi
target fared worst. Further investigations are ne
essaryhere. However, for all 
alibration methods the results arequite good, 
onsidering the size of the re
onstru
ted 
avity(approximately 32mm long with a diameter around 13mm)and the low triangulation angle.

Figure 15: Measurement result for an arti�
ial 
avity. The 
olorsen
ode the error relative to the ground truth CAD data (mm). Theaverage error was 0.092mm.7.3. Colon PhantomA rubber repli
a of a human 
olon was also measuredwith the endos
opi
 sensor. The 
olon diameter was ap-proximately 40mm and therefore at the upper limit of the
urrent sensor prototype. Nevertheless, good re
onstru
-tion results 
ould be obtained. A sequen
e of 50 frameswas re
orded with the setup shown in �gure 16. From thisset of images 267260 points 
ould be re
overed. After reg-istration the average point distan
e was 0.108mm. A thin-ning step redu
ed the number of points to 93587. Next,a Poisson surfa
e re
onstru
tion (Kazhdan et al., 2006)was performed, whi
h resulted in a watertight mesh with-out any holes. From this, the large arti�
ial fa
es 
losingthe holes were removed, giving a �nal surfa
e 
onsisting of

39288 verti
es. The re
onstru
ted shape 
learly shows thefolds of the 
olon (�gure 17). Unfortunately ea
h fold also
auses a shadow, leading to some holes in the data.

Figure 16: Experimental setup for the 
olon phantom measurement.The sensor is inside the 
avity, whi
h rests on a manual translationstage.

Figure 17: Colon phantom surfa
e re
onstru
ted from 50 frames.The folds are 
learly visible, but also 
ause shadows whi
h result inholes in the re
overed surfa
e.7.4. WindpipeFigure 19 shows the measured surfa
e of the windpipe,whi
h has a diameter of approximately 14mm. The in-put data 
onsisted of a sequen
e of 26 frames. These im-ages yielded 131146 points with an average distan
e of0.057mm. The point density is markedly higher here be-
ause of the smaller diameter 
ompared to the 
olon phan-tom. After thinning, 7417 points remained and were againused for a Poisson surfa
e re
onstru
tion (Kazhdan et al.,2006). Overly large fa
es were removed from the mesh.The result shows that the sensor works even on biologi
alsurfa
es, whi
h 
an be di�
ult be
ause of volume s
atter-ing and highlights. The data quality is very promising.Even the ripples at the �bottom� side 
ould be re
overed.10



Figure 18: Ex-vivo lamb tra
hea sample.

Figure 19: Inner surfa
e of a lamb's windpipe 
reated from 26 images.No additional smoothing was applied. Note the re
overed longitudi-nal ripples at the bottom. The missing area at the top is due to the
amera 
onne
tion 
able.8. Con
lusion and Future WorkIn this paper we presented a new �exible 3D endos
opewith a diameter of 3.6mm. To the best of our knowledgeit is the �rst 3D endos
ope based on Single-Shot Stru
-tured Light as well as the smallest Stru
tured Light setuppresented so far. The endos
ope does not 
ontain movingparts and 
an be built in a robust and 
ost-e�
ient way.It a
quires 3D data at 30Hz with minimal lag and is nota�e
ted by movement. The a

ura
y of about 0.1mm (in-
luding the error due to point 
loud alignment and merg-ing) is quite 
ompetitive, espe
ially in relation to the smallsize of the endos
ope. Several experiments demonstratethe endos
ope's performan
e with phantoms and biologi
alspe
imens. Data a
quisition works even with tissues thathave 
hallenging opti
al properties, e.g. the 
olor of thetissue proves to be unproblemati
 despite the use of 
olorrings. So far there is no experien
e regarding dynami
e�e
ts like smoke or bleeding, whi
h may o

ur during
lini
al pra
ti
e.In the short term we intend to automate the pro
essof registering the individual s
ans to obtain a 
omplete3D model. One way this 
ould be a
hieved is motion es-timation via feature tra
king or opti
al �ow. The featuretra
king module is already implemented, but 
ould not yetbe evaluated due to the malfun
tioning front 
amera. Analternative method to obtain the required data is to usethe main 
amera and rapidly swit
h between the 
olor ringpattern and simple white light illumination. This wouldalso allow sythesis of �natural� stereo images without theoverlaid ring pattern, whi
h is potentially distra
ting. In

a future step we plan to perform non-rigid registration be-tween our data and CT or MRI s
ans.Non-rigid s
enes remain a 
hallenge. Although 3Ddata from individual frames 
an be re
onstru
ted withthe proposed Single Shot te
hnique, motion in the s
enemay 
ause the registration step between data from sub-sequent frames to fail, even when the sensor motion isknown. However, it may be possible to parameterize theadmissible types of surfa
e deformation and in
lude thoseparameters in the optimization pro
ess. This is a topi
 forfuture resear
h.A
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