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Abstract

In this thesis a new robust approach for Single-Shot Structured Light 3D scanning
is developed. As the name implies, this measurement principle requires only one
image of an object, illuminated with a suitable pattern, to reconstruct the shape and
distance of the object. This technique has several advantages. It can be used to record
3D video with a moving sensor or of a moving scene. Since the required hardware is
very simple, the sensor can also be easily miniaturized. Single-Shot Structured Light,
thus, has the potential to be the basis of a versatile and inexpensive 3D scanner.

One focus of the work is the robustness of the method. Existing approaches are
mostly limited to simple scenes, that is, smooth surfaces with neutral color and no
external light. In contrast, the proposed method can work with almost any close-range
scene and produces reliable range images even for very low-quality input images. An
important consideration in this respect is the design of the illumination pattern. We
show how suitable color stripe patterns for different applications can be created. A
major part of the robustness is also due to the graph-based decoding algorithm for
the pattern images. This has several reasons. Firstly, any color assessments are based
on ensembles of pixels instead of single pixels. Secondly, disruptions in the observed
pattern can be sidestepped by finding alternative paths in the graph. Thirdly, the
graph makes it possible to apply inference techniques to get better approximations
of the projected colors from the observed colors. For a typical camera resolution of
780× 580, the whole decoding and reconstruction algorithm runs at 25Hz on current
hardware and generates up to 50000 3D points per frame.

The accuracy of the recovered range data is another important aspect. We im-
plemented a new calibration method for cameras and projectors, which is based on
active targets. The calibration accuracy was evaluated using the reprojection er-
ror for single camera calibrations as well as the 3D reconstruction errors for complete
scanner calibrations. The accuracy with active targets compares favorably to calibra-
tion results with classic targets. In a stereo triangulation test, the root-mean-square
error could be reduced to a fifth. The accuracy of the combined Structured Light
setup of camera and projector was also tested with simulated and real test scenes.
For example, using a barbell-shaped reference object, its known length of 80.0057mm
could be determined with a mean absolute error of 42µm and a standard deviation
of 74µm.

The runtime performance, the robustness and the accuracy of the proposed ap-
proach are very competitive in comparison with previously published methods. Fi-
nally, endoscopic 3D scanning is a showcase application that is hard to replicate
without Single-Shot Structured Light. Building on a miniature sensor head designed
by Siemens, we developed calibration algorithms and apply the graph-based pattern
decoding to generate high-quality 3D cavity reconstructions.



Kurzfassung

In dieser Arbeit wird ein neues robustes Verfahren zur 3D-Vermessung durch
Strukturierte Beleuchtung in Einzelbildern entwickelt. Dieses Messprinzip benötigt
nur ein einzige Aufnahme eines mit einem geeigneten Muster beleuchteten Objekts,
um dessen Form und Abstand zu rekonstruieren. Diese Technik hat mehrere Vorteile.
Sie kann benutzt werden, um 3D-Videos einer bewegten Szene oder mit einem be-
wegten Sensor aufzunehmen. Da sein Aufbau sehr einfach ist, ist der Sensor auch gut
zur Miniaturisierung geeignet. Strukturierte Beleuchtung in Einzelbildern hat daher
das Potential, als Grundlage für vielseitige und günstige 3D-Abtaster zu dienen.

Ein Schwerpunkt der Arbeit ist die Robustheit der Messmethode. Existierende An-
sätze sind meistens auf einfache Szenen beschränkt, das bedeutet glatte Oberflächen
in neutralen Farben und kein Fremdlicht. Im Gegensatz dazu kann die vorgeschlagene
Methode mit fast jeder Szene im Nahbereich umgehen und zuverlässige Tiefenkarten
auch aus Eingangsbildern mit sehr niedriger Qualität erzeugen. Eine wichtige Über-
legung ist in dieser Hinsicht die Gestaltung des Beleuchtungsmusters. Wir zeigen, wie
geeignete Farbstreifenmuster für verschiedene Anwendungen erzeugt werden können.
Ein Großteil der Robustheit beruht auch auf dem graphenbasierten Dekodierungsalgo-
rithmus für die Aufnahmen des Muster. Das hat mehrere Gründe. Erstens werden alle
Farbeinschätzungen anhand von Gruppen von Pixeln anstatt Einzelpixeln vorgenom-
men. Zweitens können Störungen im beobachteten Muster umgangen werden, indem
alternative Pfade im Graphen gefunden werden. Drittens erlaubt es der Graph, Fol-
gerungstechniken anzuwenden, um bessere Näherungen für die projizierten Farben
aus den beobachteten Farben zu erhalten. Mit einer üblichen Kameraauflösung von
780 × 580 läuft der gesamte Algorithmus zur Dekodierung und Rekonstruktion mit
25Hz und erzeugt bis zu 50000 3D-Punkte pro Bild.

Die Genauigkeit der gewonnenen 3D-Daten ist ein weiterer wichtiger Aspekt. Wir
implementierten eine neue Kalibriermethode für Kameras und Projektoren, die auf
aktiven Targets basiert. Die Kalibriergenauigkeit wurde sowohl anhand des Rückpro-
jektionsfehlers für Einzelkamerakalibrierungen, als auch anhand des 3D-Rekonstruk-
tionsfehlers für vollständige Systemkalibrierungen ermittelt. Mit aktiven Targets wird
eine höhere Genauigkeit als mit klassischen Targets erreicht. Bei einem Test durch
Triangulation mit zwei Kameras konnte der mittlere quadratische Fehler auf ein Fün-
ftel reduziert werden. Die Genauigkeit des Aufbaus zur Strukturierten Beleuchtung
aus Kamera und Projektor wurde ebenfalls ausgewertet. Die bekannte Länge eines
hantelförmigen Referenzobjekts von 80.0057mm konnte mit einem mittleren Fehler
von 42µm und einer Standardabweichung von 74µm bestimmt werden.

Die Rechenzeit, die Robustheit und die Genauigkeit der vorgeschlagenen Mess-
methode sind im Vergleich mit bisherigen Ansätzen sehr konkurrenzfähig. Eine
Vorzeigeanwendung ist die endoskopische 3D-Abtastung, die ohne die Technik der
Strukturierten Beleuchtung in Einzelbildern schwer umzusetzen ist. Aufbauend auf
einem von Siemens entworfenen Miniatur-Sensorkopf entwickelten wir Kalibrierver-
fahren und wenden die graphenbasierte Musterdekodierung an, um hochqualitative
3D-Modelle von Hohlräumen zu erzeugen.
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Chapter 1

Introduction

1.1 Motivation

The space around us is three-dimensional. Yet, the most common representations of
the world have long been only two-dimensional. There is a long tradition of paintings,
and later photographs and movies. We are very good at interpreting such two-
dimensional views. After all, on the retina all our visual impressions turn into a 2D
pattern. However, some information is irretrievably lost in the process. Especially
for technical applications, the extra dimension is important in order to extract metric
measurements from an image. Fortunately, it is possible to capture the distance to
an object as well and build a true 3D model of its shape. These 3D models are
often also used to generate enhanced 2D views from novel viewpoints. The direct
and indirect application of 3D measurement technology is very common. It is used
in the entertainment industry for movie production, gaming and virtual reality. It
is used in medicine for patient positioning and surgery planning. It is further used
in computer vision, quality control, reverse engineering, heritage conservation, crime
scenes documentation and in security applications. The demands on the level of
detail and realism are increasing steadily. Therefore 3D acquisition techniques must
also improve.

Optical shape acquisition methods have the advantage that they are contactless
and can work at a distance. A very successful branch of optical shape acquisition
is Structured Light. It works by projecting suitable patterns onto the scene and
observing them with a camera. However, areas that have been difficult so far are
moving scenes and real-time 3D video. This work specifically seeks to improve Single-
Shot Structured Light 3D scanning. In contrast to many other methods this approach
requires a single image of the scene, illuminated with a single static projection pattern,
to reconstruct the 3D data. Therefore our technique is suitable for measuring dynamic
scenes. We also made sure that the underlying algorithms operate in real-time so
that live feedback is possible. Another advantage of a Single-Shot system is that
the required hardware is very simple. That means the setup can be very compact
and inexpensive, using off-the-shelf components. Another focus is robustness. The
system should work with a wide variety of objects, which has traditionally been
hard to achieve. Experience also shows that in real life the image quality is often
low, be it because of environment influences or uncooperative objects in the scene.

1



2 Chapter 1. Introduction

Being able to generate reliable 3D from such images in turn makes is possible to
contemplate novel applications like endoscopic scanning. Because of limitations in
the miniaturized hardware, the image quality in this case is necessarily relatively
low. For applications in medicine this is exacerbated by effects like volume scattering
and specular highlights, which are typical for biological tissue. The proposed pattern
decoding algorithm is designed with such complications in mind. Also, the optimal
illumination pattern is expected to vary with the application. The proposed algorithm
is very flexible and not geared towards a specific pattern.

Once the pattern image has been successfully decoded, 3D data may be recon-
structed. To that end the projector and the camera have to be calibrated, that is, all
their relevant parameters have to be known. The calibration quality of a Structured
Light system is a crucial step to assure the accuracy of the resulting 3D data. We
use a calibration method based on active targets. The basic idea is to replace the
noise-prone feature localization step in the classic calibration algorithms by a suitable
encoding of the target surface with Structured Light patterns. We demonstrate that
this approach offers a substantial improvement in accuracy.

1.2 Organization
The proposed system combines many aspects from different areas. In chapter 2 some
basics are introduced. This includes the most important properties of the hardware
for 2D imaging and projection as well the models used for the calibration of cameras
and projectors. In a second part the existing body of work on image processing
methods like edge detection and segmentation is summed up. This is important, as
the accuracy of the proposed system rests on the ability to locate edges in the camera
image. Also, the pattern decoding algorithm that will be introduced in chapter 5 is
built on a watershed segmentation of the input images. Finally, we shortly introduce
the area of GPU programming, which offers dramatic speedups for image processing.
This helps to reach the goal of real-time operation for the proposed 3D scanning
system.

Chapter 3 presents the state of the art in optical 3D shape measurement. We
give particular attention to triangulation-based methods, but we also include other
optical approaches. Naturally, other Structured Light-based methods are most closely
related to our approach and are reviewed in detail. A short derivation of the expected
measurement errors is also provided.

Chapter 4 is concerned with the design and calibration of Structured Light sys-
tems. The first part states the general design guidelines. The second part shows how
the color stripe patterns used in our 3D scanning system are designed. The third
and largest part introduces the Active Calibration approach. It is validated with a
number of experiments and proves to yield superior results compared to the ’classic’
calibration approach. It can not only be applied to cameras but also to the whole
Structured Light system.

In chapter 5 the proposed graph-based pattern decoding algorithm is introduced.
This part of the work shows how a region adjacency graph is built from a superpixel
segmentation of each input image, and how it can be used to decode the observed
stripe pattern. An additional feature that is made possible by the graph-based ap-
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proach is the so-called color enhancement step. In this step, consistency between the
potentially noisy color estimates for each superpixel is enforced, which results in a
large improvement of the decoding performance.

Finally in chapter 6 we evaluate the performance of the proposed system. This
is done in several different ways. The noise component of the measurement error
is evaluated on synthetic test scenes with ground truth. The calibration error of a
physical scanner setup is estimated with the help of a calibrated reference object.
The decoding performance is compared to other systems. Finally, also the runtime
performance on different hardware is tested.

The last chapter concludes with a summary and an outlook for future work.



4 Chapter 1. Introduction



Chapter 2

Basics

2.1 Image Formation

The following sections briefly introduce important building blocks for two-dimensional
imaging which are essential for the eventual depth recovery. They are digital image
sensors, color representation, illumination, sources of noise and finally camera calibra-
tion and 3D reconstruction. The calibration models also apply to projection devices,
which can often be viewed as a “reverse” camera for modeling purposes.

2.1.1 Sensors

The two main types of digital image sensors are Charge Coupled Device (CCD) and
Complementary Metal Oxide Semiconductor (CMOS) chips. The spectral sensitiv-
ity depends on the type of semiconductor used in the sensor. The most common
types use doped silicon and have a sensitivity in the visible and near infrared range.
Alternatives are silver-doped ZnS for ultraviolet light or GaInAs for infrared light.

Silicon has a bandgap of 1.12eV, which corresponds to a maximum wavelength
of approximately 1100nm. Longer wavelengths do not have enough energy to cre-
ate photoelectrons in silicon. The advantages of CMOS over CCD are lower power
consumption, better integration of electronics for processing, no blooming artifacts,
random access to image data and higher speed. The basic difference between the
technologies is that in CCD sensors the charge in each pixel is read out and digi-
tized later. In a CMOS sensor each pixel contains its own analog-digital converter
(ADC) and digitization happens before read-out. CMOS pixels have a more complex
structure than CCD pixels and their main drawback is a lower image quality due to
a combination of lower fill factor and lower full-well capacity. Bigas et al. [Biga 06]
give an overview of the recent developments for CMOS technology and contrast it to
CCDs.

Another factor for image quality are the widely varying penetration depths for dif-
ferent wavelengths, from about 1mm for blue light to over 1000mm for near-IR. Owing
to their production process, in CCD chips the light-sensitive area is in a layer below
the readout electrodes. In the standard front illumination variant, short wavelengths
thus never reach the actual sensor, while long wavelengths are only partially ab-
sorbed. Deep depletion sensor models improve this absorption ratio and offer higher

5



6 Chapter 2. Basics

sensitivity in the red spectral range. Backside illumination requires additional manu-
facturing steps, but offers higher sensitivity, especially for short wavelengths. Figure
2.1 shows the resulting quantum efficiencies for different sensor variants.

Both CMOS and CCD sensors can be used without mechanical shutters. Low-
end CMOS devices often feature a rolling shutter, where one column of the image is
read out while the others are still being exposed. This causes artifacts with moving
scenes. In CCDs the readout is usually realized by interline transfer. The charge
in each pixel is simultaneously transferred to a separate, light-shielded storage area
and read out from there. This way a true global shutter can be implemented. The
additional structures between the light-sensitive area reduce the fill factor, but this
can be mitigated with microlens arrays focusing the incoming light onto the non-
shielded spots.

Sensors based on quantum dots [Kons 09] are a new development. The photosen-
sitive silicon in traditional CCD or CMOS chips is replaced by nano-structured PbS
crystals with an artificial bandgap in a polymer matrix. These quantum dots offer
greater quantum efficiency of up to 95% and their sensitivity can be tuned within
a wide spectral range from the far infrared to ultraviolet. Another interesting, if
still largely experimental, parallel development is the Single Pixel Camera [Duar 08].
It makes use of Coded Aperture Imaging and the wider framework of Compressive
Sensing by recording the inner product of the scene with a number of random test
functions realized in a Digital Micromirror Device (DMD). This way, it is possible
to reconstruct images from a number of samples which is lower than the Nyquist
limit. Maybe in the future devices like this will become practical and allow more
efficient imaging. For now, however, CCDs are the most common type of sensor for
high-quality imaging applications.

2.1.2 Color

Color imaging is realized either through multi-chip setups with tri-chroic beamsplit-
ter prisms, or with a single chip and color filter arrays (CFAs) transmitting different
wavelengths to different pixels. The latter are cheaper and have no alignment prob-
lems, but offer a reduced resolution and reduced sensitivity. A very common CFA
is the Bayer pattern (see figure 2.2), which consists of separate filters for red, green
and blue. Some modified designs also contain “white” (that is, transparent) or cyan
filters instead of the second green pixel in each elementary cell. One alternative is
the CYGM array with cyan, yellow, green and magenta filters. Figure 2.2 shows
examplary spectral sensitivity curves for different CFA types. Since the filters trans-
mission bands are partially overlapping, crosstalk can occur, which reduces the color
contrast.

The design of filter arrays and the corresponding “demosaicing” algorithms still
are an active area of research [Hao 10]. Common artifacts for naive linear interpola-
tion include aliasing, color fringes and loss of high-frequency detail. More advanced
methods work in frequency space or try to infer edges in one channel from the other
channels. The rising pixel count of the sensor chips makes it also possible to general-
ize the filter concept and trade spatial resolution for other desirable information, like
a higher dynamic range or plenoptic modeling [Ihrk 10].
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Figure 2.1: Quantum efficiency of a CCD chip for front-side illumination. Reproduced
with adaptions from [e2v 03]. UV coating converts incident UV light to visible wave-
lengths with a larger penetration depth and thus increases the sensitivity in the UV
range. Open Electrode sensors leave gaps in the electrodes covering the chip, which
results in a large effective sensor area. Backside illumination (not shown) without
any obstructing electrodes yields even higher efficiencies of up to 90%.

A third possibilty is the Foveon type of sensor [Hube 04]. It makes use of the
different absorption rates for different wavelengths in silicon. Three layers of pixels
for different colors are stacked vertically. Blue light is absorbed at the top, while red
light reaches to the bottom. This sensor design thus is the middle ground between
three-chip solutions with a prism and single-chip solutions with filter arrays. While
the full spatial resolution is conserved and no light is lost in filters, the resulting color
contrast is lower than with the other sensor types because of substantial crosstalk.

The human eye has three different kinds of photoreceptor cells for color vision as
well. Their relative degrees of excitation correspond to a certain color impression.
In particular, different mixtures of incoming wavelengths can create the same color
impression. Three “primary” colors suffice to create others by mixing. The Interna-
tional Commission on Illumination (CIE) conducted a series of experiments with a
“standard observer” to define a standard color space. In the CIE 1931 color space,
the “imaginary” primaries are called X, Y and Z. All other colors can be represented
by their mixtures. Other color spaces are derived from the XYZ model. In RGB
color spaces, the primaries are red, green and blue light. The exact choice of the
primary colors is a technical matter. Most displays implement the sRGB color space,
which cannot reproduce the full color gamut (shown in figure 2.3). The human eye is
very sensitive in the green spectral range, as can be seen in the wide spacings of the
wavelengths along the monochromatic locus in figure 2.3 between 480nm and 580nm.
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Figure 2.2: Color Filter Arrays and their spectral responses. The color filters do
not separate the colors perfectly. The result is so-called crosstalk, where for example
incoming red light can also give a response in the green channel.

The eye can actually see wavelengths of up to 800nm, but with a very low sensitivity,
so the CIE decided to end the locus at 700nm.

The most common digital representation of RGB colors is the RGBA 32 bit format
with 8 bits per component (red, green, blue and alpha) that can differentiate 16.7
million colors. Hue-Saturation-Lightness (HSL) is another popular color space. It
is based on a polar coordinate system as opposed to the cartesian RGB. For some
applications it is more appropriate, as it separates the concept of color into hue and
brightness. More information about color theory can be found in [Lee 05].

2.1.3 Light sources

As the name implies, Structured Light systems need some form of illumination. There
are three common types of light sources: Thermal light sources like halogen lamps,
lasers or Light Emitting Diodes (LEDs). The have very different properties and
impose different limitations on the system.

Thermal light sources used to be the standard. We show a short estimation of
their performance. According to the Stefan-Boltzmann law, the radiant flux of a
grey-body light source with absolute temperature T , emissivity ε and area A is

Φ(A, T ) =
2π5k4

15c2h3
· εAT 4 = σεAT 4 (2.1)

with Stefan’s constant σ. The emitted spectrum can be calculated with Planck’s law.
The radiant flux is measured in W. A light source with an area A illuminating a solid
angle Ω has a radiance of

L =
Φ

AΩ
(2.2)
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Figure 2.3: CIE RGB and sRGB color gamuts. The coordinates are the CIE xy
chromaticity values. Not all colors can be reproduced by a given set of primaries.
Reproduced with adaptions from [Hoff 08].

The radiance is measured in W · m−2 · sr−1. Assuming an optical system with a
spherical aperture of radius r at a distance d from the source, the irradiance is

E = L · r
2π

d2
(2.3)

To see the limits imposed by the light source, consider a halogen lamp that is isotropic,
has a temperature of about 3400K, a radius of 3mm and ε ≈ 0.5. According to
equation 2.1 it then has a power of about 110W. A light guide with a radius of
γ = 3mm at a distance of d = 5mm sees half the area of the source and picks up
a power of about 5W. Additionally, only a fraction of the emitted spectrum is in a
usable wavelength range. It is not possible to “compress” the light emitted in other
directions into the light guide because of etendue conservation. Thermal light sources
are therefore inefficient and require a lot of cooling. Since the required light power
grows quadratically with the distance to the object, the practical range of a Structured
Light system with a thermal light source is limited to a few meters. Additionally the
lifetime of the bulbs is relatively limited, typically to a few thousand hours.

Laser sources can be extremely bright. They produce a collimated beam and
are therefore more efficient than thermal sources. Furthermore they have a narrow-
band spectrum, so it is easy to filter ambient light and the imaging system does not
introduce chromatic aberrations. The disadvantage is that laser illumination on an
optically rough surface produces speckles [Dain 84]. This makes it difficult to perform
accurate spot or line detection.

In recent years, arrays of Light Emitting Diodes (LED) have been gaining a lot
of popularity. They also offer quasi-monochromatic light. They are small and easy
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to cool. They can be strobed. They require only a low voltage to operate and are
therefore safe and easy to handle. LEDs have now become bright enough to replace
other light sources in many applications, but are not available at all wavelengths.

2.1.4 Noise

An important concern for image quality is camera noise. There are different sources
of noise. A systematic error is the fixed pattern noise. It is caused by a non-uniform
response of different pixels to light. The camera manufacturers typically perform a
flat-field correction to reduce or eliminate it. Another source is the read-out noise of
the electronics used to convert the analog charge in the pixels to a digital value. It is
typically in the range of a few electrons. The next source is the dark current. It occurs
when high-energy electrons jump the band gap of the semiconductor without being
excited by a photon. The number of electrons with sufficient energy is governed by
the Maxwell distribution and depends strongly on the temperature. It approximately
doubles for every 7K [Biga 06]. It may therefore be necessary to cool the sensor for
better performance. The last major source of noise is the so-called shot noise. It
is a consequence of the quantum nature of light. The number of photoelectrons
generated by N photons arriving at a detector exhibits a Poisson distribution. The
signal-to-noise ratio is then

σ= N√
N
=
√
N (2.4)

Shot noise is especially critical in low-light imaging. To increase N one can in-
crease the illumination brightness or the exposure time. An example shows the phys-
ical limits of a Structured Light system. We assume a light source with a brightness
rating of 200lm, which is typical for a small portable projector. By the definition
of the unit lm, this is equivalent to p = 0.3W at a wavelength of λ = 540nm.
A single photon carries an energy of E = λ

hc
. We can therefore assume a rate of

R0 = p
E

= 8 · 1017 photons per second. Let the illuminated area on the object be
A = 0.1m2. Let the camera have a pixel size of s = 8µm, a lens with a focal length
of f = 10mm and an f-number of 8. The diameter of the entrance pupil is therefore
d = f

8
= 1.25mm. The spot size of a single pixel on a Lambertian object surface at

distance g is s′ = sg
f
. This spot receives R1 = R0s′2

A
photons per second. We assume

half are absorbed and a fraction a = 0.5 of them are scattered into a solid angle of
2π. The lens covers a solid angle of d2π

g2
and therefore receives

R2 =
R1a

2π
· d

2π

g2
=
R0as

2g2d2

2f 2g2A
=
R0as

2d2

2f 2A
(2.5)

photons per second. The pixel has a fill factor of b = 0.9 and converts the captured
photons to electrons with a quantum efficiency of ε = 0.6 at a rate of R3 = R2bε.
Assuming a typical full well capacity of C = 1.8 · 104 electrons (Sony ICX285AQ), it
takes

t =
C

R3

≈ 17ms (2.6)
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until the pixel is fully exposed. With additional ambient light the time is even shorter.
The signal-to-noise ratio (due only to shot noise) of such a fully exposed pixel is

σfull =
C√
C

= 134 : 1 (2.7)

In practice saturation of the pixels needs to be avoided, so the signal to noise ratio
is even lower. Note that for the given noise level it suffices to quantize the charge with
8 bits, or 256 intensity levels. The read-out noise alone is typically low enough that 12
bit digitalization makes sense, but with the shot noise in a standard sensor, an image
can be stored in an 8 bit format without losing significant information. In low-light
conditions, however, using more bits is useful, because here the shot noise is relatively
low compared to the quantization steps computed from the full-well capacity.

2.2 Calibration

A calibrated camera makes it possible to relate measurements in images to metric
quantities in the world. The calibration process is therefore fundamental and essential
to computer vision tasks that involve image based metric measurements.

2.2.1 Coordinate systems

We first define some coordinate systems that will be used in all calibration related
tasks. They are also illustrated in figures 2.4 and 2.5.

• The world coordinate system is three-dimensional and right-handed. It is typ-
ically defined by a calibration body.

• The camera coordinate system is also a 3D right-handed system. It has its
origin in the camera’s projection center. The x-axis is parallel to the image
plane and points “right”. The y-axis is also parallel to the image plane and
points “down”. The z-axis is the cross of x and y. Ideally it is identical to
the optical axis of the camera, that is the axis of rotational symmetry of the
camera’s optical path.

• The image coordinate system is two-dimensional. It has its origin in the upper
left corner of the image. The x-axis points “right” and the y-axis points “down”.
Image coordinates are specified in pixels.

• Sensor coordinates are similar to image coordinates, except the origin is shifted
to the principal point (the intersection of the optical axis with the image plane)
and they are expressed in metric units. Conversely the sensor coordinates are
camera coordinates in the z = f plane.
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Figure 2.4: The world coordinate system (green) is often defined by the calibration
target. The camera coordinate system (magenta) is defined by the sensor chip in the
camera.

2.2.2 The pinhole camera

A result of a camera calibration can be expressed as a set of parameters. They are
divided into two groups. The external calibration refers to the camera pose relative to
a target. It maps the fixed world coordinate system to the camera coordinate system.
The camera pose can be described by 6 parameters. The 3 rotation parameters are
typically expressed as a rotation matrix R and the 3 translation parameters give
the translation vector T . The second group are the intrinsic parameters. Their
number and meaning depends on the camera model that is used. For the ideal pinhole
camera, they are the principal point (u0, v0) and the focal length f . In homogenous
coordinates the perspective projection mapping the point [Xw, Yw, Zw,Ww]T in the
world coordinate system to the point [u, v] in the image coordinate system can be
written as

[
u
v

]
w

 xi
yi
wi

 = AP0

[
R T
0 1

]
︸ ︷︷ ︸

P


Xw

Yw
Zw
Ww

 (2.8)



2.2. Calibration 13

C x

y

z

P = [Xc, Yc, Zc]

image plane

f

v
u

optical axis

p = [u, v]

Figure 2.5: Perspective projection of point P in space to point p on the image plane.
In a real camera the image plane is “behind” the projection center and the image is
inverted.

A =

 dx 0 u0
0 dy v0
0 0 1

 P0 =

 f 0 0 0
0 f 0 0
0 0 1 0


with the camera internal matrix A, the projection matrix P0 and the coordinate
transformation from world to camera coordinates [R|T ]. Their product P is also
called the camera projection matrix. The parameters dxand dy are the pixel pitch in
x and y direction. They are used to convert the metric sensor coordinates to image
coordinates in pixels. Note that some authors introduce a skew parameter for the case
of non-orthogonal axes in the sensor coordinate system. This used to be a concern
with analog cameras, where the film transport could be uneven. For modern digital
camera the skew is negligible. Given a camera matrix it is also possible to decompose
it into the constituents [Truc 98]. More details about camera models can be found
for example in [Faug 01, Hart 03].

2.2.3 Image distortion

The pinhole model is mathematically attractive, but the pinhole is necessarily very
small, so very little light is admitted and the exposure time is very long. Real
cameras therefore use lenses of a larger diameter to focus the incoming light. However,
lenses are never perfect and exhibit different kinds of aberrations. One is chromatic
aberration, which is due to the varying refractive index of the lenses for different
wavelengths. There are so-called achromatic lenses which reduce the effect and correct
it perfectly for two particular wavelengths, but it can never be eliminated completely
for all wavelengths.

There are also five types of monochromatic aberrations, collectively known as
Seidel aberrations, as they were first described by Ludwig von Seidel in 1857. They
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are spherical aberration, coma, astigmatism, field curvature and geometric distor-
tion. The first four effects degrade the point spread function (PSF) and thus the
Modulation Transfer Function (MTF) of the optical system. This leads to blurred
images. However, high quality lenses minimize these defects so that they can often
be neglected.

Distortion, however, cannot be ignored, especially for wide-angle lenses. It causes
straight lines to appear curved in the image. The distortion can further be split into
so-called radial and tangential parts. To correct them, the pinhole model is extended
with additional parameters. This augmented pinhole model is the most common
camera model in use. Tsai presented a relatively simple variant [Tsai 92] with only
two parameters for radial distortion. Heikkilä [Heik 97] uses two parameters for radial
distortion and two for tangential distortion. The model (and calibration algorithm)
proposed by Zhang [Zhan 00] is very popular, especially because it is available in the
widely used OpenCV library [Brad 08] and as a Matlab toolbox [Boug 08]. These
implementations support up to five parameters, three (k1, k2, k3) for radial and two
(p1, p2) for tangential distortion. Zhang’s model maps undistorted image coordinates
[uu, vu] to distorted image coordinates [ud, vd] via

ud = uu ·
(
1 + k1r

2 + k2r
4 + k3r

6
)

+ 2p1uuvu + p2
(
r2 + 2u2u

)
(2.9)

vd = vu ·
(
1 + k1r

2 + k2r
4 + k3r

6
)

+ 2p2uuvu + p1
(
r2 + 2v2u

)
(2.10)

where uu = u− u0, vu = v − v0 and r2 = u2u + v2u.
These models assume that the principal point is also the center of distortion and

that all rays pass through the pinhole. This holds for typical applications with limited
distortion, but not always [Will 93, Hart 07]. For wide-angle lenses, the pinhole model
with the polynomial distortion does not accurately describe the imaging process.
Other distortion models aim to remedy this [Kann 06, Clau 05, Deve 01], but they do
not work for all types of cameras either.

2.2.4 Calibration algorithms

A camera model is only useful if there exists a robust and accurate way of determining
its parameters. Many different algorithms for camera calibration have been devel-
oped [Remo 06]. So-called self-calibration methods do not assume any knowledge
about the scene [Hema 03]. They are for example very useful for autonomous navi-
gation. Metrology applications aim for highest accuracy and typically use dedicated
calibration targets with well-known marks. Some methods use three-dimensional tar-
gets [Heik 00] but planar targets are more common as they are easier to build and
handle. In 4.1 we propose the use of digital displays that can be found on everybody’s
desk.

The actual input data to perform a camera calibration are lists of correspon-
dences between points on the calibration target (in world coordinates) and their
image coordinates. Common calibration patterns are planar checkerboards. The
corners of the checkers are the fiducial marks. They are typically localized by inter-
secting lines fitted to the sides of the checkers or by looking for a saddle point in
the gradient. An alternative target type consists of an array of circular dots. The
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centers of the dots are commonly computed via centroid methods, ellipse fitting to
the contours, or deformable templates. However, for oblique viewing directions, the
detected ellipse center is not the projection of the original circle’s center and has to be
corrected [Heik 97]. Image distortion also reduces the localization accuracy for dots
[Mall 07]. For the usual planar calibration targets, measurements at several different
poses of the camera relative to the target are required. From the correspondences
between the markers’ world coordinates and image coordinates a calibration algo-
rithm [Tsai 92, Heik 97, Zhan 00] calculates the internal camera parameters and the
coordinate transformation for each pose.

Figure 2.6: Checkerboard calibration target. The hollow squares can be used for
determining the orientation and for identifying the marks automatically.

There is little comprehensive information in the literature about achievable feature
localization accuracy. Shortis et al. [Shor 94] tested different algorithms for circular
marks. They reported errors in the range of a few hundredths of a pixel, but did not
include noise in the analysis. Heikkilä [Heik 00] shows lighting-dependent shifts of up
to 0.5 pixels in the location of circular marks. Mohr et al.[Mohr 94] found errors of
around 0.1 pixels in corner localization. White and Schowengerdt [Whit 94] examine
the effect of the point spread function on edge localization accuracy and find errors
of up to 0.2 pixels. Mallon and Whelan [Mall 07] show errors around 0.1 pixels for
circular marks (without distortion bias) and up to 0.03 pixels for a checkerboard
target. Chen and Zhang [Chen 05] give errors of about 0.05 pixels for checkerboard
corner localization.

The final calibration errors are in the same range. Heikkilä [Heik 00] claims that
an accuracy of 0.02 pixels is a realistic goal. He achieves it for synthetic images and
reports 0.061 pixels on real images. Douxchamps and Chihara [Doux 08] even reach
0.0065 pixels on synthetic images and 0.045 on real images. However, in his widely
known paper [Zhan 00], Zhang gives an RMS reprojection error of about 0.3 pixels.
Albarelli et al. [Alba 09] achieve an error of 0.23 pixels up front but reduce it to 0.089



16 Chapter 2. Basics

by additional bundle adjustment [Trig 00], as they assume imperfect knowledge of the
target. Bundle adjustment is a non-linear minimization of the back-projection error
which changes the camera parameters as well as the mark coordinates. Fiala and
Shu [Fial 10] also reach values of around 0.2 pixels. The differences between these
figures might be due to outlier removal steps, differences in image and target quality,
or simply different pixel sizes and different lenses. An RMS reprojection error of
0.05 pixels seems to be a lower bound for a very careful calibration in an optimal
environment, while errors up to 0.3 pixels are acceptable in everyday calibrations.

2.2.5 Catadioptric cameras

There are very useful extreme wide angle cameras based on fish-eye lenses or curved
mirrors. The latter are also known as catadioptric cameras. This kind of camera
does in general not conform to the pinhole model. This is because the effective
viewpoint depends on the viewing direction (see figure 2.7). Only special setups of
a perspective lens with a hyperbolic mirror or a telecentric lens with a parabolic
mirror can be treated like pinhole cameras, because they do have a single effective
viewpoint. However, any misalignment of camera and mirror destroys this property.
In the general case, catadioptric cameras need to be calibrated with non-parametric
camera models that simply store the ray of view for every single pixel.

Imaging planePixel element
of area δA

Mirror area
δS

Caustic point
(virtual viewpoint)

Normal

φ
φ

Scene point

Lens’ entry pupil

Origin

ψ

δω

δν

Figure 2.7: Non-single-viewpoint catadioptric camera. The dotted surface is the
caustic surface formed by the different effective viewpoints of the camera. Reproduced
from [Swam02] with adaptions.
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Calibration algorithms for general non-single-viewpoint cameras can be found in
[Rama 05, Gros 01]. So-called axial cameras have the property that all viewpoints lie
on the optical axis, which can be utilized as a constraint during calibration [Tard 09].
An important member of this subclass of catadioptric camera is the combination
of a perspective camera with a spherical mirror. This camera type has practical
advantages as spherical mirrors are relatively easy to manufacture and invariant to
rotations, which reduces the effect of misalignments during assembly.

The generic camera models can in principle also be applied to narrow-angle imag-
ing. However, in that regime they offer a lower level of accuracy [Dunn 07] than the
regular augmented pinhole model.

2.2.6 Two-View Geometry

A Structured Light system consists of a camera and a projector. For purposes of
calibration, a projector can be considered a reverse camera, so there is no difference
between Stereo and Structured Light in this regard. Both work with two different
perspectives on the same scene. The geometric relationships between two views of
a scene are captured by the epipolar geometry. It can be computed from matches
between corresponding points in both images. We give a short overview following
[Hart 03] and [Faug 01]. It has to be noted that this treatment is only valid for
perfect pinhole cameras without distortion. If distortion is present in the images, it
has to be corrected first.

The basic setup is illustrated in figure 2.8. The baseline b connects the two camera
projection centers CA and CB. The projection ray from a point X in space to CA
together with the baseline defines an epipolar plane ΠE. The projection ray from X
to CB must also lie in this plane. The intersection of the epipolar plane ΠE with the
image plane of camera B yields the epipolar line lBX . Conversely, the intersection of
the epipolar plane with the image plane of camera A yields the epipolar line lAX . The
line lBX is also the projection of the camera ray CAX onto the image plane of camera
B. Since X by definition lies on that camera ray, its image in camera B must lie on
the epipolar line lBX . This is very helpful for stereo problems, as the correspondence
search for a given point xA in image A can be restricted to the corresponding epipolar
line lBX in image B. The epipoles eA and eB are the intersections of the image planes
and the baseline. Conversely, they are the projections of one camera center onto the
image plane of the other camera. These intersection points are often outside of the
actual image and can even be at infinity. The set of all epipolar planes is a pencil of
planes around the baseline.

For the remainder of this section we use homogeneous coordinates. In this notation
a line l through points m1 and m2 is expressed as l w m1 ×m2 with the projective
equality sign w. Conversely, the intersection point m of two lines l1 and l2 is m w
l1 × l2. Let PA and PB be the projection matrices for cameras A and B with non-
identical projection centers CA and CB. Then the relations PACA = 0 and PBCB = 0
hold. Let P+

A and P+
B be inverse projection matrices. Given the image point xA we

can write

xB w PBX w PBP+
AxA (2.11)
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Figure 2.8: Epipolar geometry. The point X together with the centers of projection
of the two cameras spans the epipolar plane ΠE..

Furthermore we know that the epipole eB is the image of the optical center CA on
the image plane of camera B, that is

eB w PBCA (2.12)

The epipolar line lBX passes through both of these points. Expressing the cross
product as a skew-symmetric matrix [ ]× we can write

lBX w eB × xB = [PBCA]×PBP+
A︸ ︷︷ ︸

F

xA (2.13)

The fundamental matrix F describes the relationship between an image point xA and
its corresponding epipolar line lBX . Since the point xB lies on lBX by definition, it
follows that

xTBFxA = 0 (2.14)

The fundamental matrix has rank 2. It can be computed from at least 7 corresponding
point pairs in the two images. Details can be found in [Faug 01].

2.2.7 3D Reconstruction

Let two corresponding 2D image points xA, xB and the projection matrices PA, PB

be known. The 3D coordinates of X can then be recovered from the intersection of
the camera rays. However, in practice the image coordinates are not known exactly,
therefore typically the two conditions xA = PAX and xB = PBX cannot both be
met exactly. A simple solution is to use the midpoint of the shortest line connecting
the camera rays. Another possibility is to find the minimal correction to the image
coordinates so that both equations can be satisfied. This approach is called optimal
triangulation [Kana 08]. An estimation of the typical depth reconstruction errors can
be found in section 3.4.3.
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In Structured Light the situation is slightly different, as it does not use two cam-
eras but one camera and one projector. For a stripe projector typically only one com-
ponent of the image coordinates is known. This line in the projector image defines
a plane in space, which again can be intersected with the camera ray. Parameterize
the light plane illuminating the sought-after point m as

n ·m− κ = 0 (2.15)

in a camera-centered coordinate system with the normal vector n and the distance κ
to the origin. The operator · in this context is the dot product of two vectors. In the
pinhole model, the equation of the camera ray for the pixel coordinates (u, v) from
the origin 0 through m is

m = 0 + λv = λ

 (u− u0) dx
(v − v0) dy

f

 (2.16)

with the pixel pitch (dx, dy), the focal length f , the principal point (u0, v0) and the
free parameter λ. Plugging eq. 2.16 into eq. 2.15 and eliminating λ, the point m in
camera coordinates is

m =
κ

n · v
v (2.17)

Avoiding the nonlinear division operation and plugging in the definition of v, this can
be written in matrix form using homogeneous coordinates as


Xm

Ym
Zm
Wm

 = A


κdx 0 0
0 κdy 0
0 0 κf

nxdx nydy nzf


 u− u0
v − v0

1

 = AD

 u′

v′

1

 (2.18)

with the components of the light plane normal vector n =
[
nx ny nz

]
and a gen-

eral 4×4 coordinate system transformation matrix A. The matrix AD for each light
plane can be cached and a 3D point in any coordinate system can be reconstructed
with only one matrix multiplication.

2.3 Edge Detection and Localization
The detection and localization of edges is a fundamental task in digital image process-
ing. The reliability and accuracy that can be achieved are of particular importance
for Structured Light 3D scanning as well as for stereo systems. On one hand, cali-
bration marks are typically located with the help of edges (a method without edge
detection is proposed in section 4.3.1). On the other hand, the final 3D data in the
proposed stripe projection system is computed from the observed stripe position in
the image, which is determined with an edge detection filter. Stereo systems often
depend on correspondences between edge points.

In the simplest definition, edges are extrema in the gradient image or correspond-
ingly zero crossings of the second derivative. The most basic methods to detect them
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are linear gradient filters that can be realized as simple convolution masks [Osko 10].
The most widely used of these is probably the Sobel filter, but there are also other
examples like the Roberts, Kirsch and Prewitt operators. Each exists in several ori-
entation variants. Scharr [Scha 00] proposed a variant of the Sobel kernel that gives
better results on oblique edges. Torre and Poggio [Torr 84] made it clear that dif-
ferentiation should always be preceded by a regularization step, that is, smoothing.
Marr and Hildreth [Marr 80] proposed an isotropic Laplace-of-Gaussian (LoG) filter,
inspired by physiological findings about the human vision system. It combines the
second derivative Laplace operator with a Gaussian smoothing step. One charac-
teristic of the Laplace filter is that the detected edges always form closed contours.
Savitzky and Golay [Savi 64, Gorr 90] noted that a local least squares polynomial fit
for smoothing and differentiation can be combined in one convolution operation. Shen
and Castan [Shen 92] introduced the Infinite Symmetric Exponential Filter (ISEF).
An overview of these approaches can also be found in [Pinh 97].

However, in the sense of higher level vision, not all extrema of the gradient image
are edges. Many are due to noise or shading variations and do not reflect proper-
ties of the underlying scene. Therefore more advanced processing is necessary. The
edge detector popularized by Canny [Cann 87] additionaly performs non-maxima sup-
pression and hysteresis thresholding on the gradient image to form a binary result.
Multi-scale approaches [Witk 84, Lind 90] can also be applied to filter out the most
important edges.

In many applications, and in Structured Light in particular, it is desirable to
localize edges with subpixel precision. One possibility are integral operators based on
moments [Taba 84, Ying 05], but they need a large support region. Haralick [Hara 84]
proposed to use the zero-crossing of the second derivative for subpixel localization.
Blais and Rioux [Blai 86] presented formulas for edge localization based on linear
interpolation of the gradient with different support regions (BR2, BR4 and BR8).
Other methods based on the first derivative are parabolic and Gaussian interpolation.
Fisher [Fish 96] compares the different gradient-based approaches and recommends
Gaussian interpolation or Blais-Rioux (BR4). However, the former is relatively slow
because logarithms have to be computed. The latter needs seven instead of three
samples, which can be a disadvantage if several edges are close to each other.

There are also many works on the bounds of edge localization accuracy under
noisy conditions. Kakarala [Kaka 92] considered continuous signals and derived a
lower bound that scales linearly with the blur kernel size and quadratically with the
inverse of the signal-to-noise ratio. Laboureux [Labo 01] showed that the localization
accuracy for a feature is proportional to the local curvature. Koplowitz and Greco
[Kopl 94] derived the probability density function of the localization error and con-
cluded that in high-noise conditions arbitrarily large errors are possible. White and
Schowengerdt [Whit 94] examined the influence of the point spread function of the
imaging system. They obtained optimal results for a blur radius of 0.5 to 0.9 pix-
els, with localization errors of up to 0.2 pixels. Rockett [Rock 99] specifically tested
the Canny edge detector with parabolic interpolation and found errors of a few hun-
dredths of a pixel. Mikulastik [Miku 08] examined the parabolic estimation on a
synthetic edge with gaussian blur. For the variants using five and seven samples,
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they found systematic errors of up to 0.2 pixels. Only the three-sample parabolic
interpolation is reasonably unbiased.

2.4 Image Segmentation
The proposed algorithm for decoding color stripe patterns makes use of a presegmen-
tation step to reduce image complexity. Segmentation in general is a hard problem.
It can be defined as the process of partitioning an image into disjoint and homoge-
neous regions. However, homogeneous in respect to which criterion? This depends on
the problem. It could be brightness, color, texture or even semantic categories like
buildings and vegetation. Consequently, many segmentation algorithms have been
proposed. Some possible classifications are supervised vs. unsupervised methods,
binary vs. multi-class, or feature domain vs. image domain. Surveys of segmen-
tation methods for the important special case of color images have been done by
Pal and Pal [Pal 93] and by Lucchese and Mitra [Lucc 01]. Noble [Nobl 06] gives an
overview of segmentation methods with special regard for the notoriously difficult
area of grayscale ultrasound image segmentation. In this section we highlight a few
important techniques.

In the feature domain Otsu [Otsu 75] assumed a gray-level image with a bi-modal
histogram and computed the optimal threshold value to perform a binary segmen-
tation. For multi-channel images, clustering algorithms like k-means [Kanu 02] or
mixture models [Figu 02] can be used. In unsupervised operation, there is an ini-
tialization problem: the cluster centers and the number of clusters are not known a
priori. In that case it is possible to start with randomly initialized clusters and adapt
the number until an optimum in the sense of information theory is reached [Pell 00].
Mean shift clustering [Coma 02] traces the density of points in the feature space and
does not suffer from the initialization problem.

In the image domain so-called Split&Merge techniques [Wu93] can be applied.
The image is subdivided until each region satisfies the homogeneity criterion, then
similar neighboring regions are merged. Seeded region growing [Mehn 97] adds neigh-
boring pixels to predefined seed regions in the order of similarity. Regions are con-
tinuous, so in the final steps even dissimilar but “engulfed” unassigned pixels may
be added to a region. There are boundary-based algorithms which use edge detec-
tors as a preprocessing step. The Laplace filter has the convenient property that its
zero-crossings always result in closed contours. This is not the case for edges com-
puted with the Sobel filter. Level set methods [Seth 99] and Active Contours [Case 97]
evolve a boundary according to some energy functional, which typically includes a
data term and a curvature term.

Another family of algorithms interprets images as graphs and segmentation as
a partitioning task. Each pixel becomes a node. The edge weights of the graph
depend on the distances of neighboring pixels in some feature space. In the simplest
case this is the intensity difference. Markov Random Fields [Pere 98] are frequently
used. Each node can be in one of several states. There is a cost for each state and
cost for each combination of neighboring states. The challenge is to find the global
minimum of this cost function, which is an NP-hard problem. Szeliski et al. [Szel 07]
compared different approximate optimization methods. Belief propagation [Yedi 03]
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and maximum flow [Boyk 04] both deliver good results with acceptable computation
time. Segmentation using explicit graph cuts was popularized by Shi and Malik
[Shi 97] with the Normalized Cuts algorithm. It avoids the “small cuts” bias of other
graph cut algorithms by normalizing the cut cost with the total weight of all edges
in the cut region. However, the resulting problem is also NP-hard. Although the
authors make approximations, the computation time is still high. Felzenszwalb and
Huttenlocher presented an approach based on minimum spanning trees [Felz 04b].
Grady [Grad 06] introduced the random walker algorithm, which has a closed form
solution and can handle non-binary segmentations. It is interesting to note that the
graph cut, random walker and watershed segmentation algorithms have been unified
in the so-called power watershed framework [Coup 10]. The watershed segmentation
will be described in greater detail in the next subsection.

2.4.1 Watershed Segmentation

The watershed segmentation has the advantages that it is fast, unsupervised and
parameter free. Therefore it is a good choice as a preprocessing step in a real-time
3D scanning system. The details of this application are presented in section 5.1. Here
we give a more general overview.

The watershed segmentation is formally defined as a morphological transform
[Roer 00]. The underlying idea is very intuitive. Rain falls on a landscape whose
heightmap is given by a grayscale image, typically the magnitude of the gradient of
the image to be segmented. The watersheds are the dividing lines between differ-
ent domains of attraction for the water, also called basins. Next to the rainfalling
implementations [Stoe 00] there are also immersion-type implementations [Vinc 91],
where the water seeps in from below. The former is also called tobogganing and
is typically faster [Lin 06]. A watershed transform of a non-synthetic, noisy image
typically produces severe oversegmentation. There are many shallow basins. Most
perceptual regions in the image correspond to more than one basin. Postprocessing
can correct this [Blea 00]. In other applications, like for example stereo [Zitn 07] or
model search [Mori 05], the oversegmentation is performed on purpose as a prepro-
cessing step. In that case, the resulting regions are called superpixels. They offer a
simple way of reducing the image complexity and give a perceptually more meaning-
ful representation than the simple pixels, which are viewed as artifacts of the imaging
process. Next to the watershed transform, there are specialized segmentation algo-
rithms [Radh 10, Levi 09] that produce superpixels.

2.5 GPU Programming
Real-time performance is an important feature for a practical Structured Light de-
coding algorithm. Historically, the increase in processor speed tended to solve this
issue automatically. However, there has been a shift in the development of computing
hardware in the recent years. Individual processors hardly get faster any more, but
their number in a given device increases. As an example, a 2010 Intel Nehalem CPU
has six cores running at 2.8GHz. The same clock frequency was already reached
by a single-core Pentium 4 in 2002. When designing a high-performance algorithm,
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it is therefore necessary to keep in mind the aspect of parallelization so that the
implemenation can benefit from the latest hardware developments.

Graphics processing units (GPU) are massively parallel devices with several hun-
dreds of cores. The NVidia Tesla M2050 consists of 448 processors running at
575MHz. The individual so-called stream processors are throughput-oriented where
traditional processors were mostly latency-oriented. They offer only little cache and
control logic but emphasise arithmetic performance on workloads with inherent data-
parallelism. The programming model to make efficient use of this computing power
is called stream programming.

The current standard for many-core and heterogeneous computing is OpenCL
[Tsuc 10] (not to be confused with OpenGL). Thus, we outline its most basic princi-
ples. Functions (called kernels) are executed by many threads in parallel. The threads
are organized in so-called work-groups sharing a certain amount of memory. Addition-
ally, there is thread-local and global memory. Accessing global memory is slow. This
latency can be masked if multiple threads perform coalesced reads or writes, that is
if they access consecutive global memory adresses at the same time. Synchronization
between different threads and workgroups is a bottleneck and therefore discouraged.
Divergent branches for threads within the same workgroup massively degrade per-
formace. Optimizing memory access patterns and avoiding synchronization are the
major parts of performance tuning for GPU algorithms.

Existing algorithms may have to be modified to reach maximum performance. Not
all algorithms are suitable for a GPU implementation. However, it is advantageous
to have the complete processing pipeline on the same device to avoid copying data
back and forth over slow buses with a relatively low bandwidth. The transfer time
can be a substantial part of the total processing time. The exact speedup factor
that can be reached with a GPU implementation versus a CPU implementation of an
algorithm depends on the problem type. The ratio of computations per memory word
transferred is the arithmetic intensity. The higher it is, the more an algorithm stands
to gain in performance on the GPU. Inherently parallel problems also naturally profit
more than predominantly serial problems.

OpenCL code can, once written, be run on the CPU as well as on the GPU.
However, the source code portability of OpenCL currently does not mean that op-
timal performance is automatically reached on all possible devices. Commonly re-
ported speedup factors of GPU versus CPU are in the single-digit to three-digit
range [Ryoo 08, Park 11]. Many image processing tasks are perfect for GPUs as the
computations for each pixel can be performed independently of all others.
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Chapter 3

State of the Art in Optical 3D Shape
Acquisition

This chapter presents the state of the art in optical 3D imaging in general and Struc-
tured Light in particular. The techniques for acquiring the 3D shape of objects have
improved greatly in the last 20 years. Early surveys were done by Jarvis [Jarv 83]
and Besl [Besl 88], while Blais gives an overview of the more recent developments in
[Blai 04].

There are many methods for 3D data acquisition and many ways to categorize
them. Technical criteria are for example the difference between point, line, area or
volume measurements or the surface types the sensors are suited for. Another pos-
sibility is to differentiate between active methods with dedicated illumination and
passive ones without. The taxonomy in figure 3.1 is based on the underlying princi-
ple of the method. Keep in mind that we are only concerned with optical methods for
recording the 3D surface shape of object. Direct tactile methods and imaging modal-
ities like Ultrasound, Optical Coherence Tomography (OCT), Magnetic Resonance
Imaging (MRI), Computed Tomography (CT), Single Photon Emission Computed
Tomography (SPECT) and Positron Emission Tomography (PET) that produce vol-
ume data are ignored. Under this constraint the most common methods for practical
applications are based either on runtime measurements (in interferometry) or direc-
tion measurements (in triangulation). Häusler and Leuchs [Haus 97] compared these
two approaches with regard to their scaling behavior and surface type compatibility.
In particular they note that the depth error δz of triangulation based methods is
proportional to the square of the object distance z2, while for interferometry it is in-
dependent of z. Triangulation-based systems are therefore best suited for close-range
applications.

The next four sections introduce the state of the art in the four subgroups of
optical range imaging techniques that have been identified in 3.1. Section 3.5 is special
in that it contains an overview of methods proposed for endoscopic measurements,
irrespective of their underlying principle. There is also a large body of work on
the calibration of Structured Light systems. This topic is not covered here but in
section 4.3. The typical postprocessing tasks of registration, meshing and stitching
are outside of the scope of this work and are therefore not included in the overview.

25
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Figure 3.1: A simple taxonomy of optical 3D shape measurement techniques based
on the underlying principle. Depth-from-Defocus can also be seen as an indirect
triangulation method.
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3.1 Runtime Measurement

Runtime based 3D acquisition methods measure the time it takes for light to travel
from a controlled source to the object and come back to the sensor. This can be done
directly for long-distance targets, as for example in pulsed radar. For close range
objects, the better alternative is usually a phase measurement. Classical Interferom-
etry [Hari 06] uses coherent illumination that is split into a reference wave and an
object wave, which interfere in the detector. It can reach the extremely high precision
of a thousandth of the used wavelength. However, because the phase is ambiguous,
the working range is very small. Interferometers therefore are mostly set up to de-
tect deviations from a reference instead of true 3D data. White Light Interferometry
[Dres 92, Wyan 02] or Speckle Interferometry is a variation that employs a light source
with finite coherence length. Fringes can only occur at a well-know distance, which
solves the ambiguity, but the object (or the reference) has to be translated in a con-
trolled way to get a full scan. White Light Interferometry also works on optically
rough, diffuse surfaces. Since illumination and observation are coaxial, there are no
occlusions. White Light Interferometry therefore can, for example, be used to exam-
ine boreholes. While the precision of interferometers is unsurpassed, their sensitivity
means they must be built as stable as possible to counter external vibrations. This
makes them expensive and not very robust. Therefore interferometry in general is a
technique for close range measurements in controlled environments.

Time-of-Flight (ToF) based 3D cameras exist in two basic variants [Hebe 92]. One
uses pulsed illumination and measures the runtime of the pulses. This is done with a
very short exposure window [Meng 02]. A long-running pulse will partially miss the
shutter and appear darker. A second pulse with a longer exposure window is used to
correct for object reflectivity. Ambient light can be compensated by an “empty” expo-
sure without an illuminating pulse. The other ToF variant uses amplitude-modulated
continuous-wave illumination and measures the phase shift of the reflections. As in
interferometry, this phase is not unique. The ambiguity interval for a modulation
frequency of 25Mhz is 6m, but it can be extended using multiple different modula-
tion frequencies. ToF has a number of advantages [Gokt 05]. There are no occlusion
artifacts as the illumination source and the sensor are directly next to each other.
Therefore ToF systems also can be very compact. The depth data can be calcu-
lated in each pixel independently. The illumination is typically in the NIR range and
thus unobtrusive for humans. Assuming constant brightness, the measurement error
is approximately independent of distance. However, constant brightness is hard to
achieve as the intensity of the backscattered pulse drops quadratically with distance
(from a diffuse surface). There are also other drawbacks [Kolb 08]. Multiple sensors
can disturb each other. The lateral resolution is limited because of the relatively
large amount of circuitry required for each pixel. These large pixels also cause arti-
facts in the form of “mixed pixels” at object borders. Calibration is very intricate.
There are systematic depth errors up to several centimeters [Lind 08] and drift effects
depending on temperature. There are also scene-dependent depth errors caused by
interreflections, object texture and volume scattering. All in all, ToF is a promising
technology for the meter range. For longer ranges the required light sources are not
eye safe, for shorter ranges triangulation-based systems yield better performance.
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3.2 Surface Normal Methods

Instead of measuring the shape of an object, an indirect approach is to measure its
surface slope and calculate the shape by integration. Shape-from-Shading [Zhan 99]
typically assumes a known reflectance, orthographic projection and a known lighting
direction. Often an additional assumption of Lambertian reflectance is also used. It
is then possible to reconstruct the shape of the object from a single image. Unfortu-
nately even under these fairly restricted conditions the shape is not unique [Belh 99],
so regularizing assumptions have to be made. Additional images with different light-
ing directions also help in finding the correct reconstruction.

Photometric Stereo is a technique of more general applicability. It requires mul-
tiple images from a fixed viewpoint, but with changing lighting conditions. Early
formulations [Wood 80] assumed knowledge of the object’s reflectance properties and
the lighting directions, but later works have successfully relaxed these requirements
[Basr 07, Bars 03, Geor 03]. For a Lambertian surface three images are needed to
solve for two gradients and the albedo in each pixel. For uniformly colored objects,
these three images can be combined into a single one with three different-colored light
sources [Drew 00]. Helmholtz stereopsis [Zick 02] offers a way to measure any object,
regardless of its reflectance properties, but it requires an exchange of camera and
light source positions. Photometric stereo has also been combined with Structured
Light [Neha 05] for impressive results. The latter yields low-resolution depth values
which are used as anchors for the integration of the high-resolution normals produced
by the former.

Taking a different approach, Winkelbach [Wink 02] directly computed the slope of
the object surface from the observed angle and width of projected stripes. For smooth
dielectric surfaces it is also possible to recover the surface normal using polarization
imaging [Atki 06]. The lighting direction does not have to be known, but again, this
works only for simple objects.

All methods presented so far have difficulties with specular surfaces. In contrast,
Deflectometry [Knau 04] is designed especially for this class of objects. The underlying
problem is that a specular surface itself is “invisible” - it only mirrors the environment.
Hence, the solution is to control the environment. Instead of a point light source a
large screen is used. Depending on the local slope of the surface, a different part of the
screen is observed by the camera. The method is extremely sensitive and can detect
local height changes of a few tens of nanometers, which is a precision typically only
reached by interferometers. Furthermore, in typical applications like lens testing, the
quantity of interest is the local refractive power, which is related to the curvature.
To get it from an interferometric measurement, one has to differentiate twice, which
amplifies noise considerably. When measuring the slope, only one differentiation is
necessary.

3.3 Other methods

Depth from Defocus [Naya 96, Fava 05] and the closely related Depth from Focus
require at least two images of a scene taken with different focus settings. The imaging
system must be telecentric, that is the magnification must be independent of the
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object distance [Wata 97]. A depth estimate can then be computed from the local
blur or sharpness. Advantages over triangulation based methods are that there are
no occlusions and no correspondence problem (see section 3.4). They work only
on textured objects, but a texture can be projected if necessary. However, there
are artifacts at occlusion boundaries as the focus measure can only be computed
on windows with a non-negligible spatial extent. Also the achievable accuracy is
rather low. In fact, Schechner [Sche 00] shows that the accuracy is equivalent to a
stereo system with a baseline as large as the lens diameter. Depth from Diffusion
[Zhou 10a] is a new variant. In this case the focal setting does not change. Instead
blur is created by a diffusor in front of the object. This has the advantage that
the accuracy now depends on the scattering angle of the diffusor instead of the lens
aperture. Additionally the diffusor can be placed close to the object while the camera
is far away, without loss of accuracy. Confocal Stereo [Hasi 09] varies the aperture
and the focus of the camera and can reconstruct depth values for single pixels. It
is therefore suitable for scenes with very fine detail that pose problems for other
methods.

Another method is Shape from Silhouette, also known as Space Carving or Visual
Hull [Kutu 00]. In this approach, several images of a scene from different viewpoints
are used to constrain the volume that is occupied by convex opaque objects. Coded
Aperture Imaging [Levi 07] can also reconstruct the depth, though with relatively low
accuracy.

3.4 Triangulation Methods
In triangulation-based methods, the position of a point in space is determined by
the intersection of two or more rays of light. The basic geometry is illustrated in
figure 3.2. The uncertainty in the recovered position depends on the triangulation
angle. To obtain good accuracy, the two viewpoints must be separated by a certain
distance. However, this causes occlusions, that is areas which are not visible in
both cameras, and for which no depth can be recovered. For distant objects, the
large baseline required for high absolute accuracy also makes the system unwieldy.
Therefore triangulation is mostly used for close to medium range distances. An
estimation of the errors for triangulation-based measurements is provided in section
3.4.3.

3.4.1 Stereo and Structure-from-Motion

One very common application of the triangulation principle is stereo vision and in
particular binocular stereo with two cameras. In the simplest case we assume a
point in space which is projected onto two different cameras. If the cameras are
calibrated and the image coordinates in both images are known we can calculate the
projection rays. By intersecting the projection rays, the 3D position of the point
can be reconstructed. However, we have to be sure that the image coordinates in
both images actually belong to the same point in space. This is the correspondence
problem. If the stereo rig is calibrated, that is, the relative positions of the cameras
are known, the correspondence search for a feature in one camera can be constrained
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Figure 3.2: Principle of Stereo Triangulation. Given the projection of a point X in
camera B, the image coordinates in camera A determine the 3D position of X. The
triangulation angle α varies with the position of X. The epipolar line (see section
2.2.6) is marked in red.

to the appropriate epipolar line in the other camera (figure 3.2). There are numerous
publications on a wide variety of stereo methods. A basic distinction can be made
between feature-based and area-based approaches. The former try to identify feature
points in the two images. This can be done using for example Scale-Invariant Features
(SIFT) [Lowe 99], Speeded-Up Robust Features (SURF) [Bay 06], Maximally Stable
Extremal Regions (MSER) [Mata 04] or simple edge features. Area-based or dense
stereo methods assume locally smooth surfaces and match whole windows to get a
dense depth map. There are many variants of the matching cost functions [Hirs 07],
cost aggregation schemes [Gong 07] and optimization methods [Szel 08]. Also there are
various preprocessing steps that can be applied, for example foreshortening correction
[Xion 02], oversegmentation [Lei 06] or differentiation [Guan 09]. The benchmark for
dense stereo algorithms is the Middlesbury Stereo database [Scha 02] that provides a
set of test images with ground truth. Nowadays, with the help of GPU processing,
many state-of-the-art algorithms are capable of real-time operation. However, the
results are often quantized to just a few distinct depth levels. Furthermore, the results
typically contain a small percentage of erroneous depth values. Stereo works best on
scenes with cooperative textures. Such textures can also be created by projection
[Tomb09], thus yielding Active Stereo. Stereo has also been unified with Structured
Light techniques in a framework called Spacetime Stereo [Davi 05].

Some common assumptions made in stereo algorithms are worth stating explicitly:

• Uniqueness: There should be at most one match for an item from one image
in the other image. Reflections and translucent objects are not included in the
model.
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• Color Constancy: The photometric properties of two pixels forming a pair
should be similar. This condition is typically violated by specular surfaces.

• Smoothness: Area-based algorithms, in particular, model the scene as mainly
smooth, with only few localized discontinuities.

• Ordering: An object appearing to the left of another in one image should also
be to the left in the other image. This is true if the scene is a single continuous
surface, but it will not always hold if the scene has holes or small objects in
front of others.

The case of triangulation between different views of a single, but moving camera is
known as Structure from Motion (SfM) [Nist 05]. This is typically more difficult as
the camera motion is unconstrained. No epipolar constraint exists to restrict the
search space for potential matches. Most approaches are focused on navigation and
produce only sparse depth data, but it is also possible to fill the gaps using optical
flow techniques [Newc 10].

3.4.2 Structured Light

It is possible to replace one of the cameras of a stereo system with a projection device.
Triangulation can then be performed between the projector light rays and the camera
viewing rays. In this case one has to solve the correspondence problem between the
camera image and the known projected pattern. This approach is also called Active
Triangulation, as the pattern is actively projected onto the scene, opposed to passive
triangulation that uses only features which are naturally present in the scene.

A very common form of Active Triangulation are so-called light sectioning sensors.
Here the illumination takes the form of a line, which can be generated by focusing
a laser beam with a cylindrical lens [Haus 88]. The object points are reconstructed
by intersecting the illumination plane with the projection rays corresponding to the
illuminated camera pixels. The number of points per image is limited by the number
of rows (respectively columns) offered by the sensor chip. The laser illumination has
a large depth of field and the environment light can be very effectively blocked by
narrow-band filters matched to the laser wavelength. This enhances the robustness
of the method. However, speckles are a nuisance that make precise localization of the
line in the camera image difficult. They occur when coherent light is reflected from
an optically rough surface. To get a full-field measurement, the illuminating line has
to be swept over the object. This is also a source of imprecision due to mechanical
tolerances. Still, line scanners are a good fit for quality control tasks on conveyor
belts, since in that case no moving parts are required in the sensor itself.

It is a natural step to project not only one line but a two-dimensional light pattern
to increase the number of 3D points that can be generated. However, this means
the correspondence between projected and observed pattern is not obvious anymore.
Therefore the projected pattern has to be encoded in some way. There are many ways
to do this. Salvi et al. and Gorthi and Rastogi [Salv 10, Gort 10] recently published
surveys of the various techniques. Some considerations to take into account are:
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Figure 3.3: Different Structured Light principles: Line sensor (top) and area sensor
(bottom).

• Is the coding temporal, spatial or mixed? In a temporal pattern multiple images
have to be acquired. The sequence of values of a given pixel in the image is
unique, given that there is no movement in the scene. In a spatial pattern the
neighborhood of a given pixel in a single image is unique, given that the object
surface is smooth.

• Is the pattern black & white, grayscale or color? This influences the robustness
of the decoding. Black and white has maximum contrast. Color patterns may
have difficulties with colored objects. Horn and Kiryati [Horn 97] and Caspi et
al. [Casp 98] consider the problem of choosing the optimal pattern for a given
level of robustness.

• Are both directions of the pattern coded or only one? Two-dimensional arrays
of dots or checkers have been used, but stripe patterns are more common. This
is because the second direction is not strictly necessary and stripe patterns are
easier to design and decode.

• Is the encoding periodic or absolute? Periodic patterns need an additional
unwrapping step to generate unique depth data, but are are easier to design.

There are some common assumptions Structured Light algorithms make about the
scene. Not all assumptions are shared by all algorithms.

• Spatial Smoothness: The scene should have no depth discontinuities.
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• Spatial Continuity: A weaker version of smoothness. There should be a smooth
path between any two points in the scene.

• Local Smoothness: The scene does not exhibit discontinuities on scales smaller
than the building blocks of the pattern.

• Reflectivity Smoothness: The scene should have approximately constant reflec-
tivity.

• Color Neutrality: The scene should be in a shade of gray (achromatic).

• Temporal Smoothness: The scene should not move.

• No Ambient Light: The only light in the scene should be the Structured Light.

In the next subsections some examples of the most common coding techniques are
presented. First, we define some important concepts related to Structured Light
Patterns.

• Primitives are the smallest building blocks of a pattern, typically lines, rect-
angles or other simple geometric shapes. The alphabet is the set of all given
primitives.

• A pattern in the most general case is a three-dimensional array of primitives.
The first two dimensions are the spatial pattern coordinates, the third is the
temporal coordinate. A particular primitive can thus be denoted as P (x, y, t).

• A code word is a particular three-dimensional array of primitives. The first two
dimensions are the spatial size, the third is the temporal size. For example, a
specific 2× 2× 2 array of colored dots might be considered a code word. Code
words have a certain Hamming Distance, that is the number of positions in
which they are different. The minimal distance for uniqueness is one. Larger
distances allow error detection and potentially error correction.

• Encoding is the process of generating a pattern containing unique code words.
Note that it is also possible to build a pattern from non-unique code words. We
consider these as unencoded patterns. If only some codewords are unique, the
pattern is sparsely encoded.

• Decoding is the process of identifying code words in observed patches of the
pattern. The uniqueness of the codewords solves the correspondence problem.

• The resolution of a pattern is the product of the number of codewords in the
x and y directions contained in the pattern. This is unrelated to the number
of pixels used to draw a pattern and also different from the resolution of the
final depth data to be computed. The maximum resolution is defined by the
number of legal codewords. This in turn is defined by the size of the alphabet,
the size of the code words and their minimal mutual Hamming distances.
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The resolution of the projection device, the camera resolution and the system geom-
etry also play a role in the design of the pattern. Features smaller than a few pixels
cannot be reliably detected in the camera image. This dictates a lower limit for
the size of the pattern primitives on the object. Otherwise they should be packed as
densely as possible to recover a dense depth map and reduce the smoothness demands
on the object surface. It is wasteful to design a pattern that has 200 codewords when
only 100 can be projected and observed at reasonable size. The better solution is to
adapt alphabet size, code word size or minimal distance so that only 100 codewords
exist.

What is the mimimal size of a primitive in the camera image to be resolved
reliably? For a quick estimation, we assume a simple stripe pattern. According to
the Sampling Theorem, the sampling frequency has to be at least twice as high as
the highest frequency in the pattern. We therefore need at least 2 pixels per stripe to
recover the “base frequency” of the pattern. Furthermore, if the pattern is imaged with
a color camera having a Bayer Pattern, its effective resolution is halved. Therefore
a stripe should occupy at least 4 pixels in the camera image. A typical camera with
a resolution of 780× 580 pixels thus can resolve about 200 vertical or 150 horizontal
stripes.

There are two basic encoding possibilities, 1D or 2D. Note that the pattern itself
is always a 2D image. The difference is only in the encoding, that is in the form
of the primitives used. One-dimensional patterns consist of lines, which correspond
to planes in space. Depth data is calculated via ray-plane intersection. In two-
dimensional patterns the primitives can have any 2D shape. Knowing their location
allows depth computation by ray-ray intersection. This allows for additional error
checks, as the two rays do not typically meet exactly. A large distance between the
rays can indicate miscalibration or a false correspondence. However, 2D patterns
have a disadvantage. Assume a 1D pattern of size s with code word size c. The
“density” is c

s
� 1. For a 2D pattern, the corresponding code word size is c2 and the

pattern size is s2. The density is therefore c2

s2
, which is much smaller than c

s
. To put

it differently, the number of possible codewords grows more slowly than the area to
be covered. Therefore 1D stripe patterns are most common for color patterns. With
spatial binary patterns 1D encoding is difficult, however, because the stripe order of
black-white-black is predetermined. The only choice is varying the projected stripe
widths. However, the observed stripe widths may be distorted by oblique surfaces
and occlusions in the scene and are therefore not reliable. 2D encoding is therefore
common for spatial binary patterns after all, but as previously stated, their density
is relatively low.

It is tempting to view the pattern design as a classic coding problem, for which
there are efficient solutions like Turbo Codes or LDPC codes [MacK03]. However,
there are fundamental differences: In Structured Light the sent message (the pro-
jected pattern) is two-dimensional and already known at the receiver (the camera).
While symbol errors do occur, the main problem is the synchronization, that is, find-
ing the spatial mapping of sent to received codewords. In classical coding theory the
symbol error probability is minimized by adding redundancy to the codewords. How-
ever, in Structured Light, the codewords need to be as compact as possible to avoid
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Figure 3.4: Counting from 0 to 15 with a 4 bit Gray Code. Only single bits change
between successive numbers. In Structured Light, each number is a stripe index and
each bit is realized as one projected pattern.

the situation where codewords are undecodable because they cover discontinuities in
the scene.

Temporal Patterns - Binary Coding

Temporal binary Structured Light encoding was first used by Posdamer and Altschuler
[Posd 82]. They projected a series of time-coded black-and-white dots on the object.
The most common binary coding scheme is the Gray Code [Sava 97]. It is named
after Frank Gray, who patented it in 1953. In opposite to regular binary counting,
in a binary Gray Code only one bit changes between successive numbers (figure 3.4).
This is a useful property as there are no intermediate states that can be misinter-
preted. In Structured Light, Gray-coded patterns are mostly used for stripe indexing
of non-unique phase shift patterns. With N patterns 2N stripes can be indexed. The
threshold to differentiate white from black pixels can be defined by observing the
maximum and minimum intensities in each pixel over the whole sequence. To im-
prove robustness, inverted patterns can be projected as well [Sato 86]. This simplifies
the classification of whether a given pixel is “on” or “off” when interreflections are
present in the scene. A typical Gray Code sequence consists of about 10 patterns.
However, because of their binary nature they can be projected very fast with appro-
priate hardware. Using a custom DMD (Digital Micromirror Device) engine kit and
a high-speed camera, Takei et al. [Take 07] built a system that can perform over 3000
3D measurements per second.

Hall-Holt and Rusinciewicz [Hall 01] proposed so-called “stripe boundary codes”.
They track the boundaries between black-and-white stripes over four patterns. A
boundary can have four states: b-w, w-b, b-b, w-w. This allows indexing 44 =
256 boundaries. The complication is that the latter two states are “invisible”. The
algorithm thus hypothesizes about their location. Consecutive invisible states are not
allowed. This scheme even allows limited movement of less than half a stripe width
in the scene and can still encode 110 boundaries. Reflectivity smoothness must be
assumed, otherwise spurious boundaries can be detected. In another work, Young et
al. [Youn 07] showed that well-placed additional cameras can reduce the number of
patterns needed for a unique encoding.

Temporal Patterns - Phase Shifting

In interferometry, phase shifting is a very old technique [Crea 86], but it can also be
used in Structured Light. Originally, the phase shifting was performed mechanically.
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Therefore a common source of errors were small deviations of the shift interval. With
digital fringe projection those do not occur, but quantization and non-linear projector
brightness can lead to artifacts. There are many variations of the basic phase shifting
algorithm. Wiora [Wior 01] has a useful overview. The most common forms are the
so-called three-bucket phase shift with three images and the four-bucket phase shift
with four images. The projected patterns are defined as

Ii = A · cos(φ− i∆)+B (3.1)

where Ii is the intensity in image i at a given pixel, A is the amplitude (typically 255
2

for an 8 bit image), B is an offset (also typically 255
2

for an 8 bit image), ∆ is the
phase shift interval and finally φ is an arbitrary phase. For the three-bucket variant,
∆ is 2π

3
, for the four-bucket variant ∆ is π

2
. To recover the phase φ from the images

the following equations can be used

φ3 = atan
(√

3(I1−I2)
2I0−I1−I2

)
(3.2)

φ4 = atan
(
I1−I3
I0−I2

)
(3.3)

The general equation for N images with a relative phase shift of ∆ = 2π
N

is

φN = atan


N−1∑
n=0

Insin
(
2πn
N

)
N−1∑
n=0

Incos
(
2πn
N

)
 (3.4)

However, the phase can only be recovered modulo 2π. All values lie in the in-
terval [0, 2π[. To generate a continuous surface, unwrapping has to be performed.
Multiples of 2π have to be added to the phase to reconstruct the correct period
of the phase shift pattern. One way to do this is to use the aforementioned Gray
Code to index the periods [Sans 99]. Other possibilities include heuristic unwrapping
[Take 96, Gold 88], Bayesian methods [Biou 07, Nico 00] or multi-wavelength phase
shifting methods [Li 08a, Gass 03].

An advantage of fringe projection is that the object reflectivity cancels out nat-
urally. The resulting phase map is therefore independent of object texture, except
in cases where the reflectivity is not constant within the area observed by a single
pixel. Additionally, sinusoidal patterns are robust against defocusing. A rectangular
pattern contains high frequency components that are attenuated differently by the
transfer function of the system. Therefore the pattern changes for different levels of
defocusing. A sinusoidal pattern contains only a single frequency. Thus, only the
contrast reduces if the pattern is defocused. This property is especially useful since
off-the-shelf projectors typically have a small depth of focus. Their aperture is very
large to achieve maximum brightness.

The different phase shifting methods differ mainly by the number of images they
require. As a rule of thumb, every additional image increases the robustness of the
result. For additive noise this is obvious, but with more images it is also possible to
compensate different kinds of systematic errors. For digital phase shifting a common
source of systematic error is nonlinear projector brightness. For the three-bucket
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phaseshift it is important to correct it [Pan 09]. More-bucket algorithms are less
sensitive [Hibi 95, Liu 10]. The effect of quantization was examined by Zhao and
Surrel [Zhao 97]. They concluded that for a projection system with a dynamic range
of 8 bits or more the quantization errors are not significant.

Wang et al. [Wang 10] derived patterns with maximal signal-to-noise ratio. They
turn out to have trapezoidal intensity profiles. Interestingly, the same patterns were
used on an empirical basis in [Zhan 04] since they offer faster evaluation. No inverse
tangens has to be computed (in contrast to equation 3.4). They can also be seen
as extensions of the original intensity ratio depth sensor by Carrihill and Hummel
[Carr 85]. Another idea is to generate the sinusoidal profiles by defocusing binary pat-
terns [Lei 10]. The advantage of this approach is that nonlinear projector brightness
does not influence the measurement.

Phase shifting offers a simple and largely texture-independent way to generate
dense, high quality depth data. Unfortunately, it comes at the cost of having to
acquire multiple images. Naturally, there have been many attempts to reduce the
number of images and speed up the image acquisition process so that dynamic scenes
can be measured as well. Wust and Capson [Wust 91] combined three phase shift
patterns in a single color image. For non-gray objects this approach needs additional
reference images under white and black illumination to correct the observed bright-
ness for each phase, so three images are required after all. Taking advantage of the
way DMD-projectors work, Huang [Huan 03] proposed to remove the color wheel so
that three phase shift patterns can be projected with 240Hz. Using a synchronized
camera they acquire three phase shift images per measurement. This approach has
no problem with colored objects since the projected sinuoidal patterns are white.
However, the unwrapping problem remains. Huang used only a few fringe periods
and assumed a continuous object surface. Weise et al. [Weis 07] used the same
projection scheme but solved the unwrapping problem with a second camera to elim-
inate the false matches. While “real-time” 3D is possible with these sensors, some
motion artifacts remain. Also, the three-bucket phase shift is not very robust, so
additional phase corrections are necessary [Zhan 07]. Wissmann et al. [Wiss 11] use a
four-bucket phase shift with a superimposed coded pattern to assist the unwrapping
process. Using a custom projection device they can acquire depth data at 50Hz.

Another possibility for a single-shot phase shift is to combine the patterns using
different carrier frequencies [Guan 03] or to use only a single pattern and recover the
phase using the Fourier transform [Take 83, Quan 10]. However both approaches work
well only for a limited range of objects. Discontinuities and textures pose difficulties,
as they introduce frequency components into the image which cannot be separated
from the projected pattern.

Spatial Patterns - Monochrome coding

True single-shot systems are possible with spatially coded patterns. Binary black
and white patterns are popular because they offer maximum contrast. Early work
was done by Vuylsteke and Oosterlinck [Vuyl 90], who project a chess board pattern
(figure 3.6/1) with specially encoded corners. The resolution is 64 × 64. Assuming
limited distortion, the observed pattern can be decoded after simple image process-
ing steps. Hu and Stockmann [Hu 89] proposed an unencoded black-and-white grid
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Figure 3.5: Example four-bucket phase shift patterns

pattern. With the help of general geometric constraints they were able to exclude
many possible object shapes, but “a small degree of ambiguity remains”. Proesmans
[Proe 96] uses a very similar pattern viewed under orthographic projection. The in-
tersection points are labeled relative to some starting position. The claim is that
wrong labelings are avoided by using the most reliable path to reach other intersec-
tions. Only relative depth is recovered and discontinuous objects still pose difficulties.
Koninckx [Koni 05a] proposes a black and white line pattern with a diagonal colored
line for disambiguation via the epipolar constraint (figure 3.6/2). Kawasaki [Kawa 08]
also uses a grid pattern (figure 3.6/3) and reconstructs the depth with the help of
coplanarity constraints on the observed intersections. Brink et al. [Brin 08] present
an algorithm to index a black and white stripe pattern with the help of maximum
spanning trees. In general, unencoded grids suffer from a lack of robustness. They do
not provide error detection, so errors during the identification process can propagate.
Textures and discontinuities in the scene are therefore hard to handle. Additionally,
the possibilties for confusion grow with the number of stripes and crossings in the
pattern, so the realistically achievable resolution is relatively low. To a lesser degree,
this is also true for sparsely encoded patterns.

Morita et al. [Mori 88] proposed a dot pattern based on pseudorandom arrays
[Mitc 95, Etzi 88, Dene 90]. These so-called M-arrays have the property that all sub-
arrays of a given size appear only once in the full arrays. That is, every such subarray
is a unique code word. Observing such a subarray solves the correspondence prob-
lem. Griffin et al. [Grif 92] also used a two-dimensional encoding with 4 geometric
primitives arranged in code words of size 5 (figure 3.6/4). Their coding is optimal,
that is, every possible code word occurs exactly once in the pattern. The resolution
however is only 32 × 32. Maruyama and Abe [Maru 93] projected a pattern of dis-
continuous lines (figure 3.6/5). The gaps are randomly arranged. The code words
are read along epipolar lines. Another approach was proposed by Devernay et al.
[Deve 02], who project a pseudo-random noise pattern. They then try to find parts
of it in the camera image by cross-correlation. While this is simple and reasonably
fast, strong deformations of the pattern as well as object texture can cause problems.

The “Kinect” 3D controller system released by Microsoft in fall 2010 is based on a
single-shot triangulation sensor. It uses a near-infrared “speckle” pattern to illuminate
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the scene (figure 3.6/6). The observed pattern is compared to a reference view by
means of local cross-correlation. The displacements of the correlation windows give
the depth. The illumination is monochromatic, so environment light can be filtered
very effectively. The baseline is relatively short at 75mm, compared to a working
distance of approximately 1000mm to 3000mm. The camera therefore sees the pattern
almost without distortions, which makes the correlation more robust. On the other
hand, the short baseline limits the accuracy of the sensor. The sensor is unobtrusive
to human eyes and works reliably on a variety of surfaces at a frame rate of up to
60Hz. There is only a small amount of published material about the measurement
principle apart from two patents [Shpu 07, Zale 06]. There is also an older paper by
the same authors on depth reconstruction with a related method [Garc 08]. This older
method works without triangulation merely by observing a projected speckle pattern,
which varies in z direction, and comparing it to stored reference images. In the final
product the speckle pattern was tweaked to be constant in z-direction (in the far
field). Also, the intensity distribution was changed to be effectively binary (see figure
3.6). It is unknown how exactly this pattern is created. The advantage of this type of
illumination is its very high depth of field. Additionally, the pseudo-speckle peaks are
extremely bright compared to the background. This high contrast overcomes object
textures and makes the correlation step more robust. Since this single-shot sensor is
commercially available we compare it to our results in section 6.1.4.

Spatial Patterns - Color coding

Compared to monochrome patterns, color patterns can be encoded three times more
densely, since they have three channels. However, there is a cost: the observed color
depends not only on the projected color, but also on the scene color. Therefore color
encoded systems tend to have difficulties with strongly textured scenes. The earliest
3D sensor based on color coding was proposed by Boyer and Kak [Boye 87]. The
pattern, composed of stripes of different colors, contains unique blocks of stripes.
However, not all blocks were unique. Later authors [Monk 93, Hugl 89] introduced
patterns based on De Bruijin sequences[Mitc 96, Anne 97]. These are in principle
one-dimensional pseudorandom arrays. Subsequences of a certain length are unique.
Observing them solves the correspondence problem. Zhang et al. [Zhan 02] also used
De Bruijin sequences for their pattern (figure 3.7/1). Their contribution is an elegant
recursive decoding algorithm. It works on each scanline individually, so the noise
robustness is limited. They have to explicitly assume the ordering constraint. The
authors claim, however, that scenes violating this constraint can still be measured
using multiple decoding passes.

In a parallel line of development, Tajima [Taji 90], Häusler [Haus 93] and Geng
[Geng 96] used a rainbow color spectrum to encode the pattern without any explicit
stripes. However, it is hard to reliably distinguish so many colors in the camera
image, even if the scene is color-neutral. Therefore, Häusler proposed a complex
setup to exclude the green part of the spectrum that cannot be reliably mapped to
the wavelength with a standard camera. Tajima even advised to average over 10
images to reduce noise, but of course this is in conflict with the single-shot principle.
Ambient illumination poses additional problems and has to be compensated with
a second image. Because of these limitations, spectrum-based approaches did not
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Figure 3.6: Monochrome patterns used by different authors
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Figure 3.7: Color patterns used by different authors

become widely used. However, the principle of the measurement method is attractive
and might be worth revisiting with modern hyperspectral cameras.

Morano et al. [Mora 98] used a 2D-encoded pattern (figure 3.7/2). The code
is based on M-arrays. They also proposed the use of error-correcting codes, but
did not use them in their actual implementation. Chen et al. [Chen 08] used a 2D
pattern as well (figure 3.7/3), but with a non-formal construction. They analyze the
time complexity of their decoding algorithm in great detail, but there is no accuracy
evaluation.

Forster [Fors 06] employed a stripe pattern with error-correction (figure 3.7/4).
The decoding step works per scanline, but propagates successful identifications along
the stripes. The algorithm was designed to be as robust as possible and the imple-
mentation is fast. This system can be viewed as a predecessor to the work described
in this thesis.
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Summary of triangulation based systems

Stereo methods offer dense depth maps in real time, and they do so passively and
unobtrusively. However, they work only for cooperative, texture-rich scenes. Also,
dense in this context is used in the computer vision sense. In the physical sense the
depth data is only plausibly interpolated between known points of support. Addi-
tionally, the accuracy is often rather low as only few distinct disparity levels are used
to speed up the computation. A small baseline makes the stereo matching easier, but
also reduces the accuracy. Wide baseline stereo methods are considered a different
branch of research as they have to assume that an object is seen from very different
perspectives. Outliers are an additional problem. The Middlesbury Stereo bench-
mark [Scha 02] established that even the best algorithms produce a small percentage
of outliers. What’s worse, they can be almost arbitrarily far off, so the error in the
RMS sense can be very high.

Structured Light is similar to Active Stereo, but the hardware is even simpler, since
only one camera is used together with the projector. The temporal coding scheme
combining Gray Code and Phase Shifting is very well established and works reliably
on almost any object. The drawbacks are that it is unsuitable for dynamic scenes.
This can be mitigated with expensive hardware, for example in the system described
by Takei [Take 07], but the principal problem remains. Along the same direction,
using multiple patterns always requires a complex projection device that can quickly
switch between different patterns and does not introduce positioning errors. Mass-
produced digital projectors are not very expensive, but have limited resolution and
intensity quantization. Using analog projection solves this, but typically introduces
mechanical instabilities if more than one pattern has to be used.

Single-shot methods are capable of measuring dynamic scenes. They are also
very elegant: The hardware is reduced to the bare minimum. There are no moving
parts, only a slide projector and a camera. Binary single-shot patterns are mostly
sparsely encoded or encoded in 2D with geometric shapes as primitives. Sparsely
encoded patterns, in particular, are sensitive against error propagation. Geometric
encoding has a low density. Therefore it needs smooth surfaces and offers only limited
resolution. The robustness is low since it is hard to incorporate error correction
mechanisms. Color single-shot patterns offer more flexibility. The patterns based on
pseudorandom sequences have a relatively high density. By maintaining a minimum
Hamming Distance between the code words, error recognition and error correction
can be introduced. The challenge is to cope with textured and colored objects.

3.4.3 Error estimation for triangulation-based systems

There are several sources of errors in a triangulation-based 3D acquisition system.
The following collection of error sources is valid for binocular Stereo as well as Struc-
tured Light. In the latter case, we assume a projector is an “inverted” camera.

• Matching Error: It occurs when triangulation is performed between falsely iden-
tified rays. The resulting errors can be arbitrarily large. It is the responsibility
of the preceding stages of the Stereo or Structured Light processing algorithm
to exclude such false matches.
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• Localization Error: Even when features have been correctly matched, their lo-
cation is not known with perfect accuracy. There is a small difference between
Structured Light and Stereo. The projected pattern is theoretically exactly
known, but depending on the type of projector used, small uncertainities re-
main.

• Calibration Error: The position, orientation, distortion and other parameters
of the cameras are not precisely known. Any inaccuracy propagates into the
triangulation. While there are highly accurate calibration algorithms, the sta-
bility of the calibration is a practical problem. Vibrations during transport may
necessitate re-calibration. Temperature changes cause components to expand
or shrink and can therefore change the parameters of the system.

• Model error: The calibration model may not fully represent the actual physical
system. A prime example is the pinhole camera model that breaks down for
ultra-wide-angle lenses. Using an inadequate model causes additional errors.

We present a simple derivation of the localization error that must be expected in a
triangulation-based 3D acquisition system. We make some simplifying assumptions.
The first is that the image planes are coplanar. This is indeed often the case. If not,
it can be achieved synthetically by stereo rectification [Gluc 01]. The second is that
the left and the right camera (or projector) have equal focal length f . Again this
occurs commonly in stereo setups, and if not, we can virtually rescale the image plane
and the associated uncertainity to the necessary focal length. The idealized setup
is visualized in figure 3.8. A more extensive treatment can for example be found in
[Blos 87].

We express the coordinates of a 3D point P with respect to the left camera
coordinate system. Similar triangles yield:

xp =
−xL · b
xR − xL

yp = − −yL · b
yR − yL

zP =
f · b

xR − xL
(3.5)

The uncertainity in z is the difference between the maximum and minimum values.

∆z =
fb

(xR − δxR)− (xL + δxL)
− fb

(xR + δxR)− (xL − δxL)
(3.6)

Introducing the disparity d = xR − xL and the localization error δx = δxR + δxL
gives

∆z =
fb

d− δx
− fb

d+ δx
=

2fbδx

d2 − δx2
(3.7)

With d = fb
z
and the approximation d2 � δx2 this becomes

∆z =
2z2δx

fb
(3.8)

The approximation is valid as triangulation-based systems are close-range sys-
tems. The disparity values are therefore several pixels, compared to a localization
uncertainty that is only fractions of a pixel with appropriate subpixel localization
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Figure 3.8: Standard triangulation geometry for two cameras A and B separated by
a baseline of length b = |OR − OL|. The image planes are coplanar and the focal
lengths are equal (fL = fR = f). Only the y = 0 plane is shown. The projection of
a point P in the left camera coordinate systems is at xL, while its projection in the
right camera coordinate system is at xR. Uncertainities δx in their position result in
an uncertainity ∆z in the triangulated depth.

algorithms. It can be seen that for triangulation-based measurement systems the
error ∆z increases quadratically with the distance z.

For ∆x (and analogously ∆y) we get

∆x =
− (xL − δxL) · b

(xR − δxR)− (xL − δxL)
− − (xL + δxL) · b

(xR + δxR)− (xL + δxL)
(3.9)

≈
2z2 (xRδxL − xLδxR)

f 2b
(3.10)

To get an idea what this means in practice, consider a typical close-range stripe
projection system with a pixel size of 8.3mm and focal length of 8.5mm for the camera.
The projector has a pixel size of 14mm and 15.5mm focal length. The baseline length
is 100mm and the working distance 300mm. The localization error is more elusive.
For the camera we can assume 0.2 pixels (see section 2.3). If the projector is of
DMD type, the fill factor is 90% and the edges between the stripes are well defined.
We therefore assume 0.1 pixels. On the projector side we additionally have to scale
the resulting uncertainity to a virtual focal length of 8.5mm. All in all this gives
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∆z = 0.51mm. Assuming xp = b
2
, we get a lateral uncertainity ∆x = 0.085mm.

For a typical setup the depth error thus is much larger than the lateral error. The
relative depth error is “only” 0.17% of the working distance. One has to keep in
mind, however, that this is a lower bound that does not include calibration errors.
The total error may be larger, especially on uncooperative surfaces, where the edges
are more difficult to locate. Different system geometries can also change the analysis.
Our result is in accordance with Trobina [Trob 95], who modelled the errors of a stripe
projection system and reported relative depth errors of about 0.15%.

Zhao and Nanhakumar [Zhao 96] examined the effects of various types of miscali-
bration. In particular these are incorrect roll/pitch/yaw angles between the cameras
and incorrect distortion parameters. They found that roll and pitch errors are rela-
tively benign. The resulting errors are less than 1/4000 for 1 degree of misalignment.
On the contrary, a yaw angle off by 1 degree causes about 1/20 relative depth error.
Tangential distortion in the form of a sensor plane rotated by 1 degree causes up
to 1/100 of depth error. Applying radial distortion also resulted in up to 1/20 of
relative depth error. The yaw angle and the radial distortion are therefore the
most critical parameters.

A related and complementary measurement principle extracts information about
surface slope and curvature from the observed widths and angles of a projected stripe
pattern. This was for example proposed by Winkelbach and Wahl [Wink 02]. How-
ever, Yang and Wang [Yang 96] showed that this direct computation technique for
the slope gives large errors, compared to computing the slope from distance data.

3.5 Endoscopic 3D scanning
Endoscopes are used to examine the inside of potentially very narrow cavities through
relatively small openings. Thus, their diameter is an important factor. Typical en-
doscopes are therefore monocular and provide only 2D images with few depth cues.
However, for many applications in medical, as well as industrial settings, metric 3D
data is desirable. Such a 3D endoscope would permit synthesizing wide baseline
stereoscopic images for surgeons, providing them with an intuitive 3D visualization
rather than with flat images. It would also allow performing absolute 3D measure-
ments such as the area and volume of a pathological structure. Moreover, it might
simplify solving advanced tasks such as coverage analysis (i.e. checking if 100% of
a surface has been seen in the course of an inspection) or registration of endoscopic
images with pre-operative data generated in a CT or MR scan.

One solution for generating endoscopic 3D data is Structure-from-Motion [Thor 02,
O 11, Wang 08, Zhou 10b, Hu 10]. The distribution and quantity of trackable features
in the scene determines the density of the resulting point cloud. There are currently
two major limitations for SfM besides the dependency on features: First of all, imple-
mentations often have difficulties providing live feedback as typically a whole image
sequence has to be processed before 3D data can be computed. The lag described
in the literature varies widely; Hu et al. [Hu 10] report a processing time of several
minutes while Grasa et al. [Gras 09] demonstrate an SfM system running at 25 Hz.
More importantly, existing approaches assume a rigid scene, yet the scene tends to
be non-rigid in medical applications. This may prevent a reconstruction or - in the
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worst case - cause artifacts. It is important to note that SfM generates 3D data only
up to scale; it cannot be used for absolute measurement, but it is suitable for stereo
view synthesis. Hu et al. report an RMS reprojection error of their tracked features
of around 1 pixel. This corresponds to a mean residual error of 1.68mm between their
reconstruction and a ground truth surface; however it is unclear how the scale of the
metric reconstruction was determined.

Stereoendoscopes provide two different perspectives on the scene. They can be
used for direct human viewing or to reconstruct 3D data with computer vision al-
gorithms. A stereo set-up is typically realized using two imaging sensors with two
distinct lenses [Durr 95], but there are also alternative set-ups such as a single lens
behind two pupil openings combined with a lenticular array on a single sensor chip.
This design permits a small endoscope diameter [Taba 09, D 10] at the cost of a
smaller triangulation base, which results in a ’weak’ 3D effect. As always, with pas-
sive stereo algorithms the quality of the 3D data depends on the structure of the
scene; featureless areas or viewpoint-dependent glares tend to cause problems.

There are also 3D endoscopes based on Structured Light. Armbruster [Armb 98]
describe a rather large endoscope (targeted at industrial applications) based on the
well-known phase shifting approach for the illumination pattern. In [Kole 03], the
authors present a conceptually similar miniaturized holographic interferometer that
can acquire data at a rate of 5Hz. The capsule has a diameter of 10mm and three
protruding arms to provide three different illumination directions. They employ
temporal phase shifting to get rid of the disturbing zero order and the complex-
conjugate image arising in digital holography. The reported quality is impressive,
but endocopes using phase shifting are not very suitable for moving scenes. To
summarize, for many Structured Light systems described in the literature the overall
diameter of the endoscope is considerably greater than 10 mm and consequently too
large for many medical applications. An exception is Clancy et al. [Clan 11], who
present a fiber-optic addon for the instrument channel of a rigid endoscope. They
project dots of different wavelengths onto the scene and try to identify the wavelength
in the camera image. However, given the color filters in typical cameras, this is a
difficult task and the resulting density of 3D points is very low.

Time-of-Flight (ToF) methods have also been considered for endoscopic imaging
[Penn 09]. The advantage of ToF is that it does not suffer from occlusion, unlike
triangulation-based methods such as Stereo or Structured Light. At the same time,
it is very challenging to build a small endoscope with an integrated ToF sensor.
Penne et al. [Penn 09] did not miniaturize the hardware to the required level, but
rather used a rigid endoscope with fiber optics for illumination and observation. The
authors report an average error of 0.89mm for measurements of a plastic cube with
a side length of 15mm at a standoff distance of 30mm. Surface texture and volume
scattering in biological tissue (a significant effect for the infrared illumination typically
used in ToF sensors) pose problems.

Shape-from-Focus has also been proposed for endoscopic measurements [Take 09],
but it assumes a textured surface. Furthermore, the scene must be stationary while
multiple images are acquired. As previously mentioned, this assumption tends to be
invalid for medical scenarios. Conoscopic holography [Mugn 95] has also been applied
for endoscopic measurements. It is a scanning method that can reconstruct the depth
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of a single point at a time. Prasciolu [Pras 07] used a micromirror device on the tip
of a rigid endoscope to build an in-ear scanner. The patient has to be fixated during
the scanning process, which takes about two minutes. The scanner is guided using
precise mechanics; in combination with the rigid scene this allows for the combination
of the many single point measurements into a complete surface.

Emission-Reabsorption Laser Induced Fluoroscopy (ERLIF) is a method to de-
termine the thickness of fluid films [Hidr 01], but it has also been proposed for 3D
cavity measurements [Hern 10]. The cavities need to be filled with a suitable medium
containing fluorescent dyes, which can be achieved with inflatable balloons. Clearly
this can be problematic in many medical scenarios. Also it is no longer possible
to record the surface color of the scene, therefore the approach cannot be used for
realistic stereo image synthesis.

Detailed surveys about 3D reconstruction techniques for endoscopic applications
can be found in [Moun 10] and [Miro 11]. In sections 4.3.3 and 4.3.4, we introduce a
new endoscopic 3D sensor, based on Single-Shot Structured Light. It has a diameter
of only 3.6mm and can be used to reconstruct cavities with a mean absolute error of
below 100µm. These measurement results are presented in section 6.1.3.
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Chapter 4

Design and Calibration of Single-Shot
Structured Light Systems

In this chapter we first outline the goals and considerations for designing a Single-
Shot Structured Light 3D scanning system. In single-shot systems, the design of
the single pattern to be used naturally deserves much attention and is presented
in greater detail. We also propose a new approach for the calibration of projector-
camera systems. It is based on active calibration targets, which do not exhibit a fixed
dot or chessboard pattern but rather encode their surface with the help of typical
Structured Light schemes. This calibration approach is evaluated with simulated
images as well as with different combinations of displays, cameras and lenses. It
compares favorably to traditional feature-based calibration - in a stereo triangulation
test, the reconstruction error could be reduced to a fifth.

4.1 General Design Goals
There are several common considerations and requirements for the design of a real-
time 3D acquisition system.

• Low cost. Always a concern for any type of sensor. Single-Shot Structured Light
(S3L) has advantages here as only off-the-shelf hardware is required. It needs
only one camera and one projector. The latter only needs to project one single
pattern, so in the simplest setup a static slide projector and an off-the-shelf
camera can be used.

• Safety. To be usable in everyday environments, the sensor should pose no
danger to humans. The critical point is mainly the eye safety of high-power
lasers, even more so in non-visible wavelength ranges where there is no blinking
reflex. For S3L systems this is generally not a problem.

• Compactness and mobility. S3L is based on triangulation and as such needs a
certain baseline to be effective. A typical baseline length is about a fifth of the
object distance. Hence, the compactness depends on the working range. For
close-range measurements the sensor can be very small. In fact, the miniatur-
ization potential of S3L systems is very good. Cameras with sizes in the mm
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range are commercially available, and a static slide projector can also be very
small. An S3L sensor can be light and easily transportable. Since only one
image of the scene has to be acquired to calculate 3D data, the sensor can be
hand-held. With a sufficiently low exposure time there are no motion artifacts.

• Simple setup without high-precision adjustments. Easy, reliable and stable cali-
bration. The geometry of an S3L system does not have to fulfill strict precision
requirements. It only needs to be stable, which may be a mechanical challenge.
For a given setup, a few images of a calibration target (e.g. 6 each for camera
and projector) suffice to determine all system parameters with high precision.

• Large measurement volume. This can be realized with appropriate wide-angle
optics, but may increase the effort needed for accurate calibration. Depth-of-
field is also a concern and may necessitate stopping down the system, which
has to be compensated by increasing the exposure times or the illumination
brightness to keep image noise at an acceptable level.

• High absolute accuracy. High lateral resolution. The lateral resolution is deter-
mined by the camera. One factor is the raw sensor resolution, which can reach
into the megapixel range, but of course there also physical limits like diffraction
and the general imaging quality that need to be considered. The accuracy of a
S3L sensor depends on the quality of the calibration as well as the imaging noise
and surface properties. Relative accuracies of better than 1

1000
of the working

distance are possible.

• Suitable for all object and scene types. Naturally, transparent and specular
surfaces pose difficulties for an S3L sensor. Traditionally, S3L has been applied
to uniformly colored, smooth surfaces. Part of this work is to improve the
performance on highly textured or discontinuous objects. Another aspect are
moving objects. In an S3L system dynamic scenes pose no problems.

• Robust against environment influences. An S3L sensor can be built without
any moving parts and can therefore be very robust against vibrations. With
LED lighting it can also be passively cooled, so accretion of dust is no prob-
lem. Temperature changes can influence the calibration qualitity and must be
considered in the mechanical design. The remaining challenge is environment
light, especially sunlight. Assuming environment light 10 times as bright as the
scene illumination, the Structured Light decoding must make do with no more
than 1

11
th of the camera’s dynamic range.

• Reliability. The sensor should not generate false depth data. In triangulation-
based systems, a false correspondence can cause arbitrarily large depth errors.
The pattern and the decoding algorithm must be designed accordingly to avoid
such errors.

• Fast measurement. Real-time is understood here as video frame rate, that is 25
frames per second. In parallel processing one has to discern between throughput
and lag. We therefore specify a lag of no longer than 0.1 seconds. In general, S3L
systems trade hardware complexity for algorithmic complexity in the decoding.
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In a single-shot system it is easy to acquire images at the required rate. The
bottleneck is in the decoding.

Single-Shot Structured Light can fulfill most of these points. Time-of-Flight is a
contender but has a number of drawbacks. The results are noisy and thus often
have to be averaged over many frames to get a usable result. Most importantly, the
sensors are challenging to calibrate because of systematic errors. The measured depth
depends on the sensor temperature, the object reflectivity and even the air humidity
[Lind 08]. Passive Stereo has major problems on unstructured surfaces. Active Stereo
solves this, but the active illumination can be intrusive if it is in the visible wavelength
range. Although this is also true of S3L, Active Stereo needs a second camera in
addition to the projector and so is less compact and more expensive than an S3L
system. Other monocular approaches like Structure from Motion do not yield dense
depth data. Therefore, we consider S3L as the overall best-suited method. A key
advantage of an S3L system is that it can be miniaturized for endoscopic applications
with relatively little effort. Its main drawback is that it is not inherently robust on all
surface types. When designing an actual S3L system, the aspects mentioned above
have to be taken under consideration. Some are intrinsic to the S3L principle, other
can be influenced by the geometric setup or hardware changes. Many points also
depend on the choice of Structured Light pattern.

4.2 Pattern Design

Color stripe patterns offer a good compromise between resolution, robustness and fast
decoding. A color-stripe pattern has to fulfill certain criteria to be useful. It should
be as long as possible to encode a large volume with high density. At the same time
the individual code words should be as short and distinct as possible to facilitate
robust decoding. The required length of the pattern depends on the application. To
be reliably detected in the camera image, a stripe should be at least 4 pixels wide.
Thus, we need a pattern with about 200 stripes for a typical camera with a horizontal
resolution of 780 pixels. The various design choices and their influence are described
below.

• Alphabet. In our case the alphabet is the set of colors to be used in the pattern.
Everything else being equal, a larger alphabet makes it possible to assemble
longer patterns, but the invidual colors are harder to distinguish, so robustness
suffers. Aiming for maximum robustness we choose to use colors with maximum
distance, i.e. the eight corners of the RGB color cube: red (R), green (G),
blue (B), cyan (C), magenta (M), yellow (Y), black (K) and white (W). In
many cases it is even advisable to forego black and white as they can be easily
confused with shadows (respectively highlights) on the object. The patterns
are represented as strings, for example GBYMCRBGMYCYBRCMGR. Since a
given color channel can only be either on or off in our alphabet, another possible
notation for the colors are 3-digit binary numbers. The lowest bit is the blue
channel, the middle bit the green channel and the high bit the red channel. For
example, R corresponds to 4 in decimal notation, and C corresponds to 3.
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• Code word size. For a dense encoding, the pattern must satisfy the window
uniqueness property. That is, subsequences (code words) of a given minimal
length must only occur once. It is important to note that a code word can
be defined as a sequence of colors or as a sequence of color changes. Different
colors can map to the same color change, for example in RG and MC the red
channel falls while the green channel rises. A typical code word length is four,
corresponding to unique subsequences of three color changes. The color changes
are either denoted as strings of the form R-G+, or as six-digit binary numbers.
The lowest bit indicates if the blue channel is falling, the second if blue is rising,
the third if green is falling and so on. Thus R-G+ can also be represented as
the single decimal number 24, while R+B- is 33.

• Compatibility rules. Obviously, neighboring stripes cannot have the same color,
otherwise no edge can be detected between them. However, there are also
combinations of non-identical colors that should be avoided. In particular, the
contrast of red edges is often reduced by volume scattering as the penetration
depth depends strongly on the wavelength. Since skin and other biological
tissues are volume scatterers, this effect should not be neglected. Green edges
have the advantage that green has a higher resolution in the Bayer Pattern of
the camera (see figure 2.2). Blue is also good as it exhibits the least amount
of volume scattering. Hence, a common rule is that at least two color channels
must change at each edge. Other variants are that at least green or at least blue
must change. All three rules reduce the number of colors that can lie next to a
given color from 5 to 3 (in a six-color alphabet). We typically also require the
pattern to be normalizable. That is, every stripe must have at least one neigbor
where a given color channel changes. This helps to judge whether a color change
is significant or not in the decoding stage. As an example, the sequence RGR
is illegal, because the green stripe has no neighbor with a different blue value.

• Minimum Hamming Distance. To maintain the uniqueness property, the min-
imum Hamming Distance between two code words is one. We can require a
Hamming distance higher than one, that is, we avoid code words that are too
similar. However, with suitably chosen compatibility rules, it is often possible
to use a Hamming distance of one.

• Circularity (also called wrapping). It is not always possible to generate a pat-
tern with the exact number of stripes required by the application (if an exact
number is even known). Instead of using a pattern that is “too long” and must
thus be truncated, it is preferable to use a pattern with a smaller alphabet or
smaller window size. This pattern may be “too short”, so we partially repeat it.
To make this possible the pattern has to be circular, that is, the last stripes to-
gether with the first stripes must form valid and unique codewords as well. The
repetition of codewords of course introduces ambiguity for the depth values.
But typically a pattern is repeated not more than twice. Given the expected
object distance, it is therefore easy to determine the correct depth out of the
two possibilities.
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How long are patterns that can be assembled under these rules? Some theoretical
considerations give an upper limit. We also implemented a pattern generator to find
realizations of the various patterns. An exhaustive search is only practical for the
shortest patterns. The longer patterns must be found in a pseudorandom search.
Fortunately there is not only one optimal pattern for a given set of rules, but many.
They can be created by circular shifts, inversion, color channel exchanges and other
transformations.

In the first set of examples we use a Hamming distance h = 1, an alphabet
size k = 6, and the rule that at least two color channels must change at an edge.
That means a given color has n = 3 different valid neighbor colors. All patterns are
normalizable and circular. We vary the code word length w.

• w = 2. There are kn = 18 code words. The maximum pattern length is 18.
Optimal patterns have been found using exhaustive search.

• w = 3. There are kn2 = 54 code words. Of these, six pairs are not unique in the
sense that they map to the same color changes, for example RGR and MCM.
Incidentally, these 12 code words are also not normalizable. The resulting
maximum pattern length is therefore 54-12=42. Optimal patterns have been
found using pseudorandom search.

• w = 4. Building on the previous result for w = 3, there are 21 sequences of
length 3 that can be used to continue a sequence starting with a given color. Of
these, 4 result in invalid sequences. There are therefore 17 · 6 = 102 valid code
words. The best patterns that have been found using pseudorandom search
have a length of 90.

• w = 5. Again building on the previous result for w = 4, there are 51 sequences
of length 4 that can be used to continue a sequence starting with a given color.
10 of these turn out to be invalid. Hence the maximum pattern length is
41 · 6 = 246. The best patterns found by pseudorandom search have a length
of 202.

It is of course also possible to use higher Hamming Distances, a larger alphabet
and different compatibility rules. Consider, for instance, the following representative
cases.

• w = 3, k = 6, h = 2. At least one channel must change. The effect of the
larger Hamming distance is similar to reducing the code word length by one -
for example, in RGx only one choice of x is allowed, all other choices then result
in a code word that is too close to the existing one. The given rules allow 30
codewords with regular spacing. However, these regular codewords cannot be
combined in longer patterns because they form “loops”, for example BGR, GRB
and RBG. The maximum pattern length found by exhaustive search is 18.

• w = 5, k = 6, h = 2. The maximum pattern length found by pseudorandom
search is 90, just as in the case w=4, k=6, h=1.
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• w = 4, k = 8, h = 2. The maximum pattern length found by pseudorandom
search is 104. The larger alphabet allows a reduction of the window size by
one, while still forming a longer pattern.

• w = 3, k = 8, h = 1. Lowered Hamming distance and shorter window size
again result in a maximum length of 104 stripes. This is the optimal length, as
there are 128 possible codewords, of which 24 are not normalizable.

We have seen that patterns with up to 202 stripes can be generated with a window
size of 5 and six colors. Although not optimal in the sense that all possible code words
are incorporated, the pattern is long enough for practical use while the window size
is still modest. For other applications, as for example the endoscopic system, the
projection device supports only a much lower number of stripes. In that case it is
possible to use window sizes as short as two stripes. Examples for the various classes
are listed in the appendix.

Some authors like Caspi et al. [Casp 98] or Koninckx [Koni 05b] propose on-line
adaptions of the projected pattern to the scene. This requires a projector capable
of displaying different patterns, which negates one of the key advantages of Single-
Shot Structured Light. We commit ourselves to maximum robustness and in advance
design an application-specific pattern with at most 8 colors, which can then be realized
as a projection slide. Furthermore, we choose colors in the visible range in order to
be able to use commodity cameras with a standard Bayer filter. In principle it is also
possible to use other colors, for example in the infrared range. This has the benefit
of being less obtrusive for observers, but it also results in lower accuracy on some
surface types because of increased volume scattering.

It is tempting to extend the stripe encoding with a perpendicular set of stripes to
obtain a color checkerboard, which nominally should yield twice as much depth data
per frame. However, there are problems with this approach. Firstly, as mentioned
in section 3.4.2, the possible codewords of a given size are exhausted more quickly
in a 2D encoding. This can be worked around by tiling the secondary direction with
many repetitions of the same pattern, as long as the primary direction gives sufficient
uniqueness. For example an n×m checkerboard can be created by repeating an n×2
pattern. Figure 4.1 shows details of a color stripe pattern and a color checkerboard
pattern. Still, other problems remain. Because of blurring, the color contrast is much
lower in the 2D encoding, leading to less reliable decoding. Furthermore, the edges
cannot be precisely localized at the crossings. The 2D encoding thus results in depth
data of lower accuracy, and the amount of depth data emperically is only about 30%
larger than with 1D encoding. A smaller issue to keep in mind is that the system
needs both a vertical and a horizontal triangulation base to calculate depth values
for both sets of edges.
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(a) Color stripe pattern (b) Color checkerboard pattern
(created by tiling a n × 2 base
pattern)

Figure 4.1: 1D vs 2D encoded pattern observed on a cooperative surface. The edges
can be localized more accurately in the stripe encoding. In the 2D pattern the
crossings result in ill-defined edge positions.

4.3 System Calibration

The calibration of cameras is a standard task in Computer Vision. The typical pro-
cedure is outlined in section 2.2. A calibration target with well-known fiducial marks
is placed in different poses and imaged by the camera. From the correspondences
between the world coordinates of the marks and their image coordinates the camera
parameters can be determined. Instead of the traditional checkerboard or dot ar-
ray calibration targets, we propose to use digitial displays as “active” targets. This
approach is presented in detail in the next section 4.3.1. The key insight for the
calibration of Structured Light systems incorporating projection hardware is that a
projector can be treated as a reverse camera. Where for a typical camera calibra-
tion the world coordinates are known and the image coordinates are measured, for a
projector the image coordinates are known and the world coordinates of the marks
have to be found. This can be achieved with the help of a calibrated camera. Details
are presented in section 4.3.2. We do not consider model-free calibration approaches
based on lookup tables.

In sections 4.3.3 and 4.3.2 methods for calibrating an endoscopic Structured Light
sensor are presented. This poses special challenges because of the unusual design of
the camera and the projector used in the miniature sensor [Schi 11].

4.3.1 Camera Calibration with Active Targets

In contrast to the classic calibration approach that makes use of fixed features on
dedicated calibration bodies, we generate virtual calibration marks on active targets
using a Structured Light coding scheme. On the one hand this has simple practical
advantages. There is no need to manufacture and validate a special target. The
marks on the target do not have to be laboriously identified in an error-prone manual
process, as is often the case. The coding scheme we use is tolerant against defocusing,
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so the target does not have to be in focus for the calibration. On the other hand,
we show that the achievable accuracy (as measured in the RMS reprojection error)
is comparable to the best published calibration results and much better than the
typically obtained values.

The idea of using a Structured Light coding scheme for camera calibration has also
been proposed by [Saga 05], where it was used to undistort the images of a wide-angle
camera in a model-free manner. In contrast, we perform a full camera calibration
and recover the camera parameters, as they are needed for many tasks, for example
3D reconstruction. A similar active calibration approach is also briefly mentioned
in [Rama 05, Gros 01, Gros 05] in the context of calibrating a catadioptric wide-angle
camera. These works focus on calibration for wide-angle imaging and do not include
thorough quantitative performance comparisons with other calibration methods. We
are of the opinion that active camera calibration has advantages for any camera,
not only extreme wide-angle cameras where the traditional pinhole model breaks
down. We apply the active calibration approach to narrow-angle imaging with the
pinhole model and show that the achievable calibration accuracy is higher than that
of conventional passive targets.

Digital displays are suitable for calibration tasks as they are manufactured to very
high precision using lithographic techniques. The pixel pitch is well-known, therefore
pixel coordinates can be converted to metric 2D coordinates. One could simply show
a checkerboard on the display and use that for calibration. However, such a method
would still be subject to the noise-prone corner localization step. Instead, we propose
the use of a series of coded patterns which can uniquely identify each individual pixel.
Many coding schemes are possible [Salv 10]. Phase shifting is a dense encoding so
that every single pixel can be identified. It also offers high accuracy because it
does not involve any differentiation or binarization steps but works directly with
the measured image intensities in each pixel. We use two four-bucket phase shift
sequences, one horizontal and one vertical, to determine the x and y components
of the pixel coordinates. The recovered phase is ambiguous, however. To obtain a
unique phase value we have to “unwrap” it. There are various ways to achieve this.
In our case it is known that the target is flat, so naive unwrapping would work. But
since calibration is not a time-critical task, we used additional Gray Code sequences.
Details of this standard Structured Light coding scheme can be found for example in
[Scha 03]. All in all, a full pattern sequence consists of 4 images for the phase shift
and 8 for the Gray Code (depending on the display resolution). Some of the resulting
camera images are shown in figure 4.2.

Examples of the final unwrapped phase maps can be seen in figure 4.3. Using
the phase maps ϕx and ϕy we can find correspondences of world coordinates with
image coordinates. These can then be used as input for the camera calibration just as
before. The actual lookup of the pixel coordinates (xi, yi) for given phase coordinates
(xp, yp) is done by the “reverse” bilinear interpolation described in Algorithm 1 (see
also figure 4.4).

With Algorithm 1 we can generate “virtual” marks from the phase maps with
arbitrary density. An example image showing the distribution of the virtual marks
can be seen in figure 4.5. The accuracy of the phase map depends on the local dynamic
range. We typically discard marks with a dynamic range lower than 20 digits. As the
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Figure 4.2: A pattern sequence to uniquely identify all pixels of the display. Only
the vertical component is shown. The four images in the front are used to compute
ambiguous phase values. The images in the back form the Gray Code used to unwrap
the phase.

Algorithm 1 Subpixel Phase Lookup

1. Find a block of four neighboring pixels {pk} in the phase maps where both
min(ϕx(pk)) ≤ xp < max(ϕx(pk)) and min(ϕy(pk)) ≤ yp < max(ϕy(pk)).

2. Perform least-squares fits to obtain a plane Px from the values of ϕx in {pk}
and a plane Py from the values of ϕy in {pk}. The set {pk} can be augmented
by additional neighbors.

3. Intersect Px with the plane ϕx = xp and Py with the plane ϕy = yp. This gives
two lines.

4. Set the phase-component of the lines to zero and calculate the intersection point
(xi, yi)
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Figure 4.3: Phase coordinate components ϕx and ϕy with contour lines as seen by
the camera. The values are normalized to [0; 1]. In this particular view the camera
was rotated by approximately 180 degrees relative to the display.

apparent display brightness changes with the viewing angle, it can happen that some
areas are too dark even when other parts of the image have optimal brightness. The
plane fitting in step 2 of Algorithm 1 also provides us with the standard deviation of
the measured phase values from the fitted plane. Good phase maps are very smooth,
so typical values of the standard deviation are around 10−6. If the phase map is noisy,
the standard deviation is higher and we discard those points as well.

Ray offsets

A further improvement can be achieved by modelling the refraction caused by glass
plate that covers the pixels of the display. The protective glass plate refracts the
emitted light and causes a shift in the pixels’ apparent position. To correct for this
effect we use a three-step algorithm. We first calibrate with the point correspondences
we found as if there were no glass plate. We obtain approximations of the camera
poses relative to the display. In the second step we compute the (small) offsets
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Figure 4.4: Phase coordinate lookup for one component. The dots are the measured
phase values. Magenta indicates the original block of four pixels. The blue dots
are additional neighbors used in the plane fit. The green plane is the linear local
approximation of the phase (Px). The blue plane (ϕ = x) represents the sought-after
phase value. The intersection of the two planes is marked by the red line. The second
phase component yields another line (not shown here). The intersection of both lines
gives the pixel location of the phase coordinate of interest.

introduced by oblique viewing angles through the glass. Finally, in the third step we
calibrate again with the corrected coordinates.

The height offset is

h = d ·
(

1− tanα2

tanα1

)
(4.1)

where α1and α2 are related by Snell’s law (figure 4.6). Note that h is undefined in
the case α = 0, but the limit for α→ 0 is h⊥ = d

(
1− n1

n2

)
. In the case of glass and

air we have n1 = 1 and n2 = 1.5, so for perpendicular view h⊥ = d
3
.

The thickness of the glass layer and its index of refraction are only approximately
known. For our experiments we assumed a refractive index n = 1.5, which is typical
for glass and glass-like substances. We estimated the thickness of the coating as
d = 1mm. In the example plot of the height offsets shown in figure 4.7 the difference in
the height offset between a perpendicular view in the center and an oblique view at the
edges is only 0.04mm. Assuming a maximum viewing angle of 45°, this corresponds
to lateral offsets below 0.028mm. The pixel size is 0.272mm. As a rule of thumb, the
lateral offsets introduced by the glass plate are thus below 0.1 pixels.
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Figure 4.5: Marks selected from the phase map. Red areas are invalid. The more
yellow a mark, the lower its quality.

Figure 4.6: The glass plate refracts the ray coming from pixel (a) so that its apparent
position is (b). Adding the offset h corrects the error.
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Figure 4.7: Offsets introduced by the glass plate covering the display. One sample
per virtual mark.

Display Gamma

In our experiments we found that the gamma of the display is typically not constant
over the entire area. We performed a local gamma calibration by displaying a series
of progressively brighter images and tracking the observed brightness in each pixel.
The brightness of some pixels rises earlier than others (figure 4.8). This effect seems
to be due to the backlight arrangements used in the displays. This is a concern for
a high-quality phase shift, as the sinusoidal intensity pattern is distorted. After the
pixel-wise gamma calibration the individual display pixels observed by the camera
can be identified using the coding scheme outlined above. The gamma can then be
pre-corrected when drawing the patterns. If the effect of a wrong gamma setting
is large, this calibration could even be done iteratively. However, the four-bucket
phaseshift is robust against such errors [Liu 10], so a precise gamma calibration is not
necessary. The effect is also plotted in figure 4.9.

Evaluation

The active calibration method was evaluated in several ways. We used simulated
images where the ground truth camera parameters are known. We also tested various
real-world setups with different combinations of cameras, lenses and displays. In
each test, the calibration with an active target is compared to a calibration using a
checkerboard pattern.

The standard targets in our lab are checkerboard targets with isolated squares
(figure 2.6). Their advantage is that the unoccupied space in between the markers
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Figure 4.8: Gamma variations over the area of a Samsung Synchmaster 2433 display,
as observed by a camera. The display uses edge-lighting. The brightness of the pixels
near the top rises later, but steeper.

Figure 4.9: Phase differences between simulated patterns with gamma 1 and patterns
with gamma 2.2. The three-bucket algorithm should not be used. For the four-bucket
variant the maximum difference is 0.01, for the five-bucket algorithm 0.001. In this
example a wavelength of 57 pixels was used.
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can be used to perform projector calibrations. On a regular dense checkerboard the
projected marks are much harder to detect. Our targets also have been examined
with a coordinate-measuring machine, so the mark locations are known with very high
precision. Standard checkerboards offer no means of determining the orientation, so
the mark spacing must be assumed to be constant. The corners of the checkers are
localized in the camera image either with the Saddle Point method (SP) [Lucc 02] or
with the Line Intersection technique (LI) [Stoc 02]. We use the standard SP imple-
mentation provided by OpenCV and a self-implemented LI variant. Since we use a
Phase Shift coding for the active target, our proposed method is abbreviated as PS
in the subsequent sections.

All calibrations use the camera model and optimization algorithm proposed by
Zhang, as implemented in the OpenCV library. The error metric used for the com-
parisons is the RMS reprojection error between the observed and undistorted mark
coordinates and the projected mark coordinates in the images. This is a standard
metric and is comparable with that presented in different publications. The projected
mark locations [ũi, ṽi] are computed from the known world coordinates of the mark
with help of equation 2.8. The tilde indicates that these coordinates are calculated
by pure perspective projection without any image distortion. Another way to obtain
these “ideal” coordinates is to correct the distortion in the observed coordinates. The
undistorted mark coordinates [ûi, v̂i] are denoted with a hat. They are computed
from the observed distorted mark positions by inverting equations 2.9 and 2.10. The
reprojection error is then

e =

√√√√ 1

N

N∑
i=1

(ûi − ũi)2 + (v̂i − ṽi)2 (4.2)

Here N is the total number of points used for the calibration. An individual calibra-
tion mark can occur several times in the images from different camera poses.

Simulated images

Calibration images in five camera poses were rendered with a simulated resolution of
800x600 pixels. No noise was added to the images. We minimized aliasing artifacts
by avoiding poses aligned with the camera axes. The five poses we used can be
seen in figure 4.10. Table 4.1 shows the resulting internal camera parameters and
reprojection error for all three calibration methods. The parameters obtained with
the proposed method are at least one order of magnitude closer to the real values than
with the two other methods. The remaining error is probably due to quantization
noise.

Real images

In our real-world experiments we used combinations of different displays, cameras
and lenses. The details of the displays and cameras are collected in table 4.2. The
lenses had focal lengths of 12.5mm, 8.5mm, 6.0mm and 4.8mm. We used an f-number
of 8 and an object distance of 0.5m in our image acquisition.
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Figure 4.10: Simulated Camera Poses. The red circles are marks, the red lines the
camera z-axes. The blue line pairs indicate the camera image planes.

ideal PS LI SP
f [mm] 12 12.0004 12.0050 12.0042
k2 [ 10

−4

mm2 ] 0 -1.03 15.6 18.0
k4 [ 10

−4

mm4 ] 0 4.74 -160 -2.71
k6 [ 10

−4

mm6 ] 0 -6.87 285 613
p1 [ 10

−6

mm2 ] 0 0.442 -349 -49.2
p2 [ 10

−6

mm2 ] 0 -6.54 -23.7 -35.9
u0 [pix] 399.5 399.491 399.428 399.427
v0 [pix] 299.5 299.508 299.447 299.282

RMSE [pix] 0 0.01424 0.11375 0.21395

Table 4.1: Calibration results for simulated images. The proposed PS method is
roughly an order of magnitude closer to the ground truth.
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Name Type Resolution Pixel Size
D1 ScenicView A24W 1920x1200 0.270mm
D2 SyncMaster 2433LW 1920x1080 0.272mm

(a) Displays

Name Type Resolution Pixel Size
HR Basler Scout 1390m 1392x1040 4.65µm
LR Basler A312fc 780x580 8.3µm

(b) Cameras

Table 4.2: Hardware used for experiments

Figure 4.11: Results for the low-resolution camera with different lenses. The LI
method is slightly better than SP. The errors of the proposed method are much
lower.
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Figure 4.12: Results for the high-resolution camera with different lenses. The errors
of the proposed method are slightly lower than the LI method. The SP method
performs worst.

The results are shown in figures 4.11 and 4.12. The main conclusion is that PS
is the best method for the low-resolution camera by a large margin and for the high-
resolution camera by a smaller margin. Compared to the LI method, the reprojection
error is between a factor four and five better in the low-resolution case and up to a
factor two better in the high-resolution case. Please note that the poses used for the
calibrations were not perfectly identical in the different experiments. Differences of
a hundredth of a pixel are therefore not significant. However, display 2 consistently
gave better results than display 1. The existence of display-specific systematic errors
is a topic for further study.

The SP method performs worst. This comes as a surprise, since it is the standard
method for users of OpenCV. However, the residuals of the SP calibration show a
systematic error. The corner positions are mostly shifted towards the center of the
calibration squares, compared to the LI positions (figure 4.13). Fiala and Shu [Fial 10]
have identified this effect as related to lighting; it seems to arise from defocusing as
well. However, in a “real” checkerboard the shift should cancel out between the two
touching corners. The high-quality targets at our lab have isolated squares, so we use
only the LI method in the following experiments. In table 4.1, LI was compared to
SP on a dense checkerboard pattern. It performed comparably with respect to the
reprojection error and better with respect to the ground truth camera parameters,
so LI can be used as a reference calibration method.
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Figure 4.13: Typical corner detection images, enlarged by a factor 20. The green
cross marks the LI corner position, the red cross the SP corner position. Left: High
resolution image. Right: Low resolution image.

D1 4.8mm 6mm 8.5mm 12.5mm
LR RMS [px] 0.0704 0.0770 0.0596 0.0572
HR RMS [px] 0.1557 0.1180 0.1250 0.0819
LR RMS [mm] 0.5845 0.6392 0.4948 0.4754
HR RMS [mm] 0.7242 0.5488 0.5815 0.3812

Table 4.3: The reprojection error for different lenses with display 1. Expressed in
micrometers the values are similar between the low resolution and the high resolution
cameras.

The difference in the PS residual error between the HR and LR cameras is approx-
imately in line with the difference in pixel size (table 4.3 and 4.4). This is consistent
with a constant size defocus spot on the sensor that depends on the employed lens.

Poses

The choice of camera poses is of course a major factor in the quality of a calibration.
We tried to use comparable poses, that is with similar angles to the target. They are
shown in figure 4.14. The number of poses does not seem to have much influence.

D2 4.8mm 6mm 8.5mm 12.5mm
LR RMS [px] 0.0512 0.0528 0.0435 0.0432
HR RMS [px] 0.1123 0.1027 0.0908 0.0620
LR RMS [mm] 0.4250 0.4388 0.3611 0.3585
HR RMS [mm] 0.5223 0.4777 0.4224 0.2886

Table 4.4: The reprojection error for different lenses with display 2. Expressed in
micrometers the values are similar between the low resolution and the high resolution
cameras.
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poses RMSE [px] cx [px] cy [px] f [mm]
7 0.1481 702.9860 526.0807 6.1911
5 0.1474 701.9275 526.4855 6.1961
3 0.1469 701.3100 526.6469 6.1979

Table 4.5: RMS errors for different number of poses and some of the resulting internal
parameters. For these calibrations the high-resolution camera with a 6.0 mm lens was
used.

HR 8.5mm D2
number of marks poses RMSE

23238 4 0.09105
2583 4 0.09085
466 4 0.09449
224 4 0.08456

LR 4.8mm D1
number of marks poses RMSE

10876 4 0.07173
1739 4 0.07042
435 4 0.06890
106 4 0.06187

Table 4.6: Influence of mark density. For comparison, a typical view of a checkerboard
yields around 100 marks.

Table 4.5 shows that the reprojection error barely changes, whether 3, 5 or all 7 poses
are used. However, the internal parameters do change. There is no ground truth to
compare against, but it seems reasonable to have higher confidence in a calibration
result if it is based on more poses.

Mark Density

The density of marks generated with the PS approach has little influence (table
4.6). However, as already stated in the previous section, when in doubt there is no
reason to avoid using as many marks as possible. Also, for the calibration of a fully
generic non-parametric camera model, dense correspondences are important, and can
be easily generated with PS.

Defocusing

High feature localization accuracy depends on a sharp image. This can be a problem,
for example when depth-of-field is limited. PS results are robust against defocusing
(table 4.7). The measured phase at a given pixel does not change when the image
is blurred, only the contrast is reduced. In fact, PS even profits from a moderate
amount of defocusing as aliasing between the display pixel grid and the camera pixel
grid is reduced. Therefore it is possible to move the camera close to the display during
calibration so that the entire field of view is covered.

Glass Plate Offsets

As mentioned in section 4.3.1, the protective glass plate in front of the display pixels
introduces a shift in the apparent mark coordinates. As can be seen in table 4.8,
modelling this refraction does indeed result in an improvement of the reprojection
error. However, the effect is relatively minor. It is on the order of a few thousands of
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(a) Poses in front of the checkerboard target 2.6

(b) Poses in front of the active target. Blue: 1, 2, 3. Green: 4, 5. Black: 6, 7.

Figure 4.14: Example camera poses.
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f-stop RMSE LI [px] RMSE PS [px]
5.6 0.1834 0.1312
11 0.1367 0.1400

Table 4.7: Robustness against defocusing. These results stem from the high-resolution
camera with a 4.8mm lens.

RMSE [px] 4.8mm 6.0mm 8.5mm 12.5mm
D1+LR 0.0755 0.0825 0.0692 0.0598

D1+LR+glass 0.0704 0.0770 0.0596 0.0572
D1+HR 0.1592 0.1168 0.1286 0.0846

D1+HR+glass 0.1557 0.1180 0.1250 0.0819
D2+LR 0.0523 0.0548 0.0449 0.0435

D2+LR+glass 0.0512 0.0528 0.0435 0.0432
D2+HR 0.1161 0.1048 0.0925 0.0625
D2+HR 0.1123 0.1027 0.0908 0.0620

Table 4.8: Improvements in the RMS reprojection error by modelling the ray offsets
introduced by the glass cover of the display. They were evaluated for different lenses
and displays.

a pixel only, while the mark offsets are up to 0.1 pixels in lateral direction. This is
because the shifts can be partially compensated by the camera distortion parameters.

Stereo calibration

As also noted by Albarelli et al. [Alba 09], a lower reprojection error does not auto-
matically imply a more correct calibration. Therefore we tested the proposed method
further. We performed a stereo calibration and subsequently triangulated the posi-
tions of the calibration marks. We then compared the known positions of the marks
to the triangulation results. Since the display was positioned closer to the camera
than the checkerboard target, we also normalized the errors. The stereo rig used
consisted of two Basler A312fc cameras (the low resolution model in the experiments
above) with 8.5mm lenses and a baseline of approximately 150mm. Four poses were
used. The checkerboard target yielded 169 marks visible in both cameras, the active
target yielded 1219 marks to triangulate. As can be seen in table 4.9, the deviations
are much lower for the proposed Phase Shift calibration. The accuracy is improved
approximately by a factor of five, which is consistent with the results of the monocular
calibration.

error [mm] normalized error [mm/m]
mean sigma mean sigma

PS 0.0299 0.0175 0.1153 0.0643
LI 0.3028 0.2286 0.5528 0.3947

Table 4.9: Stereo Triangulation Results. The error for the proposed PS technique is
approximately one fifth of the error resulting from the LI method.



4.3. System Calibration 71

σx [mm] σy [mm] σz [mm]
classic 0.0146 0.0173 0.0138
active 0.0014 0.0023 0.0060

Table 4.10: Standard deviations of the translation parameters for a classic and an
active target for 10 repeated external calibrations.

(a) Poses recovered from the classic target (b) Poses recovered from the active target

Figure 4.15: Repeatability of external calibration. The camera indicators have the
same size, but the scales are different. The red lines indicate the camera z-axis, the
different colors for the x and y-axes are for better visual differentiation.

Repeatability

Another test for the proposed calibration method is repeatability. We performed ten
external calibrations of a pre-calibrated Basler A312fc camera with a 12.5mm lens.
Purely external calibration has the advantage that a single view of the calibration
target suffices, so no parts of the setup had to be moved. A classic feature-based
target and an active target were used. The resulting poses are plotted in figure 4.15.
The standard deviations of the translational parameters are shown in table 4.10 (the
noise in the rotation parameters was very close to zero). The mean offsets from the
mean position were 5.3mm for the active calibration target and 22.1mm for the classic
target. The absolute distances to the respective calibration targets were practically
equal with 258mm and 256mm.

Summary

There are many variables that influence the quality of a calibration, from the choice
of camera poses to the tuning of algorithm parameters. Additionally, errors are often
compounded, so the source of problems is not always obvious. The calibration method
with active targets has several advantages: It is fully automatic, no user interaction to
identify marks is necessary. Digital displays are highly accurate targets, so there is no
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(a) Reference plane with marks for external
camera calibration.

(b) Projector phase map ϕy, as seen by the camera.
The hotspot effect makes some of the reference marks
bright enough to be usable while others are below the
threshold.

Figure 4.16: Projector phase shift calibration. The target with reference marks de-
fines a plane in space. Virtual marks with known projector image coordinates can be
defined by intersecting camera rays with the target plane.

need for costly target validation. The only input parameters are the display resolution
and the pixel size, both of which are exactly known. The method is robust against
defocusing. Lastly and most importantly, the achievable accuracy is very high. One
possible disadvantage is that the active calibration requires multiple images per pose
and thus cannot be performed with a hand-held camera. However, we are of the
opinion that the additional accuracy over a classic feature-based calibration is worth
the effort for tasks like precise 3D reconstruction. The final accuracy of a complete 3D
scanning system calibrated with the proposed approach is evaluated and compared
to a ’classic’ calibration in section 6.1.2.

4.3.2 Projector Calibration

As mentioned before, projector calibration can be treated as a reverse camera calibra-
tion. We can use the same pinhole model and calibration algorithms as for cameras.
We project a known pattern, so the image coordinates of the marks are known. To
recover the world coordinates of a mark, we need a calibrated camera and a suit-
able calibration target. The target defines a plane in space. The intersection of
the camera ray to a projected feature with the target plane gives the 3D camera
coordinates of the feature. Unfortunately, right now it is still necessary to use the
traditional checkerboard patterns for projector calibration. Digital displays, as pro-
posed in the previous section, currently do not have the diffuse surface required to
observe a pattern projected onto the display. Therefore a hybrid approach must be
used: Calibrate the camera with an active target, use a checkerboard to define a plane
in space, and use phase shifting to create projector marks. Once e-paper technology
matures, the checkerboard will be no longer necessary and a purely active calibration
can be realized.

Note that a static projector cannot display the required phase-shift sequence. In
that case it is necessary to embed calibration marks in the measurement pattern. The
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Figure 4.17: Schematic cross-section of the endoscopic camera. The light for the
projector is supplied through a glass fiber (not shown). A ring-shaped slide projects
colored cones to the side (not all rays are shown). They are observed by the camera
via a curved mirror (shown in green). A second camera provides a front view (yellow
rays to the right). The refraction of the rays in the glass tube is ignored in this
diagram.

number of marks that can be included without perceptible performance degradation
is limited. There is, however, a less general calibration approach that does not require
embedded calibration marks in the measurement pattern. In a standard setup the
edges of the stripe pattern form a pencil of “light planes” in space. More correctly,
when lens distortion is taken into account, each edge corresponds to a ruled surface.
For each view of the measurement pattern on the calibration body, we can simply
decode the pattern and generate marks on the known target plane in space. The
data from from several views can then be used to fit the parameters of the light
planes. The difference to the “full” calibration is that for dedicated calibration marks
both the u and the v component of the image coordinates are known, while for a
stripe pattern only one component can be recovered. Therefore we can not formulate
an explicit image distortion model, but that is unneccessary if we know the light
planes. It must be noted, though, that the light planes are not actually planes in
the presence of distortion. If the distortion is small, the planarity assumption can be
applied iteratively (see section 6.1). A different approach will be used in section 4.3.4
for the calibration of the endoscopic projection system, where the projected surfaces
are cones.

4.3.3 Endoscopic Camera Calibration

The endoscopic 3D scanner described in [Schi 11] uses a miniature catadioptric camera
system. This wide-angle system consists of a pinhole camera combined with a spheri-
cal mirror, mounted inside a protective glass tube. The setup is shown schematically
in figure 4.17.
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parameter type number
camera pose 6 per pose
focal length 1

principal point 2
radial distortion 3

tangential distortion 2
mirror position 3
mirror radius 1
tube origin 2
tube rotation 2

Table 4.11: Camera calibration parameters. The first five types are used in the
pinhole model with radial and tangential distortion. The augmented model with
mirror and glass tube has additional parameters, listed in the last four rows. Because
of spherical symmetry, the mirror rotation is irrelevant. Also, the rotation of the tube
around its axis is degenerate. The origin of the tube is defined as the intersection point
of its center line with the arbitrary plane z=0 and thus needs only two parameters.
The inner and outer tube radius, as well as its index of refraction, are known and
therefore not part of the optimization at all.

The combined catadioptic system with mirror and glass tube is a non-single-
viewpoint camera, so the pinhole model does not strictly apply. There are two choices
to be made for the calibration. They concern the camera model and the error metric
for the parameter optimization. Two different camera models were used. One is the
well known Zhang model [Zhan 00] for a pinhole camera with radial and tangential
distortion. However, since the camera is actually a wide-angle catadioptric system
that does not have a single viewpoint, using Zhang’s model is an approximation at
best. Therefore we created a more elaborate model that combines a pinhole camera
with a mirror and an encasing glass tube. With this so-called pinhole+mirror+tube
model the reflection and refraction processes that each ray undergoes can be explicitly
calculated. The necessary mathematical relations can be found in the appendix.
Zhang’s pinhole model has 8 intrinsic parameters and 6 extrinsic parameters per
pose. The pinhole+mirror+tube model has 8 additional intrinsic parameters. See
Table 4.11 for a complete list of the calibration parameters for each camera model.

The model parameters are determined with a Levenberg-Marquardt optimization
[More 78]. There are three different error metrics that may be used.

• The distorted reprojection error is the distance between the image coordinates
of the observed marks and the projected and distorted image coordinates gen-
erated from the mark world coordinates by the model. It is measured in pixels.
The distorted error is not a good metric in our case, as the strong fisheye
distortion “compresses” the image border. Thus points near the border have
relatively small residuals in any case and the points towards the image center
get a relatively higher weight in the optimization.

• The undistorted reprojection error is the distance between the observed and
undistorted image coordinates and the image coordinates obtained by project-
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Figure 4.18: Views of the ’classic’ dot grid target (left) and one pattern of the pro-
posed active approach. The dark area in the center is caused by the sensor chip
looking at itself in the mirror. The dark area at the top is the shadow of the camera’s
data cable.

ing the 3D mark world coordinates onto the image plane. It is also measured
in pixels. The undistorted error treats all points equally.

• The object space error is the distance between the ray of view for a given image
coordinates and the corresponding mark in camera coordinates. It is measured
in mm. The object space error is a good metric only if all calibration points are
at approximately the same distance from the camera. Points that are farther
away have larger residuals and therefore a higher weight in the optimization
than points close to the camera.

To generate the necessary calibration marks, both an active and a classic calibra-
tion target were used. As the system is designed for object distances of only a few
millimeters, an active target must have very dense pixels so that they will not be
resolved individually. We used the 5.6 inch 1280x800 display of a Fuijitsu UH900
mini-notebook with a pixel size of 94mm for the active calibration. The classic target
was a dot grid from Edmund Optics (no checkerboard target in the required size
was available). The marks were localized using ellipse fitting, but especially in the
peripheral area this is difficult. An example input image can be seen in figure 4.18.
For each target type, a set of six different poses were used (figures 4.19). We took
care to ensure that the poses were comparable.

The calibration results can be seen in tables 4.12 and 4.13. Several observations
can be made:

• The active target gives lower errors than the classic target across the board.
Besides that, the target type does not influence the relative performance of the
different calibration methods.
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(a) Poses for the classic calibration (b) Poses for the active calibration

Figure 4.19: Poses used in the calibration of the endoscopic camera. For each method
six different poses with a comparable range of rotations and translations were used.
The black dots symbolize the calibration marks. Not all marks were observed in all
poses.

• The more elaborate model with mirror and tube gives an improvement over the
simpler pinhole model. This is true even when default parameters are used for
the mirror and the tube and only the pinhole parameters are optimized.

• Full optimization of all parameters of the pinhole+mirror+tube model yields
a small additional improvement of the errors. The recovered parameters are
within manufacturing tolerances of their design values.

• In the pinhole model, optimizing the distorted error leads to unacceptably large
undistorted errors. This is due to the extremely high radial distortion. The
polynomial model tends to diverge at the image borders and can hardly be
inverted. Small errors in the distorted error thus give rise to large undistorted
errors. The effect is less severe in the pinhole+mirror+tube model, as a large
part of the distortion in this case is explained by the reflection on the sphere.

• The optimization of the image plane errors fails with the full parameter set of
the pinhole+mirror+tube model. The final parameters are implausible, and the
errors are high. There is also a considerable dependence on the initial parameter
values, leading to the conclusion that the minimization algorithm gets stuck in
local minima. The use of alternative optimization algorithms is a topic for
future work. In contrast, minimization of the object space error works, so it
seems to be the best metric in this case.

• Optimization of the object space error in the pinhole+mirror+tube model gives
even lower distorted and undistorted errors than directly optimizing them.

All in all, the optimization of the object space error in the pinhole+mirror+tube
model seems to be the best choice. The absolute values of the object space errors
are very much in line with the general resolution of the camera system. To estimate
the object space resolution, two virtual planes were placed at a distance of 10mm
from the camera. For each pixel on a horizontal line through the camera image the
viewing ray and its intersection with the test planes was calculated. The distances
between neighboring intersection points are a measure of the achievable spatial res-
olution. The results are shown in figure 4.20. The resolution is in the given planes
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model error metric resulting RMS error
distorted [px] undistorted [px] object space [mm]

pinhole distorted 0.7855 2.3796 0.0732
pinhole undistorted 0.9974 1.3728 0.0820
pinhole object space 0.8133 1.4882 0.0674

pmt default distorted 0.7739 0.9929 0.0661
pmt default undistorted 0.7633 0.9361 0.0635
pmt default object space 0.6867 0.8612 0.0546

pmt optimized distorted n/a n/a n/a
pmt optimized undistorted n/a n/a n/a
pmt optimized object space 0.6454 0.8196 0.0501

Table 4.12: Endoscopic camera calibration results for the active target. The full
model with pinhole camera, mirror and glass tube (abbreviated pmt) is better than
the simple pinhole model, even if default parameters for mirror and tube are used.
The optimization of the image plane errors failed in the full model. Using the object
space error metric gives the most balanced results.

model error metric resulting RMS error
distorted [px] undistorted [px] object space [mm]

pinhole distorted 0.8216 2.7762 0.0978
pinhole undistorted 0.9506 1.5127 0.0996
pinhole object space 0.8559 1.6570 0.0864

pmt default distorted 0.8402 1.2069 0.0899
pmt default undistorted 0.8219 1.1355 0.0883
pmt default object space 0.7884 1.0472 0.0802

pmt optimized distorted n/a n/a n/a
pmt optimized undistorted n/a n/a n/a
pmt optimized object space 0.7166 0.9266 0.0707

Table 4.13: Endoscopic camera calibration results for the classic target. The relative
performance of the different methods is similar to Table 4.12, except that all errors are
slightly higher. Again the full model with the pinhole camera, mirror and glass tube
(abbreviated pmt) is better than the simple pinhole model, even if default parameters
for mirror and tube are used. Again the optimization of the image plane errors failed
in the full model. Again, using the object space error metric gives the most balanced
results.
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(a) Resolution in plane A. Since only the rays in the right half
of the image intersect the plane, the x-axis does not start at
zero.

plane A

(b) Resolution in plane B. The outliers at the very right are
caused by the breakdown of the distortion model. There were
no calibration marks in this area and the fitted polynomial
cannot be inverted at this radius. The principal point was at
approximately 190px, so this problem is not symmetrical.

plane B

Figure 4.20: Endoscopic object space resolution in two test planes at a distance of
10mm from the camera.

is typically between 100mm and 200mm, but much worse at the image borders, where
the distortion is very high. An RMS object space error of 50mm therefore can be
considered a good result.

4.3.4 Endoscopic projector calibration

The projector in the endoscopic sensor is of the static type. It can only project a single
pattern. Furthermore, the pattern does not contain any explicit calibration marks
(figure 4.21). Therefore the projector calibration method outlined in the previous
paragraph was used. The ring-shaped pattern slide produces nested cones which can
be explicitly parameterized. We used the Levenberg-Marquardt algorithm [More 78]
to perform the cone fit. Again there are different error metrics that can be used. One
is the distance between the calibration point and the intersection of the ray of view
for the calibration point with the cone. The other is the orthogonal distance of the
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Figure 4.21: The endoscopic structured light system in operation, seen from the
outside. The outer rings are wider to compensate the image distortion in the camera.

Figure 4.22: Endoscopic image of calibration target with projected rings. The dark
area in the center is caused by the sensor chip looking at itself in the mirror. The
dark area at the top is the shadow of the camera’s data cable.

calibration points from the cones. We tested both, and found that the former gives
better results, as it mirrors the way the final depth data is computed.

Figure 4.22 shows an example input images with calibration marks (to determine
the pose relative to the camera) and projected rings (to generate sample points from
each ring for the cone fit). In figure 4.23 the accumulated data for a given cone from
four different viewpoints is plotted. Figure 4.24 shows some of the resulting nested
cones with different opening angles.

Numerical instabilities may occur during the fit. Instead of optimizing each cone
separately we can therefore constrain all cones to a common axis and common vertex.
The x and y components of the vertex position are also initially fixed to zero, that
is, on the optical axis of the camera. The only free parameters for each single cone
is the opening angle. In a second iteration we allow the common vertex position to
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Figure 4.23: Data points (red) from four poses of the calibration target and fitted
cone (blue). Example camera rays for one pose (green) indicate the fitting errors. The
viewing rays originate from the approximate virtual single viewpoint of the camera.

deviate from the optical axis. This is necessary because of manufacturing tolerances.
Additionally, we introduce an individual z-position for each cone. As can be seen
in figure 4.25, refraction in the glass housing of the scanner leads to a z-offset that
depends on the opening angle of the cones. An estimation with the help of equation
4.1 assuming a glass wall with a thickness of 0.4mm shows that an offset of 0.02mm
is to be expected between cones with opening angles of 34 and 42 degrees. While
not negligible, this is relatively small compared to the errors from other sources,
for example imperfect camera calibration. Still, the effect can be detected in the
optimized parameters (figure 4.26).

The results of the optimization procedure can be seen in figures 4.28 and 4.29.
The quality measure is the RMS object space error. For the outermost cones (0 to
3) and innermost cones (15 and 16) there is not enough data for a reliable fit (figure
4.27). Nevertheless, the single cone optimization recovered parameters for cones 2 and
3, but the parameters are completely implausible. The results of the simultaneous
optimization of all cones with a common vertex and axis are more reliable, even if
the errors are slightly higher. The projector calibration for a camera calibrated with
the classic method performs comparatively well, considering the results of section
4.3.3. However, this may be an artifact of the experimental setup. The classic
projector calibration used the exact same poses of the classic target that were used
for the camera calibration. The ’active’ projector calibration consists of a camera
calibration with an active target and a projector calibration with a classic target.
Therefore two different target types had to be used, and the camera calibration poses
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Figure 4.24: Some light cones of the endocam system
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Figure 4.25: Schematic cross section of the endoscopic pattern projector. Refraction
causes a shift in the apparent z-position of the cone vertices. The magnitude of the
offset depends on the cone’s opening angle.
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Figure 4.26: Offsets in the z-direction for different cones after numerical optimization
of the model parameters (relative to the average position). The rising trend and
magnitude correspond to the expected values. .

Figure 4.27: Number of calibration points per cone. The inner and outer rings have
very few points, if any, and can not be expected to yield a reliable calibration result.

were not the same as the poses used in the projector calibration. This introduces
additional errors, so the active calibration could not realize its full potential. Fully
active projector calibration will only be possible with an e-paper calibration target.

Figure 4.28: Results for single cone optimization with four different camera calibra-
tions (see section 4.3.3).
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Figure 4.29: Results for simultaneous optimization of all cones with common vertex
and axis for four different camera calibrations (see section 4.3.3)

To judge the quality of the resulting calibration a planar object was measured
in two poses similar to the virtual planes shown in figure 4.20. The calibration was
based on the ’pinhole+mirror+tube’ model with a classic dot grid target, optimizing
the object space error for the camera and the distance along the ray of view for all
cones of the projector.

The resulting depth errors are plotted in figure 4.30. The standard deviation of
the measured depth values from the plane was 153µm for the frontal pose respectively
88µm for the side-view pose. Due to the axial setup of the projector and the camera,
the triangulation angle in the forward direction is small, between 2 and 10 degrees.
Therefore the accuracy is lower in the frontal pose. Compared to the cone fit errors
seen in figure 4.29 the errors on the planar target are relatively low. However, there
is a systematic component to the errors that depends on the ring number. Correcting
this error is a topic for future work.
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(a) Frontal pose (b) Side-view pose

(c) Error distribution in the frontal pose (d) Error distribution in the side-view pose

Figure 4.30: Evaluation of the endoscopic calibration. The colors indicate the devia-
tion from the plane. In the frontal pose on the left the RMS error is 153µm, in the
side-view pose on the right it is 88µm.



Chapter 5

Graph-Based Pattern Decoding

Next to the choice of the pattern, the decoding algorithm is the most important part
of an S3L system. We propose a graph-based decoding scheme built on a superpixel
segmentation of the input image. The overview of the chain of processing steps for
each image can be seen in figure 5.1. Next to the robustness and the accuracy of
the recovered depth data, processing speed is also a concern. The graph traversal
steps are not very suitable for parallelization but the image processing part can be
implemented on a GPU. The individual processing steps are described in detail in
the next sections.

The influence of various parameters and processing steps is evaluated with the
help of various test datasets, consisting of video sequences acquired with a scanner
submersed in a liquid-filled pig stomach. They were acquired in the course of a
feasibility test for endoscopic measurements on biological tissue, when an endoscopic
sensor was not yet available. The liquid was necessary to keep the stomach from
collapsing, but it also provided an interesting test case of severe image artifacts in
the form of bubbles. The representative image sequences used for the evaluation are
numbered 2, 3 and 6. They have different image quality with respect to contrast,
bubbles and similar disturbances. Sequence 2 is best, 3 is worst and 6 is intermediate.
All sequences use the same illumination pattern with 8 colors and a length of 104
stripes. This pattern was not ideal as it contains some non-normalizable code words.
Unfortunately no other pattern slide was available at the time. See section 4.2 for
more details on the pattern design. Additionally we use a video sequence acquired in
the ear canal of a test person with a prototype endoscopic 3D scanner. The pattern
in this case consists of 15 concentric rings in 6 colors.
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Figure 5.1: Processing steps applied to each input image, starting from the raw
camera output. The orange steps can be easily parallelized and are implemented on
the GPU as well as on the CPU. Green steps are performed on the CPU only. The
desaturated colors indicate optional steps.

5.1 Superpixel Representation

Our aim is to identify the color stripes in the camera image. We observe that the
pixel representation is redundant: many adjacent pixels have approximately the same
color. We can therefore reduce the complexity of the image representation by using
superpixels instead. The Watershed Transform offers a computationally efficient way
to achieve this. The advantages of the watershed transform are that it is unsupervised,
parameter-free and fast. It is, however, a low-level method that produces severe
oversegmentation. For our system this is immaterial: The goal is to represent the
image with superpixels of approximately uniform color and thus markedly reduce the
image complexity. This, in turn, allows us to use graph-based decoding algorithms
in real-time. An additional advantage of superpixel-based representations is that
properties like color are defined as statistics over an ensemble of ’simple’ pixels, thus
reducing the effects of defocus blur and noise.
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Preprocessing

The input for the watershed transform is the magnitude of the gradient of the input
image. Depending on the quality of the input images, several preprocessing steps
may be necessary to obtain a good basis for the segmentation.

1. Bayer Interpolation. Industrial digital cameras usually provide the raw image
data, that is, without demosaicing and other potentially interfering quality im-
provements performed by consumer cameras. There are many highly advanced
algorithms for Bayer Interpolation [Li 08b, McGu08, Dubo 05, Mure 05]. As
the accuracy of our 3D measurements crucially depends on the exact location
of edges in the image, we prefer to perform as little manipulation of the raw
image as possible. Therefore we use a simple linear interpolation scheme to
recover the color image. This has the additional advantage of being the fastest
method. Tests with more advanced algorithms did not improve the decoding
performance.

2. Polar Transformation. In the endoscopic sensor, the pattern consists not of
color stripes but rings. To facilitate the gradient calculation and all subsequent
processing steps, we transform the image to polar coordinates and obtain stripes
which are approximately linear. This makes it possible to use the same fast
gradient filters in the x (respectively r) and y (respectively φ) direction as in
the case of natively linear stripes. Otherwise the gradient would have to be
computed in directions which are not aligned with the pixel grid and moreover
are not constant across the image.

3. Luminance correction. Some types of input images exhibit small specularities,
which cause spurious edges in the image. To suppress these brightness changes,
the image is first transformed to the HSL color space. The L component is
then fixed at a certain value, typically 0.5. Finally, the image is transformed
back to RGB color space. The resulting image does not look very realistic,
but it is suitable for our purposes. Highlight elimination is of course a topic
of research in its own right [Lin 08, Arno 10]. However, we found the simple
luminance correction to be quite effective for our limited problem scope. The
technique can not be applied to patterns containing white and black stripes, as
those differ only in luminance.

4. Smoothing. As differentiation emphasizes the noise in an image, applying a
smoothing filter before the gradient filter is almost always advisable.

Example images illustrating the polar transformation and luminance correction steps
are show in figure 5.2.

As a side note, we also evaluated a “leveling” preprocessing step as proposed in
[Meye 04]. A morphological closing filter can be applied to the image before the
watershed transform. This fills in shallow potential basins, which may be spurious.
The remaining basins are thus, ideally, more meaningful. While the reduced number
of basins led to a minor speedup of the graph traversal part of the decoding, the
number of recovered depth values did in fact decrease. Leveling is therefore not used.
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(a) Original image

(b) Result after polar transformation and luminance fixing. The color fringes at the top are artifacts
caused by saturated pixels whose hue could not be recovered.

Figure 5.2: The input image with a color ring pattern is tranformed to polar coordi-
nates. The luminance is set to a constant value to eliminate small specular highlights.

The last preprocessing step is of course the gradient computation. There are
different algorithms for extracting gradient information from an image. The most
popular is probably the 3 × 3 Sobel filter. We also tested Savitzky-Golay filtering
(with kernel size 5 and order 3) and the Shen-Castan (ISEF) filter. All in all, the
Sobel filter performed best because of its small kernel size. It works reliably even for
tightly spaced edges. We compute the gradients in the x and y directions in all three
color channels. The L2 norm of this six-dimensional vector in each pixel forms the
gradient magnitude image which is used as the basis for the watershed transform. All
the preprocessing steps are well-suited for a GPU implementation and require only a
few milliseconds to execute.

5.1.1 Watershed Segmentation

The watershed transform is fast compared to other segmentation methods like Nor-
malized Cuts. There are two basic variants of the algorithm: immersion and rain-
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(a) Input image. The values typ-
ically are gradients of the image
to be segmented.

(b) Arrowing. Each pixel is as-
signed an arrow pointing to its
lowest neighbor. If no lower
neighbor exists, the pixel is
marked as a seed.

(c) Chaining. For each pixel, we
follow the arrows until a seed is
reached. The set of pixels ending
up at the same seed forms one
superpixel.

Figure 5.3: Basic steps of the fast watershed segmentation on a toy image.

falling. The latter does not need a sorting step of all the pixels in the image and thus
has a speed advantage. Furthermore, rainfalling type algorithms are more amenable
to parallelization on a GPU. While rainfalling is conceptually simple (see figure 5.3),
plateaus and non-unique “drain” pixels generally make implementations complicated.
Fortunately all our computations are performed on floating point images, so these two
problems are extremely improbable. Saturated areas of the image are an exception,
but they are of no interest anyway. We can therefore apply a very fast watershed
transform variant without regard for plateaus. It consists of two steps.

1. Arrowing. Each pixel checks its neighbors and marks the one with the lowest
value. If no lower neighbor is found, the pixel is marked as a seed pixel for a
new segmentation region. As remarked above, the case with two or more lower
neighbors having the same value is highly unlikely in floating point images.
Plateau pixels will be marked as seeds at this stage. Each seed gets a unique
number, called the region ID. We also store the coordinates of the seed for
future reference.

2. Chaining. For each pixel, walk along the arrows pointing to neighbor pixels
until a seed pixel is found. The starting pixel is assigned the region ID of the
terminating seed in the chain. As an optimization, it is possible to terminate
the chain early if a non-seed pixel is hit which has already been assigned an
ID. Plateau pixels will result in single-pixel regions which can easily be marked
invalid for further processing.

Our serial implementation needs about 15ms to segment an image with a resolu-
tion of 780x580 pixels on a 2.2GHz CPU. The algorithm is not perfectly suitable for
a massively parallel GPU implementation. However, with some minor modifications
it is possible to obtain good performance. The basic premise is that on the GPU
there is one thread per pixel, as opposed to the single-threaded CPU version.

1. The generation of a unique region ID is a bottleneck as it requires global atomic
operations to synchronize the region counter between the many threads. There-
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fore we use a two-tier scheme with frequent updates to a local count (for each
work-group in OpenCL terminology) and only infrequent updates to the global
count. The rest of the arrowing step does not need changes.

2. The chaining step causes divergence among threads because of different chain
lengths. Because of the way GPUs work, this divergence is bad for performance.
To avoid it, the chaining step is reversed and implemented as “pumping”. One
iteration consists of a pixel taking over the ID of its lowest neighbor, which may
be invalid. Per iteration, the seeds thus grow one pixel in all possible directions.
This is repeated until all pixels have a valid ID. For degenerate images this can
take very long, but in the typical case no more than 10 iterations are necessary.

On an NVidia GForce GTX285 GPU the watershed transform typically takes 2ms,
excluding transfer time. This corresponds to a speedup factor of 7.5 compared to
the CPU version. Figures 5.4 and 5.5 show example inputs and output of the water-
shed transform. Section 6.4 contains a comparison of the runtimes of the complete
decoding algorithm with and without GPU support.

Figure 5.4: Example plot of the gradient magnitude of a stripe pattern. It is the
input to the watershed transform.
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(a) Input image (b) Resulting superpixels

Figure 5.5: Example of a watershed segmentation performed on a scene illuminated
by a stripe pattern.

5.2 Region Adjacency Graph Setup
Once the image is segmented into superpixels, we can perform the core pattern de-
coding algorithm. It consists of the following series of steps:

1. Build the region adjacency graph. Calculate vertex colors.

2. Calculate the color change over each edge. Assign edge symbols and probability
estimates.

3. Find a unique path of edges.

4. Recursively visit all neighbors in a best-first-search, while the edge symbol
probability is sufficiently high.

The oversegemented input image can be represented in the form of a region adja-
cency graph. This graph has one vertex for every superpixel and edges connecting
neighboring superpixels. In this context it is necessary to make a distinction between
image edges on the one hand and graph edges on the other. The former separate
neighboring superpixels in the image, the latter connect neighboring superpixels in
the graph. There may be graph edges that do not correspond to discernible image
edges. Conversely, an image edge will typically give rise to several graph edges be-
cause of the oversegmentation. A vertex of the region adjacency graph corresponds
to at least one pixel in the input image. An edge in the region adjacency graph
corresponds to pairs of border pixels (see figure 5.5). Unless explicitly noted, in the
following text an edge refers to a graph edge.

5.2.1 Vertices

A one megapixel image of a scene illuminated by our color stripe pattern is typically
represented by a graph with 50000 vertices. The key property of each vertex is its
color K. It is determined by a robust nonlinear rank filter over all the original image
pixels that belong to the corresponding superpixel (figure 5.5). Since color is a vector
we use marginal ordering [Pita 91]. Another vertex property is the size s of the
corresponding superpixel, that is the number of pixels it covers.
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The vertex color should additionally be corrected for the color crosstalk that
occurs in the camera. We use a technique similar to [Casp 98]. The crosstalk is
modeled as a color mixing matrixMCM . Its entries are determined in a precalibration
step. The actual color can then be recovered from the observed color by multiplication
with M−1

CM .
In general, the observed superpixel color is not the original projected color, but

rather a color distorted by the object’s reflectivity. Therefore, we cannot use the ob-
served color directly, but only color changes between two neighboring superpixels. If
the surface color is constant across the two superpixels, its influence will be cancelled
out. If it is not, spurious color changes may be detected. However, our decoding
algorithm is explicitly designed to handle them.

A second effect is that the surface color influences the relative response of the
different color channels. For example the blue channel will appear very weak com-
pared to green and red on a yellow surface. In that case, a 10-digits change in blue
may be more significant than a 20-digits change in red. Our patterns are designed
to be normalizable, that is, each color channel changes after at least every second
stripe. We know, therefore, that each valid superpixel must have at least one neigh-
bor where a given channel changes. Thus, we can define the color range per channel
as the maximum absolute change over all neighbors and use it to normalize the color
change.

di = max
k
|cki | (5.1)

where ci denotes the color change in the individual channels and k iterates over all
neighbors of a superpixel. The key assumption for this equalization is that each
superpixel is as wide as a stripe in the camera image and thus directly borders with
both neighboring stripes. This is a reasonable conjecture since in our pattern the
stripes are very densely packed in order to produce a high resolution depth map.
Empirical evidence shows that the condition is nearly always met.

The next step is to set up the edges and their properties appropriately, so that
the specific position of a stripe in the pattern can be recovered via graph traversal.

5.2.2 Edges

The edges of the graph describe how the color changes between two adjacent super-
pixels. They have several important properties. These are the color change, the edge
weight, match probabilities for different color change symbols, the gradient ratio and
the direction and length of the edge. We introduce them in this order.

The raw color change Ĉ is the most basic edge property. The color change between
vertex a and vertex b is defined as

Ĉ = Kb −Ka = [ĉr ĉg ĉb]
T ∈ R3 (5.2)

The scalar edge weight w is defined to be its L∞ norm. This means that edges with
only one channel changing can have the same weight as edges with multiple channels
changing. A high edge weight indicates a high reliability of the edge. This will be
needed later in the traversal step.
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w = ||Ĉ||∞ = max(ĉr, ĉg, ĉb) (5.3)

We would like to assign each element of Ĉ to one of three categories: channel rising,
constant or falling. Since we use an alphabet with two intensity levels per channel,
there are only three possible labels. We denote triples of labels by symbols, e.g.
the symbol for red rising, green falling, blue constant is S =

[
+1 −1 0

]T . The
alternative string representation is R+G-. The actual assignment of these symbols
involves some preparation.

To equalize the response across the three channels we first multiply each compo-
nent of Ĉ by its corresponding inverse range d−1i from eq. 5.1.

C = Ĉ ⊗D−1 (5.4)

Here ⊗ denotes the elementwise multiplication of two vectors. In fact, since the
color dynamic is defined per vertex and the edge connects two vertices, the mean
color dynamic of the two vertices is used in eq. 5.4. This normalization procedure
makes the decoding algorithm independend of the local stripe contrast. The effect is
illustrated in figure 5.6. The normalization can also be used for patterns that are not
strictly normalizable, since typically only a few codewords are affected.

We define the symbol match error E associated with assigning symbol S to C as

E(C, S) =

√∑
i

et(ci, si)2 (5.5)

with the single channel error et defined as

et(ci, si) =


1+ci
t

si = −1
|ci|
t

si = 0
1−ci
t

si = +1

(5.6)

where t is a threshold value below which color changes are considered insignificant.
The typical choice is t = 2

3
for an even partitioning of the interval [−1; +1]. Building

on the match error we define the match probability

P (C, S) =

{
1− E(C, S) E(C, S) ≤ 1

0 E(C, S) > 1
(5.7)

Note that there can be several symbols that fit almost equally well. Given context
information, the algorithm can also assign a suboptimal symbol with lower match
probability than the optimal symbol if necessary. We therefore refer to the optimal
symbol also as the naive symbol. P can be visualized with the help of spherical
isosurfaces in the space of color change vectors. Examples are shown in figure 5.7.
The challenge is that the shells for different symbols can partially overlap.

Color transitions that occur at occlusion boundaries are a particular case. Con-
sider for example the case shown in figure 5.8. The blue, yellow, magenta and green
stripes appear to be vertically continuous, but are not. Even though the colors of the
superpixels above and below the boundary are very similar, we find a high gradient
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(a) Raw color change vectors of high quality
input image.

(b) Raw color change vectors of low quality
input image.

(c) Normalized color change vectors of high
quality input image.

(d) Normalized color change vectors of low
quality input image.

Figure 5.6: The effect of normalization on the color change vectors. The point colors
of the normalized vectors depend on the edge symbol that was finally assigned.
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Figure 5.7: Probability isosurfaces for the symbols R+G+B- and R-G+B+. The cyan
shells are P (C, S) = 0.7, the red shells P (C, S) = 0.5, the green shells P (C, S) = 0.6
and the blue shells P (C, S) = 0.4.

in the direction along the stripes at the border of the two objects. To capture this
information, we define the gradient ratio

R =
∑
n

√√√√√ (
d
ds
I
)2(

d
dp
I
)2

+ ε
(5.8)

where d
ds
I and d

dp
I denote the components of the image gradient in secondary and

primary direction as shown in figure 5.8. The index n iterates over all edge pixels
in the image and ε is a small regularization constant, typically 10−2. The actual
image edge orientation may deviate from the ideal orientation on sloped surfaces. By
design, this causes a rising gradient ratio, as oblique image edges are more likely to
be artifacts. The gradient ratio will be put to use later in graph traversal step to
judge the trustworthiness of position assignments.

Furthermore, each graph edge has to be classified according to its direction in
relation to the primary direction of the pattern. The edge direction can be forward,
backward or parallel to the pattern. We perform a line fitting over all the pixels
associated with the image edge. The position of the superpixel centroids relative to
the line allows us to label the directions. The image edges consist of only a few pixels
each, so the line approximation works well. The process is illustrated in figure 5.9.
Each graph edge also has a length l, defined as the number of neighboring pixel pairs
that make up the edge in the image. This property will be used later as a quality
criterion along with the edge weight and the gradient ratio.
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Figure 5.8: Importance of the secondary gradient. The upper and the lower half of
the image belong to different objects. Some stripes appear to be continuous in the
secondary direction when in fact they are not. The window size of the code is 5.

Figure 5.9: Illustration of edge direction assignment. The location of the region
centroids relative to the fitted lines give the edge directions. In this case, from the
viewpoint of the red region, the edge to the cyan region is “backward” and the edge
to the blue region is “forward”..

5.3 Graph Traversal

In our methodology, decoding the pattern is equivalent to finding the correspondence
between the vertices of the region adjacency graph and the pattern primitives in
the projected image. The window uniqueness property of the pattern makes this
association possible. Identifying the position of a subsequence within a suitably de-
signed longer code can be done analytically [Mitc 96]. However, it is easier, faster and
more flexible to simply use pre-computed lookup tables which store all the locations
where a given primitive occurs. In our case the primitives are colored stripes and the
windows used for identification are represented as sequences of edge symbols.

To find the correspondences between graph paths and stripes in the pattern,
we first sort all the edges in the adjacency graph by their optimal symbol match
probability P (eq. 5.7). The edge with the highest probability is selected as the
starting point of a new graph path. The set of its possible positions in the pattern
is determined by its optimal symbol S. These positions, in turn, determine the next
edge symbols that could be used to extend the path. If one of the two end-vertices
of the path has a qualified edge we add it to the path. To qualify for extending the
path an edge must: a) have the correct direction and b) its match probability P
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for the desired symbol must be higher than a certain user-defined threshold α which
controls the ’aggressiveness’ of the decoding algorithm. The best value of α depends
on the slope t from eq. 5.6, but is typically 0.5. A number of possible positions
that would have needed different neighboring edge symbols to continue the path are
invalidated by adding a given edge. This process is repeated until only one possible
position remains. This happens, at the latest, when the path length equals the unique
window length of the pattern. When there is more than one edge that can be added,
the one with the lowest error is selected. If there are no valid edges to add, we start
again with a new edge.

Once a unique path has been found, the associated pattern positions are uniquely
determined as well. We pick an arbitrary seed vertex on the path and propagate the
pattern position to its neighbors. The neighbors are visited in a best-first search as
follows. If the direction of the edge between the two vertices is correct and the edge
error is smaller than α, we add the neighboring vertex to an ’open’ heap. The edge
symbol used to calculate the edge error may be different from the optimal symbol,
as long as the error is below the threshold. Additionally, we maintain a token bucket
that can be used to temporarily go below the probability threshold. If the bucket
is not full, tokens are collected when an edge with a probability higher than α is
encountered. Available tokens are added to the match probability error when it
is lower than α. This makes it possible to tolerate isolated bad edges. When all
neighbors of a vertex have been visited, we continue the identification process with
the best neighbor on the heap, i.e. the one with the highest match probability. When
the heap is empty, the propagation stops. If there are unused edges left, we begin a
new pass and try to assemble a new unique path starting with the best unused edge.

The quality of a position assignment is captured in the position score Q. It is
defined as:

Q = max
k
{βPk − γRk} (5.9)

with the trust factor β defined as

β =

√
wk
w
· lk
l

(5.10)

where w is the edge weight, w is the average edge weight, l is the edge length, l is the
average edge length. The parameter γ is a user-defined scale factor (typically 0.5)
for the gradient ratio Rk from eq. 5.8. The index k is the neighbor index as before.
The inclusion of the edge weight w reflects the fact that high-weight edges are less
likely to be disturbed by noise. Longer edges are also more trustworthy than shorter
edges. At occlusion boundaries two conflicting pattern positions may occur. In that
case, the one with the higher position score Q is chosen. Figure 5.10 illustrates the
edge properties and their distributions.

Note that in a stripe pattern there are many so-called null edges connecting ver-
tices of equal color. Because of the channel equalization it is well possible that an edge
is assigned the symbol 0. However, to prevent undetected cumulative color changes,
we do not allow chains of such null edges. Furthermore we perform an additional
indirect check before using a prospective null edge. This is illustrated in figure 5.11.
We have entered vertex b coming from vertex a. To test if the edge between b and c
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is really a null edge, we calculate the optimal symbol of the (possibly virtual) edge
between a and c. If it is identical to the edge symbol assigned between a and b, vertex
c has the same color and the same pattern position as b.

An example subgraph with assigned edge symbols is shown in figure 5.11. The
bold edges could actually be used, the dashed ones were ignored. There may be
shadow areas in the image where there is no pattern to decode. It is statistically
possible that a valid edge sequence can still be detected, but it is extremely unlikely
that the growth process will lead far. We can, therefore, easily suppress these false
positives if an insufficient number of valid neighbors is found.

Our decoding algorithm is local. It starts at a certain edge and recursively visits
the neighboring vertices in a best-first-search. We also experimented with an MRF-
based graphcut optimization algorithm for finding the globally optimal labeling of the
vertices. However the results were less accurate because of complexities of reliably
modeling long-range interactions. Furthermore, the runtime of the MRF method was
much higher due to the large number of possible labels, which is typically more than
100.
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(a) High image quality. The naive and actual symbol probabilites are very similar, indicating that
almost exclusively optimal symbols were used. The edge weight histogram shows three peaks, one for
a bright object, one for a less bright object and one for null edges. The gradient ratio is very low as
the stripe contrast and thus also the primary gradients are very high.

(b) Low image quality. Many suboptimal symbols were used. Null edges and non-null edges have very
similar weight. As the stripe constast is low, the gradient ratio is relatively high. This reduces the
position scores.

Figure 5.10: Histograms of the various edge properties for two example images of
different quality. The histograms include only data from edges that were actually
used in the decoding process.
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Figure 5.11: An example subgraph of the region adjacency graph. The bold edges
could actually be used in the decoding process, the light dashed edges were ignored.

5.4 Color Enhancement with Belief Propagation

We use Belief Propagation [Yedi 03, Felz 04a] to implement a color enhancement step
that tries to isolate the projected colors from possible object texture. BP is an iter-
ative message passing algorithm. Each node of the graph receives messages from its
neighbors containing their current beliefs about their state. This incoming informa-
tion is combined with local evidence and passed on. Assuming pairwise cliques, the
update equation for the message from node i to node j is

mt+1
ij (xj) =

∑
i

fij(xi, xj)gi(xi)
∏

k∈Ni\j

mt
ki(xi) (5.11)

Here fij(xi, xj) is the pairwise smoothness term for assigning labels xi and xj to
nodes i and j, gi(xi) is the data term for assigning xi to node i and Ni \ j is the
neighborhood of node i excluding node j. The messages mij are simply vectors of
probabilities for all possible labels. They can be initialized randomly or to a uniform
distribution. After convergence, the final belief bi is
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Figure 5.12: Belief Propagation by message passing between nodes in a graph. The
message from node i to node j is the product of all incoming messages from nodes
other than j, weighted by the local evidence g and the compatibility f .

bi ∝ gi(xi)
∏
k∈Ni

mt
ki(xi) (5.12)

It has to be noted that in this notation the messages are multiplied element-
wise. The message passing equation is also visualized in figure 5.12. How can it be
applied to the region adjacency graph? We propose to re-estimate the colors of the
graph vertices from the color changes C across the edges. Of course, if the vertex
colors are unreliable, the color changes are also unreliable. However, by using Belief
Propagation we can enforce consistency between the different pieces of information.
A consensus between the color changes relative to all neighbors is formed and outliers
can be corrected.

Furthermore, we observe that the patterns we use consist of no more than eight
different projected colors. This means the number of labels is rather low and the
inference can be performed in real time. Since the three color channels are indepen-
dent, we can even split the problem and perform per-channel inference with binary
labels: At a given vertex, a given color channel can only be either on or off. The
smoothness term fij(xi, xj) can therefore be written as a 2× 2 compatibility matrix
F.

F =

[
pconstant prising
pfalling pconstant

]
(5.13)

On the diagonal we have the probability of the channel state being constant, as both
nodes have the same label. If node i is in “off” state (index 0) and j in “on” state
(index 1) the channel must rise, or fall in the opposite case. In our case there is no
data cost, that is gi(xi) = 1, as we do not judge the absolute color values but only
the color changes. We initialize the BP messages as m0

ij(xj) = 1, i.e. we make no
assumption whether a given channel is on or off in the beginning.
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Figure 5.13: Linear (solid lines) and sigmoid (dotted lines) probability functions used
for Belief Propagation message update. The parameters used were hl = 1.8, hs = 0.8
and s = 8.

The actual values of fij can be computed with different models. One possibility
is a truncated linear model:

plinear =


max(0, 1− 1−ci

hl
) falling

max(0, 1− |ci|
hl

) constant
max(0, 1− 1+ci

hl
) rising

(5.14)

where hl is the inverse slope of the probability function, typically set to values between
1.5 and 2. An alternative is a sigmoid-type model

psigmoid =


1− (1 + exp ((hs − ci − 1) s)−1 falling
(1 + exp ((|ci| − hs) s)−1 constant
1− (1 + exp ((hs + ci − 1) s)−1 rising

(5.15)

where hs is the “width” of the peak and s is the steepness of the peak. Typical values
for hs and s are around 0.8 and 8 respectively. The ci are the indiviual normalized
channels of the color changes from eq. 5.4 and so the probabilities are in the range
of [1; 0] as they should. Both models are plotted in figure 5.13.

In practice the linear and the sigmoid model deliver similar performance. This is
illustrated in figure 5.14 for two different test sequences. The increase in the number of
recovered points is between 30% and 40%. However, there are some caveats. The first
is that there is no ground truth for these sequences. More data is not automatically
better data. In fact, the additional data points might be false positives. Additionally,
there is a ceiling effect - if the parameters are set too loose, even plain decoding
without color enhancement can identify almost all stripes that can reasonably be
expected. We therefore set the algorithm parameters to the conservative default
values given in table A.2 to make sure only valid depth data is generated. In particular
the minimum symbol probability was 0.6. If it is increased to 0.7, the improvements
that can be achieved with color enhancement are even more pronounced: 146% for
sequence 3 and 76% for sequence 6 (see also figure 5.15).
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(a) Test sequence 6 with a low amount of bubbles degrading the image quality. The improve-
ment for linear BP is 30%, for sigmoid BP it is 28%.

(b) Test sequence 3 with a large amount of bubbles degrading the image quality. The
improvement for linear BP is 43%, for sigmoid BP it is 40%.

Figure 5.14: Decoding performance of color enhancement with the linear model and
the sigmoid model after two iterations. Plain decoding without color enhancement is
used as a reference. Both models markedly increase the number of points recovered.
The minimum symbol probability during decoding was 0.6 in all cases.
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(a) Sequence 6, linear model. The maximum is
at hl = 1.6 with two iterations.

(b) Sequence 6, sigmoid model. The maximum
is at hs = 0.6 with one iteration. The steepness
parameter s was fixed at a value of 4.

Figure 5.15: Decoding performance for different number of iterations and different
model parameters. The z-values are the average number of decoded points over all
image of sequence 6. They are normalized to the number of data points generated
without color enhancement, that is with zero iterations. A minimum symbol proba-
bility of 0.7 was used.

The best performance is achieved after one color enhancement iteration. For
softer parameter choices in the probability model (higher hl or hs) a second iteration
can improve the result. The color enhancement step is especially beneficial in low-
contrast situations, where single edges may be unreliable. In that case integrating the
information from all neighbors before making a decision is especially helpful. This is
a crucial improvement for medical purposes, to counter the sub-surface scattering in
skin. Figure 5.16 shows the input image and recovered range data for some example
images. Figure 5.17 shows the evolution of the superpixel colors for another example
image.
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(a) Example image 64 from sequence 2 (b) Color-coded depth values recovered
from image 2_64. Range is 140mm to
160mm.

(c) Example image 46 from sequence 3 (d) Color-coded depth values recovered
from image 3_46. Range is 140mm to
165mm.

(e) Example image 70 from sequence 6 (f) Color-coded depth values recovered
from image 6_70. Range is 142mm to
158mm.

Figure 5.16: Example images from the different sequences with recovered depth val-
ues. For better visibility, the input images were gamma-adjusted and results dilation
filtered.
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Figure 5.17: Influence of the color enhancement step. On the top an example input
image with the raw superpixel colors (gamma adjusted for better visibility). In the
center, the colors have been corrected for crosstalk (see section 5.2.1). On the bottom,
the superpixel colors after two iterations of Belief Propagation.
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5.5 Edge Localization and Tracing
Once the region adjacency graph has been traversed and all possible vertices have been
identified we have to localize the corresponding image edges with subpixel accuracy.
We iterate over the segmented input image. At the border of two superpixels we check
if the corresponding graph vertices could be identified and have successive pattern
positions. If that is the case, we look for the nearest local extremum of the image
gradient and interpolate its subpixel position. There are three possible ways in which
the gradients can be used.

• Use the magnitude of the gradient in all three channels. We know that the gra-
dient magnitude must have a local maximum where the two superpixels meet,
otherwise the watershed transformation would not have resulted in two distinct
superpixels at this point. The gradient magnitude may contain influences of
color channels which are irrelevant at the particular location.

• Use all color channels separately and compute the average position, possibly
weighted by the absolute value of the extremum. The edge symbol between the
two vertices specifies which individual color channels are supposed to change.
However, under noisy conditions it is not granted that the corresponding ex-
trema can be detected reliably and accurately. Single dropouts can be tolerated
and the edge position can be determined from the remaining channels. The dif-
ferent edge positions in the different channels also do not always agree perfectly.
One component of the mismatch is of course due to image noise, but there are
also systematic components like the manufacturing tolerances of the projec-
tion slide and chromatic aberrations in projector and camera. This necessitates
elaborate edge position calibration if the highest accuracy is to be reached.

• Use only the green channel gradient. The green channel has the highest res-
olution in the camera Bayer pattern and therefore promises to yield the most
accurate edge position. To put it differently, the red and blue channels are more
prone to aliasing because of their lower sampling frequency. More importantly,
there are no edge position shifts through chromatic aberration in the projector
and camera lenses. The pattern has to be designed in a way that the green
channel changes at every edge. If the system is calibrated with a feature-based
method, the features should also be localized in the green channel only so that
everything fits together.

The method of choice for the subpixel localization is parabolic interpolation. It is
fast and needs only a small support of three pixels. For comparison, the Blais-Rioux
detector needs six samples. Interpolation of a Gauss function delivers a minimal
increase in accuracy but is much slower (see section 2.3). The principle is illustrated
in figure 5.18. A parabola is fitted to a local extremum and its left and right neighbors.
The interpolated position of the extremum is then

psubpix = pc +
vl − vr

(vl + vr − 2vc)
(5.16)

where pc is the coordinate of the center pixel and vl, vc and vr are the values of
the left, center and right pixel.
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Figure 5.18: Subpixel edge localization by parabola fitting.

(a) Example profile of the gradient magnitude for all three color channels.

(b) Example profile of the single-channel gradients. There are many peaks at
different positions. Some belong together, some are false positives. It is difficult
to establish a definitive edge position based this data.

Figure 5.19: Edge localization example in a low-quality image.
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Figure 5.20: Example results for different edge localization methods. The differences
are up to one pixel.

Figure 5.21: Edge filtering. Median of seven eliminates spikes but retains kinks.
Cubic spline approximation results in a smooth edge.

We implemented all three methods. If the pattern supports it, we use the green
channel only method as default to sidestep possible errors caused by chromatic aber-
ration. However, there can still be minor edge position shifts caused by crosstalk
from the red and blue channels. This can be neglected in comparison to the influ-
ence of image noise on the detected edge positions. There are several filters that can
be applied to reduce the noise. Of course, the image can be pre-smoothed before
computing the gradient. However, weak edges may be erased if the smoothing is too
extreme. For post-processing we chose a median-of-seven filter and a cubic spline
approximation [Wein 09]. The results are shown in figure 5.21. The filters are applied
to each edge fragment separately, so edges will not be smoothed across discontinu-
ities. In a simulated noisy example image, the standard deviation from the plane
was 1.127mm. With median filtering this reduced to 0.944mm. The cubic spline
approximation resulted in an error of 0.820mm.
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Figure 5.22: Ray-plane intersection for depth computation

5.6 Depth Computation

The final step after decoding of the region adjacency graph and subpixel localization of
the stripe edges is the computation of depth data. It differs between the “standard” 3D
scanning setups using standard linear color stripe patterns and the endoscopic sensor
using a color ring pattern. In the former case, the actual depth values are computed
by ray-plane intersections. Note that ray-ray intersection cannot be used, because
in a stripe projection system only one coordinate in the projected image is known,
the other is initially unconstrained. However, this is not necessarily a disadvantage.
In a stereo ray-ray intersection both rays must be assumed to be slighly erroneous.
In contrast, the light plane defined by the edge between two projected stripes is
theoretically known exactly.

In practice manufacturing tolerances and optical effects like chromatic aberration,
finite depth-of-field and image distortion can make it difficult to define an exact light
plane. With a DMD-based projector, the manufacturing tolerances are practically
zero. With our slide-based pattern projection, the stripes are created by multilayer
interference filters whose width is often not exactly as specified. By measuring a flat
surface these systematic offsets can be detected and corrected with a simple lookup
table. If chromatic aberrations are present, the best way to manage them is to use
only one color channel for calibration and for edge localization. If there is substantial
chromatic aberration and multiple color channels have to be used, projector and
camera can be calibrated for each color channel separately.

Real projectors with image distortion do not project perfect planes of light but
ruled surfaces. It is possible to model these more general geometric shapes explicitly
as has been done in the calibration of the endoscopic sensor. For small deviations
from the planar shape the problem can also be solved iteratively, as for example
proposed by [Fors 05]. We first ignore the projector image distortion and calculate a
preliminary depth value. The missing second projector image coordinate can then be
reconstructed approximately by reprojection of the depth value to the pattern image
plane. Using the two projector image coordinates the usual distortion model can be
applied and a new corrected light plane can be calculated. We use this new light
plane to compute a better depth value and repeat until convergence. In practice one
iteration is enough for projection systems with limited distortion.
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In the endoscopic sensor the depth data is computed by ray-cone intersection.
The cones are co-axis with the optical axis of the projector, so radial distortion
only changes the apparent opening angles of the cones. Each projected light cone
has been calibrated explicitly, so projector distortion can be ignored. However, one
has to keep in mind that the triangulation angle varies considerably over the working
space. In combination with the low image contrast, which hampers precise stripe edge
localization, a low triangulation angle can lead to large depth errors. The accuracy
of the depth data will be evaluated in the next chapter.
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Chapter 6

Evaluation

In this chapter the performance of the proposed 3D scanning system is evaluated with
respect to accuracy and robustness. For the accuracy tests, synthetic and real images
are used. Comparing our 3D sensor to other methods is not trivial. The measurement
uncertainty must be normalized to the field of view, lateral and longitudinal resolution
have to be taken into account, and even the time and bandwidth required to record
the data may be a factor in determining the ’efficiency’ of a sensor. Of cource, each
sensor type has its physical limitations [Haus 11] which cannot be surpassed. To
test the performance of the pattern decoding algorithm, we compare our results to
those of other approaches. For the endoscopic scanning system comparisons to other
sensors are even more difficult, so we present reconstruction results for four different
test objects. In the last section some notes on the implementation and the runtime
of the algorithm are presented.

6.1 Accuracy

The accuracy of a measurement system can be defined as the closeness of agreement
between a measured quantity and the true quantity. The depth accuracy of our 3D
scanning approach is first tested on various synthetic scenes. For these scenes ground
truth is available and the calibration of the simulated scanner is perfectly known. The
test scenes feature geometry and textures of various complexity and come in different
controlled noise levels. This test isolates errors caused by imprecise edge localization
and false correspondences. The calibration accuracy of a real system was evaluated
for a desktop scanner with a calibrated reference object as well as for an endoscopic
scanner in a known artificial cavity.

6.1.1 Simulated images

To test the accuracy of the depth calculation, we rendered test images with Povray
[Pers 04]. A simulated planar test object was illuminated by a color stripe pattern
and ambient light of various intensities. Additionally white gaussian noise of different
standard deviations was added to the images. Details of the images can be seen in
figure 6.2. The resulting standard deviations of the depth values from the ground
truth are shown in figure 6.1. The simulated Structured Light setup has a baseline

113
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mean [mm] sigma [mm]
Sphere Fit Residuals 0.0283 0.0123

Sphere Diameter Errors 0.0342 0.1043
Sphere Distance Errors 0.0416 0.0744

Table 6.1: Barbell measurements summary for the sensor calibrated with the Active
Target method.

of 80mm and a working distance of 600mm. The simulated camera has a resolution
of 780x580 pixels with a pixel size of 8.5mm and a focal length of 8.5mm. In this
setup, an edge localization error of 1 pixel causes a depth error of approximately
5mm, depending on the exact position in the working space. The depth errors in
the high noise cases therefore correspond to edge position errors of approximately 1

2

pixel.
We also simulated a non-planar target in the form of the Stanford Dragon with a

moderate contrast of 0.5 and moderate noise with σ = 0.067. In this case the system
had a baseline of 250mm. One pixel shift in the edge location therefore causes an
error of approximately 3.5mm at a working distance of 1000mm. Figure 6.3 illustrates
the resulting depth errors.

The influence of an edge localization error in the camera image depends on the
system geometry and on the exact position of the true point in the working space.
For a given scene, it can be visualized in a sensitivity map. Figure 6.4 shows the
depth errors caused by a localization error of 1 pixel for the Stanford Dragon.

6.1.2 Desktop reference object

A calibrated reference body in the form of two rigidly connected, diffusely reflecting
spheres was used for evaluation of the absolute measurement errors (figure 6.5). These
errors are a combination of edge localization error and calibration error. The results
are summed up in table 6.1. Most errors are below 100mm, which is a good result.

This accuracy test was also used to verify the performance of the active calibra-
tion method proposed in 4.3.1. We calibrated a desktop 3D scanning system with a
working volume of approximately 100×100×100mm3 with both the ’classic’ feature-
based method and with an active target. However, it has to be kept in mind that the
active calibration still needs a classic target for the projector calibration. The result-
ing system parameters are given in tables 6.2 and 6.3. There are marked differences
in the internal as well as in the external parameters.

The barbell was positioned in six different poses. A depthmap was acquired in
each pose and two spheres were fitted to the measured data. The ground truth
diameters of the spheres are 29.827mm and their center distance is 80.006mm. Both
values are known with a tolerance of 2mm. For both calibration methods the sphere
fit residuals, the computed sphere diameters and the computed sphere distances were
used in the evaluation. The results are given in tables 6.4, 6.5 and 6.6 as well as in
graphical form in figures 6.6, 6.7 and 6.8. The poses used for both calibrations were
unfortunately not perfectly identical as the sensor had to be moved in between for the
recalibration. However, in both cases the whole measurement volume was covered.
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(a) Mean depth error. The working distance is 600mm, so the relative error is around 10−5.

(b) Depth error standard deviation. For the better image qualities the relative error is around
10−3.

Figure 6.1: Accuracy on a synthetic planar test scene. Mean and standard deviation
of the depth error for different noise levels and different pattern contrasts. The
contrast ranges from 1 (red) to 0.25 (black). In the simulated system geometry, an
edge localization error of 1 pixel gives rise to a depth error of roughly 5mm.
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(a) Maximum contrast of 1, minimum
noise with σ = 0.

(b) Minimum contrast of 0.25, maximum
noise with σ = 0.165.

Figure 6.2: Example details of two extreme input images used in figure 6.1. The
projector is rotated slightly to reduce aliasing.

camera projector
classic active classic active

f [mm] 13.039 13.045 15.618 15.608
u0 [pix] 409.317 410.007 379.175 382.424
v0 [pix] 296.066 296.145 597.424 598.293
k2 [ 10

−3

mm2 ] -120.969 -123.932 -6.743 -18.055
k4 [ 10

−3

mm4 ] -39.286 180.245 -68.860 25.378
k6 [ 10

−3

mm6 ] 1705.174 -253.735 63.154 -160.817
p1 [ 10

−3

mm2 ] 0.288 0.595 -0.329 0.574
p2 [ 10

−3

mm2 ] -0.259 -0.580 -3.410 -2.276
RMSE [pix] 0.16502 0.09294 0.21702 0.08541

Table 6.2: Comparison of system calibration with classic method and active method.
The differences in the parameters as well as in the reprojection error are considerable.

classic active
tx [mm] 6.88730 6.69478
ty [mm] -81.88410 -81.93482
tz [mm] 18.45150 17.80056
Rx [′] 20.053 20.837
Ry [′] 14.145 1.930
Rz [′] -38.826 -42.811

Table 6.3: Projector pose relative to camera for classic and active calibration. The
differences are most apparent for the z-component of the translation and the y-
component of the rotation.
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(a) Deviation from reference

(b) Distribution of depth errors. Mean is 0.19mm, sigma is 1.06mm. The mean is
non-zero because of the asymmetric perspective on the object. The projector was
located to the right of the camera, and the positive errors on the sloping sides of
the dragon predominate slightly (compare figure 6.3a and 6.4).

Figure 6.3: Depth error distribution on a non-planar target. As the noise added to
the image has a gaussian distribution, the depth error distribution is similar.
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Figure 6.4: Dragon scene sensitivity map. An edge position that is shifted by 1 pixel
causes different depth changes depending on the image coordinates and the light
plane in question.

Figure 6.5: Example barbell input image. For this test body the sphere diameters
and their distance are known with high accuracy.

The active calbration in general gives better results than the classic method, even
if it was not completely active. With a high-quality e-paper display as calibration
target, even better results may be expected.

6.1.3 Endoscopic reference object

The accuracy of the prototype endoscopic scanner was evaluated with the help of an
artificial cavity in a block of plastic. In this experiment ground truth CAD data is
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classic [mm] active [mm]
0.0413 0.0238
0.0637 0.0159
0.0329 0.0241
0.0298 0.0392
0.0418 0.0245
0.0235 0.0515
0.0348 0.0144
0.0526 0.0172
0.0429 0.0277
0.0208 0.0300
0.0302 0.0225
0.0273 0.0492

mean 0.0368 0.0283
sigma 0.0124 0.0123

Table 6.4: Barbell test - Sphere fit residuals. The active calibration gives smaller
residuals. In both cases a part of the residuals is due to the inherent measurement
noise.

classic [mm] active [mm]
0.1774 0.0158
0.2156 -0.0595
-0.1024 0.0437
-0.0819 -0.1126
-0.2159 0.0296
-0.1388 0.2015
-0.1342 0.0197
-0.0525 -0.0240
0.0733 -0.0211
-0.0636 0.1364
-0.0288 -0.0460
0.1497 0.2273

mean -0.0168 0.0342
sigma 0.1385 0.1043

Table 6.5: Barbell test - diameter deviations. The active calibration gives a higher
absolute mean error but a lower standard deviation.
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classic [mm] active [mm]
-0.0445 0.1078
0.0882 0.0195
-0.1468 0.0209
0.0915 -0.0707
0.0066 0.0320
0.3512 0.1399

mean 0.0577 0.0416
sigma 0.1692 0.0744

Table 6.6: Barbell test - distance deviations. The active calibration gives a lower mean
and a markedly lower standard deviation. The relatively high standard deviation for
the classic calibration method is mainly caused by one outlier.

(a) Classic calibration (b) Active calibration

Figure 6.6: Barbell poses. Colors indicate the distance errors. Poses with a high
blue component give a distance that is too small, a high red component indicates
distances that are too large. The exact numbers can be found in table 6.6.
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(a) Classic calibration (b) Active calibration

Figure 6.7: Barbell poses. Color indicates the diameter error. Spheres with a high
blue component give a diameter that is too small, a high red component indicates
diameters that are too large. The exact numbers can be found in table 6.5.

(a) Classic calibration (b) Active calibration

Figure 6.8: Barbell poses. Color indicates the magnitude of the sphere fit residuals.
Spheres with a high blue component have residuals close to zero, the higher the red
component, the higher the residuals. The exact numbers can be found in table 6.4.
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available for comparison. The cavity surface was reconstructed from a sequence of
images acquired while the scanner was moving through the cavity.

For this reconstruction task, the individual point clouds recovered from successive
frames have to be registered to each other and merged. The overlap between succes-
sive images is very large if the sensor is moving slowly compared to the frame rate
of 30Hz. Registration algorithms like ICP [Fitz 03] could be used, but there may be
degenerate cases like constant-diameter cylindrical cavities where this algorithm can
fail. Therefore we proposed to guide the registration process by motion estimation
with help of the second camera (see figure 4.17). The main measurement camera
cannot be used for this purpose because the projected pattern moves with the sensor
head and masks the underlying scene motion. The auxiliary front camera does not
see the pattern and feature tracking or optical flow can be used to derive an initial
estimate of the camera translation and rotation between two frames. Unfortunately,
because of hardware malfunction, the front camera of the endoscope cannot currently
be used. Therefore the scanner was moved in a controlled fashion and the registra-
tion of the individual scans was performed with the help of the known fixed offsets
between the datasets. The complete workflow for the reconstruction was as follows:

1. Compute a 3D point cloud from every single input frame.

2. Combine the individual point clouds into one by applying the known translation
between consecutive frames.

3. Perform thinning by merging points closer than 0.3mm.

4. Smooth the resulting point cloud using the method of Vollmer et al. [Voll 99]
with a radius of 1.5mm.

The result for the hollow plastic block is shown in figure 6.9. The input data consisted
of a sequence of 41 images. The initial merged point cloud contained 258610 points,
after thinning 11323 remained. This final point cloud was registered with the ground
truth CAD model using ICP [Fitz 03]. The average error between the reconstructed
points and the original CAD data is 92mm. This result is approximately independent
of the calibration method used, suggesting that the error is dominated by the edge
localization error in the camera image. The cavity has a diameter of around 12mm, so
the relative measurement error of the endoscopic scanner is larger than for the desktop
system. This can be explained by the difficult imaging geometry and the relatively low
resolution and high noise of the camera images. However, for an endoscopic scanner
the results are very good. For comparison, [Hu 10] reported an average reconstruction
error of 1.68mm at a distance of 20mm to 30mm to the surface for a technique based
on Structure-from-Motion.

6.1.4 Comparison with the Kinect scanner

The Kinect 3D sensor system released by Microsoft in the end of 2010 is the only
widely available commercial single-shot 3D scanner. However it is geared toward
gesture controls for gaming and not for measurement tasks. Nevertheless we tried to
compare its output to our results. The test scene consisted of a mostly white calibra-
tion plate and a black breadboard. The Kinect has a baseline of about 75mm and a
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Figure 6.9: Measurement result for an artificial cavity. The colors encode the error
relative to the ground truth CAD data (mm). The average error was 0.092mm.

camera resolution of 1280x1024 (although the output is downsampled to 640x480),
while our test setup had a comparable baseline length of 80mm and a camera res-
olution of 780x580. The perspectives on the scene were also close to identical. We
evaluated the planarity of the computed depth data on the calibration plate. The
plane fits were performed on a small patch only to exclude the influence of calibration
errors. The standard deviations of the residuals were 0.167mm for our scanner respec-
tively 0.945mm for the Kinect. One has to keep in mind, however, that the output
provided by the Kinect driver software is quantized to 2048 steps. At close range
one step corresponds to approximately one millimeter. Furthermore, the depth map
generated by the Kinect is heavily smoothed, as can be seen in figure 6.10. The holes
in the breadboard have been interpolated over. The Kinect is therefore currently
not suitable for high-precision measurements. Still, the high depth of field and the
contrast of the projected pattern is remarkable. The same is true for the overall reli-
ability, especially considering that other correlation-based systems [Gock 06, Deve 02]
did not perform reliably on textured scenes.
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(a) Kinect color image. The green rectangle marks
the region for the plane fit.

(b) Kinect depth map. The holes in the bread-
board have been interpolated over.

(c) Our color image. The white rectangle marks
the region for the plane fit.

(d) Our depthmap without interpolation. The
holes in the breadboard are open.

Figure 6.10: Kinect depthmap compared to our result. The plane fit standard devia-
tions are 0.945mm for the Kinect respectively 0.263mm (without interpolation) and
0.167mm (with interpolation) for our scanner.
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6.2 Decoding performance

It is not easy to compare the results of the proposed system to other approaches.
There are no publicly available reference implementations. Also there is no public
database of reference scenes like the Middlesbury Stereo Database. This is under-
standable since everybody uses different patterns. The reference scenes therefore need
to take the form of standardized test objects or virtual scenes that can be rendered
with different illumination patterns. We built a few such virtual scenes in Povray
and made them publicly available, but met with litte resonance. Therefore we re-
implemented the decoding method presented in [Zhan 02] for a comparison (section
6.2.1).

A simple approximate comparison is possible to the system developed by Koninckx
[Koni 05a]. He helpfully included a test with a standard object in the form of packing
foam in his PhD thesis. The comparison shown in figure 6.11 is favorable for the
proposed pattern and decoding algorithm.

For the endoscopic sensor, comparisons are very difficult, since no other 3D scan-
ning system of similar size was available. We therefore show the reconstructed surfaces
of a colon phantom and a lamb’s windpipe for qualitative assessment.

6.2.1 Comparison with Dynamic Programming

We implemented the decoding method presented in [Zhan 02] for a comparison with
our results. This method relies on the ordering constraint, that is, it assumes the
observed order of the stripes is the same as the projected order. This is true for
simple objects but does not necessarily hold in complex scenes with occlusions. Under
the ordering constraint the most plausible correspondence of projected and observed
edges is determined recursively with Dynamic Programming. This is performed in
each scanline individually. In the following we present decoding results obtained with
our algorithm and with the Dynamic Programming-based algorithm.

First we evaluated some synthetic and real test images to see the influence of
texture and general image quality. The results are shown in figure 6.12 and figure
6.13. Our method yields better results than Dynamic Programming decoding in all
cases.

On synthetic scenes it is also possible to perform a more thorough evaluation
of the number of inliers and outliers in the recovered depth data. We used three
different scenes. The ’grid’ features a non-smooth surface with many holes but no
texture. The ’dragon’ has a smooth surface with some shading variations and a black
background where no false positives should be detected. Finally, the ’sun’ scene has
a dominant texture with non-neutral color. Each scene was rendered with different
levels of pattern contrast and additive white gaussian noise. We evaluated the number
of correct depth values recovered from each image and the ratio of outliers to inliers.
An outlier is defined as having a depth error of greater than 10mm. For the simulated
setup this corresponds to a localization error of about 2 pixels. This can result from
extreme noise but most likely points to misidentifications. Details of the various test
scenes are shown in figure 6.14.
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(a) Input image of Koninckx. Only the right
part is relevant.

(b) Interpolated and rendered result image of
Koninckx’ system.

(c) Input image for the proposed algorithm (d) Color coded result image of the proposed al-
gorithm. Uninterpolated, but dilated for better
visibility.

Figure 6.11: Qualitative comparison of Koninckx’s results (taken from [Koni 05b])
to ours. While the top left image seems to have been taken in a controlled setting
without ambient light, the bottom left input image was taken under daylight in-
door conditions. Still, the result on the bottom right side covers the foam almost
completely while the top right side shows large unrecovered areas.
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(a) Dragon without texture (b) Dragon with texture

(c) Dynamic Programming result without
texture

(d) Dynamic programming result with tex-
ture

(e) Result of proposed algorithm without
texture

(f) Result of proposed algorithm with tex-
ture

Figure 6.12: Synthetic example scene in neutral color and with texture. Already in
the former case Dynamic Programming decoding produces some errors, but in the
latter the results are unusable.

As can be seen in figures 6.15, 6.16 and 6.17, our decoding algorithm produces
more inliers and less outliers. In situations with high contrast and low noise, Zhang’s
approach can compete, but it breaks down with low quality images. Furthermore, it
is relatively slow. The runtime is given as one minute per frame in the original paper,
on current hardware our implementation needs 8 seconds for an image with 800x600
pixels. For our algorithm we used the default parameters given in table A.2.
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(a) Book cover with texture (b) Pig stomach with bubbles

(c) Book result with Dynamic Program-
ming

(d) Stomach result with Dynamic Pro-
gramming decoding

(e) Book result with proposed algorithm (f) Stomach result with proposed algo-
rithm

Figure 6.13: Real example scenes and decoding results for the proposed algorithm
and Dynamic Programming. Our results contain more correct depth data and less
outliers.
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(a) ’Grid’ detail with high-
est contrast pattern and lowest
noise. (b) ’Grid’ with medium contrast

pattern and medium noise.

(c) ’Grid’ detail with lowest pat-
tern contrast and highest noise
level.

(d) ’Dragon’ detail with high-
est contrast pattern and lowest
noise. (e) ’Dragon’ with medium con-

trast pattern and medium noise.

(f) ’Dragon’ detail with low-
est pattern contrast and highest
noise level.

(g) ’Sun’ detail with highest con-
trast pattern and lowest noise. (h) ’Sun’ with medium contrast

pattern and medium noise.

(i) ’Sun’ detail with lowest pat-
tern contrast and highest noise
level.

Figure 6.14: Overviews and details of the different test scenes for different levels of
noise and contrast.
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(a) Number of inliers for different levels of contrast and noise. At the highest contrast level
(red) and with low noise, both methods are equal. At lower contrast levels with low noise
our algorithm recovers more points. Notably, at high noise levels our method detects fewer
points, but also generates very few outliers (compare figure 6.15b).

(b) Ratio of outliers to inliers for different levels of contrast and noise. Our method results
in very few outliers at all contrast and noise levels while with DP decoding a considerable
fraction of the generated depth data is in fact wrong.

Figure 6.15: Comparison for the ’grid’ scene. The contrast levels are 1 (red), 0.63
(green), 0.45 (blue) and 0.35 (magenta). The diamonds with dashed lines represent
the results of the proposed algorithm. The crosses with dotted lines are the Dynamic
Programming results. Outliers are defined as points deviating more than 10mm from
the ground truth.
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(a) Number of inliers for different levels of contrast and noise. Our algorithm recovers more
points at all levels of noise and contrast.

(b) Ratio of outliers to inliers for different levels of contrast and noise. Our algorithm
produces fewer outliers at all levels of contrast and noise. Interestingly fraction of outliers
is actually the highest for the lowest noise level. This is due to points at the very border of
the object where the surface gradient is high (see 6.14). A small edge localization error thus
can cause large deviations from the ground truth. With lower image qualities these border
regions are skipped.

Figure 6.16: Comparison for the ’dragon’ scene. The contrast levels are 1 (red), 0.63
(green), 0.45 (blue) and 0.35 (magenta). The diamonds with dashed lines represent
the results of the proposed algorithm. The crosses with dotted lines are the Dynamic
Programming results. Outliers are defined as points deviating more than 10mm from
the ground truth.
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(a) Number of inliers for different levels of contrast and noise. Our algorithm recovers more
points at all levels of contrast and noise.

(b) Ratio of outliers to inliers for different levels of contrast and noise. Although some
decoding errors occur at low contrast and high noise levels our algorithm again produces a
lower fraction of outliers at all levels of contrast and noise.

Figure 6.17: Comparison for the ’sun’ scene. The contrast levels are 1 (red), 0.63
(green), 0.45 (blue) and 0.35 (magenta). The diamonds with dashed lines represent
the results of the proposed algorithm. The crosses with dotted lines are the Dynamic
Programming results. Outliers are defined as points deviating more than 10mm from
the ground truth.
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6.3 Endoscopic measurements

For the endoscopic scanner there was no access to alternative measurement devices,
therefore a direct comparison is difficult. However, a visual inspection of some recon-
structed surfaces shows their satisfactory quality. The workflow for the reconstruction
was identical to section 6.1.3, except for one additional step: After the smoothing
we performed a Poisson surface reconstruction [Kazh 06]. The decoding results of a
single image of the windpipe sequence are shown in figure 6.18. Because of the special
hardware arrangement (see figure 4.17) not the complete area of the image can be
used for the measurement. The dark area in the center is caused by the sensor chip
looking at itself in the mirror. The dark area at the top is the shadow of the camera’s
data cable. In the corners of the image, the rays of view bypass the mirror and no
pattern can be observed.

6.3.1 Colon Phantom

A rubber replica of a human colon was measured with the endoscopic sensor. The
colon diameter was approximately 40mm and therefore at the upper limit of the cur-
rent sensor prototype. Nevertheless, good reconstruction results could be obtained.
A sequence of 50 frames was recorded, from which 267260 points could be recovered.
After registration the average point distance was 0.108mm. A thinning step reduced
the number of points to 93587. Next, a Poisson surface reconstruction was performed,
which resulted in a watertight mesh without any holes. From this, the large artifi-
cial faces closing the holes were removed, giving a final surface consisting of 39288
vertices. The reconstructed shape clearly shows the folds of the colon (figure 6.19).
Unfortunately each fold also causes a shadow, leading to some holes in the data.

Figure 6.18: Decoding of a single frame of the windpipe sequence. The input image
on the left has been gamma adjusted for better visibility. The center image shows the
projected ring colors as detected by the algorithm. On the right side the recovered
range data is color coded and overlaid on the input image. The color scale ranges
from 4mm to 18mm.
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Figure 6.19: Colon surface reconstructed from 50 frames. The folds are clearly visible,
but also cause shadows which result in holes in the recovered surface.

6.3.2 Windpipe

Figure 6.20 shows the measured surface of the windpipe, which has a diameter of
approximately 14mm. The input data consisted of a sequence of 26 frames. These
images yielded 131146 points with an average distance of 0.057mm. The point den-
sity is markedly higher here because of the smaller diameter compared to the colon
phantom. After thinning, 7417 points remained and were again used for a Poisson
surface reconstruction. Overly large faces were removed from the mesh. The result
shows that the sensor works even on biological surfaces, which can be difficult because
of volume scattering and highlights. The data quality is very promising. Even the
ripples at the ’bottom’ side could be recovered.
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Figure 6.20: Inner surface of a lamb’s windpipe reconstructed from 26 images. No
additional smoothing was applied. Note the recovered longitudinal ripples at the
bottom. The missing area at the top is due to the camera connection cable.

6.4 Runtime

There are a number of details relevant for an efficient and fast implementation of the
algorithm described above. The first concerns the superpixel colors. As described
above, we compute the median of the colors of all image pixels belonging to the
corresponding segmentation region. This is however relatively slow. Using a simple
median-of-five or median-of-nine filter around the region seed pixel is faster, needs
less memory, and gives very similar results.

The next issue is a trade-off of computation versus memory. The edge symbol
match probabilities, color enhancement edge probabilities and the ray-plane inter-
sections can be precomputed and stored in lookup tables. The former two are very
small, but the latter requires a large amount of memory. We need to cache w · h · n
depth values, where w is the camera image width, h the camera image height and
n the number of projected stripes. As the depth varies smoothly with the image
coordinates, it is possible to reduce the memory consumption with little quality loss
by subsampling the camera image and using interpolation.

Another speedup can be achieved by subsampling the gradient magnitude before
the watershed segmentation. Typically, the image changes only slowly in the direction
along the stripes. Averaging every two pixels in this direction yields a segmentation
results with fewer superpixels. The decoding results on this reduced graph are com-
parable to the full results. In fact, in some cases they may be better. The runtime
of the decoding stage is linear in the number of superpixels. Table 6.7 gives example
timings for the first image of test sequence 6. Figure 6.21 shows the decoding results
for the whole sequence.

Table 6.8 sums up some approximate timing results for the different stages of the
current implementation of our algorithm. While the image processing part can be
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LR [ms] HR [ms]
build graph 149 244

color enhancement 87 142
identify 161 271

number of superpixels 12619 21553
ms / superpixel 31 30

Table 6.7: Decoding stage runtime dependency on the number of superpixels on a
2GHz Intel Core2.

Figure 6.21: Results for high-resolution and low-resolution segmentation. Overall,
the former is marginally better, but not on each individual image.

performed faster on a GPU, the total speedup is limited by the non-parallelized parts
of the algorithm. Table 6.9 gives the final framerates reached on current hardware.
We can conclude that the goal of real-time operation has been reached.
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CPU [ms] GPU [ms]
gradients 15 4
watershed 15 2

copy - 6
build graph 34

color enhancement 64
identify 28

Table 6.8: Approximate timings of some major processing steps for a 780x580 image
with approximately 13000 watershed regions. The initial steps can be executed on
the CPU (Intel Q9650) or the GPU (NVidia GTX 285). The final steps are only
implemented on the CPU. If the GPU is used for image processing, the intermediate
results have to be copied back to the host. This step takes just as long as the actual
computation in this example. The total time is 156ms on the CPU and 138ms on
GPU+CPU.

CPU only [fps] CPU+GPU [fps]
plain decoding 25 31
color enhanced 18 21

Table 6.9: Performance of the proposed system on a 3Ghz quad-core Intel Q9650
CPU and with an NVidia GTX 285 GPU. Multithreading allows to process several
images in parallel.
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Chapter 7

Conclusion

The goal of this thesis was to develop a simple, accurate, robust and fast 3D scanning
methodology that can operate in dynamic and uncontrolled environments. In the
first part of the work we presented a literature review and concluded that Single-
Shot Structured Light is a suitable measurement principle, provided that the pattern
design and the decoding algorithm are sufficiently sophisticated. In the next chapters
we introduced the calibration methods we applied to provide high-accuracy 3D data,
and a robust algorithm for the decoding of Single-Shot Structured Light patterns that
provides reliable range data even for low-quality input images. The basic challenge of
Single-Shot Structured Light methods is to detect the projected pattern in the scene
despite possible distortions and disturbances that have to be expected. The proposed
method works on textured objects as well as on non-smooth objects and can cope
with external light, low pattern contrast, high camera noise and other artifacts. One
compromise that has to be made is that the resolution in lateral and in z-direction
is lower than that which can be achieved by multi-shot methods. For our intended
applications, however, the demonstrated resolution is sufficient and an acceptable
trade-off for the simplified hardware setup and the immunity to sensor and scene
motion.

The proposed decoding algorithm performs a superpixel segmentation of the input
image and builds a region adjacency graph from the result. The color estimates for
the superpixels are based on ensembles of image pixels, which enhances the robustness
against noise. Once the correspondence problem has been solved for one seed region,
the information is propagated through the graph in a best-first-search. If there are
artifacts in the image, it is possible to find paths around them. The algorithm does
not use any fixed thresholds for color changes but adapts automatically to the local
pattern contrast. Furthermore, inference algorithms like Belief Propagation can be
used to estimate the projected colors from the observed colors and recover more
3D data from the input images. The performance of the decoding algorithm was
tested in a variety of situations. It consistently gave better results than a reference
implementation of an alternative decoding algorithm. With a camera resolution of
780× 580 pixels, we can typically recover around 50000 3D points per input frame.

Of course, the graph-based decoding approach still has its limitations. While it
gives much better results that the Dynamic Programming-based method, there still
comes a point where the image quality is so low that no depth data can be recovered.

139
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The basic assumptions of the decoding algorithm are that each superpixel covers only
image pixels from one projected stripe, and that it borders directly on superpixels
from adjacent stripes. When the stripe contrast is too low and the noise level too
high, these assumptions no longer hold. However, under such extreme conditions,
other approaches suffer even worse. One advantage of the proposed algorithm is that
it degrades gracefully. False depth values are very rare and in the worst case no data
is recovered. Unfortunately, low image quality not only reduces the number of 3D
points that can be computed from the image, but it also reduces the accuracy of the
final 3D data. Thus all efforts to increase the robustness further are in vain if the
noise in the resulting depth data is too high for the given application.

Next to the stripe contrast, the major factor determining the accuracy of the
recovered range data is the quality of the sensor calibration. We implemented and
tested a calibration method based on active targets, which gives superior results
compared to calibration with classic targets. For example, the length of a barbell
reference object could be measured with a relative mean error of 0.052%. One open
issue here is the projector calibration with active targets, which will need e-paper
displays to work, but promises even more accurate sensor calibrations.

A showcase application requiring both robust decoding and elaborate calibration
is endoscopic 3D scanning. It is especially challenging because of the mandatory
small size of the sensor. To the best of our knowledge the presented endoscope is
the first 3D endoscope based on Single-Shot Structured Light as well as the smallest
Structured Light set-up so far. The endoscope does not contain moving parts and
can be realized cost-efficiently. It acquires 3D data at 30 Hz with minimal lag and
is not affected by movement. The reconstruction accuracy of about 0.1 mm is very
competitive.

All in all, the proposed Single-Shot Structured Light approach offers a solution
for 3D acquisition of a vast variety of close-range scenes. The sensor principle is
scalable from millimeter to meter range. Typical measurement errors are in the
range of 1

1000
of the working distance. A promising direction for future developments

are versatile, lightweight, handheld 3D sensors. The challenges here include the data
transmission and reliable real-time registration of the individual point clouds from
each frame. Hardware improvements are also an option. Narrowband, high-power
LED illumination together with matched, custom filter arrays in the camera would be
a big step for a further improvement of the input image quality, with corresponding
gains in the amount and accuracy of 3D data that can be recovered. On the decoding
side, currently each image is decoded separately and no assumptions on the scene are
made. It should be possible to increase the performance by making assumption on
maximum depth gradient in the scene and integrating evidence collected over several
frames, so that even partial codewords can be decoded. Going even further, scene
understanding algorithms that can recognize the objects in the scenes and segment
them into piecewise continuous surfaces could give another boost to the decoding.
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Christoph Schmalz:
Decoding Color Structured Light Patterns with a Region Adjacency Graph
(DAGM 2009)

Christoph Schmalz, Elli Angelopoulou:
Robust Single-Shot Structured Light
(PROCAMS Workshop at CVPR 2010)

Christoph Schmalz, Elli Angelopoulou:
Belief Propagation for Improved Color Assessment in Structured Light
(DAGM 2010)

Christoph Schmalz, Frank Forster, Elli Angelopoulou:
Camera Calibration: Active versus Passive Targets
(Optical Engineering, Volume 50, Issue 11, 2011)

Christoph Schmalz, Frank Forster, Anton Schick, Elli Angelopoulou:
An Endoscopic 3D Scanner based on Structured Light
(Medical Image Analysis, to appear)
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A.2 Example Patterns
Our decoding algorithm does not require a specific pattern. In fact, depending on
the application, different patterns should be used. The only restriction is that the
pattern must consist of stripes. The following table lists some example patterns
with different properties. They are the length (L), the code word size in stripes (w),
the minimum Hamming Distance between two code words (h), the alphabet size (c)
and the compatibility rules (which color channels must change between neighboring
stripes). All patterns except the last are circular, all patterns except the first fulfill
the normalization condition. For some patterns an application is given, the others
are for reference.
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purpose L w h c rules pattern
stomach 106 4 2 8 any two, no normalization 12434170350712521270

56063061650343524707
21605253070607471617
27430534217412142506
53563536347427147241

636036
– 104 4 2 8 any two 16524365070716160560

34163430534274170360
72174356127124125307
42142506536172563061

43472471470527063503 5252
simulation 112 6 2 6 green 16534216124343425243

46161643524316434356
16524352561342561256
16134316521652525216
43161612534253461346

125253435216
– 52 5 2 6 green 13435253421616534316

12561243425216525243
561643434616

– 90 4 2 6 any one 13421432452412612435
62523431641615216516
21561361423542536532
51256352652543643461

6314634534
– 90 5 2 6 any two 12434161421634125214

34361436524165343525
24356163521616525342
52563563434214256125

3653616124
– 90 4 1 6 any two 16356352163416536534

25214256343614342143
56125243652416165252
53616142161243434124

1253435256
– 42 4 2 6 any two 14253652416534125256

16143421635634361243 52
– 42 3 1 6 any two 12416356142536125243

52161652563421436534 34
endoscopic 15 3 2 6 any two 435256134216435

Table A.1: Example patterns with different properties.
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A.3 Endoscopic Calibration

We present a short derivation of the most important formulas used for calibration
and measurements with the endoscopic Structured Light 3D scanning system. A
more complete treatment of these raytracing fundamentals can be found in [Glas 89].
All rays are expressed in camera coordinates. This coordinate system has the x and y
axes in the image plane, the z axis along the optical axis and the origin in the optical
center of the camera.

Rays of view

The ray of view for image coordinates (xi, yi) in a pinhole camera is the set of all
points X with

X =

 0
0
0

+ λ

 (xi − cx)dx
(yi − cy)dy

f

 = Op + λTp (A.1)

with the pixel pitch (dx, dy), the principal point (cx, cy), the focal length f and the
free parameter λ > 0. If the camera exhibits image distortion, it has to be corrected
first, for example using Zhang’s model [Zhan 00]. In the simple pinhole model this
suffices to get the final ray of view. The distance d of a point P to the ray is

d = ‖(O − P )× T‖ (A.2)

The sum of these distances over all calibration points is minimized in the calibration
of the camera.

Reflection and refraction

A sphere with the center C and radius r is the set of points X with

(X − Cm)2 = r2m (A.3)

Plugging eq. A.1 into eq. A.3 and simplifying, the intersection point of a ray with
the sphere must fulfill

aλ2 + bλ+ c = 0 (A.4)

with a = T 2
p , b = 2(Op − Cm) · Tp and c = (Op − Cm)2 − r2m. Ignoring degenerate

cases, the desired intersection point with the mirror is

Om = Op +
−b−

√
b2 − 4ac

a
Tp (A.5)

The surface normal in this point is

Nm =
Om − Cm
‖Om − Cm‖

(A.6)

And the reflected ray
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X = Om + λ (T − 2Nm (Nm · T )) = Om + λTm (A.7)

The glass housing is modeled as a pair of co-axial cylinders. A cylinder with the
point Cc on its centerline, the axis direction Ac and the radius rc is the set of points
X with

((Cc −X)× Ac)2 = r2c (A.8)

Plugging eq. A.1 into eq. A.8 and simplifying, we obtain another quadratic equation

aλ2 + bλ+ c = 0 (A.9)

with a = (Tm × Ac)2, b = 2 ((Om − Cc)× Ac)·(Tm × Ac) and c = ((Om − Cc)× Ac)2−
r2cA

2
c . Again ignoring degenerate cases, the intersection point of the ray with the

cylinder is

Or = Om +
−b+

√
b2 − 4ac

a
Tm (A.10)

The normal Nr in the intersection point is

Nr =
Or − Cr
‖Or − Cr‖

(A.11)

where Cr is the closest point to Or on the cylinder center line, Cr = Cc+ (Or−Cc)Ac

A2
c

Ac.
Applying Snell’s law with the refraction indices n1 and n2 we get the refracted

ray direction Tr from the incident ray direction Tm as

Tr =
n1

n2

Tm −
(
n1

n2

cosγi +
√

1− sin2γt

)
Nr (A.12)

where sin2γt = n1

n2
(1− cos2γi) and γi is the angle of the incident ray with the surface

normal. A second refraction is computed with the outer cylinder of the glass tube to
obtain the final ray of view in the augmented camera model.

The reverse problem of finding the image coordinates for a given point P in space,
taking into account refraction and reflection, is more complex. It can be solved by
optimizing the image coordinates with respect to the object space error.

Light cones

A acute cone with the axis A, the vertex V and the angle θ < π
2
is the set of all points

X with

A ·
(

X − V
‖X − V ‖

)
= cosθ (A.13)

The distance of a point P to the cone is

d = ‖P − V ‖ · sin
(
min(δ,

π

2
)
)
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with δ = acos
(

P−V
‖P−V ‖ · A

)
− θ. Eq. A.13 can also be written as

(X − V )T M (X − V ) = 0 (A.14)

with

M = AAT − 1 · cos2θ (A.15)

and

A · (X − V ) > 0 (A.16)

Plugging eq. A.1 into eq. A.14 and simplifying, we obtain a quadratic equation

aλ2 + bλ+ c = 0 (A.17)

where a = T TMT , b = T TM(O − V ) and c = (O − V )TM(O − V ). Excluding all
degenerate cases, the sought after intersection point is

Xc = O +
−b−

√
b2 − ac
a

T (A.18)

This relation is used in the calibration of the light cones as well as in the calculation
of 3D data from the calibrated sensor.
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A.4 Algorithm Parameters
The proposed decoding algorithm has a number of parameters. In the interest of
usability it is of course desirable to have as few as possible. The following tables list
the parameters. Typically only the values in the first table need to be changed. Out of
them, the single most important parameter is the minimum edge symbol probability.
All others can be treated as constant for a given application.

Parameter Default Value Useful Range Comment
Color Enhancement

Iterations
1 0 to 4 Number of iterations for

Belief Propagation
Edge Symbol Error
Function Slope

1.5 0.5 to 4 Controls the error
function used for edge
symbol assignment

Minimum Edge Symbol
Probability

0.6 0.1 to 1 Controls how carefully
the decoding is

performed
Edge Symbol Probability

Credit Limit
0.2 0 to 0.5 Single Edges may fall

below the minimum
probability by this

amount
Gradient Ratio
Weighting Factor

0.5 0.1 to 1 Weighting of gradient
ratio relative to symbol
probability in position
score computation

Table A.2: Variable parameters of the decoding algorithm.
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Parameter Default Value Useful Range Comment
Low Resolution
Segmentation

1 0; 1 Speedup for decoding as
the number of regions is

reduced
Local Channel
Equalization

1 0; 1 Improvements on colored
surfaces

Fixed Luminance 0 0; 1 Improvements for
small-scale specularities

Crosstalk Correction 1 0; 1 Apply inverse
color-mixing matrix to
measured region colors.

Needs calibration.
Use Mask 0 0;1 Evaluate input image

only where mask is
non-zero

Use Green Channel
Gradient Only

0 0;1 Workaround for
chromatic aberration

Polar Transform Center (0.5,0.5) 0 to 1 Center point of the
cartesian image as

fractions of width and
height

Polar Transform Range
Radial

(0.1,0.4) 0 to 0.5 Minimum and maximum
radius as a fraction of
the cartesian diagonal

length
Polar Transform Phi

Offset
π 0 to 2π Controls the cut location

for the polar transform

Table A.3: Quasi-constant parameters for image processing
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Parameter Default Value Useful Range Comment
Color Enhancement

Sigmoid Width
0.6 0.5 to 1.5 Controls the probability

function used for color
enhancement

Color Enhancement
Sigmoid Steepness

6 4 to 10 Controls the probability
function used for color

enhancement
Color Enhancement

Linear Slope
0.5 0.25 to 1 Controls the probability

function used for color
enhancement

Maximum Angle
Deviation

60 30 to 90 Edges should have
approximately the
expected direction

Maximum Gradient
Ratio

1 0.1 to 10 Secondary Gradient
should small relative to

Primary Gradient
Maximum Number of
Identified Sequences

15 1 to 100 Speedup for decoding.
Stop after the first few

good components
Minimum Edge Sequence

Length
5 1 to 10 Additional safety. Basic

uniqueness is determined
from the pattern.

Ballast Fading Factor 0.9 0 to 1 Exponential fading of
ballast picked up during

identification
Minimum Component

Size
23 1 to 1000 Ignore small connected

components as they are
unreliable

Edge Fit Interval Half
Size

3 2 to 5 Search interval for
subpixel edge
localization

Tracing Minimum Edge
Length

3 1 to 100 Minimum number of
consecutive edge pixels

required
Tracing Maximum Gap

Size
2 1 to 10 Maximum number of

missing edge pixels
allowed

Tracing Max Lateral
Displacement

2 1 to 3 Larger lateral
displacement is

considered as a gap
Edge Smoothing Method 0 0;1;2 0 is none, 1 is median of

seven, 2 is c-spline
C-Spline Tau 0.2 0 to 1 Lower means more

smoothing

Table A.4: Quasi-constant parameters of the decoding algorithm.
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