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Abstract—Discrete representation of the CT image is a major
step in the design of iterative reconstruction algorithms,par-
ticularly because the decision being made at this level affects
both bias and noise properties of the reconstruction, in addition
to choices made later in the algorithm design. In this work,
we examine the bias induced by popular image representation
models, namely Joseph’s method and the basis function approach
relying on B-splines and blobs. Our preliminary results highlight
a common weakness in terms of overshoot and undershoot
artifacts at sharp boundaries. They also show that the Blobs
may perform only as well as the B-spline of order two in terms
of bias, and that Joseph’s method tends to produce results that
are fairly comparable to the B-spline of order one, with a slight
advantage in favor of the latter.

I. I NTRODUCTION

Discrete representation of the CT image is a major step in
the design of iterative reconstruction algorithms. Two com-
monly used techniques to represent the image with a finite
number of unknowns are the sampling approach and the basis
function approach. In the sampling approach, the image is
represented by its values at a fixed number of locations that are
typically equidistantly distributed in the direction of Cartesian
coordinates. In the basis function approach, the image is
represented by a finite linear combination of specific functions
that are often selected as scaled and translated versions ofa
single function, called the mother function. Popular mother
functions include the blobs [1] and the B-splines [2].

Since the basis function approach yields a continous model
for the image, the definition of line integrals modelizing the
CT measurements is straightforward when using this approach.
For the sampling approach, the situation is different: defining
line integrals with this approach requires the introduction of
a numerical scheme. One widely-used scheme was suggested
by Joseph [3]. Another more recent scheme that is gaining
interest is the distance-driven technique suggested by De Man
and Basu [4]. Note that both schemes process line integrals
differently according to their slope, with the caveat that the
involved approximation is usually less accurate for lines that
are at 45 degrees relative to the Cartesian grid of samples used
to represent the image.

Naturally, the performance of iterative reconstruction meth-
ods is affected by the choices made to represent the CT image
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and to model the CT measurements from this representation.
Both bias and noise properties of the CT reconstruction can
change dramatically according to these choices, as illustrated,
for example, in [5], for the selection of parameters definingthe
blobs. In this work, we are interested in evaluating the bias
induced by such choices. We will compare results obtained
using blobs and B-splines together with results obtained using
Joseph’s method. The study is limited to two-dimensional CT
imaging. In section II, we give a brief review on B-splines
ans blobs. In section III, we present our experimental setting.
Last, in section IV, we present and discuss preliminary results.

II. I MAGE REPRESENTATION USING BASIS FUNCTIONS

Here, we briefly review the basis function approach.
Throughout this section and the rest of this abstract, we
use f(x, y) to denote the function that describes the linear
attenuation coefficient of X-rays as a function of the position
within the field-of-view of the scanner.

A. General concept

In the basis function approach,f(x, y) is approximated by
a linear combination of basis functions denoted asfa(x, y).
When the basis functions are defined from a mother function,
b(x, y), the expression forfa(x, y) is as follows:

fa(x, y) =
∑

k,l

ckl · b((x − xk)/∆x, (y − yl)/∆y) (1)

where theckl are the basis function coefficients to be es-
timated. In this expression, the locationsxk = k ∆x and
yl = l ∆y are samples on a Cartesian grid of sizeNx × Ny

with steps∆x and ∆y in x and y, respectively. Often,∆x
and ∆y are selected to be equal. We make this assumption
here and leth = ∆x = ∆y.

B. Line integrals

When using the basis function approach to represent
f(x, y), the Radon transform off , denoted asr(θ, s), is simply
approximated by the Radon transform offa(x, y), denoted as
ra(θ, s). The linearity of the Radon transfrom yields

ra(θ, s) =
∑

k,l

ckl · g(θ, (s − xk cos θ − yl sin θ)/h) (2)

whereg(θ, s) is the Radon transform ofb(x, y).



C. B-splines

The B-splines are simple piecewise polynomial functions.
They are defined by a single parameter: the degree,n, of
the polynomial. The centered B-splineβn

h of degreen and
of width h is the (n + 1)-th convolution of the normalized
box function,β0

h, with itself, i.e.,

βn
h (x) = β0

h ∗ βn−1
h (x) = β0

h ∗ · · · ∗ β0
h

︸ ︷︷ ︸

n+1factors

(3)

with

β0
h(x) =

{
1/h, if − h/2 ≤ x ≤ h/2
0, otherwise

(4)

Using B-splines in the basis function approach means that
b(x, y) = βn

h (x)βn
h (y) is chosen. Let the one-sided power

function be defined by

xm
+ =







xm, x ≥ 0 andm > 0
1, x ≥ 0 andm = 0
0, otherwise

(5)

Using this definition, it was shown in [2] that the Radon
transform ofb(x, y) is

g(θ, s) =

n+1∑

i=0

n+1∑

j=0

(−1)i+j

(
n + 1

i

)(
n + 1

j

)

·

[
s + (n+1

2 − i) · h1(θ) + (n+1
2 − j) · h2(θ)

]2n+1

+

(2n + 1)! (h1(θ)h2(θ))n+1

(6)

where h1(θ) = h | cos θ| and h2(θ) = h | sin θ|. Note that
using the B-spline of ordern = 0 for image representation is
equivalent to adopting the approach of Siddon [6].

D. Blobs

The blob function is given by the following one-dimensional
expression

γm,a,α(r) =







(

1 − r2

a2

) m

2
Im

„

α

q

1− r
2

a
2

«

Im(α) if 0 ≤ r ≤ a

0 otherwise
(7)

wherer is the radial distance from the blob center,a is the
radius of the basis function,α is a parameter controlling the
blob shape, andIm is the modified Bessel function of orderm.

Using blobs in the basis function approach means that
b(x, y) is chosen asγm,a,α(r) with r =

√

x2 + y2. Given
this definition,g(θ, s) is independent ofθ, zero for |s| > a,
and expressed as

g(θ, s) =

„

2a2π

α

«

1

2
„

1 −

s2

a2

«

m

2
+ 1

4
I
m+ 1

2

»

α
“

1 −
s
2

a2

” 1

2

–

Im [α]
. (8)

for |s| < a. Following the recommendations in [5], we chose
m = 2, a = 2 andα = 10.4.

III. E XPERIMENTAL SETTING

In this section, we describe the setting used for evaluation
of the reconstruction bias and thereby compare the accuracy
of various image representation models.

A. Phantom and data geometry

The FORBILD head phantom was used for all our evalu-
ations. Also, a parallel-beam data acquisition geometry was
assumed. Each CT measurement was simulated as an av-
erage of five line integrals that were calculated each using
analytical expressions. The average was introduced to model
the finite detector response (disregarding non-linearity effects)
and reduce thereby high-frequency errors in the reconstruction
process. The parameters defining our simulations are given in
Table I.

B. Iterative reconstruction technique

Evaluating the bias in iterative reconstruction is not straight-
forward when the algorithm is non-linear. To circumvent this
difficulty, we adopted a statistical model with no prior term.
More specifically, the CT measurements were modelled as
independent Gaussian deviates, and we seeked the maximum
likelihood solution of minimum norm. Also, we assumed that
the noise was stationary, which is a reasonable assumption for
brain imaging with tube current modulation and beam-shaping
bowtie filter.

Let c be the vector of unknown image coefficients, letg
be the vector grouping the CT measurements, and letA be
the matrix that linksc to the CT measurements. Using this
notation, the desired reconstruction can be expressed as the
minimum-norm minimizer of‖Ac − g‖. This reconstruction
was seeked using the Landweber algorithm, i.e., using the
following iterative procedure:

c(k+1) = c(k) + λAT (g − Ac(k)) , (9)

where the convergence-controlling factor,λ, was chosen as
0.95 times2/σ2

max, where σmax is the maximum singular
value of the projection matrixA. Thus, convergence was
guaranteed and nearly as fast as possible. The quantityσmax

was computed using five iterations of the power method.
As it is well-known, resolution improves with the number

of iterations, but discretization errors also increase at the
same time, so that the maximum-likelihood reconstruction is
not satisfactory. Hence, we focused on examining regularized
reconstructions obtained by stopping the iterative process after
a fixed numberm of iterations.

C. Bias evaluation

Bias was evaluated using visual inspection of images and
profiles, and also by calculing the reconstruction error over
pixels located within the large central low-contrast ellipse
within the phantom. The error was computed as the abso-
lute difference between the reconstructed value and the true
attenuation value for this ellipse, which is 1.045 (45 HU ).

D. Resolution measurement

As discussed earlier, resolution in the reconstruction typ-
ically improves with the number of iterations. To evaluate
resolution, we opted for the modulation transfer function
(MTF). Computation of this function was performed with
the following steps: (i) a phantom that consists only of the



image discretization CT measurement
matrix size 350 × 350 700 × 380

(Ny × Nx) (views × rays-per-view)
sampling step ∆x = ∆y = 0.075 ∆s = 0.075

TABLE I
IMAGE REPRESENTATION ANDCT MEASUREMENT PARAMETERS.

low-contrast ellipse within the FORBILD head phantom was
defined, (ii) CT measurements for this ellipse were generated
in the same way as measurements for the full phantom,
(iii) reconstruction was performed from these measurements,
(iv) an edge profile that gives the reconstructed value as a
function of the distance from the ellipse was computed from
the reconstruction, (v) the MTF was obtained as the Fourier
transform of the edge profile.

Given the linearity of the chosen reconstruction method,
the methodology above was suitable for assessment of the
resolution achieved within the neighborhood of the large
low-contrast ellipse in reconstructions of the FORBILD head
phantom.

IV. PRELIMINARY RESULTS AND DISCUSSION

First, we examined the reconstructions obtained using both
a small and a large number of iterations, which were chosen
as 250 and 850. Figure 1 shows the reconstruction results
obtained using 250 iterations, and Figure 2 shows a vertical
profile through these results, which passes through the left
eye. Figures 3 and 4 shows the reconstruction results and
profiles for 850 iterations. These figures highlight significant
differences between the different image representations.They
also show that, irrespective of the selected representation,
increasing the number of iterations amplifies the magnitude
of overshoots and undershoots errors at the sharp boundaries
while reducing their spread; note that these errors are present
despite the low-pass filtering that was applied in the data
simulation process.

Figure 5 shows the MTF curves corresponding to each
image representation for both 250 and 850 iterations. From
these plots, it can be seen that, not unexpectedly, resolution
varies from one representation to the other and also changesat
a different pace for each representation. For a fair comparison,
it is needed to take these differences into account. An attempt
at such a comparison is shown in Figure 6, where the bias
metric discussed in section III.C is displayed as a functionof
the mean MTF value.

Under the assumption that the mean MTF value is ac-
ceptable as a summary measure for resolution, the following
observations can be made from Figure 6, some of which were
already well-known:

• The B-spline withn = 0 produces the largest bias.
• Joseph’s method performs almost as well as the B-spline

of ordern = 1, with a slight difference in favor of the B-
spline that is most likely due to Joseph’s method yielding
a reduced accuracy along lines that are at 45 degrees.

• The B-spline of ordern = 2 performs as well as the
blobs.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

frequency [lp/cm]

 

 

Joseph
B−spline n=0
B−spline n=1
B−spline n=2
B−spline n=3
Blob

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

frequency [lp/cm]

 

 

Fig. 5. left: Modulation transfer function (MTF) for reconstructions based on
250 and 850 iterations of the Landweber algorithm, using thebasis function
approach with the blobs and the B-splines, and also using Joseph’s method.
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Fig. 6. left: Bias-versus-resolution curves obtained by varying the number
of iterations by steps of 5. The bias is expressed in HU.

• The B-spline of ordern = 3 outperforms the blobs.

In future work, we will examine closer the impact of the
summary measure being chosen for the MTF curve, and
we will also extend our study to include the distance-driven
technique [4].
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Fig. 1. Reconstruction using 250 iterations of the Landweber algorithm, using Joseph’s method (top row, left image); using the B-splines of ordern = 0
(top row, middle image),n = 1 (top row, right image),n = 2 (bottom rowm, left image) andn = 3 (bottom row, middle image); and using the blobs (bottom
row, right image). Grayscale: [1,1.1].
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Fig. 2. Profile through the left eye for the reconstructions based on 250 iterations. Same arrangement is as in Fig. 1.



Fig. 3. Iterative reconstruction using 850 iterations of the Landweber algorithm. Grayscale: [1,1.1]. Same arrangement is as in Fig. 1.
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Fig. 4. Profile through the left eye for the reconstructions based on 850 iterations. Same arrangement is as in Fig. 1.


