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Abstract—Discrete representation of the CT image is a major and to model the CT measurements from this representation.
step in the design of iterative reconstruction algorithms,par-  Both bias and noise properties of the CT reconstruction can
ticularly because the decision being made at this level af&s  jange dramatically according to these choices, as iitesir
both bias and noise properties of the reconstruction, in adiion - . .
to choices made later in the algorithm design. In this work, for example., in [5], for the selgctlon of pgrameters_deflnh'ﬂg .
we examine the bias induced by popu|ar image represen’[ation b|ObS. In th|S WOI’k, we are |nterested n eVaIUaUng the bIaS
models, namely Joseph’s method and the basis function appreh  induced by such choices. We will compare results obtained
relying on B-splines and blobs. Our preliminary results hichlight  uysing blobs and B-splines together with results obtainéugus

a common weakness in terms of overshoot and underShOOtJoseph’s method. The study is limited to two-dimensional CT

artifacts at sharp boundaries. They also show that the Blobs . - | fi I . brief . B-spli
may perform only as well as the B-spline of order two in terms 'Ma@INg. 1IN Section {i, we give a briet review on b-Spiines

of bias, and that Joseph’s method tends to produce results g1  ans blobs. In section I1l, we present our experimental rsgiti
are fairly comparable to the B-spline of order one, with a slght Last, in section IV, we present and discuss preliminaryltesu
advantage in favor of the latter.

l. INTRODUCTION Il. IMAGE REPRESENTATION USING BASIS FUNCTIONS

Discrete representation of the CT image is a major step inHere, we briefly review the basis function approach.
the design of iterative reconstruction algorithms. Two eonThroughout this section and the rest of this abstract, we
monly used techniques to represent the image with a finitse f(x,y) to denote the function that describes the linear
number of unknowns are the sampling approach and the bagienuation coefficient of X-rays as a function of the positi
function approach. In the sampling approach, the image visthin the field-of-view of the scanner.
represented by its values at a fixed number of locations teat a
typically equidistantly distributed in the direction of @asian
coordinates. In the basis function approach, the image As General concept
represented by a finite linear combination of specific fumﬂi In the basis function approaclf(z, y) is approximated by
that are oftgn selected as scaled and trfamslated versioas Qf inear combination of basis functions denoted aér, ).
single function, called the mother function. Popular mothgynen the basis functions are defined from a mother function,
funqtlons mcludg the blpbs [1] and the_ B-splines [2]. b(x,y), the expression fof,(z,y) is as follows:

Since the basis function approach yields a continous model
for the image, the .definit.ion of line integrals. mod(_elizingeth falz,y) = Z er - b((z — )/ Az, (y — ) /Ay) (1)

CT measurements is straightforward when using this approac ol

For the sampling approach, the situation is different: diedin

line integrals with this approach requires the introductad Where thecy, are the basis function coefficients to be es-
a numerical scheme. One widely-used scheme was suggeéf@ated. In this expression, the locations = kAz and
by Joseph [3]. Another more recent scheme that is gainitig= { Ay are samples on a Cartesian grid of si¥g x N,
interest is the distance-driven technique suggested by Bre Mvith stepsAz and Ay in = and y, respectively. OftenAx
and Basu [4]. Note that both schemes process line integraif Ay are selected to be equal. We make this assumption
differently according to their slope, with the caveat tHae t here and let, = Az = Ay.

involved approximation is usually less accurate for linest t

are at 45 degrees relative to the Cartesian grid of sampégb us | |

to represent the image. B. Line integrals

Naturally, the performance of iterative reconstructiortime  When using the basis function approach to represent
ods is affected by the choices made to represent the CT imqqg’ y), the Radon transform gf, denoted as(6, s), is simply
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C. B-splines A. Phantom and data geometry

The B-splines are simple piecewise polynomial functions. The FORBILD head phantom was used for all our evalu-
They are defined by a single parameter: the degneegf ations. Also, a parallel-beam data acquisition geometrg wa
the polynomial. The centered B-spling of degreen and assumed. Each CT measurement was simulated as an av-
of width & is the (n 4+ 1)-th convolution of the normalized erage of five line integrals that were calculated each using

box function,3?, with itself, i.e., analytical expressions. The average was introduced to imode
n(N 30 an—=1/.N_ g0 . 40 the finite detector response (disregarding non-lineaffgces)
Bn(@) = B B @) = G * By () and reduce thereby high-frequency errors in the recortitruc
n+1factors process. The parameters defining our simulations are given i
with Uh i —hj2<z<h/2 Table I.
0 o y | — ST S
B (z) = { 0,  otherwise )

B. lterative reconstruction technique

Using B-splines in the basis function approach means tha . L . L .
9 np " : bp : tEvaluatmg the bias in iterative reconstruction is notigtrt
b(z,y) = B (z) B (y) is chosen. Let the one-sided powet . . X . .
! . orward when the algorithm is non-linear. To circumvensthi
function be defined by con o . )
difficulty, we adopted a statistical model with no prior term

g™, z > 0andm >0 More specifically, the CT measurements were modelled as
g =4 1, = > 0andm=0 (5) independent Gaussian deviates, and we seeked the maximum
0, otherwise likelihood solution of minimum norm. Also, we assumed that
Using this definition, it was shown in [2] that the Radorhe noise was stationary, which is a reasonable assumtion f
transform ofb(z, ) is brain imaging with tube current modulation and beam-shgapin
ntlntl bowtie filter. _ N
60,5) = 3 S (~1)H (”+ 1) (”+ 1) Let ¢ be the vector of unknown image coefficients, let
? J be the vector grouping the CT measurements, andildte

=0 j=0
'7n+1 ) bl - on+1 the matrix that linksc to the CT measurements. Using this
. [s + (5= — 1) - m(6) + ("5 —5) - ha(O)] notation, the desired reconstruction can be expressedeas th
(2n + 1) (h1(0) ha(0))+1 minimum-norm minimizer of{| Ac — g||. This reconstruction
(6) was seeked using the Landweber algorithm, i.e., using the

where h1(0) = hlcosf| and ha(6) = h|sinf|. Note that following iterative procedure:
using the B-spline (_)f ordet, = 0 for image_ representation is B 1) = (k) 4 )\AT(g _ Ac(k)) ’ (9)
equivalent to adopting the approach of Siddon [6].

where the convergence-controlling factdr, was chosen as

D. Blobs 0.95 times2/02,,., Where o,,., is the maximum singular
The blob function is given by the following one-dimensionaf@/ue of the projection matrixd. Thus, convergence was
expression guaranteed and nearly as fast as possible. The quantity
was computed using five iterations of the power method.
r2 - . . .
2\ % Im (a\/l—:z> ) As it is well-known, resolution improves with the number
Yrma,a(T) = (1 N ?) Im(a) fo<r<a of iterations, but discretization errors also increase et t

. same time, so that the maximume-likelihood reconstruct®n i
0 otherwise not satisfactory. Hence, we focused on examining regudriz

_ S . (7)  reconstructions obtained by stopping the iterative proafter
wherer is the radial distance from the blob centerjs the 5 fixed number of iterations.

radius of the basis functiony is a parameter controlling the
blob shape, and,, is the modified Bessel function of order.
Using blobs in the basis function approach means thdt
b(z,y) is chosen asy, q..(r) with r = /22 +y2. Given Bias was evaluated using visual inspection of images and
this definition,g(0, s) is independent of), zero for|s| > a, Profiles, and also by calculing the reconstruction errorrove

Bias evaluation

and expressed as pixels located within the large central low-contrast elép
i1 within the phantom. The error was computed as the abso-
2027\ 3 2\ 2+1 Tmgl | (1 - ;‘;—2> 2} lute difference between the reconstructed value and thee tru
9(6,5) = ( - ) (1 - a—2> o] (8) attenuation value for this ellipse, which is 1.046 (HU).

for |s| < a. Following the recommendations in [5], we chose

m=2,a=2anda = 10.4. D. Resolution measurement
As discussed earlier, resolution in the reconstruction typ
Il. EXPERIMENTAL SETTING ically improves with the number of iterations. To evaluate

In this section, we describe the setting used for evaluatioesolution, we opted for the modulation transfer function
of the reconstruction bias and thereby compare the accurédbyTF). Computation of this function was performed with
of various image representation models. the following steps: (i) a phantom that consists only of the



image discretization CT measurement

matrix size 350 x 350 700 x 380
(Ny X Ng) (views x rays-per-view) '
sampling step Az = Ay = 0.075 As =0.075
0.8
TABLE |

0.6
IMAGE REPRESENTATION ANDCT MEASUREMENT PARAMETERS

—— Joseph
——B-spline n=0
—— B-spline n=1
0.2f | — B-spline n=2
. . . — B-spli =
low-contrast ellipse within the FORBILD head phantom wa bor

defined, (ii) CT measurements for this ellipse were gendrat o1 2 3 a5 6 CREER

3 4
in the same way as measurements for the full phantom, reenerioem reeneripen
(iii) reconstruction was performed from these measuresentig. 5. left: Modulation transfer function (MTF) for reconstructionssbd on
(iv) an edge profile that gives the reconstructed value as?¥ and 850 iterations of the Landweber algorithm, usingbthsis function
function of the distance from the ellipse was computed fromjproach with the blobs and the B-splines, and also usingpbs method.
the reconstruction, (v) the MTF was obtained as the Fouri~~
transform of the edge profile. 20

0.4

0.2

Given the linearity of the chosen reconstruction methoisr — o
the methodology above was suitable for assessment of = | —n1
resolution achieved within the neighborhood of the larg —n2
low-contrast ellipse in reconstructions of the FORBILD thea14f :Ei)b 0
phantom. 1ol joseph ||

IV. PRELIMINARY RESULTS AND DISCUSSION 10
First, we examined the reconstructions obtained using bc 8

a small and a large number of iterations, which were chos 4

as 250 and 850. Figure 1 shows the reconstruction result

obtained using 250 iterations, and Figure 2 shows a vertic 4|

profile through these results, which passes through the | 5|

eye. Figures 3 and 4 shows the reconstruction results ¢

profiles for 850 iterations. These figures highlight sigmific 82 025 03 035 04 045 05 055 06

differences between the different image representatibimsy

?ISO Sh_OW that, irrespectiye Of, the sele(_:'Fed represent,atigf iterations by steps of 5. The bias is expressed in HU.

increasing the number of iterations amplifies the magnitude

of overshoots and undershoots errors at the sharp bousdarie

while reducing their spread; note that these errors areeptes , The B-spline of order = 3 outperforms the blobs.

despite the low-pass filtering that was applied in the data, g re work, we will examine closer the impact of the

simulation process. summary measure being chosen for the MTF curve, and

_ Figure 5 shows the MTF curves corresponding t0 €agfh i also extend our study to include the distance-driven
image representation for both 250 and 850 iterations. Frnghnique [4].

these plots, it can be seen that, not unexpectedly, resoluti
varies from one representation to the other and also chages
a different pace for each representation. For a fair corapayi

it is needed to take these differences into account. An gitenht! S@yaiiéwﬁég?gwﬂﬁfw ?L?&aijonismigeogﬂtpr?;‘tagﬁlnsaUi?fo)
at such a comparison is shown in Figure 6, where the bias ,, 1834.46, 1990. o T '

metric discussed in section IlI.C is displayed as a functibn [2] S. Horbelt et al. Discretization of the Radon Transform and of its Inverse
the mean MTF value. t;;rl) 33)22(_3720%0(I)gti0ns, IEEE Transactions on Medical Imaging, 21(4),
Under the assumption that the mean MTF value is ag p M. Josephan Improved Algorithm for Reprojecting Rays Trough Pixel

ceptable as a summary measure for resolution, the following Images, IEEE Transactions on Medical Imaging, 1(3), pp. 192-982L9
observations can be made from Figure 6, some of which wdfe B- De Man, S. BasuDistance-driven projection and backprojection in

three dimensions, Physics in Medicine and Biology, 49, pp. 2463-75,
already well-known: 2004,

« The B-spline withn, = 0 produces the Iargest bias. [5] S. Matej and R. M. LewittPractical considerations for 3-D image recon-
, . struction using spherically symetric volume elements, IEEE Transactions
« Joseph's method performs almost as well as the B-spline ¢, wvedical imaging, 15(1), pp. 68-8, 1996.

of ordern = 1, with a slight difference in favor of the B- [6] R. L. Siddon,Fast calculation of the exact radiological path for a three-
spline that is most likely due to Joseph’s method yielding dimensional CT array, Med. Phys., 12(2), pp. 252-55, 1985.
a reduced accuracy along lines that are at 45 degrees.
o The B-spline of ordem = 2 performs as well as the
blobs.

ig. 6. |eft: Bias-versus-resolution curves obtained by varying the bberm
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Fig. 1. Reconstruction using 250 iterations of the Landweldgorithm, using Joseph’s method (top row, left image)naigthe B-splines of orden = 0
(top row, middle image)n = 1 (top row, right image)n = 2 (bottom rowm, left image) and = 3 (bottom row, middle image); and using the blobs (bottom
row, right image). Grayscale: [1,1.1].
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Fig. 2. Profile through the left eye for the reconstructiomasdd on 250 iterations. Same arrangement is as in Fig. 1.



Iterative reconstruction using 850 iterations af ttandweber algorithm. Grayscale: [1,1.1]. Same arrangefseas in Fig. 1.
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Profile through the left eye for the reconstructioasdadl on 850 iterations. Same arrangement is as in Fig. 1.




