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Abstract

Embedded mobile systems for analysis and classifi-
cation become more and more important in the field of
sports and sports science. Small and lightweight sen-
sors in sportswear offer the possibility to monitor the
athletes in a realistic environment, e.g. during an out-
door run. During the activity, the sportswear can au-
tomatically adapt to the current environment and hence
optimizes the performance of the athlete. A major need
is a running shoe, which can automatically be adapted
to the current ground.
In this paper, a classification system was developed,
which distinguished between different surfaces and in-
clinations based on inertial sensors. They were placed
on the heel of a running shoe and acquired kinematic
data of 21 subjects. For each subject, several rounds
of an one hour outdoor run were available and were
used for the evaluation of the system. The classification
system reached a mean classification rate of more than
80 %.

1. Introduction

Embedded mobile systems for analysis and classifi-
cation become more and more important in the field of
sports and sports science. Small and lightweight sen-
sors in sportswear offer the possibility to monitor the
athletes in a realistic environment, e.g. during outdoor
running. During the activity, the sportswear can auto-
matically adapt to the current environment.
For example, the authors in [3] showed that the data of a
heel compression sensor can be used to adapt the cush-

ioning setting of a running shoe to the current surface.
A hall sensor was mounted at the top of the cushion-
ing element and measured the magnetic field strength
induced by a small magnet. The surface classification
system reached a classification rate of more than 80 %.
The same sensor setup and running shoe were used for
the classification of inclinations during running in [4].
In this case, the system achieved a classification rate of
only 67.2 %.
In contrast to [3] and [4], an inertial sensor was used in
[1] to estimate the inclination of walking. Acceleration
signals of the trunk and the heel were acquired for five
subjects. Neural networks were trained and tested with
kinematic data during treadmill and outdoor running,
respectively. The outdoor test circuit involved roads
of various inclines. The correlation between predicted
and actual inclines was 0.98, and the maximum speed-
predicted error was 16 %.
[3] and [4] showed that data of a heel compression sen-
sor on the shoe could be used for the classification of
different surfaces, but were less suitable for the clas-
sification of inclinations. However, the authors in [1]
achieved a high correlation of predicted and actual in-
clination based on kinematic data of an inertial sensor.
For the adaptation of sportswear to the current environ-
ment of the athlete, the possibility to classify both sur-
faces and inclinations with the same sensor type is im-
portant, in order to reduce the cost and the complexity
of the sportswear.
Thus, the purpose of this paper was to develop an auto-
matic classification system that distinguished between
different surfaces and inclinations based on data of in-
ertial sensors mounted on a running shoe.
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With the knowledge of the surface and inclination, a
running shoe can automatically adapt to the current
ground. This optimizes the performance of the athlete,
prevents injuries of the athlete [7] and makes running
more attractive.

2. Materials and Methods
2.1 Hardware Equipment

An ITG-3200 digital triple-axis gyroscope (In-
venSense, Sunnyvale, California) and a BMA150 dig-
ital triple-axis accelerometer (Bosch Sensortec, Reut-
lingen, Germany) were rigidly mounted on the heel of
a running shoe (adidas Duramo 2, adidas AG, Herzo-
genaurach, Germany), see Figure 1. The sensors were
aligned with the body axis. A custom data logger stored
the kinematic data on a SD-card. The gyroscope and
accelerometer had a range of ± 2000◦/s and ± 8g, re-
spectively. The data sampling rate was 1000 Hz.
In order to acquire the current location of the run-
ner during the data acquisition, the Global Position-
ing System (GPS) position was captured by a HTC
Legend Android-based smartphone (HTC Corporation,
Taoyuan, Taiwan). The data sampling rate was 1 Hz.

Figure 1. Inertial sensors mounted on the
heel of an adidas Duramo 2 (box) and data
logger (circle).

2.2 Data Collection

A running study was performed, in which 21 male
subjects participated (age: 38.3 ± 10.8 years, height:
175.6 ± 4.6 cm, weight: 71.7 ± 7.9 kg). The partici-
pants were asked to run several rounds on a predefined
route (distance: 2.1 km), until a duration of about one
hour was reached. The average number of rounds was
5.7 with a standard deviation of 0.6. The route included
parts with different surfaces (grass, street trail) and in-
clinations (uphill, flat, downhill). Table 1 shows the dis-
tance and inclination of the conditions that were used

Table 1. Information of conditions grass
flat (GF), trail flat (TF), street flat (SF),
street uphill (SU) and street downhill (SD).
Columns show condition (Cond), dis-
tance (Dist), inclination (Inc) and number
of instances (# Inst).

Cond Dist [m] Inc [%] # Inst
GF 175 -2.3 117
TF 75 -4.4 119
SF 110 -0.9 to 1.2 120
SU 65 10.5 119
SD 65 -10.5 120

for the analysis. Furthermore, the number of instances
are given for each condition. An instance was defined
as the kinematic data of a subject for a certain condi-
tion. Since the subjects performed several rounds, one
instance of a certain condition was available for each
round. The instances of GF , TF and SF were used for
the classification of surfaces. The instances of SF , SU
and SD were used for the classification of inclinations.

2.3 Labeling and Preprocessing

For the labeling of the kinematic data to the condi-
tions, shown in table 1, a GPS-based procedure was ap-
plied. The GPS positions of the start and end borders
of the five conditions in table 1 were defined in Google
Earth (Google Inc., Mountain View, California) before
the running study took place. They were projected onto
the runner’s GPS position acquired by the smartphone.
After the synchronization of the inertial sensors and the
smartphone, the labeled instances were available.
These instances might contain kinematic data of differ-
ent conditions in the proximity of the borders. Thus,
20 % of the kinematic data at the beginning and at the
end were not used.
Since the different lengths of the instances should not
influence the classification results, the length was cho-
sen to be the length of the shortest instance, which was
eight seconds. Longer instances were symmetrically cut
in the direction to the center of the condition.

2.4 Feature Extraction

Each of the eight second instances consisted of
recordings from three accelerometer and three gyro-
scope axes. For each axis, 11 features in the time and
frequency domain were computed. In total, 66 features
were computed for each instance.
In the frequency domain, the spectral centroid and the
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bandwidth were computed. Furthermore, the mean,
standard deviation, skewness and kurtosis of the am-
plitude of the fast Fourier transformation were used as
features.
In the time domain, five Linear Predictive Coding
(LPC) [8] coefficients were computed. The autocorre-
lation method of autoregressive modeling was used to
determine the filter coefficients [5]. The Yule-Walker
equations were solved by the Levinson-Durbin algo-
rithm [6].

2.5 Feature Selection and Classification

Since there is no single classifier that is suitable
for all classification tasks [2], different classifiers were
compared. In detail, Linear Discriminant Analysis
(LDA), k-Nearest Neighbor classifier (kNN) and Sup-
port Vector Machine (SVM) were used [2, 9]. The lin-
ear kernel (SVM linear), polynomial kernel (SVM poly)
and radial basis function kernel (SVM RBF) were used
in the case of SVM.
For performance assessment, the mean class dependent
classification rate and the overall mean classification
rate were computed with a leave-one-subject-out proce-
dure. In order to reduce the number of features, the se-
quential forward selection algorithm [9] was used. The
feature selection was cross-validated in every leave-
one-subject-out trial with an inner leave-one-subject-
out loop.
The parametric classifiers were optimized by using a
grid search approach. The k-parameter of kNN was
evaluated for k = [1, 2, ..., 15]. The cost parameter
C of the SVM was evaluated for C = 10N , N ∈
[−1, 0, 1, 10, 100]. The γ parameter of the RBF ker-
nel was evaluated for γ = 10N , N ∈ [−7,−6, ..., 1].
The degree parameter d of the polynomial kernel was
evaluated for d = [2, 3, 4, 5].

3. Results

For one participant, the GPS system started the
recording after the grass condition at round one. Thus,
the grass condition of this participant could not be used.
Two participants left the predefined route in one round,
so that several conditions were also not usable in those
cases. The number of instances that were available for
the classification experiments can be seen in table 1.

3.1 Classification of Surfaces

The mean class dependent and overall mean classi-
fication rates can be seen in table 2. The best classi-
fier was SVM RBF with a mean classification rate of
85.3 %.

The best classification rates for the parametric classi-
fiers could be achieved using the following parameters:
k = 9 (kNN), C = 1 (SVM linear), C = 10 and γ = 1
(SVM RBF), C = 1000 and d = 4 (SVM poly).
Sixty percent of the selected features were in the time
domain. Eighty-one percent of the features were se-
lected from an accelerometer signal. These numbers
were based on the result of the feature selection of all
optimized classifiers.

Table 2. Classification of surfaces: classi-
fication rates in percent.

Classifier Grass Trail Street Mean
LDA 90.1 70.0 77.2 79.1
SVM linear 90.0 85.7 78.8 84.8
SVM RBF 87.8 84.4 83.7 85.3
SVM poly 90.1 84.2 74.5 83
kNN 87.8 85.4 76.4 83.2

3.2 Classification of Inclinations

The mean class dependent and overall mean classi-
fication rates can be seen in table 3. The best classi-
fier was SVM RBF with a mean classification rate of
81.2 %.
The best classification rates for the parametric classi-
fiers could be achieved using the following parameters:
k = 7 (kNN), C = 1000 (SVM linear), C = 1000 and
γ = 1 (SVM RBF), C = 100 and d = 3 (SVM poly).
Seventy percent of the selected features were in the fre-
quency domain. Seventy-seven percent of the features
were selected from a gyroscope signal.

Table 3. Classification of inclinations:
classification rates in percent.

Classifier Uphill Downhill Flat Mean
LDA 87.6 87.1 64.4 79.7
SVM linear 73.7 88.9 67.1 76.5
SVM RBF 83.5 81.1 79.0 81.2
SVM poly 84.9 84.1 70.2 79.8
kNN 82.1 86.5 72.5 80.3

4. Discussion

For the adaptation of sportswear to the current envi-
ronment of the athlete, the possibility to classify both
surfaces and inclinations with the same sensor type is
important, in order to reduce the cost and the complex-
ity of the sportswear.
The acquisition system, used in this paper, consisted of
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inertial sensors on the heel of a running shoe. The clas-
sification system distinguished between different sur-
faces and inclinations with a mean classification rate
of 85.3 % and 81.2 %, respectively. Since the algo-
rithms for the surface classification in [3] were opti-
mized for the restricted embedded system hardware en-
vironment, it is difficult to compare the classification
rates of both approaches. But the rather high classifica-
tion rates achieved by using inertial sensors are a good
starting point for further research and show that the sys-
tem is applicable for discriminating both surfaces and
inclinations.
In a real-time application on a mobile system, the mis-
classification rates of the current system might increase
in the proximity of the transition of two conditions and
if a single condition last less than eight seconds. The
reason is that the instance includes kinematic data of
two different conditions. Thus, in order to improve the
performance of the system, it is proposed to decrease
the length of the instance. Furthermore, a majority vot-
ing of the classification results of subsequent instances
reduces the misclassification rate.
As it can be seen in the tables 2 and 3, the mean class
dependent classification rates vary between the condi-
tions. The classification rate of grass is rather high com-
pared to street and trail. The classification rate of flat is
rather low compared to uphill and downhill. In order to
improve the performance of the system, it is proposed
to use additional features, e.g. wavelets.
After the feature selection routine, 60 % of the features
were in the time domain and 81 % were based on an
accelerometer axis in the case of classifying surfaces.
In the case of classifying inclinations, 70 % of the se-
lected features were computed in the frequency domain
and 77 % were based on a gyroscope axis. This implied
that depending on the classification of surfaces or in-
clinations different feature groups were important. Fur-
thermore, depending on the classification of surfaces or
inclinations either features of the accelerometer or gy-
roscope signal had a major impact on the classification.
For a real-time application in mobile use, a classifier
would be preferred which can discriminate combina-
tions of surface and inclination, e.g. street up, trail
down, grass flat. In this case, the current system can
be modified to a hierarchical classification system. In
the first step, the surface is classified and in the second
step the inclination or vice versa.
All in all, the classification system showed that surfaces
and inclinations can separately be discriminated by us-
ing only inertial sensors placed on a running shoe. No
further sensor types have to be used for these classifica-
tion tasks, which reduces the cost and the complexity of
the sportswear.

5. Conclusion

Embedded mobile systems for analysis and classi-
fication become more and more important in the field
of sports and sports science. For the adaptation of
sportswear to the current environment of the athlete,
the possibility to classify both surfaces and inclinations
with the same sensor type is important, in order to re-
duce the cost and the complexity of the sportswear.
In this paper, a classification system was developed,
which could discriminate between different surfaces
(grass, street and trail) and inclinations (uphill, flat and
downhill) with a classification rate of more than 80 %.
For data acquisition, only inertial sensors were used.
The system can now be implemented on an embedded
mobile system for real-time application. It is proposed
that the classification of the surface and inclination with
only one sensor type is one part of an intelligent shoe in
the future, which helps the athlete to improve the own
performance day by day and reduces the risk of injuries.
This makes running more attractive.
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