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Abstract. Over the last years, range imaging (RI) techniques have been
proposed for patient positioning and respiration analysis in motion com-
pensation. Yet, current RI based approaches for patient positioning em-
ploy rigid-body transformations, thus neglecting free-form deformations
induced by respiratory motion. Furthermore, RI based respiration anal-
ysis relies on non-rigid registration techniques with run-times of several
seconds. In this paper we propose a real-time framework based on RI to
perform respiratory motion compensated positioning and non-rigid sur-
face deformation estimation in a joint manner. The core of our method
are pre-procedurally obtained 4-D shape priors that drive the intra-
procedural alignment of the patient to the reference state, simultaneously
yielding a rigid-body table transformation and a free-form deformation
accounting for respiratory motion. We show that our method outper-
forms conventional alignment strategies by a factor of 3.0 and 2.3 in
the rotation and translation accuracy, respectively. Using a GPU based
implementation, we achieve run-times of 40 ms.

1 Introduction

Accurate patient positioning and respiratory motion analysis are key issues for
the success of medical procedures. For example, in fractionated radiotherapy,
the patient must be aligned with respect to planning data and continuously
monitored to account for respiratory motion and spontaneous movements [1].
Recently, techniques based on real-time range imaging (RI) have been proposed
for positioning and respiration analysis [2–6]. Compared to commonly employed
imaging techniques, RI sensors are marker-less, non-intrusive and do not imply
radiation exposure. However, current RI based positioning systems employ rigid
registration techniques neglecting free-form deformations induced by respiratory
motion. In this context, recent work reported an error scale of non-rigid motion
up to 25 mm [5, 6]. Another motivation for non-rigid registration of respiration-
induced surface deformations arises from observations that an analysis of multi-
ple surface regions allows for an improved prediction of internal organ movement



compared to a single external surrogate [7]. Apart from applications in radio-
therapy, the prediction of internal movement from external surrogates also holds
potential for statistical lung motion modelling [8] or 4-D CT reconstruction and
sorting [9]. However, current surrogates based on RI techniques rely on heuristic
surface partitioning strategies based on points and patches [7] or manually se-
lected bounding boxes of anatomical regions [4]. Though dense non-rigid surface
registration techniques to generate respiration surrogates were recently proposed
[6, 10], run-times of several seconds are not acceptable in clinical practice.

In this paper we propose a framework that by design allows to perform respi-
ratory motion compensated patient positioning and non-rigid surface deforma-
tion estimation in a joint manner. Our method is based on pre-procedurally ob-
tained patient-specific 4-D shape priors derived from statistical analysis of non-
rigidly registered 3-D RI patient surface data from different respiration states.
The intra-procedural alignment of the patient to the reference state is then
driven by the shape priors, simultaneously yielding a rigid-body table transform
and a free-form deformation accounting for respiratory motion. With real-time
constraints in mind, our framework outsources the computationally expensive
task of non-rigid surface registration to a pre-procedural training phase. Intra-
procedurally, this allows to employ real-time algorithms taking advantage of
the pre-procedurally obtained priors. In particular, we designed our method to
support parallel computation on many-core architectures such as GPUs.

2 Method

Our method relies on RI devices that deliver dense and metric surface infor-
mation of the captured body in real-time. Clinically available systems are for
example AlignRT (Vision RT, London, UK) or Catalyst (C-RAD AB, Uppsala,
Sweden). We denote x (ξi) ∈ R3 the world coordinate associated with ξi in a
2-D sampling domain Ω ⊂ R2 discretized with N ×M pixels. We denote a point
cloud or surface as S = {x (ξ1) , . . . ,x (ξN ·M )} which can be linearized as:

S ≡ s =
[
x (ξ1)

>
, . . . ,x (ξN ·M )

>
]>
∈ R3NM . (1)

We now briefly explain the general steps of our method. Pre-procedurally,
we non-rigidly register RI surfaces {S1, . . . ,ST } acquired at different respiration
states t = 1 . . . T to a reference surface SRef. The reference can be acquired
using RI sensors or imported from volumetric planning data by (i) segmenting
the body from the background, (ii) isosurface extraction, and (iii) rendering
the surface mesh to a z-buffer representation and sample it from Ω. We obtain
T displacement fields U = {u1, . . . ,uT } , ut ∈ R3NM that are used to build a
deformable modelM (b) representing the priors of our method. Here, b denotes a
parameter vector to control the model. The intra-procedural respiratory motion
compensated alignment of the patient to the reference state is then computed
by finding a rigid-body transformation (R̂, t̂) with rotation R̂ and translation t̂

and the parameters b̂ such that the corresponding model instanceM(b̂) fits the
patients instantaneous state. An illustration is given in Fig. 1.



Fig. 1. Respiratory motion compensated patient alignment. The reference state (left

gray shape) is deformed according toM(b̂) and transformed by (R̂, t̂) to fit the instan-

taneous state SI (right shape). The displacement field corresponding to M(b̂) is color
coded with red tones denoting large and blue tones denoting small displacements.

2.1 Non-rigid Surface Registration

Training a deformable surface model requires a set of displacement fields U that
describe the elastic deformation φt matching a patient reference surface SRef and
patient surface data St captured at different respiration states t. We represent
the deformation φt by a displacement field ut defined on Ω with

φt (x (ξ)) = x(ξ) + ut(ξ), x (ξ) ∈ SRef . (2)

Now, the goal is to estimate φt in a sense that φt(SRef) ≈ St. For this purpose,
we represent St at time t by its corresponding signed distance function dt(x) :=
±dist(x,St), where the sign is positive outside the body and negative inside.
Further, ∇dt(x) is the outward pointing normal on St and |∇dt(x)| = 1. Based
on dt(x), we can define the projection P (x) := x − dt(x)∇dt(x) of a point
x ∈ R3 in a neighborhood of St onto the closest point on St. Thus, we quantify
the closeness of a displaced reference surface point φt(x),x ∈ SRef to St using
|P (φt(x))−φt(x)| = |dt(φt(x))| as a point-wise measure. Based on this closeness
measure, we use a variational formulation for estimating ut as a minimizer of
the functional

E [ut] = Ematch[ut] + αEreg[ut] =

∫
Ω

(
dt
(
x(ξ) + ut(ξ)

)2
+ α‖Dut(ξ)‖2F

)
dξ (3)

where Du(ξ) denotes the Jacobian of u(ξ) and α the regularization weight. The
matching term Ematch ensures that φt(SRef) ≈ St. As a smoothness prior, we
took a quadratic regularization term on the Jacobian of the displacement into
account. For numerical minimization of Eq. 3, we considered a Finite Element
approximation on a uniform rectangular N × M grid covering Ω for spatial
discretization and applied a multi-scale gradient descent scheme, c.f. [10].

2.2 Deformable Model Generation

Based on the patient-specific set of non-rigidly registered surfaces St we apply a
principal component analysis (PCA) to the training set V = {sRef ,v1, . . . ,vT }



with vt = sRef + ut. The P ≤ T eigenvectors ei with the largest non-zero
eigenvalues of the covariance matrix of the centered version of V define the
model’s modes of variation as

Φ = [e1, . . . , eP ] ∈ R3NM×P . (4)

A linear combination of the P principal modes of variation spans a subset of RI
surfaces S composed of the given modes of variation as

S ≡M (b) = v +Φb, v =
1

T + 1

(
sRef +

T∑
t=1

vt

)
. (5)

Here, b ∈ RP is a parameter vector holding the coefficients for the modes of
variation, thus accounting for the model’s inherent free-form deformations.

2.3 Respiratory Motion Compensated Patient Alignment

The intra-procedural alignment of the patient is performed by fitting the de-
formable model M to the patient’s instantaneous respiration state SI:

R̂, t̂, b̂ = argmin
R,t,b

dist (SI,R (v +Φb) + t) . (6)

The rotation matrix R̂ and translation vector t̂ define the rigid-body table trans-
formation whereas the model parameter vector b̂ accounts for non-rigid defor-
mations induced by respiratory motion. Furthermore, dist (Si,Sj) quantifies the
distance between two surfaces and may for example denote a point-to-point or
point-to-plane measure. In this work we employ a model fitting strategy derived
from the iterative closest point (ICP) algorithm [11]. In each iteration k, the cur-
rent model instance Sk is aligned to the instantaneous surface SI via a rigid-body
transformation (Rk, tk) estimated by a closest-point relationship. Based on the
estimated transformation, the model’s closest points Y k on the instantaneous
surface SI are then projected onto the model basis Φ to update the parameters
bk. See Algorithm 1 for details.

A benefit of this model fitting scheme is the inherent high degree of par-
allelism in each iteration of Algorithm 1, thus allowing for a real-time capable
implementation on many-core systems such as GPUs. In particular, we employ
the recently proposed random ball cover for efficient closest point search [12].

2.4 Non-rigid Deformation Estimation using 4-D Shape Priors

By design, our method allows for efficient estimation of respiration induced defor-
mations. For two surfaces (Si,Sj) and its associated estimated model coefficients
(bi, bj), the estimation of a dense displacement field ui,j between these surfaces
breaks down to a linear mapping as ui,j = Φ (bi − bj). This follows directly
from Eq. (5). We further note that the computational complexity of non-rigid
deformation estimation is therefore decoupled from the actual non-rigid regis-
tration technique creating the priors contained in Φ. Inherently, this allows to
employ computational expensive non-rigid registration techniques as proposed
by Schaerer et al. [6] or Bauer et al. [10] in the model generation stage.



Algorithm 1 Algorithm for Model Fitting

Input: Instantaneous surface SI and deformable model v,Φ
Input: Initial guess for table transformation R0, t0 and model parameters b0
for k = 1, . . . , Niter do
Sk = Rk−1 (v +Φbk−1) + tk−1

Y k ⇐ closestPoints (Sk,SI)
(Rk, tk)⇐ estimateTransformation (Sk,Y k,Rk−1, tk−1)
bk = Φ>

(
R−1

k (Y k − tk)− v
)

end for
Output: Estimated table transformation

(
R̂, t̂

)
and model coefficients b̂

3 Evaluation and Results

For our experiments we captured RI data from six subjects using a structured
light sensor (30 Hz, 640 × 480 px) in a clinical environment. RI data were en-
hanced using edge-preserving filtering, cropped to a region of interest covering
the subject and re-sampled in the sampling domain Ω to a resolution of 128×128
pixels. For model generation, the subjects were instructed to perform thoracic
and abdominal breathing subsequently. For each breathing mode we then ex-
tracted surface data St from T = 8 phases covering one respiration cycle. We
found that more cycles did not improve accuracy. For all subjects, the body sur-
face at full abdominal expiration was chosen as the reference SRef for non-rigid
registration of the remaining 15 shapes to form the training set V. PCA was then
performed on the training set V with the number of modes P chosen such that
99% of the input variance is explained. This resulted in four variation modes for
all subjects. To validate the extrapolation ability of our model to unseen data,
the subjects were asked to perform regular breathing over several respiration
cycles. Surfaces for validation were generated from 32 RI frames sampled every
10th frame, starting at an arbitrary phase.

Patient Positioning The accuracy of our method for respiratory motion com-
pensated patient positioning is assessed by evaluating the difference between
the estimated table transforms (Ri, ti) for validation frame i and the corre-
sponding ground truth (GT) transform RGT ≡

{
r1GT, r

2
GT, r

3
GT

}
and tGT ≡{

t1GT, t
2
GT, t

3
GT

}
. The superscripts 1, 2, 3 denote rotation around or translation

along the x, y and z axis, respectively. The GT transform was derived from the
identity transform as the subjects did not change position between the training
and testing phase. For each subject, the average rotation error ∆ri and transla-
tion error ∆ti for validation frame i is computed according to:

∆ri =
1

3

3∑
j=1

∣∣∣rjGT − r
j
i

∣∣∣ , ∆ti =
1

3

3∑
j=1

∣∣∣tjGT − t
j
i

∣∣∣ . (7)

For comparison, we oppose our method to a conventional ICP-based rigid align-
ment strategy as used in [5]. For both methods, the initial estimate for the table
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Fig. 2. Table transform error of our method (shaded) compared to conventional ICP-
based alignment (not shaded) for subjects S1-S6. The left figure depicts the mean
rotation error ∆r in [◦], the right figure the mean translation error ∆t in [mm] compared
to the ground truth transform.

transform was set to 10 mm and 5◦ off from the GT position. Fig. 2 shows
quantitative results for the average rotation and translation error over all 32
validation frames. Note that our motion compensated positioning method sig-
nificantly reduces that table transform error. Over all subjects, the rotation and
translation error decreases by a factor of 3.0 and 2.3, respectively.

Deformation Estimation The capability of our method for non-rigid deforma-
tion estimation is assessed by computing the absolute error in terms of surface
mismatch between the transformed estimated model instance and the instan-
taneous surface as |dist (R(M (b)) + t,SI)| using a point-to-plane measure. In
order to account for boundary effects such as edges, we restricted the evaluation
to a center region on the subjects surface. For comparison, we again oppose our
method to a conventional ICP-based rigid alignment strategy. Fig. 3 exemplarily
illustrates the surface mismatch for subject S1. In Fig. 4 left, the surface mis-
match is shown for subject S4 and a subset of validation frames. The right plot
in Fig. 4 depicts the surface mismatch for the individual subjects over all valida-
tion frames. We note the large residual displacements with ICP-based alignment
that can be reduced significantly with our model-based deformation estimation.
Over all subjects, our method reduces the surface mismatch by a factor of 1.9.

Performance Evaluation We implemented the model fitting routine as de-
scribed in Algorithm 1 on an NVIDIA GTX570 GPU using the CUDA architec-
ture. For performance reasons, we employed a sparse fitting scheme, e.g. a subset
of uniformly sampled points in the modelM as well as the instantaneous surface
SI where used. For 4 · 103 model points, 1.6 · 104 surface points and N = 100
iterations that proved to be sufficient to achieve the accuracy reported above,
our method runs at 40 ms.
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Fig. 3. Color-coded surface mismatch for ICP-based alignment (left) and our method
(right). Average misalignment error is 1.3 mm with ICP and 0.5 mm with our method.
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Fig. 4. Surface mismatch for our method (shaded) and ICP-based alignment (not
shaded). The left figure shows the surface mismatch for an individual subject over
several frames. The right figure depicts the surface mismatch for the individual sub-
jects over all frames.

4 Conclusion

In this paper we have proposed a real-time capable range imaging based frame-
work for joint respiratory motion compensated patient positioning and non-rigid
surface deformation estimation. Both tasks are achieved by the main contribu-
tion of this paper, namely to employ 4-D patient-specific shape priors obtained
from statistical analysis of non-rigidly registered surfaces. In experiments we
showed that, in comparison to conventional positioning strategies, our method
reduces the average alignment error by a factor of 3.0 and 2.3 for the rota-
tional and translational components, respectively. We further demonstrated that
a GPU-based implementation of our method allows to estimate dense surface de-
formations at a run-time of 40 ms.
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