Sparse Principal Axes Statistical Deformation Models for Respiration Analysis and Classification

Jakob Wasza¹, Sebastian Bauer¹, Sven Haase^{1,2}, Joachim Hornegger^{1,3}

¹Pattern Recognition Lab, University of Erlangen-Nuremberg
 ²TUM Graduate School of Information Science in Health (GSISH)
 ³Erlangen Graduate School in Advanced Optical Technologies (SAOT)

BVM, Berlin, 3/22/2012

Outline

- Motivation
 - Respiratory Motion
 - Range Imaging based Surrogates
- Methods
 - Range Imaging
 - Principal Component Analysis
 - Orthomax Rotations
- Results
 - PCA vs. Varimax Rotations
 - Applications
- Conclusion and Outlook

Motivation

- Respiratory Motion
- Range Imaging based Surrogates

Motivation

- Internal movement due to respiratory motion
 - Tomographic reconstruction
 - Fractionated radiotherapy
- Gating and beam adjustment based on 1-D respiration surrogates
 - Dedicated sensors attached to the body surface
 - Non-intrusive range imaging (RI)
- Current RI-based 1-D surrogates
 - Manually selected points and regions
 - Heuristic surface partitioning
 - Global statistical models

Figure: Gated radiotherapy using RI techniques.

Motivation

- Drawbacks of conventional statistical models
 - Fail to describe local deformations (e.g. thoracic and abdominal breathing)
 - Hinder an intuitive interpretation of the model's inherent variations
 - Produce invalid shapes w.r.t. the human respiration system
- Sparse axes models to produce relief
 - Relate local deformations to sparsity of the model's principal axes
 - Orthomax criterion to derive sparse principal modes of variation [1]

[1] Stegmann M.B, Sjöstrand K, Larsen R.
 Sparse Modeling of Landmark and Texture Variability using the Orthomax Criterion.
 In: Proc SPIE. vol. 6144; 2006. p. 61441G1-61441G.12.

Methods

- Range Imaging
- Principal Component Analysis
- Orthomax Rotations

Range Imaging

Usually denotes an ROI

- Sensor domain $\Omega: N \times M \mapsto \mathbb{R}$
- Range image $f(\boldsymbol{x}), \ \boldsymbol{x} \in \Omega$
- Linearized range image

$$f \equiv \boldsymbol{g} = \left(f\left(\boldsymbol{x}_{1}\right), \ \ldots, \ f\left(\boldsymbol{x}_{N \cdot M}\right)\right)^{T}, \ \boldsymbol{g} \in \mathbb{R}^{N \cdot M}$$

• Training data acquired at K different respiration states i $\mathcal{G} = \{\boldsymbol{g}_i\}_{i=1}^K, \ \boldsymbol{g}_i \equiv f_i$

Figure: Body surface captured by the Microsoft Kinect RI device.

Principal Component Analysis (PCA)

Configuration matrix

$$oldsymbol{L} = [oldsymbol{g}_1 - \overline{oldsymbol{g}}, \ oldsymbol{g}_2 - \overline{oldsymbol{g}}, \ \dots, \ oldsymbol{g}_K - \overline{oldsymbol{g}}], \ oldsymbol{L} \in \mathbb{R}^{N \cdot M imes K}, \ \overline{oldsymbol{g}} = \sum_{i=1}^K oldsymbol{g}_i$$

• Eigendecomposition and principal component basis Φ

$$(\boldsymbol{L}^T\boldsymbol{L})\,\widetilde{\boldsymbol{e}}_i=\lambda_i\widetilde{\boldsymbol{e}}\qquad \boldsymbol{\Phi}=\left[\boldsymbol{L}\widetilde{\boldsymbol{e}}_1,\ \boldsymbol{L}\widetilde{\boldsymbol{e}}_2,\ \ldots,\ \boldsymbol{L}\widetilde{\boldsymbol{e}}_P
ight],\ \boldsymbol{\Phi}\in\mathbb{R}^{N\cdot M imes P}$$

- Linear span of the model Controls the modes $g^* = \overline{g} + \Phi b, \ \overline{b} \in \mathbb{R}^P$ $b = \Phi^T (g^* - \overline{g})$
- Note that PCA maximizes the variance of the input data along the basis vectors $L\tilde{e}_i$.

Thus, global modes are obtained!

 Varimax rotations transform the model basis according to Φ_O = ΦR_O, maximizing the squared variable loadings by bringing several loadings close to zero.

This favors sparse modes!

- PCA vs. Varimax Rotations
- Applications

- Dimension reduction
 - Abdominal and thoracic breathing
 - Two separate and one joint model

Mode of variation	Abdominal	Thoracic	Joint
#1	98.4 % (98.4%)	92.7 % (92.7%)	75.3 % (75.3%)
#2	~1.0 % (99.4%)	~ 5.9 % (98.6%)	23.2 % (98.5%)
#3	< 1.0 % (99.8%)	< 1.0 % (99.4%)	~ 1.0 % (99.4%)
#4	< 1.0 % (99.9%)	< 1.0 % (99.6%)	< 1.0 % (99.6%)
Total	99.9%	99.6%	99.6%

Table: Variance covered by the first four modes of variation.

• PCA vs. varimax rotations

Figure: Respiratory motion patterns from statistical analysis. PCA (P) and Varimax rotations (V). Magnitude of variation is color coded from blue (low) to red (high).

• Simulation of respiration states for algorithm benchmarking

• Patient specific respiration analysis and classification

Conclusion and Outlook

22.03.2012 | Jakob Wasza | Pattern Recognition Lab (CS 5) | Statistical Surface Deformation Models

Conclusions and Outlook

- Sparse principal axes for respiration analysis
 - Varimax rotations to generate sparse modes
 - Local surface deformations
 - Differentiation between thoracic and abdominal breathing
- Future work
 - Extension to 3-D point clouds
 - Non-linear techniques for model generation

Thank you for your attention!

Acknowledgements

 We gratefully acknowledge the support by the European Regional Development Fund and the Bayerisches Stastsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie in the context of the R&D program luK Bayern under Grant No. IUK338.

We gratefully acknowledge the Support by the *Deutsche Forschungsgemeinschaft* under Grant No. HO 1791/7-1 and the
 Graduate School of Information Science in Health (GSISH) and the
 TUM Graduate School.

