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Motivation 

● Internal movement due to respiratory motion 

● Tomographic reconstruction 

● Fractionated radiotherapy 

 

● Gating and beam adjustment based on 1-D respiration surrogates 

● Dedicated sensors attached to the body surface 

● Non-intrusive range imaging (RI) 

 

● Current RI-based 1-D surrogates 

● Manually selected points and regions 

● Heuristic surface partitioning 

● Global statistical models 
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Figure: Gated radiotherapy using RI techniques. 
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Motivation 

● Drawbacks of conventional statistical models 

● Fail to describe local deformations (e.g. thoracic and abdominal breathing) 

● Hinder an intuitive interpretation of the model‘s inherent variations 

● Produce invalid shapes w.r.t. the human respiration system 

 

● Sparse axes models to produce relief 

● Relate local deformations to sparsity of the model‘s principal axes 

● Orthomax criterion to derive sparse principal modes of variation [1] 
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Sparse Modeling of Landmark and Texture Variability using the Orthomax Criterion.  
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Methods 
● Range Imaging 

● Principal Component Analysis 
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Range Imaging 

● Sensor domain 

● Range image  

● Linearized range image 

 

● Training data acquired at     different respiration states 
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Figure: Body surface captured by the Microsoft Kinect RI device.  

Usually denotes an ROI 
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Principal Component Analysis (PCA) 

● Configuration matrix 

 

 

● Eigendecomposition and principal component basis 

 

 

● Linear span of the model 

 

 

● Note that PCA maximizes the variance of the input data  

along the basis vectors      .  
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Controls the modes 

Thus, global modes are obtained! 
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Orthomax Rotations 

● Optimization problem 

 

 

● Varimax rotation (         ) 

 

 

 

● Varimax rotations transform the model basis according to                  , 

maximizing the squared variable loadings by bringing several loadings 

close to zero. 

 

 

 

 

 

10 

This favors sparse modes! 
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Results 
● PCA vs. Varimax Rotations 

● Applications 
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Results 

● Dimension reduction 

● Abdominal and thoracic breathing 

● Two separate and one joint model 
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Mode of variation Abdominal Thoracic Joint 

#1 98.4 % (98.4%) 92.7 % (92.7%) 75.3 % (75.3%) 

#2 ~1.0 % (99.4%) ~ 5.9 % (98.6%) 23.2 % (98.5%) 

#3 < 1.0 % (99.8%) < 1.0 % (99.4%) ~ 1.0 % (99.4%) 

#4 < 1.0 % (99.9%) < 1.0 % (99.6%) < 1.0 % (99.6%) 

Total 99.9% 99.6% 99.6% 

Table: Variance covered by the first four modes of variation. 
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Results 

● PCA vs. varimax rotations 
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Figure: Respiratory motion patterns from statistical analysis. PCA (P) and Varimax rotations (V). 
Magnitude of variation is color coded from blue (low) to red (high). 
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Results 

● Simulation of respiration states for algorithm benchmarking 
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Results 

● Patient specific respiration analysis and classification 
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PCC > 0.98 

PCC > 0.99 
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Conclusion and Outlook 
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Conclusions and Outlook 

● Sparse principal axes for respiration analysis 

● Varimax rotations to generate sparse modes 

● Local surface deformations 

● Differentiation between thoracic and abdominal breathing 

 

● Future work 

● Extension to 3-D point clouds 

● Non-linear techniques for model generation 
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Thank you for your attention! 
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