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Abstract. Detection, analysis and compensation of respiratory motion
is a key issue for a variety of medical applications, such as tumor tracking
in fractionated radiotherapy. One class of approaches aims for predict-
ing the internal target movement by correlating intra-operatively cap-
tured body surface deformations to a pre-operatively learned deformable
model. Here, range imaging (RI) devices assume a prominent role for
dense and real-time surface acquisition due to their non-intrusive and
markerless nature. In this work we present an RI based statistical model
built upon sparse principal axes for body surface deformations induced
by respiratory motion. In contrast to commonly employed global models
based on principal component analysis, we exploit orthomax rotations
in order to enable the differentiation between distinctive and local res-
piratory motion patterns such as thoracic and abdominal breathing. In
a case study, we demonstrate our model’s capability to capture dense
respiration curves and the usage of our model for simulating realistic
distinctive respiratory motion patterns.

1 Introduction

The internal movement of tissue, organs or anatomical structures due to respi-
ratory motion is a crucial problem for a variety of medical applications, such as
tomographic reconstruction or fractionated radiotherapy. For the latter, current
systems employ gating techniques based on 1-D respiration signals acquired by
dedicated sensors attached to the body surface [1] or non-intrusive range imaging
(RI) devices [2]. Addressing the low duty cycle of these techniques, current re-
search aims for real-time tumor tracking solutions that re-position the radiation
beam dynamically with respect to the internal target motion. Here, the tumor
movement is predicted by correlating intra-operatively captured 3-D body sur-
face deformations with a pre-operatively trained 3-D volumetric model [3,4,5].
However, conventional approaches rely on global models obtained from standard
principal component analysis that may fail to describe local deformations and
that hinder an intuitive interpretation of the model’s inherent variations.
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Fig. 1. Body surface of a male subject captured by the Microsoft Kinect RI device.
RGB color overlay (left) and color coded depth information (right) where blue and red
tones denote closeness and remoteness to the camera, respectively.

In this work, we propose an RI based statistical model for local and distinctive
body surface deformations induced by respiratory motion. The basic idea of our
approach is to relate local deformations to sparsity of the model’s principal axes.
Therefore, we build on the orthomax class of statistical methods to derive sparse
principal modes of variation. Eventually, this enables the differentiation and
intuitive interpretation of local respiratory motion patterns such as thoracic and
abdominal breathing. In experiments on real data we demonstrate our model’s
ability to capture 1-D respiration curves of disjoint anatomical regions without
the need to explicitly define the thorax and abdomen regions as proposed in [2].
We further show the usage of our model for simulating patient specific realistic
respiratory motion patterns.

2 Materials and Methods

The statistical model generation in this work relies on RI devices that deliver
dense depth information of the captured body surface in real-time. We denote f
as a range image with f(x) holding the geometric depth at position x = (x, y)T

in the discrete 2-D sensor domain Ω : N ×M 7→ R, where N and M denote the
image width and height, respectively. Without loss of generality, any 2-D range
image f can be linearized as a vector g:

f ≡ g =
(
f (x1) , . . . , f (xN ·M )

)T
, g ∈ RN ·M . (1)

We note that this naturally applies for all subregions Ω̂ ⊆ Ω. A set of linearized
RI training frames:

G = {gi}
K
i=1 , fi ∈ Ω̂ (2)

is then used to generate the proposed statistical model using the techniques
described in Sec. 2.1 and 2.2. For visualization and analysis purposes, it is often
desirable to transform a range image f into a triangulated 3-D point using the
intrinsic RI device parameters. Fig. 1 illustrates a body surface acquired from a
male subject using an off-the-shelf Microsoft Kinect RI device.
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2.1 Principal Component Analysis

Principal component analysis (PCA) is a commonly used technique for the ex-
traction of variations along a given set of training samples and has proven to be
a powerful tool in medical image analysis. As a first step, the training set G is
arranged in the configuration matrix L:

L = [g1 − g, g2 − g, . . . , gK − g], L ∈ RN ·M×K (3)

with the sample mean g defined as g = 1
K

∑K
i=1 gi. Applying PCA to L̃ = LTL

yields a set of eigenvectors {ẽi}Ki=1 describing the principal modes of variation
in the training data as ei = Lẽi, ei ∈ RN ·M . The mutually orthogonal modes of
variation ei are then sorted in descending order of their respective eigenvalues
λi. By using the sample mean g and the modes that belong to the P � K largest
eigenvalues, a linear combination of the P principal modes of variation spans a
subset of linearized RI frames composed of the given modes of variation:

g∗ = g +Φb. (4)

Here, the principal component basis is stored in the matrix Φ defined as:

Φ = [e1, e2, . . . , eP ], Φ ∈ RN ·M×P , (5)

and b ∈ RP defines the weighting factors for the modes of variation.
We note that PCA yields an orthonormal system that maximizes the variance

of the input data along the basis vectors. Hence, applying PCA to the training
data usually results in global modes of variation as sparsity in the basis vectors
is sacrificed for the sake of variance maximization. By design, this is a crucial
drawback with respect to modeling of local and distinctive respiration patterns.

2.2 Orthomax Rotations

The orthomax criterion is a technique that is commonly used in factor analysis.
Among others, orthomax rotations where successfully employed in sparse mod-
eling of landmark and texture variability [6]. The aim is to transform the global
and abstract principal component basis Φ from Eq. 5 to obtain a more simple
structure that can be interpreted in a meaningful manner. The approach in this
paper follows the work of [6] and aims to find the orthomax rotation matrix
RO ∈ RP×P by solving the constrained optimization problem:

RO = argmax
R

P∑
j=1

N ·M∑
i=1

(ΦR)
4
ij −

γ

N ·M

P∑
j=1

(
N ·M∑
i=1

(ΦR)
2
ij

)2

, (6)

subject to RT = R−1 and det (R) = 1. Furthermore, Rij denotes the element
in the ith row and jth column of R. The orthomax type is denoted by γ. This
work investigates the varimax rotation only (γ = 1), thus allowing to solve Eq. 6
by using an iterative scheme employing singular value decompositions [6].
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Fig. 2. Modes of variation obtained from standard PCA (P ) and varimax rotation (V ).
The subscripts 1 and 2 denote the first and second principal variation, respectively. The
magnitude of variation is color coded from blue (low loadings) to red (high loadings).

To substantiate the use of varimax rotations in this work, we note that RO

transforms the principal component basis Φ from Eq. 5 as ΦO = ΦRO in a way
that maximizes the variances in the squared variation loadings across all modes.
Inherently, this favors sparse modes of variation with several loadings close to
zero and others large. This coincides with the aim of this paper to relate local
and distinctive respiratory motion patterns to sparsity of the model’s modes.

2.3 Experiments

For our experiments, we captured RI data from four male subjects using a Mi-
crosoft Kinect structured light sensor at 30 Hz. To account for sensor noise we
perform edge-preserving denoising. The subjects where asked to perform tho-
racic, abdominal and regular breathing over several respiration cycles. In order
to restrict the statistical model to the torso region Ω̂ only, we applied a fast
marching segmentation [8] on the acquired range images. The segmented RI
stream of thoracic and abdominal breathing is then sampled with a temporal
resolution of 300 ms to form the training set G from Eq. 2. We then performed
standard PCA as explained in Sec. 2.1 yielding Φ with the number of modes
P chosen such that the model accounts for ≥ 99% of the total variance in the
training data. Finally, as proposed in Sec. 2.2, the sparse varimax model ΦO is
built upon the standard PCA approach.

As application scenarios, we demonstrate our model’s capability to simulate
selective respiratory motion patterns and to generate 1-D respiration curves of
disjoint anatomical regions. For the latter, we project instantaneous RI frames
g onto the model’s principal axes ei yielding a scalar value αi = gTei that can
be interpreted as a 1-D respiration surrogate.
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Fig. 3. Effect of varying the modes of variation for Subject 4. The weights are increased
from top (−

√
λi) to bottom (+

√
λi) for the individual modes. Depth information is

color coded where blue and red tones denote closeness and remoteness, respectively.

3 Results

For each of the four subjects of this study, two principal modes of variation
accounting for ≥ 99% of the total variance were identified. Fig. 2 depicts the two
principal modes of variation as obtained from standard PCA and the varimax
model. The PCA based modes exhibit global and meaningless variations, whereas
the principal axes obtained from the orthomax model feature local deformations
that are highly correlated to thoracic and abdominal breathing, respectively.

Simulated respiratory motion patterns as obtained from our models are de-
picted in Fig. 3. The varimax model enables the selective simulation of thoracic
and abdominal breathing whereas deformations obtained from standard PCA
are of no relevance with respect to the human respiration system.

Respiration curves generated with our models are illustrated in Fig. 4. For
abdominal breathing, the first mode obtained from the orthomax model exhibits
a smaller total variation and amplitude compared to the standard PCA approach.
A similar behavior is observable for thoracic breathing and the second mode. This
indicates that a varimax model is better suited for analysis of local and disjunct
motion patterns. With regard to regular breathing, the PCA modes are not
interpretable in an intuitive manner. In contrast, the varimax modes indicate
that the subject mainly performed abdominal respiration with some thoracic
movement superimposed.

4 Discussion

We have shown that the orthomax class of statistical methods can be used to
generate a model for local surface deformations induced by respiratory motion.
Our experimental study revealed that, in contrast to a standard PCA approach,
distinctive and local respiratory motion patterns can be analyzed and classified.
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(a) Abdominal (b) Thoracic (c) Regular

Fig. 4. Using the statistical model to generate 1-D respiration curves. For the vari-
max model, the first principal mode accounts for thoracic and the second mode for
abdominal breathing.

However, we note that orthomax methods only represent a small class of sta-
tistical methods for respiration analysis. Therefore, ongoing work investigates
alternative statistical methods and non-linear techniques for model generation.
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