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Abstract—4D-CT is an important tool for treatment simulation
and treatment planning in radiotherapy. In order to capture the
tumor and tissue movement over time, 4D-CT has to acquire
more projection images compared to 3D-CT. This leads to more
radiation dose, which is the main concern of the application.
Using fewer projections can reduce the radiation dose. However,
lack of projections degrades the reconstructed image quality
for traditional methods. In this paper, we propose a novel
method based on iterative hard thresholding and compressed
sensing. We combine the prior knowledge from both methods in
our reconstruction problem formulation. In the experiments, we
validate our method with XCAT phantom data. The Euclidean
norm of the reconstructed images and the ground truth are
calculated for evaluation. The results show that our method
outperforms the traditional reconstruction method.

I. INTRODUCTION

Four dimensional computed tomography (4D-CT) plays an
important role in radiation oncology. Besides the 3D informa-
tion, 4D-CT also captures the movement of the body’s organs
over time. With the motion information, the target volume
definition is improved and accuracy during treatment delivery
for patients with tumors in the abdomen or thorax area is
enhanced. [1][2].

In 4D-CT, the projection images are continuously acquired.
An additional respiratory signal is recorded at the same
time. The projection images are then grouped to different
phases according to the amplitude or phase-angle sorting
[3-5]. However, to achieve clinically usable image quality,
hundreds of projections are needed to reconstruct images of
each respiratory phase [6]. Therefore the radiation dose is
of great concern for 4D-CT. In order to reduce the radiation
dose, the number of projections should be reduced. However,
the image quality would be degraded for traditional recon-
struction methods. Therefore, prior knowledge is introduced
to the reconstruction process. The group of Pan developed
the reconstruction method based on compressed sensing [7].
They assume the reconstruction result is smooth and use
total variation to promote the smooth solution. Blumensath
proposes the iterative hard thresholding method [8]. He uses
the sparsity level as the prior knowledge. Both methods can
reconstruct the image with much better quality compared to
the traditional method ART [9] using only a limited number
of projections.
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In this paper, we propose a 4D-CT reconstruction method
based on these two methods. We use the prior knowledge from
both methods in our formulation. The details of our method
can be found in section 2. The experiments and results are in
section 3. Conclusion and outlook in last section.

II. PROPOSED METHOD
A. Formulation of our method

The 4D object can be described by a sequence of 3D spatial
images [10]: .
X ={7;,1 <j <m}, (1)

where X is the 4D object and Z; is the image at j-th
respiratory phase. m; is the total number of reconstructed
respiratory phases. Thus, the 4D-CT data acquisition process
can be viewed as:

Y = {7 = ;7,1 < j <}, )

where §; and A; are the projection image and system matrix.
Y stands for projection images. Due to the respiratory motion,
we use only the projection images of j-th phase (7;) to
reconstruct the j-th image (Z;). Therefore, the reconstruction
process can be viewed as solving the linear system:

;= A + 7. 3)

Here 7 stands for the noise of the measurements. The linear
system is ill-posed. There exist infinite solutions. The tradi-
tional method formulates the reconstruction problem as:

min |[7; — A; |2 4)
Zj

The method finds the solutions which fit the measurements
best. Although the minimization problem is convex, there
could still be infinite solutions. For example in Fig. 1, the
objective function is convex and there is only one global
minimum, still the number of minimizers are infinite. To
further improve the reconstruction quality, compressed sensing
uses sparsity as prior knowledge to choose the best solution in
the solution set of (4). It formulates the reconstruction problem
as:

H%IHH(I)f]Hl s.t. H]% — AfjHQ <A\ (®)]
Here, ® is the sparsifying transform (for example total vari-
ation or wavelet transform) and || e ||; stands for L1 norm
which calculates the sum of the absolute value of all entries.
A describes the energy of the noise. Compressed sensing
assumes that medical images can be expressed sparsely by
a certain sparsifying transform. For example, most wavelet
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Fig. 1. Example of convex function with non-unique solution

coefficients of a medical image are zero. Minimizing L1 norm
of the coefficients promotes the sparse expression of the image
under the corresponding sparsifying transform. Total variation
and wavelet are used as sparsifying transforms in compressed
sensing based reconstruction methods [7] [11] [12]. Both
of them improve the reconstruction quality compared to the
traditional reconstruction method, when only limited number
of projection images can be used.

Similar as compressed sensing, Blumensath proposes an-
other idea to select the best solution from the solution set
of (4). The method is called iterative hard thresholding. The
formulation is
n%mHg'] —AfjHQ s.t.

J

||(I)f]”0 < «, (6)

where ® is again a sparsifying transform and || e || is the
L0 norm which counts the nonzero entries. For simplicity, we
call ||®F;||o sparsity level. « is a scalar describing the actual
sparsity level which can be estimated by prior knowledge. In
the context of 4D-CT, a prior image can be reconstructed using
all projections. Then « can be estimated from this prior image.

The two methods mentioned above use different prior
knowledge to improve the reconstruction quality. We propose
to combine the prior knowledge in the reconstruction prob-
lem formulation. Therefore, we formulate the reconstruction
problem as:

rqin||¢1fj\|1 s.t.
Tj

17— AZ;l[2 <A [[2F;]]o < a. (7)
Here, ®; and ®, are two sparsifying transforms. In practice,
the noise energy () is not known. The related constraint can
be moved to the objective function to make the optimization
problem easier. Thus Equation (7) can be rewritten as :

min ||@175][y + BIIg; — A;Zjllz - st |22l <. (8)
J

[ is a weighting factor balancing the data fidelity and sparse-
ness. We use total variation as ®; and haar wavelet as ®o
in the experiments. Our method promotes a smooth solution
which also obeys the sparsity level constraint.

B. Optimization method

It is challenging to solve the optimization problem (8). First
of all, as shown in Equation (6), it is a nonconvex optimization

problem. Second, in the context of 4D-CT reconstruction, the
dimension of the problem is very high. Blumensath proposed
a fast and accurate method to solve Equation (6) [8]. The
method is proven to converge to a certain local minimum and
the accuracy of the solution is guaranteed to be better than
the solution of the traditional method. The method deals with
the objective function and the constraint separately. It can be
summarized:

e Step 1) One gradient descent step to minimize the objec-
tive function which is ||§; — A;Z;||2 in Equation (6).

o Step 2) Apply the constraint which is ||®Z}|lo < «a in
(6).

e Step 3) Repeat 1 and 2 until the Euclidean norm of two
subsquent image estimates is below a threshold.

Blumensath et al. used haar wavelet as ®. In step 2, they first
transform the image estimate to the wavelet domain. Then
they keep the « largest wavelet coefficients and set the other
wavelet coefficients to zero. Finally they apply the inverse
wavelet transform. Similarly, we develop our optimization
algorithm as:

e Step 1) One gradient descent step to minimize the ob-
jective function which is ||®1Z;|[1 + B]|y; — A;%;]|2 in
Equation (8).

o Step 2) Apply the constraint which is ||®2Z||o < « in
Equation (8).

o Step 3) Repeat 1 and 2 until the Euclidean norm of two
subsquent image estimates is below a threshold.

Due to the high dimension, step 1 would be very time
consuming if we applied directly one gradient descent step.
Pan proposed an efficient method to minimize ||®1Z,||1 +
B|19; — A;Z;||2 [7]. They split the objective function into two
parts which are ||®,Z;|[1 and ||§; — A;Z||2 and minimize
these two parts separately. We use their idea to further speed
up the optimization process and our algorithm can be written
as:

o Step 1) One step of ART to minimize ||; — A;Z;||2.

e Step 2) Take the result from step 1 as initial, apply k
steps of gradient descent to minimize ||®1Z;]|;.

« Step 3) Apply the constraint which is ||®2%;|lp < « in
Equation (8).

e Step 4) Repeat 1 and 3 until the Euclidean norm of two
subsquent image estimates is below a threshold.

III. EXPERIMENTS AND RESUTLS

We used the digital phantom XCAT [13] to validate our
method and compare against the state-of-the-art reconstruction
method, namely, ART, total variation regularization method
(TVR) [7], wavelet regularization method (WR) [11] and
iterative hard thresholding method (IHT) [8]. TVR and WR
are in fact compressed sensing based reconstruction methods
using total variation and wavelets as sparsifying transforms.
We generated 360 projection images in fan beam geometry,
equally spaced over an entire 360 degree rotation. They
are binned into 15 respiratory phases. Only 24 projeciton
images are used for the reconstruction of each phase. The
reconstructed image size is 256 x 256 The parameter settings
for all methods are chosen to have the best performance. We



TABLE I
RECONSTRUCTION ERROR OF DIFFERENT METHODS AT ALL PHASES.
LOWER VALUES INDICATE A SMALLER ERROR.

ART TVR WR HT Our method

Phase 0 | 954.129 | 528.115 | 491.619 | 502.797 380.308
Phase 1 955.064 | 530.937 | 493.409 | 504.610 383.991
Phase 2 | 952.191 | 519.982 | 489.499 | 497.777 380.522
Phase 3 | 924.856 | 514.082 | 464.587 | 475.610 364.402
Phase 4 | 909.119 | 509.091 | 455.989 | 468.648 353.299
Phase 5 | 906.057 | 507.531 | 453.293 | 463.976 348.600
Phase 6 | 899.210 | 537.518 | 448.592 | 460.021 349.38
Phase 7 891.567 | 501.844 | 443.407 | 454.459 341.703
Phase 8 896.414 | 496.971 | 447.953 | 459.659 347.126
Phase 9 | 892.580 | 493.052 | 435.819 | 447.010 336.634
Phase 10 | 903.200 | 520.333 | 450.953 | 461.388 354.010
Phase 11 | 921.861 | 518.745 | 461.159 | 470.909 354.971
Phase 12 | 940.355 | 528.281 | 473.379 | 483.011 362.820
Phase 13 | 944.477 | 527.099 | 475.758 | 487.505 364.099
Phase 14 | 952.982 | 527.087 | 488.380 | 498.830 376.406

Mean 922938 | 517.378 | 464.920 | 475.747 359.885

use 5 gradient descent steps in step 2. Since we do not know
the energy of the noise, TVR and WR are formulated as
Equation (8) without the sparsity level constraint. The 3 are
set to 0.1 and 0.001 for TVR and WR, respectively.

The reconstruction results of the different methods are
shown in Fig. 2. In the first row, there are ground truth,
reconstruction results from ART and TVR. In the second row,
there are the reconstruction results from WR, IHT and our
method, respectively. The result from ART contains severe
streak artifacts due to the lack of projections. The streak
artifacts are reduced dramatically in the result from TVR but
the edges are blurred. The results from WR and IHT keep
the edges, but there are still a lot of streak artifacts. Our
result is smooth but preserves sharp edges. To quantitatively
evaluate the result, we calculate the reconstruction error for
each method. The error is calculated as:

Error = ||T — Zruel|2 9

It is in fact the Euclidean norm of the reconstruction
result and the ground truth. The evaluation results can be
found in Table 1. The smaller number indicates better image
quality. TVR, WR and IHT all improve the image quality
significantly compared to the traditional method ART. Our
method outperforms all the other methods. The reconstruction
error of our method is less than 50% of the reconstruction
error from ART.

The convergence maps of TVR, IHT, WR and our methods
can be found in Fig. 3. The graph shows that our method
converges faster than the others and the accuracy of our
reconstructed result is the best.

Our method adopts the prior knowledge from TVR and
IHT. Therefore, it keeps the advantages of these two methods.
TVR uses total variation as the sparsifying transform and
minimizes the total variation of the solution. TVR favors a
piecewise constant solution. We also use the total variation
in our formulation. Therefore, our method reduces the streak
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Fig. 3. Convergence maps.

artifacts dramatically and reconstructs a piecewise constant
image. IHT uses the sparsity level constraint. IHT assumes that
the energy of the real signal should concentrate in the large
wavelet coefficients and the energy of noise should concentrate
in small wavelet coefficients. Thus, at every iteration step,
IHT keeps the « largest wavelet coefficients and sets the
others to zero, which keeps the sharp edges and removes
the small changes. Our method also uses the sparsity level
constraint. Therefore, our method preserves the sharp edges
in the reconstruction results.

IV. CONCLUSION AND OUTLOOK

In this paper, we have presented a 4D-CT reconstruction
method based on compressed sensing and iterative hard thresh-
olding. The experiments indicate that our method can recon-
struct images of improved quality compared to ART when
only a small number of projections can be used. However, we
only consider prior knowledge in spatial domain in this paper.
Using the sparsity in the temporal domain can also improve
the reconstructed image quality[14][15]. In the future, we will
investigate combining the prior knowledge both in the spatial
and temporal domains.
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