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Abstract. It is a very hot topic to reconstruct images from as few pro-
jections as possible in the field of CT reconstruction. Due to the lack of
measurements, the reconstruction problem is ill-posed. Thus streaking
artifacts are unavoidable in images reconstructed by filtered backprojec-
tion algorithm. Recently, compressed sensing [1] takes sparsity as prior
knowledge and reconstructs the images with high quality using only few
projections. Based on this idea, we propose to further use the sparsity
level as a constraint. In the experiments, we reconstructed Shepp-Logan
phantom with only 30 views by our method, TVR [2] and stand ART [3]
respectively. We also calculated the Euclidean norm of the reconstruc-
tion image and the ground truth for each method. The results show that
reconstruction results of our method are more accurate than the results
of total variation regularization (TVR) [2] and stand ART [3] method.

1 Introduction

In the field of CT reconstruction, it draws a lot of attention to reconstruct the
images from few samples (often under the Nyquist sampling rate) to reduce
the radiation dose. And in certain applications, it is not possible to sample at
Nyquist sampling rate because of motion, cardiac imaging [4]. In these cases,
the reconstruction problem is ill-posed. Thus the images reconstructed by FBP
(Filtered Backprojection) [2], which is widely used in CT product, contain many
streaking artifacts. Recently, compressive sampling (CS) shows that a high qual-
ity signal or image can be reconstructed with far fewer measurements than the
Nyquist sampling rate. The main idea of CS is to take sparsity as a prior. Based
on that, Pan’s group developed TVR method [3] and reconstructs high quality
images using only few projections. However, the method reduces the contrast of
the image. [5] In this paper, we propose to further use the number of the nonzero
coefficient (sparsity level) as prior knowledge. This prior knowledge is formulated
as an additional constraint in the CS based reconstruction frame work. In prac-
tice, the accurate sparsity level is hard to estimate. We suggest to approximate
it using the image reconstructed by FBP. From the experiments, even if the
sparsity level is 1.4 times as the actual value, the method can still improve the
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reconstruction accuracy. In the experiments, we used the Shepp-Logan phantom
and reconstructed it with our method, TVR [2] and stand ART [3]. The results
show that our method reconstruct the images with best accuracy.

2 Materials and methods

A discrete version of the CT scanning process can be described as
Az =b (1)

Here A = (a;j) is the system matrix representing the projection operator, x
= (x1,..., ©,) represents the object and b = (by, ..., by,) is the corresponding
projection data. So to reconstruct the object x is to solve the linear system. In
our case, the linear system is underdetermined due to undersampling. There exist
infinite solutions. As mentioned above, CS takes sparsity as prior knowledge,
which formulates the reconstruction problem as

min ||Bx|| 11 s.t. [|Az — bl < o 2)

Here, o stands for the variance of the noise. @ is the sparsifying transform,
wavelet transform. The inequality constraint enforces the data fidelity and the
L1 norm term promotes the sparsity. For details, we refer to the work []. It is well
known that the constrained optimization problem (Eq. (2)) can be transformed
to an easier unconstrained optimization problem [].

min 9|1 + 5] Az — b3 (3)

The cost function in the optimization problem is convex. Although there
exists a global minimum for a convex function, the minimizer could be non
unique (Fig. 1). The function in the picture is convex, but the number of the
minimizer is infinite. In this case, the initial guess determines the final solution
for the iterative reconstruction. The exact reconstruction of CS is guaranteed
when there exists only one minimizer [1]. Otherwise the error bound is described
by the ’size’ of the solution set. Sometimes, the ’size’ of the solution set could
be very large. Due to the sampling mechanism, exact reconstruction condition

Fig. 1. Convex function with non unique minimizers
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of CS can not be satisfied in the context of CT reconstruction. Is there any way
to further select the solution? We propose to use the sparsity level. Then the
reconstruction problem can be formulated as

min[[@12][ 1 + B|| Az — bl[35.L.|| P2 Lo < X (4)

where ||e|| Lo is LO norm, which counts the number of nonzero entries. ||P2x||Lo <
X is the sparsity level constraint. y is a scalar. ®; and @5 both are the sparsifying
transforms. We use total variation [2] as &; and Haar wavelet transform as @
in our experiments. These two sparsifying transforms are heavily used in the CS
based reconstruction, as the medical images can be expressed sparsely with these
two transforms. Some other sparsifying transform can also be used. Eq. (3) is
a non convex optimization problem. However, all the local minimum should be
in the optimal solution set of Eq. (3). The sparsity level constraint selects the
solutions which satisfies the constraint within the optimal solution set for Eq. (3).
So this formulation can increase the accuracy of the reconstruction compared to
Eq. (3). In our experiments, we find that the sparsity level constraint does not
have to be very accurate. The most accurate reconstruction is achieved when
x is a little bit bigger than the actual sparsity level. In practice, we can first
use FBP to reconstruct the image, then apply the sparsifying transform @5 to
estimate the sparsity level. The optimization problem is hard to solve due to the
high dimensions. A splitting method is used to solve Eq. (4) [3]. Inspired by this
idea, we developed our method based on the splitting method. The algorithm
can be summarized as below:

Step 1) Apply the standard ART update [2].

— Step 2) Solve the optimization problem &’ = min ||z — v||3 + B||®1z||1 (v is
calculated from step 1 which is the volume estimation from step 1)

— Step 3) Apply the sparsifying transform @5 on a’ (' is calculated from step
2)

— Step 4) Keep the y largest coefficients and set others to zero

— Step 5) Apply the inverse sparsifying transform &, *

— Step 6) Repeat step 1 to step 5 until ||z — (1|2 is less than a certain

value or the maximum iteration number is reached.

Step 1 and step 2 solve the problem (Eq. (3)) without sparsity level constraint
using a splitting method. Step 3 to step 4 force the current estimate to fulfill the
sparsity level constraint. We keep the largest coefficients and set others to zero
by the assumption that the energy of natural image concentrate on a few basis
of an sparsifying transform.

3 Results

In the experiments, we use the Shepp-Logan phantom. We consider image re-
construction of a 128 x 128 image from projection data containing 30 views and
128 bin on the detector. The projections are equally angular-spaced over 180 de-
gree. We reconstructed the images with standard ART, TVR and our method.
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The reconstruction results is listed in Fig. 2. In the picture, we can see that
the reconstruction from the standard ART contains many streak artifacts. The
reconstruction from TVR is better. But the contrast is reduced. The streaks are
nearly can not be seen in the reconstruction from our method. Furthermore the
contrast is better than the reconstruction of TVR.

The profile of the reconstruction can be found in Fig.3. The contrast of the
reconstruction from our method outperforms the one from TVR.

We also calculated the relative error (RE) over iterations for quantitative

evaluation
g =2l

(5)
where z is the reconstructed image and x* is the ground truth. It can be seen
from Fig. 4 that the convergence speed of our method is faster than the other
two. And the accuracy of our method is the best. In Fig. 5, we set x to different
values. The best reconstruction is achieved when Yy is a little bit bigger than the
actual sparsity level. Our method still gives more accurate results than the ones
from TVR and stand ART, even if we set x to 1.4 times as the actual sparsity
level.(see Fig. Fig. 4 and Fig. 5). Thus the estimation of sparsity level need not
to be very accurate.

[|2* ]2

4 Discussion

Although CS claims it can reconstruct the image exactly under Nyquist sam-
pling rate, the exact reconstruction condition is hard to be satisfied due to the
sampling mechanism of CT. To further improve the reconstruction quality, we
propose to use the sparsity level as prior knowledge as well. The sparsity level
constraint shrinks the ’size’ of the optimal solution set thus increases the re-
construction quality. In the experiment, by taking the sparsity as a prior, TVR
which is CS based reconstruction method increase the reconstruction accuracy a
lot compared to the classical method (ART). However, the contrast of the TVR,
reconstruction is reduced. By using the sparsity level constraint, the contrast

Fig. 2. Reconstruction results. Only 30 projections are used to do the reconstruction.
The window level are all [-0.2 0.3]. The reconstruction from the standard ART contains
many streak artifacts. The reconstruction from TVR is better. But the contrast is
reduced. The streaks are nearly can not be seen in the reconstruction from SLCCS,
also the contrast is better than the reconstruction of TVR
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of our reconstruction is better and relative error of our method is the smallest
among the three reconstruction method. We will test the algorithm with vivo
data in the future.
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Fig. 3. Profile. The images shows the profile of the center line from the reconstruction
of TVR, SLCCS and the ground truth. It can be easily seen that the reconstruction of
SLCCS reserves the contrast.
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Fig. 4. Converge map. SLCCS converges faster than the other two method and gives
best reconstruction quality
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Fig. 5. Test of x. We set x to different values. The most accurate reconstruction is
achieved when x is a little bit bigger than the actual sparsity level. Thus the estimation
of sparsity level need not to be very accurate but it should not be less than the actual
sparsity level



