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ABSTRACT

Four dimensional computed tomography (4D-CT) is very important for treatment planning in thorax or abdomen
area, e.g. for guiding radiation therapy planning. The respiratory motion makes the reconstruction problem ill-
posed. Recently, compressed sensing theory was introduced. It uses sparsity as a prior to solve the problem
and improves image quality considerably. However, the images at each phase are reconstructed individually.
The correlations between neighboring phases are not considered in the reconstruction process. In this paper,
we propose the spatial-temporal total variation regularization (STTVR) method which not only employs the
sparsity in the spatial domain but also in the temporal domain. The algorithm is validated with XCAT thorax
phantom. The Euclidean norm of the reconstructed image and ground truth is calculated for evaluation. The
results indicate that our method improves the reconstruction quality by more than 50% compared to standard
ART.
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1. INTRODUCTION

Four dimensional computed tomography (4D-CT) is an important tool in radiation oncology. Besides the 3D
information, it also captures the movement of the body’s organs over time. With the motion information, it
improves the target volume definition and enhances accuracy during treatment delivery for patient with tumor
in the abdomen or thorax area.

There are mainly two 4D-CT acquisition methods, namely, the retrospective acquisition method1–5 and
prospective acquisition methods.6 In the first one, the projection images are continuously acquired. At the
same time, an additional respiratory signal is recorded. The projection images are then grouped to different
phases according to the amplitude or phase-angle sorting. In the second one, the CT scanner is triggered by
the respiratory signal. The beam is turned on if the respiratory signal is within the tolerances to the reference
phase. The projections of different respiratory phases are acquired separately.

However, to achieve clinically usable image quality, hundreds of projections are needed to reconstruct images
of each respiratory phase no matter which data acquisition method is used. Therefore the radiation dose is of
great concern for 4D-CT since it may increase the risk of having cancer. To reduce the radiation dose without
sacrificing image quality, the theory of compressed sensing was introduced to CT reconstruction recently.7,8

Compressed sensing employs sparsity as a prior and use L1 norm minimization method, which is a sparsity
promoting algorithm, to do reconstruction.9–11 Thus sparsity is a key point of compressed sensing. If the images
are not sparse, one should apply a certain sparsifying transform. For 4D-CT, the object can be considered as
a series of images or volumes. Pan’s group makes use of the data redundancy in the spatial domain.7 They
apply the total variation as sparsifying transform to the volume of certain phase. However, the correlation of
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volumes in the temporal domain is not considered in their method. In contrast, Jiang’s group utilizes the data
redundancy only in temporal domain.12 Non-local mean operator is used to promote smooth motion in temporal
domain, while the data redundancy in the spatial domain is not employed.

In this paper, we propose a novel reconstruction method which applies the sparsifying transform both in
spatial and temporal domain to promote smooth image and smooth motion pattern. In our method, recon-
struction problem is formulated to an optimization problem. The images of different phases are treated as one
entity and they are reconstructed at same time. Consequently, the dimension of the optimization problem is
incredibly high. Therefore we develop an optimization method based on the idea from Pan’s group to solve the
optimization problem efficiently. We used XCAT phantom13 to validate our algorithm. The Euclidean norm of
the reconstructed image and ground truth is calculated for evaluation. We compared our reconstruction results
to the ones of TVR7 and standard ART method.14

The outline of the paper is as follows: we describe our method in section 2 and present the experiments and
results in section 3. The conclusion is in section 4.

2. MODEL AND ALGORITHM

2.1 MODEL

The 4D object to be reconstructed can be viewed as a temporal sequence of 3D spatial images, i.e.,

~X = {~xj , 1 ≤ j ≤ nt}. (1)

where ~X is the 4D object consisted by ~xj with temporal index j, which corresponds to one of nt phases.

Consequently, ~Y is the complete set of projection data.

~Y = {~yj = ~Aj~xj , j ≤ nt}, (2)

where ~yj stands for the projection images of ~xj and ~Aj corresponds to the system matrix for the jth phase.
The reconstruction problem is ill-posed in 4D-CT reconstruction due to lack of projection images. To overcome
this, compressed sensing introduces sparsity as a prior to do the reconstruction. It formulates the reconstruction
problem as the following optimization problem:

~xj = min
~xj

|| ~Aj~xj − ~yj ||22 + βR(~xj), j ≤ nt, (3)

where R(•) stands for the regularization term and β is a weighting factor. There are two parts in the cost
function. The first term enforces the data fidelity and second term is a regularization term which promotes
sparsity after applying the sparsifying transform on the images. We use total variation as regularization term
to benchmark our results in the experiments, since it is widely used in compressed sensing based reconstruction
methods.7 The equation can be written as:

~xj = min
~xj

|| ~Aj~xj − ~yj ||22 + β||~xj ||TV , j ≤ nt, (4)

The total variation of a 2D image can be calculated using the following equation.

|| ~X||TV =

N−1∑
a,b=1

|(5( ~X)a,b)| with (5( ~X)a,b) =

(
~Xa,b − ~Xa+1,b

~Xa,b − ~Xa,b+1

)
(5)

Here ~X stands for the 2D image. (a, b) are its index in vertical and horizontal direction respectively. Total
variation of a image is in fact the L1 norm of the image gradient. For simplicity, we call the method using the
total variation as the regularizor TVR. Noting that, this formulation only favors the sparse solution in the spatial
domain and a smooth image is actually a sparse image after the total variation transform.



2.2 PROPOSED METHOD (STTVR)

As mentioned above, we propose to make use of the data redundancy in temporal domain as well as in spatial
domain. We treat the images of different phases as one entity and reconstruct them at the same time. The idea
is to reconstruct the images by solving the following optimization problem:

~xj = min
~xj

|| ~Aj~xj − ~yj ||22 + β||~xj ||TV + αR(~xj − ~xj−1) + αR(~xj − ~xj+1), j ≤ nt, (6)

where α and β are weighting factors. We use total variation as the regularizer in both spacial and temporal
domain as sparsifying transform. Then, the equation can be written as:

~xj = min
~xj

|| ~Aj~xj − ~yj ||22 + β||~xj ||TV + α||~xj − ~xj−1||TV + α||~xj − ~xj+1||TV , j ≤ nt, (7)

As in (4), the first term enforces the data fidelity and second term promotes the sparsity after the total variation
transform. The third and the fourth term promote the sparsity in temporal domain. They try to make the
difference of images from neighboring phases smooth, such that the motion or the changes of the pixels are
similar to the ones of their neighboring pixels. Because of the smooth breathing pattern, it is very reasonable to
promote a smooth motion field.

2.3 OPTIMIZATION METHOD

It is not easy to solve (7) directly because of the large dimension. Pan’s group proposes an efficient method.15

They minimize the different parts in (4) separately. The algorithm can be summarized as

• Step 1) ~vkj = ~xkj − γ ~AT
j ( ~Aj~x

k
j − ~yj) ∀j

• Step 2) ~tkj = min
~xj

||~xkj − ~vkj ||22 + β||~xkj ||TV ∀j

• Step 3) Repeat step 1 to step 2 until || ~X(k)− ~X(k+1)||22 is less than a certain value or the maximum iteration
number is reached.

Step 1 is one gradient descent step to minimize the first term ( || ~Aj~xj − ~yj ||22 ) in the (4), where γ is a relaxing
factor to control the step size. To further speed up the algorithm, they use one step of the standard ART update
instead. They use the gradient descent method to minimize the objective function in step 2. The objective
function takes the results from step 1 as a constraint and promotes the spatial sparsity. It tries to find a smooth
image near the solution of step 1. Although they did not show the solid mathematical proof for the convergence
of the optimization method, their numerical experiments show the stability of method.

Inspired by their work, we also minimize the cost function in (7) separately. The algorithm can be summarized
as

• Step 1) ~vkj = ~xkj − γ ~AT
j ( ~Aj~x

k
j − ~yj) ∀j

• Step 2) ~tkj = min
~xj

||~xkj − ~vkj ||22 + β||~xkj ||TV ∀j

• Step 3) ~xk+1
j = min

~xj

||~xkj − ~tkj ||22 + α||~xkj − ~xkj−1||TV + α||~xkj − ~xkj+1||TV ∀j

• Step 4) Repeat step 1 to step 3 until || ~X(k)− ~X(k+1)||22 is less than a certain value or the maximum iteration
number is reached.

Step 1 and step 2 are the same with the algorithm of Pan’s group. In these two steps, the images at different
phases are reconstructed individually, the redundancy in temporal domain is not taken into account. In step 3,
we use the gradient descent method to minimize the objective function. The objective function considers the
results from step 2 as a constraint and the images of neighboring phases are used to promote smooth changes
or motions between each other. It tries to find a image which has a smooth motion pattern near the solution of
step 2. We test the optimization method with different parameter settings to show the stability of the method
in our experiments. The results can be seen in the next section.



Figure 1. Reconstruction Results

The first row shows the image of phase 0 and the second row shows the image of phase 7. The first column is
the ground truth. The second to the fourth column list the results reconstructed by standard ART, TVR and
our method. Only 20 iterations are used for all the method.

3. EXPERIMENTS AND RESULTS

We use the digital XCAT thorax phantom in our experiments. The projections are generated in a fan beam
geometry and are equally spaced throughout an entire 360 degree rotation. The image resolution is 256 × 256
and only 24 projections are used to reconstruct each phase. We reconstruct 15 phases in a breathing cycle and
the reconstruction results are listed in Fig. 1. Two different phases are shown in the figure. The first column
is the ground truth. The second to fourth column are images reconstructed by standard ART, TVR and our
method respectively. The image quality of standard ART is not acceptable for clinical use due to the severe streak
artifacts and motion artifacts. Although the TVR method improves the image quality dramatically compared to
the results of standard ART, the blurring artifacts are still visible and the contrast of the image is reduced. The
results from our method show much more details. The corresponding errors of all the method at each phases are
listed in Table 1. The error is calculated by

Error = ||~xj − ~xtruej ||2 (8)

The same conclusion can be drawn from Table 1 too. Our method’s reconstruction error are the smallest and
less than half of the ones of standard ART. In the experiments, all the parameters were chosen for the optimal
results. For our method, we use one standard ART update in step 1. Five gradient descent updates for step 2
and step 3. The maximal iteration number is set to 20. α and β are both 0.1 for the best performance. For the
TVR method, the step 3 is ignored and the other parts are the same as in our method.

The convergence maps of TVR and our method are shown in Fig 2. In Fig 2, we set β to 0.1 for TVR and
our method. α are set to two different values. First time we set α to 0.1 and second time we set α to 0.5.
Clearly, step 3 which makes use of the correlation between neighboring phases does improve the image quality in
every iteration step. Although we set different values to α, the convergence curves look similar which shows the
stability of our optimization method. To further study the stability of our optimization method, we use different
settings for our algorithm. The results are shown in Fig 3. The difference of results between different parameter
settings is small, which implies the robustness of our optimization method.

4. CONCLUSION

In this paper, we have presented a novel 4D-CT reconstruction method based on compressed sensing. The
method employs the redundancy in the temporal domain as well as in the spatial domain. The experiments
indicate that our method outperforms the conventional reconstruction methods by using the correlation between
the neighboring phases.



Figure 2. Converge map.

The only difference between our method and TVR is step 3 introduced in section 2. We set β to 0.1 for both
TVR and our method. And we set α to two different values. In our method 1, α is 0.1 and in our method 2, α
is 0.5. The only difference between TVR and our method is step 3. The figure shows that step 3 does improve
the reconstruction quality at each iteration.

Figure 3. Varying α and β test.

We set parameter α and β for different values to test the robustness of our method. The range of α is [0.01 0.5]
and the range of β is [0.1 0.3]. The figure shows that the difference of results for different parameter settings is
not large, which implies that our method is quite stable.



Table 1. Error of different methods at all phases. Low value indicates a small error. Clearly, our method outperforms the
others.

ART TVR Our method
Phase 0 954.129 528.115 341.590
Phase 1 955.064 530.937 348.814
Phase 2 952.191 519.982 355.063
Phase 3 924.856 514.082 362.180
Phase 4 909.119 509.091 357.419
Phase 5 906.057 507.531 346.261
Phase 6 899.210 537.518 345.506
Phase 7 891.567 501.844 334.336
Phase 8 896.414 496.971 346.209
Phase 9 892.580 493.052 341.404
Phase 10 903.200 520.333 352.169
Phase 11 921.861 518.745 345.804
Phase 12 940.355 528.281 338.815
Phase 13 944.477 527.099 336.582
Phase 14 952.982 527.087 340.677

mean of all 15 phases 922.938 517.378 346.189
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