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ABSTRACT

Over the last decade, significant progress has been made in terms of treatment of diseases using minimally-
invasive procedures. This progress was facilitated through multiple refinements of the imaging capabilities of
C-arm systems in the interventional room, and more sophisticated procedures may become feasible by further
refining the performance of these systems. Our primary focus is to eliminate two strong limitations of the
current circular cone-beam imaging approach: cone-beam artifacts and limited extent of the volume covered in
the direction of the patient bed. To solve this problem, we seek a source trajectory that (i) is complete in terms
of Tuy’s condition, (ii) can be periodically-repeated without discontinuities to allow long-object imaging, (iii)
is practical, and (iv) offers full R-line coverage (an R-line is a line that connects any two source positions). A
trajectory that satisfies all of our constraint is the Arc-Extended-Line-Arc (AELA) trajectory. Unfortunately,
this trajectory does not allow smooth, continuous scanning at reasonable dose. In this work, we propose a new
data acquisition geometry: the Ellipse-Line-Ellipse (ELE) trajectory. This geometry satisfies all of our constraints
along with the attractive feature that smooth, continuous scanning at reasonable dose is enabled.
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1. INTRODUCTION

Over the last decade, significant progress has been made in terms of treatment of diseases using minimally-
invasive procedures. This progress was facilitated through multiple refinements of the imaging capabilities of
C-arm systems in the interventional room. Many procedures which were unheard of ten years ago are now
clinical routine, and more sophisticated procedures may become feasible by further refining the performance of
the imaging system. Our primary focus is to eliminate two strong limitations of the current circular cone-beam
imaging approach: cone-beam artifacts and limited extent of the volume covered in the direction of the patient
bed. To solve this problem, we seek a source trajectory that (i) is complete in terms of Tuy’s condition, (ii)
can be periodically-repeated without discontinuities to allow smooth long-object imaging, (iii) is practical, and
(iv) offers full R-line coverage (an R-line is a line that connects any two source positions). The most important
issue regarding practicality is to acknowledge that a reversal in the rotation direction is needed every 360 degrees
due to the mechanical restrictions of C-arm systems. The constraint on R-line coverage is the result of current
knowledge on cone-beam tomographic reconstruction: theoretically-exact and stable reconstruction1–3 is known
to be feasible from truncated data when every point within the field-of-view belongs to an R-line; when R-lines
are missing, there is no guarantee that accurate reconstruction may be achievable. A trajectory that satisfies
all of our constraints is the Arc-Extended-Line-Arc (AELA) trajectory.4 Unfortunately, this trajectory does not
allow smooth, continuous scanning at reasonable dose.

In this work, we propose a new data acquisition geometry: the Ellipse-Line-Ellipse (ELE) trajectory. This
geometry satisfies all of our constraints along with the attractive feature that smooth, continuous scanning at
reasonable dose is enabled. Identification of the R-line coverage offered by the ELE trajectory is however not
trivial. Most of this four-page summary focusses on analyzing this coverage and demonstrating that suitable
parameters may be found so as to cover any typical region-of-interest. Note that proofs have been found for all
statements made in the summary, but these are not given due to the limited space.



2. GEOMETRY AND NOTATION

The ELE trajectory lies on the surface, S, of a circular cylinder with radius R. It consists of two elliptical
arcs and one line, which we refer to as T-arcs and T-line, see Figure 1 (left). Both T-arcs are centered on the
symmetry axis of S, which we call the z-axis. The T-arcs can be viewed as the intersections of two planes
with S. Those two planes are orthogonal to the (x, z)-plane and intersect in the (x, y)-plane along the line of
equation: x = c with c < −R. Note that the endpoints of the upper T-arc are denoted as Ai

+ and Ae
+, whereas

the endpoints of the lower T-arc are Ai
−

and Ae
−
. Any point on the upper and lower T-arcs, Am

+ and An
−
, can

be identified by a polar angle λ, as illustrated in the middle of Figure 1. Their coordinates are as follows:

Am
+ = (R cosλ,R sinλ, H(λ)), An

−
= (R cosλ,R sinλ,−H(λ)), (1)

with λ ∈ (λi, λe), and H(λ) = H+0.5∆H(1+cos(λ)). Note that λi = −γm and λe = π+γm with γm ∈ (0, 0.5π)
as the fan-angle. The T-line connects Ai

+ and Ai
−
, and thus is parallel to the z-axis. Any point on the T-line,

Figure 1: Geometry of ELE. Left: 3D illustration. Middle: projection onto the (x, y)-plane. Right: terminology.

Ai
h is defined as:

Ai
h = (R cosλi, R sinλi, h), h ∈ [−H(λi),H(λi)]. (2)

Note that the ELE trajectory is periodically repeatable along the z-axis and all the curve components, i.e., EE,
LE and EL, connect each other at their endpoints. This feature allows for smooth and continuous scanning.

For convenience, we define some terminology, as shown in the right of Figure 1. We call the surface, which
connects Am

+ on the upper T-arc to all the points on the lower T-arc, U-cone surface from Am
+ . The intersection

between the (x, y)-plane and the U-cone from Am
+ with polar angle λ is denoted as R-arc(λ).

3. R-LINE COVERAGE

The R-line coverage of the ELE trajectory is defined as the set of points that belong to a line connecting two
points on the source trajectory. This set of points can be divided into three subsets, i.e., R-line coverage of i)
Ellipse-Ellipse (EE), ii) Ellipse-Line (EL) and iii) Line-Ellipse (LE). Like Theorem 2 in [4], we have been able to
prove that, for a given ROI that is centered around the z-axis, the worst R-line coverage is in the (x, y)-plane.
Also, the EL and LE R-line coverage are symmetric relative to the (x, y)-plane. Therefore, we only analyze the
EE and LE coverage in the (x, y)-plane, from which the complete analysis of ELE R-line coverage can be derived.

3.1 EE R-line coverage in the (x, y)-plane

The EE R-line coverage is obtained by connecting all the points on the upper T-arc to all the points on the lower
T-arc. It also can be viewed as a union of all the U-cone surfaces. Let Am

+ be a point on the upper T-arc with



polar angle λ+, and An
−

be a point on the lower T-arc with λ−. Then the intersection between the (x, y)-plane
and the line that connects Am

+ and An
−
, has the x and y coordinates as below:















x

R
=

cosα cosβ + d(cos2 α− sin2 β)

1 + d cosα cosβ
y

R
=

sinα cosβ + d sinα cosα

1 + d cosα cosβ
,

(3)

where: α = 0.5(λ+ + λ−), β = 0.5(λ+ − λ−) and d = 0.5∆H/(H + 0.5∆H), with λ+,− ∈ [λi, λe]. For a fixed
λ+, the cancellation of λ− yields an equation of ellipse, which actually is the expression of R-arc(λ+). This
observation indicates that the EE R-line coverage is a union of all the R-arcs with λ+ varying from λi to λe.
Two examples with coarse samples in λ+ can be found in Figure 2(a) and (b). In practice, (x, y) is usually

(a) γm = 90◦,∆H = H (b) γm = 19◦,∆H = H

 

 

(c) γm = 90◦,∆H = H

 

 

(d) γm = 19◦,∆H = H

Figure 2: R-line coverage of the EE trajectory. (a) and (b): numerical simulations with a coarse sampling in λ+.
(c) and (d): analytical simulations with white as the coverage.

given and we would like to know whether there is an R-line going through this point or not. This problem can
be solved by inverting Equation 3. We have been able to obtain an analytical solution of this problem. This
solution then allows quick calculation of R-line coverage for a given (x, y) in the (x, y)-plane. The above solution
was used to obtain Figures 2(c) and (d), in which the white areas represent the R-line coverage.

A careful analysis allowed us to identify the following properties, which are identified in Figure 3. First, all
the R-arcs are tangent to the cylinder surface, S. For example, in Figure 3(a), the R-arc(λ+), which belongs
to the U-cone from Ak

+, is tangent to the projection of Ak
+ onto the (x, y)-plane, Ak

) , as shown in Figures 3(a)



and (b). Second, the center and orientation of each R-arc can easily found. Let Aπ
−

and A0
−

be points on the
lower T-arc with polar angles π and 0, respectively. The lines Ak

+A
π
−

and Ak
+A

0
−

intersect with the (x, y)-plane
at E and F , respectively. Then, the middle point of line segment EF , Ok, is the center of R-arc(λ+), as shown
in Figure 3(b). The major axis of R-arc(λ+) lies on L, which is parallel to the line connecting Ak

0 and Aπ
−

and
goes through Ok. This indicates that the angle between x-axis and L is 0.5λ+. Finally, note that all the R-arcs

(a) (b) (c)

Figure 3: (a) 3D illustration of R-arc(λ+). (b) Properties of R-arc(λ+). (3) Geometric meaning of the common
point of all the R-arcs in the (x, y)-plane.

in Figure 2(a) intersect at a common point, we call it critical point Q. This observation can be validated by
Equation 3, in which, (x, y) = (−Rd, 0) if cosβ = −d cosα. It means, for a full scan, picking any point on the
upper T-ellipse, there always exists a point on the lower T-ellipse, such that the line connecting both points
goes through the critical point Q : (−Rd, 0). Figure 3(c) illustrates the geometric meaning of Q. The circular
cylinder surface S is inscribed to another cylinder surface S1 along the line connecting A0

+ and A0
−
, and Q lies

on the symmetry axis of S1. There exist two ellipses (dashed red), such that they go through A0
+ and A0

−
. By

construction, we obtain a pair of cones (dashed blue) that shares Q as their vertex point. Now the T-arcs can be
found viewed as the intersections between this pair of cones and two planes. Those two planes are orthogonal to
the (x, z)-plane and intersect along a line of equation: x = c with c < −R.

3.2 LE and ELE R-line coverage in the (x, y)-plane

The R-line coverage of the LE trajectory can be acquired by connecting all the points on the T-line to all the
points on the lower T-arc. More intuitively, the coverage is the volume bounded by the U-cone surface from
Ai

+ and the plane defined by Ai
+, A

i
−

and Ae
−
. Therefore, in the (x, y)-plane, the R-line coverage of the LE

trajectory is an area within R-arc(λi). An analytical simulation result is shown in the left of Figure 4. By adding
the coverage of the EE, LE trajectories in the (x, y)-plane, we are now able to obtain the R-line coverage of the
ELE trajectory in the (x, y)-plane. A simulation result is given in Figure 4 (right).

4. ROI R-LINE COVERAGE

According to Section 3.1, the R-arcs in the (x, y)-plane intersect at the critical point Q, as shown in Figure 5(a).
Also note from Figures 2(a) and (b) that Q is the intersection of R-arc(λi) and R-arc(λe), which delimite the
EE R-line coverage in the (x, y)-plane. As long as λe − λi < 2π, there always exists an area in the neighbor
of Q that is not covered by R-lines. Therefore, for a cylindrical ROI that is centered on the z-axis, the biggest
admissible radius is r = Rd, as shown in Figure 5(a) and (b).

However, in practice, we usually first have the radius r, upon which we need to choose ∆H . A short scan has
been chosen with the fan-angle: γm = arcsin r/R. According to the previous paragraph, we get ∆H by simply



 

 

 

 

Figure 4: LE (left) and ELE(right) R-line coverage (white) with γm = 19◦ and ∆H = H .
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(c) r = R/3, ∆H = H (d) r = R/3, ∆H = H

Figure 5: Illstration of the ROI design. (a) The projection of the ELE Trajectory onto the (x, z)-plane. (b) The
projection onto the (x, y)-plane. (c) Analytical simulation: the black circle stands for the ROI. (d) Numerical
simulation: blue for the coverage of EE, yellow for the coverage of LE and dashed green line for the ROI.

inverting the expression of d, and get:
∆H = 2Hr/(R− r). (4)

We were able to prove that, for a short scan with a given radius of ROI r < 0.7R, the choice on ∆H using
Equation 4 can guarantee sufficient R-line coverage within the ROI. An example with both analytical and



numerical simulations are illustrated in Figure 5(c) and (d). Both figures show that the R-line coverage within
the ROI (black circle in (c) and green dashed circle in (d)) is sufficient.

5. CONCLUSION

We have presented a new trajectory, i.e., Ellipse-Line-Ellipse, which allows a smooth and continuous scanning.
We have been able to show that it is periodically repeatable along the z-axis and can be designed such that the
R-line coverage within a typical ROI is sufficient.
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