
Simulation tools for two-dimensional experiments in x-ray computed tomography using the

FORBILD head phantom

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 Phys. Med. Biol. 57 N237

(http://iopscience.iop.org/0031-9155/57/13/N237)

Download details:

IP Address: 155.100.62.149

The article was downloaded on 07/08/2012 at 18:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0031-9155/57/13
http://iopscience.iop.org/0031-9155
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. 57 (2012) N237–N252 doi:10.1088/0031-9155/57/13/N237

NOTE

Simulation tools for two-dimensional experiments in
x-ray computed tomography using the FORBILD
head phantom

Zhicong Yu1,2, Frédéric Noo1, Frank Dennerlein3, Adam Wunderlich1,
Günter Lauritsch3 and Joachim Hornegger2

1 Department of Radiology, University of Utah, Salt Lake City, UT, USA
2 The Chair of Pattern Recognition, University of Erlangen-Nuremberg, Erlangen, Germany
3 Siemens AG, Healthcare Sector, Forchheim, Germany

E-mail: zyu@ucair.med.utah.edu

Received 28 February 2012, in final form 17 May 2012
Published 20 June 2012
Online at stacks.iop.org/PMB/57/N237

Abstract
Mathematical phantoms are essential for the development and early stage
evaluation of image reconstruction algorithms in x-ray computed tomography
(CT). This note offers tools for computer simulations using a two-dimensional
(2D) phantom that models the central axial slice through the FORBILD head
phantom. Introduced in 1999, in response to a need for a more robust test,
the FORBILD head phantom is now seen by many as the gold standard.
However, the simple Shepp–Logan phantom is still heavily used by researchers
working on 2D image reconstruction. Universal acceptance of the FORBILD
head phantom may have been prevented by its significantly higher complexity:
software that allows computer simulations with the Shepp–Logan phantom is
not readily applicable to the FORBILD head phantom. The tools offered here
address this problem. They are designed for use with Matlab R©, as well as open-
source variants, such as FreeMat and Octave, which are all widely used in both
academia and industry. To get started, the interested user can simply copy and
paste the codes from this PDF document into Matlab R© M-files.

(Some figures may appear in colour only in the online journal)

1. Introduction

Mathematical phantoms are essential for the development and early stage evaluation of image
reconstruction algorithms in x-ray computed tomography (CT). An important phantom was
developed for this purpose in the initial years of CT. This phantom, called the Shepp–Logan
phantom (Shepp and Logan 1974), has been heavily used, as well as a three-dimensional
(3D) version of it that can be found in Kak and Slaney (2001). However, by the mid-1990s,
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it was recognized that this phantom and its 3D version were too simple for the evaluation
of advanced reconstruction theories; more challenging phantoms were needed to improve the
robustness of evaluations. In 1999, a solution to this problem was proposed by a group of CT
researchers at the Institute of Medical Physics (Erlangen, Germany). Working together with
scientists from Siemens Healthcare, this group developed the FORBILD phantoms4, which
model different parts of the anatomy. Among these phantoms, the models of the head and the
thorax were quickly adopted by CT researchers, particularly for early stage evaluations of new
image reconstruction algorithms; for example, see Sidky et al (2005), Bontus et al (2007),
Tang and Hsieh (2007), Yan et al (2010), Yu and Wang (2010), Dennerlein and Noo (2011),
Maass et al (2011), Noo et al (2004), Manzke et al (2005), King et al (2006), Li et al (2006),
Dennerlein et al (2007), Ye et al (2007), Maass et al (2009), Schmidt (2009).

Unfortunately, the Shepp–Logan phantom is still largely used in papers that focus on
two-dimensional (2D) image reconstruction (Horbelt et al 2002, Rieder and Faridani 2004,
Zhang and Froment 2005, Chen et al 2006, You and Zeng 2007, Baek and Pelc 2009, Bilgot
et al 2011, Supanich et al 2009, Louis 2011, Averbuch et al 2012). We attribute this situation
to the fact that software for data simulation with the Shepp–Logan phantom is not readily
applicable to the FORBILD head phantom. Two difficulties must be overcome, and handling
these typically requires a significant investment in software development. The first difficulty
stems from the fact that the primitive objects forming the phantom are not merely ellipsoids;
elliptical cylinders, cones and truncated ellipsoids are also needed. Second, these objects are
not combined together with the common addition formula: a precedency rule is used instead.
That is, the order of the objects matters, because each object in the list is assigned the entire
space it occupies, so that it can hide portions of objects that are listed prior to it.

In this paper, we present a 2D phantom that models the central axial slice through
the FORBILD head phantom, and we offer simulation tools for 2D experiments with this
phantom. This slice exhibits much of the complexity of the FORBILD head phantom and
has been extensively employed in the development of 2D reconstruction algorithms (De Man
and Basu 2002, Kachelriess et al 2003, Zou et al 2005, Yu and Wang 2007, Wunderlich and
Noo 2008, Riviere and Vargas 2008). In particular, it includes more sophisticated features
than the Shepp–Logan phantom, allowing the evaluation of low-contrast object detectability
in the presence of artifact-inducing, high-contrast objects. The tools are designed for use with
Matlab R©, as well as any open-source versions of Matlab R©, such as Octave and FreeMat.

2. Phantom definition

The FORBILD head phantom consists of 17 objects plus two insets, which we refer to as the
left and right ears. Each of the 17 objects is either an ellipsoid, a cylinder, or a cone, or a
portion thereof. The left ear is a resolution pattern built from ellipsoids of various sizes. The
right ear is a model of the temporal bone, defined as a set of spherical air cavities within a
high-density (bone-like) material. A depiction of how the 17 objects and the two insets appear
within the central axial plane through the phantom is given in figure 1. Note that only 16, not
17 objects are seen in this figure, because the two cones that model the petrous bone cannot
be distinguished from each other in this plane; they are reduced to the object labeled as 16.

The goal of this paper is to provide simulation tools for a 2D phantom that models the
image displayed in figure 1. A proper name for this phantom may be ‘The 2D FORBILD head
phantom’. The tools are offered with the option of including or leaving out either of the two
ears. Our description is based on Cartesian coordinates, x and y, that are measured along the

4 http://www.imp.uni-erlangen.de/phantoms.
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Figure 1. Central axial slice through the FORBILD head phantom. In this slice, only 16 of the
17 objects forming the phantom can be seen. These objects are each labeled with a number between
1 and 16. The phantom also includes two insets: the left and right ears, a magnified version of
which is shown. Display window: [35, 65]HU.

minor and major axes of the outer ellipse in figure 1. The origin (x, y) = (0, 0) is at the center
of this ellipse.

3. Modeling technique

We present here our mathematical model for the 2D FORBILD head phantom. We start by
discussing the overall design, then provide details on the most important aspects of the model.
Note that lengths are always expressed in centimeters.

3.1. Design

The 2D FORBILD head phantom is built as a linear combination of functions that are each
equal to 1 within an ellipse or the portion of an ellipse and 0 outside. Whenever the portion of an
ellipse is involved, this portion is identified through the use of a clipping line, as discussed later.
This construction has the advantage of yielding a simple description and enabling fast data
simulation, particularly in comparison with using object superposition with a precedency rule
(which is the method employed in the definition of the FORBILD phantom). However, these
advantages come with a cost: our model is not an exact representation of the central axial slice
through the FORBILD head phantom—it is a slight approximation. The misrepresentation
issue is linked to the petrous bone (object 16), which is created from a cone in such a way
that its boundary is a parabola that cannot be exactly described by an ellipse. In our model,
the petrous bone is approximately represented, whereas all other features of the FORBILD
phantom are accurately reproduced.
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Figure 2. Illustration of an ellipse together with a clipping line. The portion retained after clipping
is indicated by the arrow and the shaded area. Note that d is a signed distance that is negative in
this drawing.

3.2. Ellipses and clipping lines

Let E be the ellipse of half-axes a and b that is centered at x0 and makes an angle φ with the
x-axis, as shown in figure 2. By definition, any point x within E satisfies the equation

(x − x0)
T QT D2Q(x − x0) � 1, (1)

where

D =
[

1/a 0
0 1/b

]
, Q =

[
cos φ sin φ

− sin φ cos φ

]
. (2)

Next, let L be the line that is at signed distance d from the center of the ellipse in the
direction of a given vector ψ = (cos ψ, sin ψ), as illustrated in figure 2. When the magnitude
of d is small enough relative to the size of the ellipse, line L intersects the ellipse and can be
used to single out a portion of it. When performing this role, we say that L is a clipping line.
The portion of the ellipse that is identified as the object of interest is the set of points x such
that

(x − x0)
T ψ < d. (3)

Given an ellipse E and a number K of clipping lines, described with di and ψ
i

=
(cos ψi, sin ψi), where i = 1, . . . , K, we introduce a characteristic function:

f (x) =
{

1 if x ∈ E and (x − x0)
T ψ

i
< di, i = 1, . . . , K,

0 otherwise.
(4)

Our description of the 2D FORBILD head phantom without ears involves 17 objects that
are each defined as one ellipse together with a number of clipping lines. The nth object is
associated with a relative density value, μn, as well as with a function fn(x) that is defined
in the same way as f (x) in (4), so that the mathematical expression for the phantom with no
ears is

μ(x) =
17∑

n=1

μn fn(x). (5)

When desired, the right ear (see figure 1) is included using the following transformations.
First, object 6 is truncated, and a new clipped ellipse is introduced, as drawn in figure 3,
to create the main body of this ear. The relative density assigned to this new ellipse is such
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Figure 3. Construction of the right ear body. Object 6, which represents the brain matter, is clipped
by a vertical line denoted as L6, and a new ellipse, called ellipse r, is introduced. This new ellipse
is clipped by line Lr , which is geometrically identical to L6, and is added with a relative density
such that the overall density of the right ear body is equal to that of object 5, which depicts the
skull.

that the value of μ(x) within the ear is equal to that of the skull (object 5) before adding the
air cavities. Next, the air cavities are inserted within the ear as 53 small circular disks. The
inclusion of the left ear is much simpler, as it amounts to just adding 80 circular disks.

Note that the full description of all objects involved in the phantom is embedded within
the first Matlab R© function that we supply. Note also that the values taken by μ(x) are to
be interpreted as attenuation factors relative to that of water, so that 1000 (μ(x) − 1) is in
Hounsfield units. To perform simulations with noise or a polychromatic x-ray beam, some
corrections must be applied, which will be discussed later.

3.3. Modeling of the petrous bone

As discussed earlier, our model involves an approximation because the petrous bone (object
16 in figure 1) could not be exactly represented using ellipses. We have represented this object
using a combination of two clipped ellipses, denoted as objects 16a and 16b in figure 4, where
ellipse a is the same ellipse as that describing object 6. Note that figure 4 is not drawn to scale:
objects 16a and 16b are magnified for visibility purpose. Object 16a is the portion of ellipse
a that remains after it is clipped by lines La

1, L2 and L3. Object 16b is the portion of another
ellipse, called ellipse b, that is clipped by line Lb

1. The major axis of ellipse a is colinear with
that of ellipse b, and lines L2 and L3 are mirror images of each other relative to this major
axis. Moreover, these two lines are tangent to ellipse b, and lines La

1 and Lb
1, which are on

top of each other, pass through the two tangency points, so that the boundary of the union of
objects 16a and 16b is both continuous and differentiable.

The level of approximation involved in our representation of the petrous bone can be
appreciated through inspection of images given in figure 5. A very good approximation is
achieved near the points where L2 and L3 meet ellipse b, as well as near the tip of the bone.
Away from these regions, the size of our petrous bone slightly differs from that of the original
bone: see the plot in figure 5, which shows the width difference in x as a function of y.

Since the approximation involved in our representation of the petrous bone is fairly smooth
and small in size, it is not expected to affect image quality evaluations in x-ray CT experiments.
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Figure 4. Modeling of the petrous bone (object 16 in figure 1). Our model is based on two ellipse
portions: 16a from ellipse a and 16b from ellipse b.
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Figure 5. Approximation in our representation of the petrous bone. From left to right: the original
bone; our approximation; mask highlighting the locations where the representation differs from
the original; difference in width (in cm) as a function of y, from baseline to tip, between the
representation and the original.

4. Simulation tools

We provide the reader with four Matlab R© functions. The first function creates a matrix-based
analytical representation of the phantom, and it must be executed before running the other
functions. When executing this first function, the user gets the opportunity to decide which,
if any, of the two ears should be included. The second function changes the attenuation
value within the description of the phantom; it is only needed for experiments involving
a polychromatic x-ray beam. The last two functions allow the user to obtain a discretized
version of the phantom and to compute exact line integrals through the phantom, both with
freely selectable sampling conditions.
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This section is divided into three subsections that provide guidance on how to use each of
the four Matlab R© functions, as well as specific details on how these functions are built. Note
that all four functions can be copied and pasted directly from the PDF version of this paper
into Matlab R© M-files, naming each file with the name of the function it contains.

4.1. Analytical representation

The function to generate the analytical representation of the 2D FORBILD head phantom is

[phantom] = analytical phantom(oL, oR),

where [oL] and [oR] are two input parameters acting on the inclusion or not of the left and
right inner ears. By setting [oL = 1] (resp. [oR = 1]), the left inner ear (resp. the right inner
ear) is added to the phantom, whereas any other value chosen for [oL] (resp. [oR]) results in
the corresponding ear being left out.

The output of this function, called phantom above, is a structure containing two elements,
phantom.E and phantom.C, which are both matrices containing the parameters for the ellipses
and clipping lines forming the phantom, respectively. Each row of phantom.E defines one
ellipse and the number of lines clipping it; the elements of any row successively correspond to
the (x, y) coordinates of the ellipse center, the half-lengths, the orientation angle, the relative
attenuation coefficient and the number of clipping lines. (Note that the correspondence between
the object labels in figure 1 and the rows of E is highlighted in the Matlab R© function using a
comment (number) at the end of each row of E.)

The columns of phantom.C each define one clipping line. The first element of each
column specifies the signed distance d, whereas the second element gives the orientation
angle, ψ , in degrees. The order of the columns is critical and defined in agreement with the
rows in phantom.E. Since there are no clipping lines associated with the first 12 rows in
phantom.E, the first four columns of phantom.C define the clipping lines for the ellipse
described in the 13th row of phantom.E (object 14), whereas the next four columns are the
clipping lines for the ellipse in the 14th row, and so on.

As discussed earlier, the attenuation values within the phantom are expressed relative
to that of water. There are two options to perform experiments with physical attenuation
values. The first option is straightforward and generally sufficient for experiments assuming
a monochromatic beam: simply multiply any line integral computed from phantom with the
linear attenuation coefficient of water at some energy of interest. For example, a multiplication
factor of 0.183 can be used when the energy of interest is 80 keV, which is close to the average
energy of the beam for a diagnostic CT scan performed at 120 kVp. In defining this factor,
recall that all lengths are expressed in centimeters; the attenuation coefficient for water at
80 keV is 0.183 cm−1.

This first option discussed above to create physical line integrals is a minimal requirement
to perform experiments with noise, which can be performed as explained, for example, in
Wunderlich and Noo (2008). To perform experiments that involve a polychromatic x-ray
beam, it is better to adopt another option, which accounts for the fact that the linear attenuation
coefficients for water and bone change with the photon energy, denoted as Ep. This second
option corresponds to using the function

[physphantom] = physical value(phantom, muW, muB),

which transforms all attenuation coefficients within the phantom into physical values based
on two materials, water and bone, so that any line integral computed from the output of this
function, physphantom, has a physical meaning. The second and the third arguments are
the linear attenuation coefficients for water and bone, respectively, at a given value for Ep.
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Figure 6. Linear attenuation coefficients for water and cortical bone as a function of the photon
energy, Ep.

Table 1. Coefficients for the polynomial-based approximation of curves in figure 6; see equation (6).

p1 p2 p3 p4 p5

Water −0.014 027 −0.045 959 2.366 105 −13.683 202 21.867 818
Cortical bone −0.179 564 2.851 439 −16.055 087 35.924 159 −23.704 935

Conceptually, physical_value changes all attenuation values of 1.8 to muB, and replaces all
other attenuation values by their product with muW (e.g., a value of 1.05 becomes 1.05 muW).
Thus, all attenuation values that are equal to 1.8 are assumed to represent bone; and all
attenuation values that differ from 1.8 are assumed to represent materials that behave like
water, except for a relative change in mass density. A typical procedure for an experiment with
a polychromatic x-ray beam is to compute the line integrals of interest for a number of energy
values and combine those afterward using energy spectrum information (Whiting et al 2006).

Figure 6 shows how the linear attenuation coefficients for water and cortical bone vary
with Ep. These two curves were obtained using the cross-sectional databases from NIST5.
They are well approximated using the following polynomial-based expression:

μ � exp
{

p1 ε4 + p2 ε3 + p3 ε2 + p4 ε + p5
}
, (6)

where ε = ln Ep, i.e. ε is the natural logarithm of Ep. The coefficients that appear in this
expression are given in table 1. Note that μ and Ep are expressed in cm−1 and keV, respectively.
Note also that the fitting is only accurate for Ep between 15 and 140 keV. The maximum
relative error within this range is 2.5%. Finally, observe that the ratio between the attenuation
coefficients of cortical bone and water at 80 keV is not 1.8, as could be expected; it is 2.32.
Technically speaking, the human skull is not made of cortical bone only: the inner portion of
the skull is made of less attenuating material, but the FORBILD head phantom does not allow
for this level of detail. If a lower attenuation effect is desired, the third input of physical_value
may be chosen as 0.77 times the linear attenuation coefficient of cortical bone. Either way, the

5 http://www.nist.gov/pml/data/xray_gammaray.cfm.
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most important issue is to clearly report in any research paper the expression that was used for
muB.

4.2. Phantom discretization

A discrete version of the 2D FORBILD head phantom can be obtained using the following
Matlab R© function:

[image] = discrete phantom(xcoord, ycoord, phantom).

In this function, the third input argument is the output of analytical_phantom, or the output
of physical_value, whereas the first and the second inputs are two matrices of the same size
that, respectively, specify the x and the y coordinates corresponding to all desired samples.
By construction, the output result, image, is a matrix that has the same size as the first two
input arguments, with element (k, l) of this matrix being the value taken by the phantom at
location (x, y) with x and y given by element (k, l) of the first and the second input arguments,
respectively.

For example, suppose that we wish to create a 400 × 400 image of the phantom that
is centered on the origin with a sampling step of 0.075 cm in both x and y. This task can
be performed using the following Matlab R© command lines to generate the first two input
arguments:

x = ((0:399)-199.5)*0.075;

y = ((0:399)-199.5)*0.075;;

xcoord = ones(400,1)*x;

ycoord = transpose(y)*ones(1,400);

From these inputs, the output, image, will be a 400 × 400 matrix that contains pixel values for
a fixed y in each row, with the first row corresponding to the most negative value of y. Within
each row, x increases from left to right.

4.3. Line integrals

The second Matlab R© function is for computation of line integrals through the phantom.
We describe lines using the Radon transform notation, i.e. any line L through the object is
specified using a scalar, s, and an angle, θ . By definition, line L(θ, s) is orthogonal to vector
θ = (cos θ, sin θ ) at signed distance s from the origin, with s measured positively in the
direction of θ , as shown on the left side of figure 7.

Any sets of line integrals through the 2D FORBILD head phantom can be obtained using
the following function:

[sino] = line integrals(scoord, theta, phantom).

In this function, the third input is the output of analytical_phantom, or the output of
physical_value, whereas the first and the second inputs are two matrices of the same size that,
respectively, specify the parameters s and θ corresponding to all desired lines. By construction,
the output result, sino, is a matrix that has the same size as the first two input arguments, with
element (k, l) of this matrix being the integral of the phantom along the line L(θ, s) that results
from using the element (k, l) of the first and the second input arguments to define s and θ ,
respectively.

For example, suppose that we wish to obtain a set of 1160 non-truncated parallel-beam
projections, with a sampling step of 0.075 cm in s, and with the first projection in the direction



N246 Z Yu et al

Figure 7. Circular scan geometries using a flat detector. Left: the parallel-beam geometry; right:
the fan-beam geometry with radius of R and source-to-detector distance of D.

of y. Given that the phantom fits within a disk of radius 12 cm centered on the origin, a
minimum of 320 rays per view is needed. Suppose that we set out for 351 rays evenly
distributed across the origin s = 0. Then, the following command lines in Matlab R© yield the
inputs for lines_integrals:

s = ((0:350)-175)*0.075;

theta = (0:1159)*pi/1160-pi/2;

scoord = ones(1160,1)*s;

theta = transpose(theta)*ones(1,351);

From these inputs, the output, sino, will be a matrix of size 1160×351, with each row yielding
one of the desired parallel-beam projections.

Our Matlab R© function can also be used to create fan-beam data. For illustration, consider
a fan-beam data acquisition geometry with a linear detector array, as shown on the right side
of figure 7. The distance from the source to the rotation center is R, and angle λ describes
the rotation, so that the source position is a(λ) = (R cos λ, R sin λ). Also, the detector is
parallel to eu(λ) = (− sin λ, cos λ) at distance D from the source, with each point on the
detector identified using a coordinate u that is measured positively in the direction of eu(λ),
and with u = 0 coinciding with the orthogonal projection of the source onto the detector. In
this geometry, any line that connects the source to a point on the detector is given by{

θ = λ + π/2 − arctan(u/D),

s = uR/
√

D2 + u2.
(7)

Therefore, the following Matlab R© command lines will create the two inputs required to obtain
M fan-beam projections over 360◦ with N rays per view sampled with a stepsize W in u:

u = ((0:N-1)-(N-1)/2)*W;

lambda = (0:M-1)*2*pi/M; %lambda

uc = ones(M,1)*u;

lambdac = transpose(lambda)*ones(1,N);

scoord = R*uc./sqrt(D̂ 2+uc.̂ 2);
theta = lambdac+pi/2-atan(uc/D);
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For the interested reader, appendix A provides details on the method and the associated
notation used to compute the line integrals. There is however one important numerical aspect
that we wish to highlight here. This aspect regards our handling of cases where L(θ, s) is
parallel to one of the clipping lines. For any such line, we decided to add a tiny increment
to the value of θ (specifically, 10−10) to circumvent any mathematical singularity that could
appear at some values of s. While having a negligible effect on the accuracy of simulations,
this increment avoids errors that could occur when L(θ, s) is identical to one of the clipping
lines used to define the petrous bone or the right ear. Moreover, it regularizes the output in
cases where the line integral through an object is undefined, which occurs when the boundary
of an object includes a segment of line and the line integral is to be taken along this line
segment, as with object 14.

5. Conclusions

The primary purpose of this note was to offer simulation tools for 2D experiments in x-ray
CT using a phantom that models the central slice through the FORBILD head phantom. These
tools consist of four different Matlab R© functions, the first two of which are dedicated to the
phantom definition, whereas the other two are for phantom discretization and line integral
computation. The reader might have noted that the last two functions are not restricted to the
2D FORBILD phantom. They apply to any 2D phantom that is built by addition of clipped
ellipses. The tools offered here should enable more widespread use of the FORBILD head
phantom, thereby facilitating the development of modern 2D image reconstruction theories.
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Appendix A. Computation of line integrals

Here, we describe the technique used to compute a line integral through the object described
by equation (4). Any line integral through the 2D FORBILD head phantom is a weighted sum
of such line integrals, obtained using equation (5).

By definition, any point x on L(θ, s) can be written in the form

x = s θ + t θ⊥ (A.1)

for some t ∈ R, with θ = (cos θ, sin θ ) and θ⊥ = (− sin θ, cos θ ). To obtain the integral of
the function f in (4) on L(θ, s), we determine if L(θ, s) intersects the support of f or not,
and at what values of t. If there are no intersections, the integral is zero. Otherwise, since the
support of f is convex, there is only one entrance point and one exit point, and these two points
fully determine the value for the desired integral, given that f is constant within its support.
To determine the locations where L(θ, s) possibly meets the support of f , we first examine
the intersections between L(θ, s) and the ellipse E forming (4), then we refine the results by
examining the impact of each clipping line, as explained hereafter.

Assuming that x is on the boundary of the ellipse, which is given by (1), we obtain a
quadratic equation for t:

(s0 + tθ⊥)T QT D2Q(s0 + tθ⊥) = 1, (A.2)



N248 Z Yu et al

where s0 = sθ − x0. For the Matlab R© function, this equation is rewritten in the form:

At2 + Bt + C = 0, with

⎧⎨
⎩

A =‖ DQθ⊥ ‖2

B = 2(DQθ⊥) · (DQs0)

C =‖ DQs0 ‖2 −1.

When B2 > 4AC, there exist two solutions tP and tQ, which indicates two intersection points
between E and L(θ, s), denoted as P and Q, with tQ > tP. When B2 � 4AC, the line integral
is zero.

Once tP and tQ are known, the impact of each clipping line is determined by evaluating
whether tP and tQ correspond to points within the retained portion of the ellipse or not. For
clipping line L(ψi, di), this evaluation is performed using the following inequality test:

t θ⊥ · ψi < di − s0 · ψi . (A.3)

If tQ fails to satisfy this inequality, then tQ is replaced by

tZ = (di − s0 · ψi)/(θ
⊥ · ψi), (A.4)

and the same operation is applied to tP. Geometrically, tZ corresponds to the intersection point
between L(θ, s) and L(ψi, di). Once all clipping lines have been considered, the line integral
is attributed the value of tQ − tP, which may be zero if both tQ and tP satisfy none of the
clipping-line inequalities.

Naturally, the expression for tZ is only well defined when the denominator in (A.4) is non-
zero, which is always the case when L(θ, s) and L(ψi, di) are non-parallel. In our Matlab R©

function, this geometrical arrangement is enforced through the addition of a tiny increment to
θ whenever L(θ, s) is parallel to one of the clipping lines (recall the discussion at the end of
section 4.3).

Appendix B. Matlab R© functions

function [ phantom ] = analytical_phantom(oL, oR)
if (oL~=1) oL=0; end; if (oR~=1) oR=0; end;
sha = 0.2*sqrt(3); y016b = -14.294530834372887;

a16b = 0.443194085308632; b16b = 3.892760834372886;
E=[-4.7 4.3 1.79989 1.79989 0 0.010 0; %1

4.7 4.3 1.79989 1.79989 0 0.010 0; %2
-1.08 -9 0.4 0.4 0 0.0025 0; %3
1.08 -9 0.4 0.4 0 -0.0025 0; %4
0 0 9.6 12 0 1.800 0; %5
0 8.4 1.8 3.0 0 -1.050 0; %7
1.9 5.4 0.41633 1.17425 -31.07698 0.750 0; %8
-1.9 5.4 0.41633 1.17425 31.07698 0.750 0; %9
-4.3 6.8 1.8 0.24 -30 0.750 0; %10
4.3 6.8 1.8 0.24 30 0.750 0; %11
0 -3.6 1.8 3.6 0 -0.005 0; %12

6.39395 -6.39395 1.2 0.42 58.1 0.005 0; %13
0 3.6 2 2 0 0.750 4; %14
0 9.6 1.8 3.0 0 1.800 4; %15
0 0 9.0 11.4 0 0.750 3; %16a
0 y016b a16b b16b 0 0.750 1; %16b
0 0 9.0 11.4 0 -0.750 oR; %6
9.1 0 4.2 1.8 0 0.750 1];%R_ear
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%generate the air cavities in the right ear
cavity1 = transpose(8.8:-0.4:5.6); cavity2 = zeros(9,1);
cavity3_7 = ones(53,1)*[0.15 0.15 0 -1.800 0];
for j = 1:3 kj = 8-2*floor(j/3); dj = 0.2*mod(j,2);
cavity1 = [cavity1; cavity1(1:kj)-dj; cavity1(1:kj)-dj];
cavity2 = [cavity2; j*sha*ones(kj,1); -j*sha*ones(kj,1)]; end
E_cavity = [cavity1 cavity2 cavity3_7];
%generate the left ear (resolution pattern)
x0 = -7.0;y0 = -1.0;d0_xy = 0.04;
d_xy = [0.0357, 0.0312, 0.0278, 0.0250];
x00 = zeros(0,0); y00 = zeros(0,0);
ab = 0.5*ones(5,1)*d_xy; ab = ab(:)*ones(1,4);
leftear4_7 = [ab(:) ab(:) ones(80,1)*[0 0.750 0]];
for i = 1:4 y00 = [y00; transpose(y0+(0:4)*2*d_xy(i))];
x00 = [x00; (x0+2*(i-1)*d0_xy)*ones(5,1)]; end
x00 = x00*ones(1,4);
y00 = [y00;y00+12*d0_xy; y00+24*d0_xy; y00+36*d0_xy];
leftear = [x00(:) y00 leftear4_7];
C=[ 1.2 1.2 0.27884 0.27884 0.60687 0.60687 0.2 ...

0.2 -2.605 -2.605 -10.71177 y016b+10.71177 8.88740 -0.21260;
0 180 90 270 90 270 0 ...

180 15 165 90 270 0 0 ];
if (oL==0&oR==0) phantom.E=E(1:17,:); phantom.C=C(:,1:12);
elseif(oL==0&oR==1) phantom.E=[E;E_cavity]; phantom.C=C;
elseif(oL==1&oR==0) phantom.E=[leftear;E(1:17,:)]; phantom.C=C(:,1:12);
else phantom.E=[leftear;E;E_cavity];phantom.C=C; end
end

function [ physphantom ] = physical_value(phantom,muW,muB)
physphantom.E=phantom.E;
physphantom.C=phantom.C;
nrows=size(phantom.E,1);
shift=0;if (nrows > 71) shift=80;end
if (nrows >= 97) physphantom.E(1:80,6)=muB-1.05*muW;end
if (nrows == 71 || nrows == 151)

physphantom.E(18+shift,6)=muB-1.05*muW;
physphantom.E((19:71)+shift,6)=-muB;

end
physphantom.E(5+shift,6)=muB;
physphantom.E(17+shift,6)=1.05*muW-muB;
physphantom.E(6+shift,6)=-1.05*muW;
physphantom.E(14+shift,6)=muB;
physphantom.E([7 8 9 10 13 15 16]+shift,6)=muB-1.05*muW;
j=[1 2 3 4 11 12];
physphantom.E(j+shift,6)=muW*phantom.E(j+shift,6);
end
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function [ image ] = discrete_phantom(xcoord,ycoord,phantom)
image = zeros(size(xcoord));
nclipinfo = 0;
for k = 1:length(phantom.E(:,1))

Vx0 = [transpose(xcoord(:))-phantom.E(k,1);
transpose(ycoord(:))-phantom.E(k,2)];

D = [1/phantom.E(k,3) 0;0 1/phantom.E(k,4)];
phi = phantom.E(k,5)*pi/180;
Q = [cos(phi) sin(phi); -sin(phi) cos(phi)];
f = phantom.E(k,6);
nclip = phantom.E(k,7);
equation1 = sum((D*Q*Vx0).^2);
i = find(equation1<=1.0);
if (nclip > 0)

for j = 1:nclip
nclipinfo = nclipinfo+1;
d = phantom.C(1,nclipinfo);
psi = phantom.C(2,nclipinfo)*pi/180;
equation2 = ([cos(psi) sin(psi)]*Vx0);
i = i(find(equation2(i)<d));

end
end
image(i) = image(i)+f;

end

function [ sino ] = line_integrals(scoord,theta,phantom)
sinth = sin(transpose(theta(:)));costh = cos(transpose(theta(:)));
meps = 1e-10; nclipinfo = 0; mask = zeros(size(theta));
for k=1:size(phantom.C,2)

psi = phantom.C(2,k)*pi/180; tmp = -sinth*cos(psi)+costh*sin(psi);
kk = find(abs(tmp)<meps); mask(kk) = meps;

end
theta= theta+mask; sino = zeros(1,length(scoord(:)));
sinth = sin(transpose(theta(:)));costh = cos(transpose(theta(:)));
sx = transpose(scoord(:)).*costh; sy = transpose(scoord(:)).*sinth;
for k=1:length(phantom.E(:,1))

x0 = phantom.E(k,1); y0 = phantom.E(k,2);
a = phantom.E(k,3); b = phantom.E(k,4);
phi = phantom.E(k,5)*pi/180; f = phantom.E(k,6);
nclip = phantom.E(k,7); s0 = [sx-x0;sy-y0];
DQ = [cos(phi)/a sin(phi)/a; -sin(phi)/b cos(phi)/b];
DQthp = DQ*[-sinth;costh]; DQs0 = DQ*s0;
A = sum(DQthp.^2); B = 2*sum(DQthp.*DQs0);
C = sum(DQs0.^2)-1; equation = B.^2-4*A.*C;
i = find(equation>0);
tp = 0.5*(-B(i)+sqrt(equation(i)))./A(i);
tq = 0.5*(-B(i)-sqrt(equation(i)))./A(i);
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if (nclip>0)
for j = 1:nclip

nclipinfo = nclipinfo+1;
d = phantom.C(1,nclipinfo);
psi= phantom.C(2,nclipinfo)*pi/180;
xp = sx(i)-tp.*sinth(i); yp = sy(i)+tp.*costh(i);
xq = sx(i)-tq.*sinth(i); yq = sy(i)+tq.*costh(i);
tz = d-cos(psi)*s0(1,i)-sin(psi)*s0(2,i);
tz = tz./(-sinth(i)*cos(psi)+costh(i)*sin(psi));
equation2 = ((xp-x0)*cos(psi)+(yp-y0)*sin(psi));
equation3 = ((xq-x0)*cos(psi)+(yq-y0)*sin(psi));
m1 = find(equation3>=d); tq(m1) = tz(m1);
m2 = find(equation2>=d); tp(m2) = tz(m2);

end
end
sinok = f*abs(tp-tq); sino(i) = sino(i)+sinok;

end
sino = reshape(sino,size(theta));
end
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