
Automated Image Forgery Detection through
Classification of JPEG Ghosts

Fabian Zach, Christian Riess and Elli Angelopoulou

Pattern Recognition Lab
University of Erlangen-Nuremberg

{riess,elli}@i5.cs.fau.de

Abstract. We present a method for automating the detection of the so-
called JPEG ghosts. JPEG ghosts can be used for discriminating single-
and double JPEG compression, which is a common cue for image manip-
ulation detection. The JPEG ghost scheme is particularly well-suited for
non-technical experts, but the manual search for such ghosts can be both
tedious and error-prone. In this paper, we propose a method that au-
tomatically and efficiently discriminates single- and double-compressed
regions based on the JPEG ghost principle. Experiments show that the
detection results are highly competitive with state-of-the-art methods,
for both, aligned and shifted JPEG grids in double-JPEG compression.

1 Introduction

The goal of blind image forensics is to determine the authenticity of an im-
age without using an embedded security scheme. With the broad availability of
digital images and tools for image editing, it becomes increasingly important
to detect malicious manipulations. Consequently, image forensics has recently
gained considerable attention. Most existing methods fall into two categories:
a) detecting traces of a particular manipulation operation and b) verifying the
“rationality” of expected image artifacts. Good surveys on such methods are [10,
4]. For instance, methods for copy-move forgery detection search for duplicated
content within the same image (see e. g. [3]). However, traces from such a copy-
ing operation may be visible to the eye. If a manipulator is careful, he might
hide such visible traces using post-processing operations. To counter a careful,
yet not technically educated forger, a number of researchers focused on invisible
cues for image manipulation. One of the most widely used invisible indicators are
JPEG artifacts. Their use in image forgery detection is based on the following
key observation: every time that a JPEG image is recompressed, the statistics
of its compression coefficients slightly change.

Consider, for example, the case where a manipulator takes a JPEG image,
alters part of the image, and saves it again as a JPEG image. Then, the (un-
altered) background is compressed twice, while the repainted area appears to
be compressed only once in JPEG format — because the JPEG artifacts of the
initial compression were destroyed by the painting operation.

2 F. Zach, C. Riess and E. Angelopoulou

Thus, a common goal in JPEG-based forensics is to detect areas with differ-
ing numbers of JPEG compression, and report such an irregularity. For instance,
Lin et al. [7] showed how the use of different quantization matrices in the first and
second compression leads to a telltale high frequency component in the coeffi-
cient spectrum. However, their method assumes that the JPEG block grids of the
first and second compression are exactly aligned. This holds for image regions in
the background, as in the previous example. In more general scenarios, so-called
“shifted double-JPEG (SD-JPEG) compression” can be detected. For instance,
Qu et al. [8] developed a method for handling arbitrary block grid alignments
using independent component analysis. Barni et al. [1] proposed a method that
purely relies on non-matching grids. All these methods assume different quan-
tization matrices for the first and second compression. Huang et al. [6] showed
how to detect recompression with the same quantization matrices by exploiting
numerical imprecisions of the JPEG encoder.

While the majority of the presented approaches rely on statistics, Farid [5] re-
cently presented a perception-oriented SD-JPEG method, called “JPEG ghost”
detection. It assumes that the first compression step was conducted on a lower
quality level than the second step. Then, it suffices to recompress the image dur-
ing analysis with various lower quality levels. Difference images are subsequently
created by subtracting the original image from the recompressed versions (see
Sec. 2). For approximately correct recompression parameters, the double com-
pressed region appears as a dark “ghost” in the difference image.

The simplicity of this approach has several advantages: it is easy to imple-
ment, its validity can be simply explained, visually verified and demonstrated to
non-technical experts. However, an important drawback is the lack of automa-
tion for JPEG ghost detection. It is currently infeasible for a human expert to
visually examine the difference images for all possible parameters.

The goal of this paper is to address this drawback. We present a method
that fully automates the detection of JPEG ghosts. A human expert can still
make use of the JPEG ghost scheme, but is relieved from the requirement of
manually analyzing hundreds of images. We designed 6 features that operate
on the difference images to distinguish between single and double-compressed
regions in the JPEG images. A comparison to the method of Lin et al. [7], as
well as to results reported by other authors, shows that our JPEG ghost detection
has very competitive performance.

2 JPEG Ghost Observation

We briefly restate Farid’s ghost observation [5]. Let Iq1 be an input image that
has been compressed with JPEG quality q1. Assume that a region of the image
has been previously compressed with JPEG quality q0, where q0 < q1. To detect
this doubly compressed region, define a set of quality factors Q = {q2|0 < q2 <
q1}. Recompressing image Iq1 with the factors in Q yields a set of test images

Automated Image Forgery Detection through Classification of JPEG Ghosts 3

Fig. 1. Example JPEG ghost. Left: a rectangular region has been double-compressed
with primary compression rate q0 = 60. Middle and right: in the difference images ∆75

and ∆65 a “ghost” gradually appears as a darker region. Note also the noise in ∆75

and ∆65 due to the image texture.

Iq1,q2 . The difference image Dq2 of Iq1 and Iq1,q2 is defined as

Dq2(x, y) =
1

3

∑
i∈{R,G,B}

(Iq1(x, y, i)− Iq2(x, y, i))
2
, (1)

where x and y denote the pixel coordinates, and i ∈ {R,G,B} the red, green
and blue color channels.

If a region of the image has previously been compressed with a compression
factor q0, q0 < q1, the squared differences become smaller for this part of the
image as q2 approaches q0. This local region, termed “ghost”, appears darker
than the remaining image. This comes from the fact that if the coefficients of q2
become more similar to the coefficients of (the unknown) q0, similar artifacts are
introduced in the image. For robustness to texture, Dq2(x, y) is averaged across
small windows of size w. Thus, the differences are computed as

∆q2(x, y) =
1

3w2

∑
i

w−1∑
wx=0

w−1∑
wy=0

(Iq1(x+wx, y+wy, i)−Iq2(x+wx, y+wy, i))
2 , (2)

and normalized to lie in the range between 0 and 1.

Fig. 1 shows an example of such a ghost. A rectangular double compressed
region has been embedded with q0 = 60 (left). Two difference images ∆75 and
∆65 are also shown. The resulting ghost can be clearly seen in ∆65. This can
directly be forensically exploited by examining a number of difference images ∆q2

for varying q2. If a dark region appears, it is considered as doubly compressed.

However, in practice, the amount of human interaction is extremely time-
consuming for two reasons. First, one has to closely examine every image, as a
ghost can be visually hard to distinguish from noise [2]. Second, the number of
difference images can become very large: a ghost appears, if the JPEG grid of ∆q2

is exactly aligned with the JPEG grid of the first compression using q0. Thus,
all possible 64 JPEG grid alignments must be visually examined. Ultimately, a
human expert has to browse 64·|Q| images, where |Q| is the number of difference
images with q2 < q1. In practice, there are often more than 300 difference images.

4 F. Zach, C. Riess and E. Angelopoulou

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100

R
el

at
iv

e
D

iff
er

en
ce

JPEG Quality q_2

Single Compression
Double Compression

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100

R
el

at
iv

e
D

iff
er

en
ce

JPEG Quality q_2

Single Compression
Double Compression

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80 90 100

R
el

at
iv

e
D

iff
er

en
ce

JPEG Quality q_2

Single Compression
Double Compression

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 30 40 50 60 70 80 90 100

R
el

at
iv

e
D

iff
er

en
ce

JPEG Quality q_2

Single Compression
Double Compression

Fig. 2. Difference curves from example JPEG ROIs. The same ROI has been single-
and double-compressed and is plotted in a joint diagram. In red, the difference curves
for single compression are shown, in green for double compression.

3 Feature Extraction

The information about a JPEG ghost is contained in the differences of a single
w × w window over different quality levels. Consider ROIs which have been
single- or double-compressed. Example difference curves for this case are shown
in Fig. 2. Here, the differences are computed over four different windows of an
image with compression quality q1 = 84, over 70 quality levels 30 ≤ q2 ≤ 100 on
a window size w = 16. All differences are normalized between 0 and 1. The red
curves denote the differences for single compressed windows. The green curves
show the same ROIs, but this time double compressed with q0 = 69. The green
curve exhibits a second minimum and rapid decay at (the unknown) q0. Due to
differences in image texture, this effect is stronger for the left graphs, than the
right graphs.

Our method is based on the analysis of these difference curves. We estimate
the quality level q1 as the global minimum over the curves derived from all
windows in the image. We then proceed as follows. Let c(x) be the value of the
difference curve for quality level x. We extracted six features that are defined on
c(x) for 30 ≤ x ≤ q1. Note that this range implies that we can not detect ghosts
with q0 < 30. However, this is mainly an engineering decision, as we considered
cases of q0 < 30 as very unlikely. Let, furthermore, w1(x) = (x − 30)/(q1 − 30)
denote a weighting function that puts more emphasis on high JPEG qualities,
and w2(x) = 1−w1(x) a weighting function that emphasizes low JPEG qualities.
We employ the following features:

1. The weighted mean value of the curve,

f1 =
1∑q1

x=30 w1(x)

q1∑
x=30

w1(x) · c(x) . (3)

2. The median of all values c(x) for 30 ≤ x ≤ q1, i. e. f2 = µ1/2 where(
P (c(x) ≤ µ1/2) ≥ 1

2

)
∧
(
P (c(x) ≥ µ1/2) ≥ 1

2

)
, (4)

and P (c(x) ≤ x) denotes the cumulative distribution function of c(x).
3. f3 is the slope of the regression line through c(x) for 30 ≤ x ≤ q1.

Automated Image Forgery Detection through Classification of JPEG Ghosts 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80

re
la

tiv
e

di
ffe

re
nc

e

JPEG quality q2

c(x)
lc(x) = 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80

re
la

tiv
e

di
ffe

re
nc

e

JPEG quality q2

c(x)
regression line

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80

re
la

tiv
e

di
ffe

re
nc

e

JPEG quality q2

c(x)
l(x)

l(x) - c(x)

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80

re
la

tiv
e

di
ffe

re
nc

e

JPEG quality q2

c(x)
lc(x) = 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80

re
la

tiv
e

di
ffe

re
nc

e

JPEG quality q2

c(x)
regression line

 0

 0.2

 0.4

 0.6

 0.8

 1

 30 40 50 60 70 80

re
la

tiv
e

di
ffe

re
nc

e

JPEG quality q2

c(x)
l(x)

l(x) - c(x)

Fig. 3. Visualization of the proposed features. Top: a single-compressed window, bot-
tom: a double-compressed window. Left: area below a normalized error of 0.5. Middle:
regression line on the error curve. Right: squared distance of the curve to the line
between (30, 1) and (q1, 0).

4. f4 is the y-axis intercept of the regression line through c(x) for 30 ≤ x ≤ q1.

5. The weighted number of points of c(x) with c(x) < t = 0.5,

f5 =
(q1∑
x=30

w2(x)
)−1· q1∑

x=30

w2(x)·g5(x) ,where g5(x) =

{
1 if c(x) < t
0 otherwise

(5)

6. The average squared distance between the actual curve and the linear func-
tion l(x) = 1 − (x − 30)/(q1 − 30), i. e. the line connecting (30, 1) and (q1,
0). More formally,

f6 =

q1∑
x=30

g6(x) ,where g6(x) =

{
(l(x)− c(x))2 if l(x) > c(x)
0 otherwise

(6)

The feature computation is well parallelizable, as every feature depends only
on a spatially isolated window. The core idea of this feature set is to identify the
steeper decay of the double-compression difference curve (see Fig. 2). Figure 3
illustrates the decision for the feature set on an example window. For each fea-
ture, we computed a histogram based on 2.5 ·106 image windows, see Fig. 4. The
compression quality levels of these windows were randomly chosen between 50
and 95, with a fixed distance q0 − q1 = 20. Feature values of single-compressed
windows are plotted in green, while features of double-compressed windows are
shown in red. From left to right, the distributions for f1 to f6 are shown. Al-
though several blocks overlap within a feature, the majority of blocks exhibits
good separation between single- and double-compression.

6 F. Zach, C. Riess and E. Angelopoulou

Fig. 4. Histograms of each of the six features, f1, f2, . . . , f6, shown from left to right.
Red histograms are from double-compressed windows. Green ones correspond to single-
compressed windows.

4 Classification

Every block was classified separately, solely based on its features. We evalu-
ated different classification algorithms: thresholding, Neural Networks, Random
Forests, AdaBoost and Bayes. The openCV implementations of these algorithms
were used. The values for thresholding were determined by computing the mean
values of the feature distributions for single- and double-compressed areas. The
actual threshold was then determined as the mean of means for each feature. A
block was considered double-compressed, if at least three quarters of the feature
values exceeded their respective threshold. The Neural Network was a Multilayer
Perceptron with a 10-node hidden layer. The activation function is a sigmoid
function with α = β = 1. For the Random Forests, we used 50 trees for classifi-
cation, while for Discrete AdaBoost 100 trees. The cost functions of all classifiers
were set to a balanced state of false positive and false negative rates.

5 Experiments

We used the Uncompressed Colour Image Database (UCID) [9] for evaluating
our method. It consists of 1338 images of size 512 × 384. For each image, we
created a single-compressed version, and two versions with single- and double-
compression, where a randomly chosen 192 × 192 pixels region is differently
compressed than the background. In total, this yields twice as many single- as
double-compressed pixels. Per image, we randomly selected q1 ∈ [50; 95], and set
q0 = q1−δ, where 5 ≤ δ ≤ 20. We varied the length w of a window between 8 and
64 pixels. Following [5], we excluded very smooth image regions, i. e. windows
with an intensity variance below 5 points. For the training of the classifiers, we
used 10% of the images from all three classes. Note that the test- and training
sets are still weakly correlated due to the high variability of the dataset.

As a quality measure, we used specificity and sensitivity. Let sc and dc denote
“single-compressed” and “double-compressed”, respectively. Then, let

TP = P (dc|dc) , TN = P (sc|sc) , FP = P (dc|sc) , FN = P (sc|dc) (7)

be the true positives, true negatives, false positives and false negatives, respec-
tively. Then, specificity and sensitivity are defined as

specificity =
TN

TN + FN
, sensitivity =

TP

TP + FN
. (8)

Automated Image Forgery Detection through Classification of JPEG Ghosts 7

Table 1. Experiments on the UCID database for shifted ghost detection on misaligned
DCT grids at a per-window level.

δ w Thresh. MLP RF Boost. Bayes

5 8 0.798/0.702 0.866/0.826 0.804/0.889 0.834/0.886 0.469/0.984

16 0.805/0.704 0.855/0.880 0.811/0.901 0.841/0.893 0.483/0.983

32 0.816/0.717 0.865/0.891 0.838/0.925 0.847/0.919 0.505/0.981

64 0.840/0.596 0.897/0.833 0.889/0.890 0.907/0.870 0.562/0.976

10 8 0.815/0.728 0.865/0.864 0.831/0.901 0.852/0.896 0.479/0.986

16 0.821/0.730 0.869/0.873 0.834/0.914 0.858/0.910 0.497/0.984

32 0.833/0.745 0.835/0.935 0.850/0.941 0.865/0.934 0.520/0.983

64 0.837/0.755 0.917/0.847 0.908/0.893 0.924/0.869 0.579/0.979

20 8 0.844/0.778 0.888/0.910 0.865/0.938 0.895/0.934 0.506/0.985

16 0.849/0.783 0.895/0.906 0.864/0.937 0.902/0.938 0.520/0.984

32 0.857/0.796 0.865/0.935 0.879/0.935 0.912/0.957 0.553/0.983

64 0.861/0.804 0.925/0.892 0.931/0.913 0.938/0.916 0.622/0.977

Note that two other popular measures, the false positive rate and the false neg-
ative rate, additively complement specificity and sensitivity to 1. All results in
the tables are presented as specificity/sensitivity pairs.

5.1 Experiments on Individual Image Windows

Tab. 1 shows the results for the evaluation per w×w window. Here, “Thresh.”,
“MLP”, “RF”, “Boost.” and “Bayes” denote classification by thresholding, multi-
layer perceptron, random forests, discrete AdaBoost and the Bayesian classifier,
respectively. The difference in the quality levels of primary and secondary com-
pression is denoted as δ = q1− q0. In order to have a relatively balanced number
of single and double compressed pixels, we only evaluated the performance on
the correct shift of the doubly-compressed region. However, when we evaluated
the whole pipeline, we tested all 64 shifts of the JPEG grid.

The best performance per classifer (considering the sum of specificity and
sensitivity) on all combinations of δ and the region size is printed in italics. As
expected, typically the highest tested compression distance of δ = 20, together
with the largest examined window size 64 × 64 yields best results. Note that
AdaBoost performed best below the maximum windows size. Note also that for
δ = 10 and δ = 5, boosting, followed by neural networks (MLP) and random
forests (RF) all provide very strong results. Furthermore, the performance of
these three methods degrades gracefully for smaller windows. Thus, as a pre-
processing step for guiding a human expert towards a JPEG ghost location, we
consider these three classifiers highly suitable. Additionally, the good discrimina-
tion for small values of δ improves over the results reported in [5], which reports
δ ≥ 20 as a good quality distance for detection. In [7], detection rates for δ ≤ 10
vary between 50% and 70%.

8 F. Zach, C. Riess and E. Angelopoulou

Table 2. Experiments on the UCID database for ghost detection on aligned DCT grids
at image level.

δ w Lin et al. Thresh. MLP RF Boost. Bayes

5 8 0.583/0.640 0.806/0.766 0.783/0.870 0.756/0.929 0.823/0.867 0.576/0.846

16 - 0.816/0.760 0.783/0.871 0.762/0.934 0.832/0.867 0.646/0.841

32 - 0.812/0.755 0.749/0.889 0.726/0.949 0.811/0.883 0.742/0.822

64 - 0.830/0.481 0.963/0.355 0.978/0.375 0.982/0.378 0.882/0.606

10 8 0.658/0.597 0.820/0.759 0.774/0.874 0.913/0.857 0.918/0.880 0.594/0.892

16 - 0.827/0.758 0.777/0.870 0.897/0.873 0.916/0.899 0.772/0.815

32 - 0.830/0.737 0.776/0.857 0.882/0.883 0.916/0.895 0.840/0.845

64 - 0.852/0.439 0.946/0.377 0.968/0.416 0.989/0.412 0.938/0.684

20 8 0.705/0.605 0.832/0.880 0.864/0.941 0.905/0.960 0.997/0.939 0.533/0.997

16 - 0.858/0.883 0.892/0.957 0.904/0.973 0.996/0.956 0.647/0.997

32 - 0.867/0.868 0.865/0.947 0.908/0.972 0.993/0.960 0.839/0.988

64 - 0.933/0.484 0.866/0.517 0.959/0.519 0.997/0.507 0.960/0.955

5.2 Experiments on Automated Tampered Image Detection

For comparison to other methods, we implemented a straightforward tampered
image classifier based on the recognition of partially double-compressed JPEG
images. To remove outliers on the marked windows from the previous section,
we applied a 3× 3 pixels morphological opening with a cross-topology on these
markings. We considered an image tampered, if 10% of the windows are marked.
Note that an embedded foreground-ghost contains about 20% double-compressed
pixels, a background-ghost about 100%−20% = 80%. As before, we created three
images from every UCID image. Once completely single-compressed, once with
an embedded foreground-ghost, and once with an embedded background-ghost.
Tab. 2 shows the result for JPEG ghosts that were exactly aligned with the
JPEG grid. We used the same notation as in the previous Subsection.

For comparison, we evaluated the method of Lin et al. [7] on our test set.
As this method operates on 8 × 8 windows, only these results are presented.
The approach of Lin et al. is more general, in the sense that it can also detect
double-compression where q0 > q1. However, this comes at the expense of the
accuracy in the presence of very small differences in the compression parameters.
Thus, if the initial assumption q0 < q1 for JPEG ghosts is fulfilled, the proposed
method provides much higher specificity and sensitivity rates.

The best success rates do not occur at the larger window sizes. This is due
to the fact that the embedded foreground ghosts of 192 × 192 pixels are com-
parably small. When applying morphological opening on the windows that have
been marked as double-compressed, more accurate detectors lose too many win-
dows on the boundary of the marked region. This renders very large window
sizes less successful. One notable exception is the Bayesian classifier. As can be
seen from Tab. 1, Bayesian classification exhibits very low specificity, i. e. creates
many erroneously marked regions. The morphological operator removes a large

Automated Image Forgery Detection through Classification of JPEG Ghosts 9

Table 3. Experiments on UCID database for shifted ghost detection on misaligned
DCT grids on image level.

δ w Thresh. MLP RF Boost. Bayes

5 8 0.742/0.772 0.982/0.904 0.923/0.960 0.990/0.955 0.907/0.981

16 0.755/0.708 0.993/0.934 0.940/0.952 0.987/0.944 0.919/0.982

32 0.750/0.698 0.973/0.915 0.969/0.952 0.984/0.947 0.923/0.983

64 0.763/0.468 0.967/0.765 0.992/0.843 1.000/0.809 0.951/0.983

10 8 0.762/0.794 0.978/0.932 0.938/0.957 0.978/0.951 0.923/0.983

16 0.779/0.733 0.975/0.913 0.955/0.954 0.984/0.948 0.945/0.983

32 0.791/0.728 0.981/0.968 0.961/0.957 0.986/0.950 0.951/0.983

64 0.795/0.646 0.984/0.755 0.993/0.803 0.998/0.775 0.966/0.986

20 8 0.784/0.836 0.977/0.955 0.969/0.972 0.993/0.971 0.987/0.985

16 0.802/0.795 0.963/0.939 0.978/0.972 0.995/0.969 0.993/0.987

32 0.806/0.786 0.862/0.953 0.948/0.963 0.995/0.971 0.995/0.988

64 0.810/0.659 0.988/0.833 0.994/0.806 0.999/0.818 0.997/0.988

Fig. 5. Two example markings on individual windows. Green and red are single- and
double compressed, respectively. Gray denotes low contrast regions. Left: the rectan-
gular double compression region could only in the high-contrast windows be recovered.
Right: the double compression region is clearly visible. In a classification on image
level, the left example is a false negative case, the right example true positive.

number of these false positive markings, and makes detection with larger win-
dow sizes possible. In comparison, the remaining classifiers exhibit their peak
performance at window sizes around 16 × 16 pixels. Again, discrete Adaboost
clearly outperforms the other methods.

In shifted double-compression, the grid of the inserted region is not required
to properly align with the JPEG grid of the background. To detect such tampered
images, we computed all 64 shifts and selected the one with the highest response
of double-compressed blocks (see Tab. 3 for the results). A surprising result is
that shifted double JPEG compression can be slightly better discriminated than
the non-shifted version: while the overall best result in Tab. 2 is 0.997/0.939,
several results in Tab. 3 perform better, e. g. the Bayesian classifier on a 64× 64
grid for δ = 20 with 0.997/0.988. During shifted double-compression, q1 = 100
is often (wrongly) estimated. Interestingly, the increased gap between q0 and q1
improves classification. Based on our results, we recommend the use of AdaBoost

10 F. Zach, C. Riess and E. Angelopoulou

for JPEG ghost detection. Its reliability on small window sizes yields in many
cases a high level of detail in the marked blocks (see Fig. 5). The quality difference
δ can be decreased to an empirical minimum of 5 points. In such cases, other
methods often exhibit difficulties; e. g. [5] and [7] reported increased error rates
for δ < 20 and δ < 10, respectively.

6 Conclusions

We proposed a JPEG-based forensic algorithm to automatically distinguish
single-compressed and double-compressed image regions. We presented a clas-
sification scheme that exploits the JPEG-ghost effect, but completely removes
the requirement of browsing the images. Best results were achieved by training
a boosted classifier on 6 specially designed features. The classification perfor-
mance is encouraging. The best specificity and sensitivity are 0.912 and 0.957,
respectively. For tampering detection, the difference in primary and secondary
compression may be as small as δ = 5.

References

1. Barni, M., Costanzo, A., Sabatini, L.: Identification of Cut & Paste Tampering
by Means of Double-JPEG Detection and Image Segmentation. In: International
Symposium on Circuits and Systems. pp. 1687–1690 (May 2010)

2. Battiato, S., Messina, G.: Digital Forgery Estimation into DCT Domain — A
Critical Analysis. In: Multimedia in Forensics, Security and Intelligence. pp. 37–42
(Oct 2009)

3. Bayram, S., Sencar, H.T., Memon, N.: A survey of copy-move forgery detection
techniques. In: IEEE Western New York Image Processing Workshop (2009)

4. Farid, H.: A Survey of Image Forgery Detection. Signal Processing Magazine 26(2),
16–25 (Mar 2009)

5. Farid, H.: Exposing Digital Forgeries from JPEG Ghosts. IEEE Transactions on
Information Forensics and Security 1(4), 154–160 (2009)

6. Huang, F., Huang, J., Shi, Y.Q.: Detecting Double JPEG Compression With the
Same Quantization Matrix. IEEE Transactions on Information Forensics and Se-
curity 5(4), 848–856 (Dec 2010)

7. Lin, Z., He, J., Tang, X., Tang, C.K.: Fast, Automatic and Fine-grained Tampered
JPEG Image Detection via DCT Coefficient Analysis. Pattern Recognition 52(11),
2492–2501 (Nov 2009)

8. Qu, Z., Luo, W., Huang, J.: A Convolutive Mixing Model for Shifted Double JPEG
Compression with Application to Passive Image Authentication. In: International
Conference on Acoustics, Speech and Signal Processing. pp. 1661–1664 (Mar 2008)

9. Schaefer, G., Stich, M.: UCID - An Uncompressed Colour Image Database. In:
SPIE Storage and Retrieval Methods and Applications for Multimedia. pp. 472–
480 (Jan 2004)

10. Sencar, H., Memon, N.: Overview of State-of-the-art in Digital Image Forensics.
Algorithms, Architectures and Information Systems Security pp. 325–344 (2008)

