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Abstract—CTP is an important imaging modality for diagnosis
of ischemic stroke, which is computed from of a series of
consecutive CT-scans during the injection of contrast agent.
Contrast flow at any point in space can be tracked as minor
changes in intensity over a period of about 40 seconds to one
minute, represented as a time-attenuation curve (TAC) for every
voxel. This work presents an isotropic, dense, physiologically
realistic and dynamic brain phantom for CT perfusion. The
phantom is based on MRI scans of a volunteer and is freely
available for download.

I. INTRODUCTION

In a 3D+t brain perfusion scan, a voxel represents a time-
attenuation curve (TAC). Perfusion parameter maps can be
calculated from TACs which represent quantities such as cere-
bral blood flow (CBF), cerebral blood volume (CBV) or time-
to-peak (TTP). They provide information about the location
and extent of the affected tissue. The difficulty of perfusion
imaging is time-resolved 3D imaging at a low contrast-to-noise
ratio. As radiation exposure is minimized, projection data is
corrupted by high levels of noise, while minor changes of
attenuation in a range of just 5-30HU must be observable.
Artifacts dominate these low-contrast variations and both CTP
and FD-CTP must rely on strong filtering to extract the desired
information. The most practical reconstruction and filtering
algorithm for CTP and FD-CTP is therefore the one which
is most resilient to noise and artifacts and still detects minor
variations in tissue.

This work discusses a realistic digital 4D brain phantom
for the repeatable evaluation of Perfusion CT (CTP) and Flat
Detector Perfusion CT (FD-CTP) using C-Arms reconstruction
algorithms. It is an extension to the work by Riordan et al.
[6] and freely available for download [1]. For a repeatable
evaluation, we develop a realistic brain model based on
physiological data, while avoiding sparsity by continuously
varying perfusion parameters and anatomical structures using
MR data. The Digital Brain Perfusion Phantom package [1]
provides data and Matlab tools to create a 3D-time-series of
CT volumes, which can be forward projected for arbitrary
protocols. The phantom is flexible with respect to the amount
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of noise, the location and severity of the simulated stroke,
as well as the introduction of patient motion to simulate
streak artifacts. See Figure 1 (left) for an example slice of the
phantom with segmented white and gray matter and annotated
infarct core (red) and penumbra (yellow), a ground truth CBF
map (center), as well as simulated streaks on a slice near the
base of the skull (right) on a CBF map reconstructed from
forward projections such as Figure 2 (left).

Figure 1. left: annotated regions for infarct core and penumbra, center: ground
truth CBF, right: a slice of a CBF map from the base of the skull (reconstructed
using FDK-JBF algorithm [4]) which is corrupted by realistic streak artifacts)

II. METHODS

A. Overview

Classical digital CT phantoms consist of homogeneous
structures and have sparse representations in transformations
such as total variation or wavelets. This in turn favors it-
erative reconstruction techniques in an evaluation, when a
strong regularization of the output enforces homogeneity. An
essential step in most algorithms is the subtraction of a
base-line scan. Ideally, this subtraction removes most, of the
typical reconstruction artifacts, since they affect any one of
the scans identically. Misalignments due to motion of the
patient or inaccuracies of scanner rotation, however, prevent a
perfect subtraction and lead to streak artifacts. This particularly
impacts the quality of FD-CTP, where a relatively slow C-Arm
rotation and low angular sampling make patient motion more
likely and streaks more severe. A realistic phantom should be
capable of modeling these artifacts.

Riordan et al. [6] present a phantom with a similar com-
plexity as a human brain which uses MRI data to simulate
residue functions for different tissue types and takes special
care to simulate noise in the CT projections. We use this idea
to create a dense physiological model by continuously varying
perfusion parameters based on MR data as discussed in Section
II-B. In addition, we estimate dense bony structures from MRI
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Figure 2. Forward Projected Brain Phantom (left: with skull; middle: without
skull; right: without skull but with poisson noise)

and introduce a small artificial motion into the time-series.
Applying a differing amount of 2D rotation to the z-slices of
the 3D volumes from the time-series simulates a tilting of the
head. Our phantom thus allows for a more realistic evaluation
by providing a dense brain model based on real physiological
data complemented by realistic skull bone and a small head
motion, as it would be typical in clinical practice.

B. Definition of time-dependent parameters

The phantom was created by segmenting brain MRI scans
from a human volunteer into white and gray matter, cere-
brospinal fluid (CSF), skull and arteries. White/gray matter
and CSF segmentation was done from T1 weighted MRI data
using the Freesurfer software [2]. Arteries were segmented
from a time-of-flight acquisition by thresholding and manual
post-processing. The estimation of the skull bone from MRI
is discussed in more detail in Section II-C. To reduce the
sparsity of the brain phantom, the MRI data is used to vary
the perfusion parameters assigned to the tissue voxels by the
annotation. Therefore each tissue voxel is associated with a
normalized value of its T1 weighted MR value. The MR values
are normalized to the unit interval [−1, 1] in each slice by first
computing the mean and the standard deviation σ of all MR
values inside the slice associated to a segmented tissue voxel.
Then the mean is subtracted from the MR values and the values
are clamped to [−2σ,+2σ]. The perfusion parameters of each
tissue voxel are varied by PV (x) = P (x)+NMR(x)·DP(x),
where PV (x) denotes the varied perfusion parameter of voxel
x (CBF or MTT, CBV is defined as CBF·MTT), P (x) the
default perfusion parameter of voxel x according to annotation,
NMR(x) the normalized MR value and DP(x) the maximal
deviation of the perfusion parameter. The HU values of the
anatomic structures are varied in a similar way to further
reduce sparsity. For an overview of computational methods
to calculate perfusion parameters from TACs see [3].

C. Skull estimation from MRI sequences

Detecting cortical bone from conventional MR sequences
is inherently difficult due to the similarity between air and
bone intensities. Navalpakkam et al. [5] present a method to
estimate the cortical bone based on dedicated MR-sequences.
We use Ultrashort Echo Time (UTE) echoes TE1 (0.07ms) and
TE2 (2.46ms). Cortical bone and other tissues with short T2*
appear on UTE-TE1 but are absent on UTE-TE2, thus enabling
their detection. This can be seen from Figure 3. Data from 5

Figure 3. Pseudo-CT estimation from a volunteer acquisition. (left: First
Echo: UTE-TE1, center: Second Echo: UTE-TE2 right: MR-predicted CT)

patients that were scanned on a PET/CT Siemens Biograph
64 (Siemens AG, Healthcare Sector, Erlangen, Germany) and
PET/MR Siemens Biograph mMR (Siemens AG, Healthcare
Sector, Erlangen, Germany) was used for model training. A
UTE and a 3D Dixon-VIBE (Volume-Interpolated Breath-Hold
Examination) scan was performed for each of the 5 patients.
Features such as mean, median, maximum, minimum and
variance were extracted from them and a pattern recognition
algorithm (epsilon-insensitive Support Vector Regression with
Radial Basis Functions) was trained to learn the mapping
between the extracted features and the patient CT [7]. Fat
(−300 ≤ HU < 0), water (0 ≤ HU < 300) and cortical bone
(HU ≥ 300) classes were included for training. The estimated
CT-intensities are then added to the time curves described in
the previous section.

III. CONCLUSION

We have presented a digital 4D brain perfusion phantom
for evaluation of reconstruction algorithms, particularly those
using non-linear regularization for perfusion CT and per-
fusion C-arm CT. It relies on real MRI data to create a
dense physiological model based on indicator-dilution theory,
complemented by cortical bone. The realism of this phan-
tom is reflected in its ability to mimic streak artifacts in
its reconstructions. This enables a more realistic evaluation
of reconstruction algorithms than with previously published
phantoms. MATLAB scripts to create the phantom are freely
available for download[1], which allows researchers to create
their own projection data for arbitrary protocols and hardware.
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