
Real-time RGB-D Mapping and 3-D Modeling
on the GPU using the Random Ball Cover

Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann, Joachim
Hornegger

Abstract In this chapter, we present a system for real-time point cloud mapping and
scene reconstruction based on an efficient implementation of the iterative closest
point (ICP) algorithm on the graphics processing unit (GPU). Compared to state-of-
the-art approaches that achieve real-time performance using projective data associ-
ation schemes which operate on the 3-D scene geometry solely, our method allows
to incorporate additional complementary information to guide the registration pro-
cess. In this work, the ICP’s nearest neighbor search evaluates both geometric and
photometric information in a direct manner, achieving robust mappings in real-time.
In order to overcome the performance bottleneck in nearest neighbor search space
traversal, we exploit the inherent computation parallelism of GPUs. In particular, we
have adapted the random ball cover (RBC) data structure and search algorithm, orig-
inally proposed for high-dimensional problems, to low-dimensional RGB-D data.
The system is validated on scene and object reconstruction scenarios. Our imple-
mentation achieves frame-to-frame registration runtimesof less than 20 ms on an
off-the-shelf consumer GPU.

1 Introduction

In the past, the acquisition of dense 3-D range data was both tedious, time consum-
ing and expensive. Lately, advances in RGB-D sensor design have rendered metric
3-D surface acquisition at convenient resolutions (up to 300k points) and framerates
(up to 40 Hz) possible, holding potential for a variety of applications where real-

Sebastian Bauer· Jakob Wasza· Felix Lugauer· Dominik Neumann· Joachim Hornegger
Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Martensstr. 3, 91058 Erlangen, Germany, e-mail: sebastian.bauer@cs.fau.de

Joachim Hornegger
Erlangen Graduate School in Advanced Optical Technologies(SAOT), Erlangen, Germany

1

2 Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann, Joachim Hornegger

time demands form a key aspect. The advent of Microsoft’s Kinect [14], with more
than ten million sales within a few months, has caused a furorin the field of con-
sumer electronics. In fact, the device has attracted the attention of various research
communities.

This chapter addresses the field of 3-D scene and model reconstruction that pro-
vides the basis for many practical applications. Among others, 3-D modeling is
a key component for the acquisition of virtual 3-D models from real objects, the
digitalization of archaeological buildings or sculpturesfor restoration planning or
archival storage [11], and the construction of environmentmaps in robot or vehi-
cle navigation [19, 28]. In particular, in the field of robotics, there is an increasing
interest in both 3-D environment reconstruction and simultaneous localization and
mapping (SLAM) solutions [2, 6, 32].

We present a framework that is capable of mapping RGB-D pointcloud data
streams on-the-fly, enabling real-time 3-D scene modeling.We have implemented a
hybrid 6-D ICP variant that performs the alignment by considering both photometric
appearance and geometric shape [24]. Photometric (color) data may be an essential
source of information to guide the registration process in cases when geometric sur-
face information is not discriminative enough to achieve a correct alignment, see
Fig. 1 for an example. Without loss of generality, we have designed the framework
in a manner that allows to incorporate further complementary information into an
n-dimensional point signature. In order to enable on-the-flyprocessing, the corpus
of the framework is implemented on the GPU. For the nearest neighbor search, be-
ing the performance bottleneck in the majority of previous ICP implementations,
we use a data structure that is specifically designed to benefit from the parallel ar-
chitecture of modern GPUs. In this work, we investigated thefitness of the random
ball cover (RBC) data structure and search algorithm [7, 8] for low-dimensional 6-D
data. Trading accuracy against runtime, we propose a modified approximate RBC
variant that is optimized in terms of performance. Please note that this chapter is a
substantial extension of previous work by the authors [30].In particular, we further
enhanced the GPU implementation and achieved significant speedups.

The remainder of this chapter is organized as follows. In Sect. 2, we review rel-
evant literature. We present our method for RGB-D mapping and 3-D modeling
in Sect. 3. Implementation details are given in Sect. 4. In Sect. 5, we evaluate the
proposed framework and discuss experimental results. Eventually, we draw a con-
clusion in Sect. 6.

2 Related Work

The iterative closest point (ICP) algorithm is state-of-the-art for the rigid alignment
of 3-D point clouds [4, 9, 36], and the vast majority of related work builds upon
this established scheme. However, in the field of 3-D environment and model recon-
struction, only few existing approaches have achieved interactive framerates so far
[12, 13, 19, 22]. Huhle et al. proposed a system for on-the-fly3-D scene modeling

Real-time RGB-D Mapping on the GPU using the Random Ball Cover 3

(a) (b)

(c) (d)

Fig. 1 Illustration of the benefit of incorporating photometric information into the point cloud
alignment process in situations of non-salient surface geometry. The top row (a,b) depicts the first
and last frame of an RGB-D sequence capturing a colored poster sticked to a plane wall from
changing perspectives. Using scene geometry as the only source of information for the registra-
tion algorithm results in an erroneous alignment (c). Instead, by considering both geometric and
photometric information, the correct alignment is found using the proposed framework (d)

using a low resolution Time-of-Flight camera (160×120 px), typically achieving
per-frame runtimes of> 2 s [22]. Engelhard et al. presented similar runtimes on
Microsoft Kinect data (640×480 px) for an ICP-based RGB-D SLAM framework
[12]. The RGB-D mapping framework of Henry et al. performs ICP registration in
an average of 500 ms [19].

Only recently, real-time framerates were reported for geometric ICP variants
[13, 23, 31]. In particular, theKinectFusionframework [23, 31] has gained pop-
ularity in the field of 3-D reconstruction. The fundamental core of this framework is
based on the work of Rusinkiewicz et al. [35], combining projective data association
[5] and a point-to-plane metric [9] for rigid ICP surface registration and sensor pose
estimation, respectively. While the original work was limited to a frame-to-frame
alignment [35], KinectFusion tracks the depth frame against a globally fused im-
plicit surface model of the observed scene [10]. This limitsthe drift behavior and
results in an increased robustness and reconstruction accuracy, respectively. Real-
time capability is achieved using a parallelized implementation on the GPU.

Compared to related methods based on projective data association [5] that pri-
marily consider the surface geometry for finding corresponding points, our approach

4 Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann, Joachim Hornegger

allows to incorporate multiple complementary sources of information (in our case
geometry and photometry) into the nearest neighbor search.Furthermore, explic-
itly performing a nearest neighbor search according to a point signature potentially
allows to extend the framework to handle large misalignments by a feature-based
initial pre-alignment [3].

More than a decade ago, Johnson and Kang presented the first approach to in-
corporate photometric information into the ICP framework (Color-ICP) in order to
improve its robustness [24]. The basic idea is that photometric information can com-
pensate for regions with non-salient topologies, whereas geometric information can
guide the pose estimation for faintly textured regions. In experiments, Johnson and
Kang observed that the additional use of color information decreased the registration
error by one order of magnitude. Recently, modifications have been proposed that
try to accelerate the color ICP’s nearest neighbor search bypruning the search space
w.r.t. photometrically dissimilar points [11, 25]. However, this reduction typically
comes with a loss in robustness.

Since modern RGB-D devices produce and propagate an immensedata stream,
efficient implementations are inevitable in order to fulfillreal-time constraints. For
the ICP algorithm in general, a comprehensive survey of efficient implementation
variants was given by Rusinkiewicz and Levoy [36]. However,their survey did not
include hardware acceleration techniques.

For the nearest neighbor search, being a major bottleneck interms of runtime,
CPU architectures have shown to benefit from space-partitioning data structures like
k-d trees [1]. In contrast to algorithmic improvements, hardware acceleration tech-
niques are increasingly attracting the attention of the community. Garcia et al. have
shown that a GPU-based brute-force implementation outperforms a CPU-based k-d
tree [15]. The reason for this lies in the fact that the brute-force primitive can be
implemented efficiently using techniques known from the well understood problem
of GPU-based matrix-matrix multiplication. Implementations of traditional nearest
neighbor search acceleration strategies on the GPU are challenging due to the non-
parallel and recursive nature of construction and/or traversal of the underlying data
structures. For instance, Qiu et al. [33] achieved excellent framerates for GPU based
k-d tree queries. However, the construction of the tree is performed on the CPU, thus
limiting performance when the tree must be constructed on a per-frame basis as
in the application scenarios considered in this chapter. Recently, space-partitioning
strategies that are specifically designed for GPU architectures have been addressed.
A promising approach is the random ball cover (RBC) proposedby Cayton [7, 8].
The basic principle behind the RBC is a two-tier nearest neighbor search, building
on the brute-force primitive, to prune the search space. In this work, we adapted
the random ball cover data structure and search algorithm, originally proposed for
high-dimensional problems, to low-dimensional RGB-D datafor accelerating the
ICP alignment.

Real-time RGB-D Mapping on the GPU using the Random Ball Cover 5

Fig. 2 Flowchart of the proposed 3-D scene reconstruction framework. Apart from the camera
hardware interface and the ICP control flow management, the corpus of the computational load of
both data preprocessing and photogeometric ICP alignment using RBC is outsourced to the GPU

3 Methods

The proposed RGB-D mapping and modeling framework is composed of three
stages, as depicted in Fig. 2. In an initial stage, the sensordata consisting of or-
thogonal distance measurements and photometric color information are transferred
to the GPU where the corpus of the pipeline is executed. On theGPU, first, data
preprocessing and the transformation from orthogonal range measurements in the
2-D sensor domain to 3-D world coordinates are performed (Sect. 3.1). Second,
based on a set of extracted landmarks, the proposed color ICPvariant is applied
(Sect. 3.2). Our method exploits the arithmetic power of modern GPUs for efficient
nearest neighbor search with an inherently parallel data structure and query frame-
work (RBC, Sect. 3.3). Third and last, the instantaneous point cloud is attached to
the global reconstructed model based on the estimated transformation. We point out
that the rigid body transformation is estimated in a frame-to-frame manner, i.e. the

6 Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann, Joachim Hornegger

pose of the instantaneous frame is estimated by registration against the previous
frame. In the remainder of this section, we outline the essential steps of the pro-
posed ICP framework. GPU implementation details are discussed in Sect. 4.

3.1 Data Preprocessing on the GPU

The Microsoft Kinect device acquires RGB-D data with VGA resolution (640×480
px) at 30 Hz. With respect to real-time constraints and regardless of the specific
application, this spatial and temporal data density poses achallenge to data process-
ing solutions. Hence, in addition to the actual point cloud alignment, we perform
RGB-D data preprocessing on-the-fly on the GPU. First, we apply edge-preserving
denoising (e.g. guided image filtering [18, 37]) on the raw depth and RGB data,
respectively, as acquired by the Microsoft Kinect sensors.Next, the enhanced depth
measurements are transformed to the 3-D world coordinate system. Indeed, for each
pointxc ∈R

2 in the camera plane, its depth valuez(xc) describes a world coordinate
position vectorxw ∈ R

3. The transformation can be computed independently for
each pixel, thus fitting perfectly for parallel processing on the GPU (see Sect. 5.2).

Nomenclature

Let us introduce the notation for this chapter. Let̃M denote amovingset of template
pointsM̃ = {m}, wherem ∈R

6 concatenates a point’s geometric and photometric
informationmg ∈ R

3 andmp ∈ R
3:

m =

(

mg

mp

)

. (1)

The indexesg and p denote that only the geometric and photometric part is con-
sidered, respectively. In order to compensate for inconsistencies due to changes in
illumination and viewpoint direction, the photometric information is transformed to
the normalized RGB space [16]:

mp = (ir + ig+ ib)
−1





ir
ig
ib



 , (2)

whereir, ig, ib denote the intensities of the red, green and blue photometric channel.
In analogy to the moving set of template points̃M , let F̃ = {f} denote afixed

set of|F̃ | reference pointsf ∈R
6, wheref> = (f>g , f

>
p).

Real-time RGB-D Mapping on the GPU using the Random Ball Cover 7

Landmark Extraction

Considering the application of 3-D scene or object modelingusing a real-time, hand-
held and steadily moved RGB-D device implies that a portion of the scene that was
captured in the previous framẽF is no longer visible in the instantaneous data
M̃ and vice versa. Facing these issues, we heuristically discard the set of points
that correspond to range measurements at the edge of the 2-D sensor domain in
order to improve the robustness of ICP alignment. This clipping is performed in
conjunction with the extraction of the sparse sets of ICP landmarks, denoted by
M ⊂ M̃ andF ⊂ F̃ . In practice, the landmark extraction is performed by sub-
sampling the clipped point set.

For the case of 3-D object reconstruction, we apply a dedicated scheme for land-
mark extraction. Instead of considering the entire scene, we segment the foreground
using a depth threshold. From the set of foreground pixels, we then select a set of
landmarks.

3.2 Photogeometric ICP Framework

Being the state-of-the-art in rigid point cloud alignment [4, 9, 36], the ICP estimates
the optimal rigid transformation (R, t) that bringsM in congruence withF , where
R ∈R

3×3 denotes a rotation matrix withR> = R−1,det(R) = 1 andt ∈R
3 denotes

a translation vector. Based on an initial guess(R0, t0), the ICP scheme iteratively
estimates this transformation by minimizing an error metric assigned to repeatedly
generated pairs of corresponding landmarks(m,y) wherem ∈ M andy ∈ F . In
terms of correspondence search, ourphotogeometricICP variant incorporates both
geometric and photometric information. Let us note that competing strategies, in-
cluding projective data association, typically rely on thepure geometry and cannot
incorporate additional information in a straightforward manner. We now outline the
essential steps of our photogeometric ICP variant.

In the geometric case, the distanced between an individual moving landmarkmg

and the set of reference landmarksFg = {fg} is defined as:

d(mg,Fg) = min
fg∈Fg

‖fg−mg‖
2
2 , (3)

where‖ ·‖2 denotes the Euclidean norm. In order to incorporate the additional pho-
tometric information available with modern RGB-D sensors,let us modify the dis-
tance metricd:

d(m,F) = min
f∈F

(

(1−α)‖fg−mg‖
2
2+α‖fp−mp‖

2
2

)

, (4)

whereα ∈ [0,1] is a non-negative constant weighting the influence of the photomet-
ric information. The benefit of this hybrid approach is that photometric information
compensates for regions with non-salient surface topology, and geometric informa-

8 Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann, Joachim Hornegger

tion compensates for faintly textured regions or photometric inconsistencies due to
changes in illumination and viewpoint direction. The landmark y ∈ F yielding the
minimum distance tom is then given by:

y = arg min
f∈F

(

(1−α)‖fg−mg‖
2
2+α‖fp−mp‖

2
2

)

. (5)

By assigning a nearest neighbory to all m ∈ M , a set of nearest neighborsY is
given asY = {y}, y ∈ F , |Y |= |M |, and the landmark correspondences can be
denoted by (M ,Y). The GPU-based nearest neighbor search framework that we
use to establish these landmark correspondences is described in Sect. 3.3. Next,
based on the landmark correspondences (M k,Y k) found in thek-th ICP iteration,

the transformation (̂R
k
, t̂k

) is estimated by either minimizing a point-to-point error
metric in a least-squares sense using a unit quaternion optimizer [21],

(R̂
k
, t̂k

) = argmin
Rk,tk

1
|M k

g |
∑

M k
g ,Y

k
g

‖(Rkmk
g+ tk)− yk

g‖
2
2 , (6)

or by minimizing a point-to-plane distance metric [9] usinga nonlinear solver,

(R̂
k
, t̂k

) = argmin
Rk,tk

1
|M k

g |
∑

M k
g ,Y

k
g

(

((Rkmk
g+ tk)− yk

g)
>nyk

g

)2
. (7)

Here,nyk
g

denotes the surface normal associated with the pointyk
g ∈ F . After each

iteration, the global solution (R, t) is accumulated:

R = R̂
k
R , t = R̂

k
t+ t̂k

, (8)

andM k
g is updated according tomk

g = Rmg+ t. The two stages of first finding the
set of nearest neighborsY k and then estimating the optimal transformation for the
correspondences (M k

,Y k) are repeated iteratively until a convergence criterion is
fulfilled, see Fig. 2 and Sect. 4.1.

3.3 6-D Nearest Neighbor Search using RBC

The random ball cover (RBC) is a novel data structure for efficient nearest neighbor
(NN) search on the GPU proposed by Cayton [7, 8]. By design, itexploits the paral-
lel architecture of modern graphics cards hardware. In particular, both the construc-
tion of the RBC and dataset queries are performed using brute-force (BF) primitives.
Using techniques known from matrix-matrix multiplication, the BF search can be
performed in a highly efficient manner on the GPU. The RBC datastructure relies
on randomly selected pointsr ∈ F , calledrepresentatives. Each of them manages
a local subset ofF . This indirection creates a hierarchy in the database such that a

Real-time RGB-D Mapping on the GPU using the Random Ball Cover 9

RBC Construction Scheme

(a) (b) (c)

RBC Query Scheme

(d) (e) (f)

Fig. 3 Illustration of the RBC construction (a–c) and the two-tier nearest neighbor query scheme
(d–f) for the simplified case of 2-D data. (a) Selection of a set of representativesR (labeled in
dark blue) out of the set of database entriesF (light blue). (b) Nearest representative search over
the set of database entries, to establish a landmark-to-representative mapping. (c) Nearest neighbor
set of each representative (shaded in blue). (d) Query data (orange) and set of representativesR
(dark blue). (e) Identification of the closest representativer, in a first brute force (BF) run. (f)
Identification of the nearest neighbor (green) in the subset of entries managed byr (shaded in
blue), in a second BF run

nearest neighbor query is processed by (i) searching the nearest neighborr among
the set of representatives and (ii) performing another search for the subset of entries
managed byr. This two-tier approach outperforms a global BF search due to the
fact that each of the two successive stages explore a heavilypruned search space.

In this work, we have investigated the fitness of the RBC for acceleration of the
6-D nearest neighbor search of our photogeometric ICP. Optimizing this particular
ICP stage is motivated by the fact that it is a major performance bottleneck – see
Sect. 5.2 and [30].

Cayton proposed two alternative RBC search strategies [8].Theexactsearch is
the appropriate choice when the exact nearest neighbor is required. Otherwise, if
a small error may be tolerated, the approximateone-shotsearch is typically faster.
Originally, in order to set up theone-shotdata structure, the representatives are
chosen at random, and eachr manages itss closest database elements. Depending
ons, points typically belong to more than one representative. However, this implies
a sorting of all database entries for each representative – hindering a high degree of
parallelization for implementation on the GPU – or the need for multiple BF runs
[7]. Hence, we introduce a modified version of theone-shotapproach that is even
further optimized in terms of performance. In particular, we simplified the RBC

10 Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann, Joachim Hornegger

construction, trading off accuracy against runtime, see Fig. 3 (a–c). First, we select
a random set of representativesR = {r} out of the set of fixed pointsF . Second,
each representativer is assigned a local subset ofF . This is done in an inverse
manner by simply computing the nearest representativer for each pointf ∈ F . The
query scheme of our modifiedone-shotRBC variant is basically consistent with the
original approach and can be performed efficiently using twosubsequent BF runs
[8], see Fig. 3 (d–f). First, the closest representative is identified amongR. Second,
based on the associated subset of entries managed byr, the nearest neighbor is
located.

Please note that this modified RBC construction scheme results in an approx-
imate nearest neighbor search being error-prone from a theoretical point of view.
In practice, facing the trade-off between accuracy and runtime, we tolerate this ap-
proximation, c.f. Sect. 5.2. Let us further remark that the scheme is not limited to
6-D data but can be applied to data of any dimension. For application in 3-D recon-
struction, this potentially allows to extend the point signature from 6-D to higher
dimensions, e.g. appending additional complementary information or local feature
descriptors to the raw geometric and photometric measurements acquired by the
sensor, c.f. [19].

4 Implementation Details

In this section, we discuss implementation details and comment on practical issues.
In particular, we address the RBC implementation on the GPU.

4.1 Details regarding the ICP Framework

Regarding the quality and robustness of point cloud alignment, we observed a strong
impact of outliers that occur in RGB-D data particularly dueto sensor noise, quanti-
zation, occlusion, and changes in viewpoint direction. Sensor noise and quantization
issues are reduced using edge-preserving denoising filtersin the preprocessing stage
of the framework, recall Fig. 2. We typically apply the concept of guided image fil-
tering [18] or median filtering that both can be parallelizedin an efficient manner
on the GPU [29, 37].

The remaining set of outliers arise from a change in viewpoint direction or occlu-
sion and cannot be eliminated by denoising. To take them intoaccount, we option-
ally reject low-grade correspondences in the transformation estimation stage. The
term low-gradeis quantified by comparing the distance of a corresponding pair of
landmarks (Eq. (4)) w.r.t. an empirically set thresholdδ . The set of low-grade cor-
respondences is re-computed for each ICP iteration and discarded in the subsequent
transformation estimation step.

Real-time RGB-D Mapping on the GPU using the Random Ball Cover 11

As initialization for the ICP alignment, we incorporate theestimated global trans-
formation(R0, t0) from the previously aligned frame, see Fig. 2, assuming a smooth
trajectory of the hand-guided acquisition device. In practice, this speeds up conver-
gence and reconstruction, respectively.

In our implementation, the ICP transformation is estimatedby minimizing the
point-to-point distance metric (Eq. (6)). The estimation of the transformation ma-
trix according to Horn [21] is performed on the GPU. Both the computation of the
centroids ofF andM and the summation of the intermediate M-matrix are im-
plemented using the established parallel reduction technique [17]. For details on
Horn’s scheme we refer to [21]. Note that low-grade correspondences may have
been removed fromF andM at this stage. The resulting eigenvalue problem is
solved using the iterative Jacobi scheme on the GPU. This is motivated by practical
experience: on the one hand, using a CPU-based implementation of Jacobi’s scheme
would result in notable host-device and device-host transfer times, depending on the
number of ICP iterations. On the other hand, solving the eigenvalue problem on the
GPU using Ferrari’s closed form solution [26] as proposed byLoop and Blinn [27]
would imply a non-negligible number of branches and root calculations that are also
performed iteratively in hardware [34].

As ICP convergence criterion we analyze the variation of theestimated transfor-
mation over the iterations. In particular, we evaluate the change in translation mag-
nitude and rotation angle w.r.t. heuristically set thresholds of 0.01 mm and 0.001◦,
respectively.

4.2 RBC Construction and Queries on the GPU

Originally designed for offline and high-dimensional data queries, utilizing the RBC
for real-time low-dimensional RGB-D mapping requires certain adaptations. We
found that the originally proposed RBC construction routine does not satisfy run-
time constraints imposed by the framerate of modern RGB-D imaging devices. We
therefore employ a different RBC construction routine as introduced in Sect. 3.3.
As a consequence, this implies a query approach that slightly differs from the origi-
nal proposal. Below, we describe the details and hardware related considerations of
our RBC implementation. An illustration of the workflow for RBC construction and
query, as well as data interaction, is depicted in Fig. 4.

RBC Construction

As a first step in the RBC construction, we extract the set of representativesR = {r}
from the given fixed landmarksF . For each landmarkf ∈ F , we then compute the
nearest representativer by a brute-force search strategy. This can be done efficiently
in parallel over the landmarks using block decomposition techniques known from
matrix-matrix multiplication on the GPU. These landmark-to-representative (LR)

12 Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann, Joachim Hornegger

Fig. 4 Flowchart describing the GPU workflow and data interaction for RBC construction (left)
and queries (right). Note the high degree of parallelism forboth construction and queries. For
details on the landmark-to-representative (LR) mapping see Fig. 5

mappings are subsequently used to (i) set up the RBCmeta informationand (ii) to
generate a compact and cache friendlypermuted data baseof the original landmarks
F for RBC queries. An illustration is given in Fig. 5. For meta information genera-
tion, let us note that the number of managed landmarks for each representative can
be derived in the LR mapping computation directly by using synchronized counters
employing atomic operations. We found this approach more performant compared
to a separate approach. Next, we compute an offset table by performing a parallel
scan [17] on the number of managed entries. This offset tableultimately defines the
unique position for each representative’s first managed entry in the permuted data
base. To re-arrange the original data into a cache friendly layout for RBC queries,
we perform a key-and-value sort [20] on the LR mappings. Here, a landmark ID de-
notes the value and the associated representative ID definesthe key. By using such a
data base layout, a representative’s managed entries are located in contiguous mem-
ory regions, improving cache hit ratio for RBC queries. We note that our approach
still requires sorting, however, sorting breaks down to|F | elements in contrast to
|F | · |R| entries as originally described [8].

RBC Nearest Neighbor Queries

As described in Sect. 3.3, RBC queries rely on a two-tier approach – each em-
ploying a brute-force search – to prune the search space. Thefirst tier consists of
finding the nearest representativer for each query element by a BF search. This
is basically the same procedure as for deriving the LR mappings during RBC con-
struction and can be performed efficiently in parallel over the query elements by
using a block-decomposition scheme. The second tier consists of finding the nearest

Real-time RGB-D Mapping on the GPU using the Random Ball Cover 13

Fig. 5 Data structures for RBC construction and queries. Note the differentiation between meta
information (left) and the permuted data base (right) to improve cache hit ratio for queries

entry managed by the representativer identified in the first tier. Again, this is done
by utilizing a BF search, however, an efficient block-decomposition scheme is not a
performant option here. In the first tier this scheme is efficient and possible due to
the prior knowledge that all query elements have to visit exactly the same represen-
tatives. However, in the second tier, each query element must examine (i) different
entries and/or (ii) a different number of entries. Both are given by the entry’s near-
est representative which in general is not consistent across different query elements.
Though sophisticated techniques to implement a block-decomposition-like scheme
can be used, in most cases they are counterproductive. We found that due to the
computational overhead a potential performance gain is lost. Instead, we employ a
simple BF search over a representative’s contiguous memoryregion in thepermuted
data basewhich allows to increase the cache hit ratio and results in lower runtimes.

5 Experiments and Results

We have evaluated the proposed framework for on-the-fly 3-D reconstruction and
modeling of real data (640×480 px, 30 Hz) from a hand-held Microsoft Kinect sen-
sor. Below, first, we present qualitative results for both indoor scene mapping and
object reconstruction scenarios, and investigate the influence of the parameter set-
tings (Sect. 5.1). Second, being a major focus of this system, we demonstrate its
real-time capability in a comprehensive performance study(Sect. 5.2). Third, we
compare our approximate RBC variant to an exact nearest neighbor search in terms
of accuracy (Sect. 5.3). For all experiments, the number of representatives was set
to |R| =

√

|F | according to Cayton’s rule of thumb [8], if not stated otherwise.
The ICP transformation was estimated by minimizing the point-to-point distance
metric, see Eq. (6). The performance study was conducted on an off-the-shelf con-
sumer desktop computer equipped with an NVIDIA GeForce GTX 460 GPU and a

14 Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann, Joachim Hornegger

Fig. 6 On-the-fly 3-D scene reconstruction for different types of rooms. First row: bedroom (295
frames). Second row: lounge (526 frames). Third row: familyroom (380 frames). For each se-
quence, the left column depicts a bird-eye view of the respective room layout. The remaining
columns provide a zoom-in for selected regions. All reconstructions were performed using our
default parameter settings as stated in Sect. 5.1. Note thatfor visualization of the reconstructed
scenes, we rendered a subset of the global model point cloud

2.8 GHz Intel Core 2 Quad Q9550 CPU. The GPU framework is implemented using
CUDA.

5.1 Qualitative Results

Qualitative results for a scene reconstruction scenario inindoor environments are
depicted in Fig. 6. The three point cloud sequences were acquired from a static ob-
server location by rotating the hand-held sensor around theobserver’s body axis.
RGB-D data were aligned on-the-fly. The different rooms werereconstructed using
identical preprocessing pipeline and ICP/RBC parameter settings (default configu-
ration): Edge-preserving denoising (geometric median, geometric and photometric
guided image filter),|F |= |M |= 16,384 ICP landmarks, 10% edge clipping, pho-
togeometric weightα = 0.8, no elimination of low-grade correspondences (δ →∞).

Real-time RGB-D Mapping on the GPU using the Random Ball Cover 15

(a) (b) (c)

Fig. 7 3-D reconstruction of a female torso model, where the hand-held acquisition device was
moved around the model in a 360◦-fashion in order to cover the entire object. RGB-D data from
different perspectives (525 frames) were merged into a global model on-the-fly. For visualization
of the reconstructed model, we rendered a subset of the global model point cloud

(a) (b) (c)

Fig. 8 Influence of parameter settings, again for the reconstruction of the female torso model,
c.f. Fig. 7(b). Subfigure (a) depicts the reconstruction result when edge-preserving denoising was
disabled. In subfigures (b,c), we increased the low-grade correspondence threshold toδ = 10 mm
(b) and δ → ∞ (c), leading to decreasing reconstruction quality. For instance, please note the
labeled issues regarding loop closure

In order to demonstrate the effectiveness of our system for reconstruction of
scenes with non-salient 3-D geometry, we refer to Fig. 1. Facing a colored poster
sticked to a plane wall, the reconstruction could benefit significantly from incorpo-
rating the photometric domain as a complementary source of information.

In addition to scene reconstruction, the proposed framework can also be em-
ployed for 3-D model digitalization scenarios. Here, the hand-held acquisition de-
vice is moved around an object to acquire RGB-D data from different perspectives
while continuously merging the data into a global model using the proposed frame-
work. As stated in Sect. 3.1, for the case of 3-D object reconstruction, we select
the set of landmarks from a defined foreground region only. Background data points
that are located beyond a certain depth level are ignored within the ICP alignment
procedure. For object reconstruction, our default settings are: Edge-preserving de-
noising (geometric guided image filter),|F |= |M |= 16,384 ICP landmarks,α =0
(invariance to illumination issues),δ = 3 mm.

16 Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann, Joachim Hornegger

Fig. 9 Comparison of the average runtime for a single ICP iterationbased on a GPU brute force
primitive, the exact RBC and our optimized approximate RBC variant as described in Sect. 3.3, for
increasing number of landmarks. The number of representatives is chosen according to Cayton’s
rule of thumb,|R| =

√

|F |. Note that our modified approximate RBC approach outperforms the
exact RBC up to a factor of 3. The BF primitive scales quadratically w.r.t. the number of landmarks

Qualitative results for model reconstruction are depictedin Fig. 7. Note that
by setting a rather rigorous threshold for discarding low-grade correspondences
(δ = 3 mm), our framework is able to achieve a sufficient degree ofloop closure
although it relies on a frame-to-frame alignment.

The influence of different parameter settings is investigated in Fig. 8. As a base-
line, we refer to the reconstruction results in Fig. 7(b) using our default settings
(guided image filter denoising,δ = 3 mm). Disabling edge-preserving denoising
increases issues regarding loop closure, see Fig. 8(a). Relaxing the low-grade cor-
respondence thresholdδ results in similar effects (Fig. 8(b),δ = 10 mm) and can
eventually lead to model reconstruction failures (Fig. 8(c), δ → ∞).

5.2 Performance Study

The corpus of the proposed framework including both preprocessing and RGB-D
mapping is executed on the GPU, recall Fig. 2. This section presents quantitative
results for individual modules of the framework.

Real-time RGB-D Mapping on the GPU using the Random Ball Cover 17

Preprocessing Pipeline

Edge-preserving image filtering is parallelized in an efficient manner on the GPU
[29, 37]. The computation of 3-D world coordinates from the measured depth val-
ues requires less than 1 ms for Microsoft Kinect data of VGA resolution, including
CPU-GPU memory transfer of the RGB-D data. The subsequent edge clipping and
landmark extraction forM andF in scene reconstruction scenarios depends on
|M | = |F |, denoting the number of landmarks (LMs), with typical runtimes of
less than 0.3 ms. Let us conclude that runtimes for data preprocessing assume a mi-
nor role. As we target scene reconstruction in the first place, landmark extraction
for object reconstruction scenarios including foregroundsegmentation and random
landmark selection was implemented on the CPU with a runtimeof about 5 ms, as
proof-of-concept.

ICP using RBC

Being the cornerstone of our framework, we have investigated the performance of
our GPU-based ICP/RBC implementation in detail. A single ICP iteration consists
of three steps: (i) nearest neighbor search using RBC, (ii) transformation estimation
and (iii) application of the transformation. With an increasing number of landmarks,
the nearest neighbor search dominates the runtime considerably [30]. Hence, we
have put emphasis on optimizing the RBC construction and query performance.
Note that for all subsequent performance evaluations, runtimes where averaged over
several successive runs.

A comparison of absolute runtimes for a single ICP iterationis presented in
Fig. 9. Our modified approximate RBC outperforms both a BF search and our refer-

Table 1 Runtimes [ms] for the construction of the RBC data structure(tRBC,C) and ICP execu-
tion for reconstructing a typical indoor scene, for varyingnumber of landmarks. In the first rows,
average runtimes for our default setting|R|=

√

|F | are given. In the second rows, we state perfor-
mance numbers for|R| being optimized in terms of runtime. Note that optimizing runtime comes
with a loss in accuracy, c.f. Fig. 10. We state both the runtime for a single ICP iteration (tICP) and
typical total ICP runtimesttot (including RBC construction) for 10 and 20 iterations, respectively

Landmarks |R| tRBC,C [ms] tICP [ms] ttot (10 its) [ms] ttot (20 its) [ms]
1,024

√

|F | = 32 0.58 0.25 3.13 5.68
1,024 128 0.59 0.12 1.79 3.00
2,048

√

|F | = 45 0.60 0.27 3.31 6.03
2,048 128 0.60 0.14 2.02 3.44
4,096

√

|F | = 64 0.63 0.32 3.80 6.97
4,096 128 0.67 0.21 2.76 4.86
8,192

√

|F | = 91 0.76 0.50 5.80 10.82
8,192 256 1.22 0.40 5.22 9.22
16,384

√

|F | = 128 0.90 0.91 9.96 19.07
16,384 256 1.49 0.78 9.25 17.04

18 Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann, Joachim Hornegger

Fig. 10 Evaluation of the influence of|R| on mapping accuracy, compared to an exact BF search,
for varying number of landmarks. Given is the mean Euclideandistance [mm] between the mapped
pointsm̂RBC andm̂BF. Increasing the number of landmarks decreases the error. The graph shows
both discretized measurements and a trendline for each setting. Note the semi-log scale

ence implementation of Cayton’s exact RBC. Note that the BF search scales quadrat-
ically with the number of landmarks. Our approximate RBC variant outperforms the
exact RBC implementation up to a factor of 3. Compared to previous work by the
authors [30], significant runtime speedups were achieved using the permuted data
base and its cache friendly layout as detailed in Sect. 4.2.

Typical scene reconstruction runtimes of the method are given in Table 1. From
our experiments in indoor scene mapping, we observed the ICPto converge after
10-20 iterations using the stopping criterion described inSect. 4.1. Hence, as an
overall performance indicator, let us refer to the runtime of 19.1 ms for 16,384
landmarks,|R|=

√

|F |, for 20 iterations.

5.3 Approximate RBC

As motivated in Sect. 3.3, our approximate RBC constructionand nearest neighbor
search trades exactness for runtime speedup. We quantitatively investigated the error
that results from our approximate nearest neighbor search compared to an exact BF
scheme, considering the aligned point cloudŝMRBC andM̂BF, see Fig. 10. The

Real-time RGB-D Mapping on the GPU using the Random Ball Cover 19

Fig. 11 Investigation of the mean mapping error vs. number of landmarks, for varying|R|. Here,
the analysis is restricted to|R| � |F |. Note that decreasing|R| with a fixed number of landmarks
reduces the error

error measures the mean pointwise Euclidean distance [mm] between the points
m̂RBC and m̂BF, being transformed w.r.t. different estimations for (R, t). With an
increasing number of representatives|R|, the mapping error rises increasingly until
dropping sharply when approaching|R|= |F |. In general, increasing the number of
landmarks decreases the error. Please note that both situations of|R|= 1 and|R|=
|F | correspond to a BF search, hence yielding an identical transformation/mapping
estimate and a mean error of zero.

In order to further illustrate the impact of the relation between the number of
landmarks and representatives on reconstruction accuracy, we refer to Fig. 11. For
|R|� |F |, decreasing|R|with a fixed number of landmarks reduces the error. This
results from our approximate RBC construction scheme, where the probability of er-
roneous nearest neighbor assignments increases with the number of representatives.
Again, increasing the number of landmarks decreases the error. We remark that by
using our default configuration (16,384 LMs, |R| =

√

|F |), the mapping error is
less than 0.25 mm. This is an acceptable scale for the applications considered in this
work.

Furthermore, we have related the runtime per ICP iteration to |R|, see Fig. 12.
Apart from the runtime minimum that is located around|R| = 2

√

|F |, the com-
putational load rises when increasing or decreasing the number of representatives.
Simultaneously, the error decreases, recall Fig. 10. Hence, the application-related re-

20 Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann, Joachim Hornegger

Fig. 12 Runtimes of a single ICP iteration, for varying number of landmarks and representatives.
The runtime minimum is located around|R|= 2

√

|F |. Note the logarithmic scale

quirements in terms of runtime and accuracy motivates the choice of|R|. Together,
Fig. 10-12 illustrate the trade-off between error and runtime.

6 Discussion and Conclusions

In this chapter, we have proposed a GPU framework for real-time mapping and
modeling of textured point cloud streams enabling on-the-fly 3-D reconstruction
with modern RGB-D imaging devices. Our quantitative RBC experiments demon-
strate that using a data structure which is specifically designed to exploit the parallel
computing power of GPUs is beneficial even for low-dimensional (6-D) data. Using
our optimized approximate RBC for the photogeometric nearest neighbor search,
our system achieves reconstruction runtimes of less than 20ms on an off-the-shelf
consumer GPU in a frame-to-frame scenario.

The proposed framework was evaluated using a point-to-point metric for estimat-
ing the transformation within ICP. In general, minimizing apoint-to-plane distance
metric holds advantages over the point-to-point approach as it allows the surfaces
described byM andF to slide over each other [9], avoiding snap-to-grid effects.
However, solving the corresponding optimization problem as denoted in Eq. (7)

Real-time RGB-D Mapping on the GPU using the Random Ball Cover 21

would require an iterative scheme. We did not observe a negative impact on the
reconstruction results using the point-to-point approachin our experiments.

Compared to a conventional ICP that relies on the pure 3-D geometry [4, 9],
incorporating photometric appearance as a complementary source of information
is advantageous in cases of non-salient surface topology, recall Fig. 1 and the ex-
perimental results in related work [24]. Approaches that combine dense geometric
point associations with a sparse set of correspondences derived from local photo-
metric features are limited to interactive framerates, as feature extraction is compu-
tationally expensive even if performed on the GPU [19]. In contrast, our approach
evaluates both geometric and photometric information in a direct and dense man-
ner, c.f. [11, 24, 25]. We found that incorporating photometric appearance in such
an elementary manner gives the best compromise between reconstruction robust-
ness and runtime performance. Nonetheless, the proposed scheme using the RBC
for efficient nearest neighbor queries on the GPU can be potentially extended to
higher-dimensional point signatures.

Ongoing work includes the implementation of a multi-resolution ICP alignment
scheme in order to improve the convergence behavior, and thetransition from frame-
to-frame to frame-to-model registration using an implicitsurface model [10]. Fur-
thermore, an automatic scene-dependent weighting of the photogeometric weightα
by low-level analysis of the depth image as part of the preprocessing stage will be
subject of our upcoming research.

Acknowledgements S. Bauer and J. Wasza gratefully acknowledge the support by the European
Regional Development Fund (ERDF) and the Bayerisches Staatsministerium für Wirtschaft, In-
frastruktur, Verkehr und Technologie (StMWIVT), in the context of the R&D program IuK Bayern
under Grant No. IUK338. Furthermore, this research was supported by the Graduate School of
Information Science in Health (GSISH) and the TUM Graduate School.

References

1. Akenine-Möller, T., Haines, E., Hoffman, N.: Real-TimeRendering 3rd Edition. A. K. Peters,
Ltd., Natick, MA, USA (2008)

2. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II. IEEE
Robotics Automation Magazine13(3), 108–117 (2006)

3. Bauer, S., Wasza, J., Haase, S., Marosi, N., Hornegger, J.: Multi-modal surface registration
for markerless initial patient setup in radiation therapy using Microsoft’s Kinect sensor. In:
Proceedings of International Conference on Computer Vision, IEEE Workshop on Consumer
Depth Cameras for Computer Vision, pp. 1175–1181 (2011)

4. Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach
Intell 14(2), 239–256 (1992)

5. Blais, G., D. Levine, M.: Registering multiview range data to create 3-D computer objects.
IEEE Trans Pattern Anal Mach Intell17(8), 820–824 (1995)

6. Castaneda, V., Mateus, D., Navab, N.: SLAM combining ToF and high-resolution cameras.
In: Proceedings of IEEE Workshop on Applications of Computer Vision, pp. 672–678 (2011)

7. Cayton, L.: A nearest neighbor data structure for graphics hardware. In: Proceedings of Inter-
national Workshop on Accelerating Data Management SystemsUsing Modern Processor and
Storage Architectures, pp. 1–6 (2010)

22 Sebastian Bauer, Jakob Wasza, Felix Lugauer, Dominik Neumann, Joachim Hornegger

8. Cayton, L.: Accelerating nearest neighbor search on manycore systems. CoRR
abs/1103.2635, 1–10 (2011)

9. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis
Comput10(3), 145–155 (1992)

10. Curless, B., Levoy, M.: A volumetric method for buildingcomplex models from range im-
ages. In: Proceedings of Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH, pp. 303–312. ACM (1996)

11. Druon, S., Aldon, M., Crosnier, A.: Color constrained ICP for registration of large unstruc-
tured 3D color data sets. In: Proceedings of IEEE International Conference on Information
Acquisition, pp. 249–255 (2006)

12. Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard,W.: Real-time 3D visual SLAM with
a hand-held RGB-D camera. In: Proceedings of RGB-D Workshopon 3D Perception in
Robotics, European Robotics Forum, pp. 1–2 (2011)

13. Fioraio, N., Konolige, K.: Realtime visual and point cloud SLAM. In: Proceedings of RGB-D
Workshop: Advanced Reasoning with Depth Cameras, RoboticsScience and Systems Confer-
ence, pp. 1–3 (2011)

14. Garcia, J., Zalevsky, Z.: Range mapping using speckle decorrelation. US patent No. 7433024
(2008)

15. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using GPU. In: Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition, Workshop on
Computer Vision on GPU, pp. 1–6 (2008)

16. Gevers, T., Smeulders, A.W.: Color-based object recognition. Pattern Recognition32(3), 453–
464 (1999)

17. Harris, M., Sengupta, S., Owens, J.D.: GPU Gems 3, chap. Parallel prefix sum (scan) with
CUDA, pp. 851–876. Addison Wesley (2007)

18. He, K., Sun, J., Tang, X.: Guided image filtering. In: Proceedings of European Conference on
Computer Vision: Part I, pp. 1–14. Springer (2010)

19. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: Using depth cameras
for dense 3D modeling of indoor environments. In: Proceedings of International Symposium
on Experimental Robotics, pp. 1–15 (2010)

20. Hoberock, J., Bell, N.: Thrust: A parallel template library (2010). URL
http://code.google.com/p/thrust/. Version 1.3.0

21. Horn, B.: Closed-form solution of absolute orientationusing unit quaternions. J Opt Soc Am
4(4), 629–642 (1987)

22. Huhle, B., Jenke, P., Strasser, W.: On-the-fly scene acquisition with a handy multi-sensor
system. International Journal of Intelligent Systems Technologies and Applications5, 255–
263 (2008)

23. Izadi, S., Newcombe, R.A., Kim, D., Hilliges, O., Molyneaux, D., Hodges, S., Kohli, P., Shot-
ton, J., Davison, A.J., Fitzgibbon, A.W.: KinectFusion: real-time dynamic 3D surface recon-
struction and interaction. In: ACM Symposium on User Interface Software and Technology,
p. 23 (2011)

24. Johnson, A., Kang, S.B.: Registration and integration of textured 3-D data. In: Proceedings
of International Conference on Recent Advances in 3-D Digital Imaging and Modeling, pp.
234–241 (1997)

25. Joung, J.H., An, K.H., Kang, J.W., Chung, M.J., Yu, W.: 3Denvironment reconstruction using
modified color ICP algorithm by fusion of a camera and a 3D laser range finder. In: Proceed-
ings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3082–3088
(2009)

26. Korn, G.A., Korn, T.M.: Mathematical handbook for scientists and engineers: definitions, the-
orems, and formulas for reference and review. Courier DoverPublications (2000)

27. Loop, C., Blinn, J.: Real-time GPU rendering of piecewise algebraic surfaces. ACM Trans
Graph25(3), 664–670 (2006)

28. May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., N¨uchter, A., Hertzberg, J.: Three-
dimensional mapping with time-of-flight cameras. Journal of Field Robotics26, 934–965
(2009)

Real-time RGB-D Mapping on the GPU using the Random Ball Cover 23

29. McGuire, M.: ShaderX6, chap. A fast, small-radius GPU median filter, pp. 165–173. Charles
River Media (2008)

30. Neumann, D., Lugauer, F., Bauer, S., Wasza, J., Hornegger, J.: Real-time RGB-D mapping
and 3-D modeling on the GPU using the random ball cover data structure. In: Proceedings of
International Conference on Computer Vision, IEEE Workshop on Consumer Depth Cameras
for Computer Vision, pp. 1161–1167 (2011)

31. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D.,Kim, D., Davison, A.J., Kohli, P.,
Shotton, J., Hodges, S., Fitzgibbon, A.W.: KinectFusion: Real-time dense surface mapping
and tracking. In: Proceedings of IEEE International Symposium on Mixed and Augmented
Reality, pp. 127–136 (2011)

32. Nüchter, A., Surmann, H., Lingemann, K., Hertzberg, J., Thrun, S.: 6D SLAM with an appli-
cation in autonomous mine mapping. In: Proceedings of IEEE International Conference on
Robotics and Automation, vol. 2, pp. 1998–2003 (2004)

33. Qiu, D., May, S., Nüchter, A.: GPU-accelerated nearestneighbor search for 3D registration. In:
Proceedings of International Conference on Computer Vision Systems, pp. 194–203. Springer
(2009)

34. Reis, G., Zeilfelder, F., Hering-Bertram, M., Farin, G.E., Hagen, H.: High-quality rendering of
quartic spline surfaces on the GPU. IEEE Trans Vis Comput Graph 14(5), 1126–1139 (2008)

35. Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. ACM Trans
Graph21(3), 438–446 (2002)

36. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of Inter-
national Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)

37. Wasza, J., Bauer, S., Haase, S., Hornegger, J.: Real-time preprocessing for dense 3-D range
imaging on the GPU: Defect interpolation, bilateral temporal averaging and guided filtering.
In: Proceedings of International Conference on Computer Vision, IEEE Workshop on Con-
sumer Depth Cameras for Computer Vision, pp. 1221–1227 (2011)

