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Abstract In this chapter, we present a system for real-time pointcthoapping and

scene reconstruction based on an efficient implementafidneciterative closest

point (ICP) algorithm on the graphics processing unit (GRLfmpared to state-of-
the-art approaches that achieve real-time performanog psojective data associ-
ation schemes which operate on the 3-D scene geometry solglynethod allows

to incorporate additional complementary information tadguhe registration pro-

cess. In this work, the ICP’s nearest neighbor search etesdmth geometric and
photometric information in a direct manner, achieving thuappings in real-time.
In order to overcome the performance bottleneck in neaeighbor search space
traversal, we exploit the inherent computation paralelis GPUs. In particular, we

have adapted the random ball cover (RBC) data structureeardisalgorithm, orig-

inally proposed for high-dimensional problems, to low-dimsional RGB-D data.

The system is validated on scene and object reconstruatemasios. Our imple-

mentation achieves frame-to-frame registration runtiofegess than 20 ms on an
off-the-shelf consumer GPU.

1 Introduction

In the past, the acquisition of dense 3-D range data was bdtbuts, time consum-
ing and expensive. Lately, advances in RGB-D sensor desige tendered metric
3-D surface acquisition at convenient resolutions (up @k3foints) and framerates
(up to 40 Hz) possible, holding potential for a variety of bggtions where real-
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time demands form a key aspect. The advent of Microsoft'®kiifl4], with more
than ten million sales within a few months, has caused a fartre field of con-
sumer electronics. In fact, the device has attracted tleatain of various research
communities.

This chapter addresses the field of 3-D scene and model itegotisn that pro-
vides the basis for many practical applications. Among &th8-D modeling is
a key component for the acquisition of virtual 3-D modelstreeal objects, the
digitalization of archaeological buildings or sculptufes restoration planning or
archival storage [11], and the construction of environmmeaps in robot or vehi-
cle navigation [19, 28]. In particular, in the field of robe#j there is an increasing
interest in both 3-D environment reconstruction and siemdbus localization and
mapping (SLAM) solutions [2, 6, 32].

We present a framework that is capable of mapping RGB-D pdoud data
streams on-the-fly, enabling real-time 3-D scene modeieghave implemented a
hybrid 6-D ICP variant that performs the alignment by coasialy both photometric
appearance and geometric shape [24]. Photometric (ca¢a)rday be an essential
source of information to guide the registration processges when geometric sur-
face information is not discriminative enough to achieveoerect alignment, see
Fig. 1 for an example. Without loss of generality, we havaglesd the framework
in a manner that allows to incorporate further complemenita#fiormation into an
n-dimensional point signature. In order to enable on-thegxftycessing, the corpus
of the framework is implemented on the GPU. For the neareghber search, be-
ing the performance bottleneck in the majority of previoG® limplementations,
we use a data structure that is specifically designed to hédrafi the parallel ar-
chitecture of modern GPUs. In this work, we investigatedfitness of the random
ball cover (RBC) data structure and search algorithm [7o8]dw-dimensional 6-D
data. Trading accuracy against runtime, we propose a mddifiproximate RBC
variant that is optimized in terms of performance. Pleage tiwt this chapter is a
substantial extension of previous work by the authors [BOparticular, we further
enhanced the GPU implementation and achieved significaedsps.

The remainder of this chapter is organized as follows. Irt.S&ave review rel-
evant literature. We present our method for RGB-D mappind) 3«D modeling
in Sect. 3. Implementation details are given in Sect. 4. lct.S& we evaluate the
proposed framework and discuss experimental results.tkaky) we draw a con-
clusion in Sect. 6.

2 Related Work

The iterative closest point (ICP) algorithm is state-cé-tirt for the rigid alignment
of 3-D point clouds [4, 9, 36], and the vast majority of rethigork builds upon

this established scheme. However, in the field of 3-D envivent and model recon-
struction, only few existing approaches have achievedaotee framerates so far
[12, 13, 19, 22]. Huhle et al. proposed a system for on-th&ly scene modeling
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Fig. 1 lllustration of the benefit of incorporating photometridarmation into the point cloud
alignment process in situations of non-salient surfacergy. The top rowd,b) depicts the first
and last frame of an RGB-D sequence capturing a colored psttied to a plane wall from
changing perspectives. Using scene geometry as the onfgesotiinformation for the registra-
tion algorithm results in an erroneous alignmes)t (nstead, by considering both geometric and
photometric information, the correct alignment is founthgghe proposed frameworkl)

using a low resolution Time-of-Flight camera (26020 px), typically achieving
per-frame runtimes of> 2 s [22]. Engelhard et al. presented similar runtimes on
Microsoft Kinect data (648480 px) for an ICP-based RGB-D SLAM framework
[12]. The RGB-D mapping framework of Henry et al. perform®I€&gistration in

an average of 500 ms [19].

Only recently, real-time framerates were reported for gein ICP variants
[13, 23, 31]. In particular, th&inectFusionframework [23, 31] has gained pop-
ularity in the field of 3-D reconstruction. The fundamentadecof this framework is
based on the work of Rusinkiewicz et al. [35], combining potive data association
[5] and a point-to-plane metric [9] for rigid ICP surface istgation and sensor pose
estimation, respectively. While the original work was lied to a frame-to-frame
alignment [35], KinectFusion tracks the depth frame agaanglobally fused im-
plicit surface model of the observed scene [10]. This lirties drift behavior and
results in an increased robustness and reconstructiomaaycuespectively. Real-
time capability is achieved using a parallelized impleragoh on the GPU.

Compared to related methods based on projective data aieadi5] that pri-
marily consider the surface geometry for finding corresprmgpgoints, our approach
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allows to incorporate multiple complementary sources @drimation (in our case

geometry and photometry) into the nearest neighbor se&ratthermore, explic-

itly performing a nearest neighbor search according to atmignature potentially
allows to extend the framework to handle large misalignsémta feature-based
initial pre-alignment [3].

More than a decade ago, Johnson and Kang presented the firsaab to in-
corporate photometric information into the ICP framewdClolor-ICP) in order to
improve its robustness [24]. The basic idea is that photoaiaformation can com-
pensate for regions with non-salient topologies, whereasgtric information can
guide the pose estimation for faintly textured regions.X¥pegiments, Johnson and
Kang observed that the additional use of color informatiecrdased the registration
error by one order of magnitude. Recently, modificationsehasen proposed that
try to accelerate the color ICP’s nearest neighbor searghmnunying the search space
w.r.t. photometrically dissimilar points [11, 25]. Howey#his reduction typically
comes with a loss in robustness.

Since modern RGB-D devices produce and propagate an imniatseatream,
efficient implementations are inevitable in order to fulfébl-time constraints. For
the ICP algorithm in general, a comprehensive survey ofiefftamplementation
variants was given by Rusinkiewicz and Levoy [36]. Howetleejr survey did not
include hardware acceleration techniques.

For the nearest neighbor search, being a major bottlenetims of runtime,
CPU architectures have shown to benefit from space-paitijadata structures like
k-d trees [1]. In contrast to algorithmic improvements,dveaire acceleration tech-
niques are increasingly attracting the attention of theroomity. Garcia et al. have
shown that a GPU-based brute-force implementation owiped a CPU-based k-d
tree [15]. The reason for this lies in the fact that the biforee primitive can be
implemented efficiently using techniques known from thelwatlerstood problem
of GPU-based matrix-matrix multiplication. Implementats of traditional nearest
neighbor search acceleration strategies on the GPU arewcbelg due to the non-
parallel and recursive nature of construction and/or tsaleof the underlying data
structures. For instance, Qiu et al. [33] achieved exceltamerates for GPU based
k-d tree queries. However, the construction of the treeiiopmed on the CPU, thus
limiting performance when the tree must be constructed oerédrame basis as
in the application scenarios considered in this chaptereRtty, space-partitioning
strategies that are specifically designed for GPU architesthave been addressed.
A promising approach is the random ball cover (RBC) propdse@ayton [7, 8].
The basic principle behind the RBC is a two-tier nearesthimig search, building
on the brute-force primitive, to prune the search spacehi;wwork, we adapted
the random ball cover data structure and search algorithiginally proposed for
high-dimensional problems, to low-dimensional RGB-D dataaccelerating the
ICP alignment.
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Fig. 2 Flowchart of the proposed 3-D scene reconstruction framewdpart from the camera
hardware interface and the ICP control flow management,dtpues of the computational load of
both data preprocessing and photogeometric ICP alignnsamg (RBC is outsourced to the GPU

3 Methods

The proposed RGB-D mapping and modeling framework is coeghad three
stages, as depicted in Fig. 2. In an initial stage, the sedstar consisting of or-
thogonal distance measurements and photometric colamiafiion are transferred
to the GPU where the corpus of the pipeline is executed. OGP, first, data
preprocessing and the transformation from orthogonaleangasurements in the
2-D sensor domain to 3-D world coordinates are performedt(Sel). Second,
based on a set of extracted landmarks, the proposed colovd@Gént is applied
(Sect. 3.2). Our method exploits the arithmetic power of aradsPUs for efficient
nearest neighbor search with an inherently parallel datietsire and query frame-
work (RBC, Sect. 3.3). Third and last, the instantaneoustpmoud is attached to
the global reconstructed model based on the estimateddraregion. We point out
that the rigid body transformation is estimated in a framdéréame manner, i.e. the
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pose of the instantaneous frame is estimated by registratjainst the previous
frame. In the remainder of this section, we outline the etsmlesteps of the pro-
posed ICP framework. GPU implementation details are dssish Sect. 4.

3.1 Data Preprocessing on the GPU

The Microsoft Kinect device acquires RGB-D data with VGAalksion (640x 480
px) at 30 Hz. With respect to real-time constraints and réigas of the specific
application, this spatial and temporal data density posbskenge to data process-
ing solutions. Hence, in addition to the actual point cloligrement, we perform
RGB-D data preprocessing on-the-fly on the GPU. First, wéyagnige-preserving
denoising (e.g. guided image filtering [18, 37]) on the rawteand RGB data,
respectively, as acquired by the Microsoft Kinect senddext, the enhanced depth
measurements are transformed to the 3-D world coordinatersy Indeed, for each
pointx. € R? in the camera plane, its depth vakig:) describes a world coordinate
position vectorx, € R3. The transformation can be computed independently for
each pixel, thus fitting perfectly for parallel processimgtbe GPU (see Sect. 5.2).

Nomenclature

Let us introduce the notation for this chapter. Létdenote anovingset of template
points.# = {m}, wherem ¢ R® concatenates a point's geometric and photometric
informationmg € R3 andmp, € R*:

m
m— (mg> . )

The indexeg and p denote that only the geometric and photometric part is con-
sidered, respectively. In order to compensate for inctersises due to changes in
illumination and viewpoint direction, the photometricanfation is transformed to
the normalized RGB space [16]:

ir
mp = (ir+ig+in) 1 | ig | , )

i
whereiy, ig,ip denote the intensities of the red, green and blue photocretannel.
In analogy to the moving set of template poin#s, let & = {f} denote Hixed

set of|.7 | reference points € R®, wheref " = (f] f]).
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Landmark Extraction

Considering the application of 3-D scene or object modelsigg a real-time, hand-
held and steadily moved RGB-D device implies that a portiihe scene that was
captured in the previous fram& is no longer visible in the instantaneous data
./ and vice versa. Facing these issues, we heuristically igbe set of points
that correspond to range measurements at the edge of theeRddrsdomain in
order to improve the robustness of ICP alignment. This aligps performed in
conjunction with the extraction of the sparse sets of ICRItaarks, denoted by
M C A and F C . In practice, the landmark extraction is performed by sub-
sampling the clipped point set.

For the case of 3-D object reconstruction, we apply a deglicetheme for land-
mark extraction. Instead of considering the entire sceresegment the foreground
using a depth threshold. From the set of foreground pixedsthen select a set of
landmarks.

3.2 Photogeometric | CP Framework

Being the state-of-the-artin rigid point cloud alignmeht9, 36], the ICP estimates
the optimal rigid transformatiorRt) that brings# in congruence with?, where
R € R3*3 denotes a rotation matrix witR" = R~ detR) = 1 andt € R denotes
a translation vector. Based on an initial guéBS, t°), the ICP scheme iteratively
estimates this transformation by minimizing an error noetigsigned to repeatedly
generated pairs of corresponding landmarksy) wherem € .# andy € .#. In
terms of correspondence search, pbotogeometri¢CP variant incorporates both
geometric and photometric information. Let us note that petimg strategies, in-
cluding projective data association, typically rely on thee geometry and cannot
incorporate additional information in a straightforwardmner. We now outline the
essential steps of our photogeometric ICP variant.

In the geometric case, the distaniteetween an individual moving landmark
and the set of reference landmarkg = {f,} is defined as:

i 2
d(mg, Fg) = min fg ~ 3, ©)

where|| - ||2 denotes the Euclidean norm. In order to incorporate thetiaddi pho-
tometric information available with modern RGB-D senstesus modify the dis-
tance metria:

d(m, ) =min((1- @) lfg —mgl3-+ alfp— mp|3) )

wherea € [0,1] is a non-negative constant weighting the influence of theghet-
ric information. The benefit of this hybrid approach is thabfmmetric information
compensates for regions with non-salient surface topokgy geometric informa-
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tion compensates for faintly textured regions or photormmétconsistencies due to
changes in illumination and viewpoint direction. The laradky € .# yielding the
minimum distance ton is then given by:

y=argf?;ﬁ((1—O’)Hfg_mgH%‘Fapr_mpH%) : (5)

By assigning a nearest neighbpto all m € .#, a set of nearest neighbo#s is
given as®% = {y},y€ %, |#| = |.#|, and the landmark correspondences can be
denoted by .7, %). The GPU-based nearest neighbor search framework that we
use to establish these landmark correspondences is dabdnitSect. 3.3. Next,
based on the landmark correspondencg (%) found in thek-th ICP iteration,

the transformationlf{k,fk) is estimated by either minimizing a point-to-point error
metric in a least-squares sense using a unit quaterniomizeti [21],

sk ok 1
(RLE) =argmin. 7 5 [[(Rfmg+19 — g3, (6)
s g ‘///g,%k

or by minimizing a point-to-plane distance metric [9] usangonlinear solver,

sk ok 1 Kok L k) oK\ T )2
(R',t) =argmin—— ((R*mg+1t%) —vyg) N~ .
Rk tk |//lé<|%gz%k( ’ 3 )

(7)

Here,nys denotes the surface normal associated with the pgi&tﬁ. After each
iteration, the global solutiorRt) is accumulated:

R =R"R, t =R+, (8)

and(///g is updated according Ims = Rmg +t. The two stages of first finding the
set of nearest neighbof&k and then estimating the optimal transformation for the
correspondences#’¥, #¥) are repeated iteratively until a convergence criterion is
fulfilled, see Fig. 2 and Sect. 4.1.

3.3 6-D Nearest Neighbor Search using RBC

The random ball cover (RBC) is a novel data structure foriefficnearest neighbor
(NN) search on the GPU proposed by Cayton [7, 8]. By desigaxtoits the paral-
lel architecture of modern graphics cards hardware. Iriqueatr, both the construc-
tion of the RBC and dataset queries are performed usingHfoute (BF) primitives.
Using techniques known from matrix-matrix multiplicatiaghe BF search can be
performed in a highly efficient manner on the GPU. The RBC datacture relies
on randomly selected pointsc .%#, calledrepresentativesEach of them manages
a local subset of#. This indirection creates a hierarchy in the database $attat
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Fig. 3 lllustration of the RBC constructiora{c) and the two-tier nearest neighbor query scheme
(d-f) for the simplified case of 2-D dataa)(Selection of a set of representatives (labeled in
dark blug out of the set of database entriés(light blue). (b) Nearest representative search over
the set of database entries, to establish a landmark-teseptative mappingc) Nearest neighbor
set of each representativeh@ded in blug (d) Query datagrange and set of representatives
(dark blug. (e) Identification of the closest representativein a first brute force (BF) runf)
Identification of the nearest neighbagréer) in the subset of entries managed byshaded in
blue), in a second BF run

nearest neighbor query is processed by (i) searching thesteaeighbor among
the set of representatives and (ii) performing anothercéefar the subset of entries
managed by . This two-tier approach outperforms a global BF search dubé
fact that each of the two successive stages explore a hgauihed search space.

In this work, we have investigated the fithess of the RBC faetaration of the
6-D nearest neighbor search of our photogeometric ICPn@xgitig this particular
ICP stage is motivated by the fact that it is a major perforoednottleneck — see
Sect. 5.2 and [30].

Cayton proposed two alternative RBC search strategie§ [ exactsearch is
the appropriate choice when the exact nearest neighboqisreel. Otherwise, if
a small error may be tolerated, the approximate-shotearch is typically faster.
Originally, in order to set up thene-shotdata structure, the representatives are
chosen at random, and eacimanages its closest database elements. Depending
ons, points typically belong to more than one representatiwvéber, this implies
a sorting of all database entries for each representatiitedefing a high degree of
parallelization for implementation on the GPU — or the nemdnfiultiple BF runs
[7]. Hence, we introduce a modified version of iree-shotapproach that is even
further optimized in terms of performance. In particulae gimplified the RBC
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construction, trading off accuracy against runtime, sge ¥Fi{a—c). First, we select
a random set of representativés= {r} out of the set of fixed points?. Second,
each representativeis assigned a local subset &f. This is done in an inverse
manner by simply computing the nearest representatigeeach poinf € .%. The
query scheme of our modifiexhe-shoRBC variant is basically consistent with the
original approach and can be performed efficiently using $wbsequent BF runs
[8], see Fig. 3 (d—f). First, the closest representativdentified amongZ. Second,
based on the associated subset of entries managedthg nearest neighbor is
located.

Please note that this modified RBC construction schemetseisuan approx-
imate nearest neighbor search being error-prone from astieal point of view.
In practice, facing the trade-off between accuracy andmmtwe tolerate this ap-
proximation, c.f. Sect. 5.2. Let us further remark that tbleesne is not limited to
6-D data but can be applied to data of any dimension. For egijiin in 3-D recon-
struction, this potentially allows to extend the point sigire from 6-D to higher
dimensions, e.g. appending additional complementaryrimétion or local feature
descriptors to the raw geometric and photometric measurenaequired by the
sensor, c.f. [19].

4 Implementation Details

In this section, we discuss implementation details and centran practical issues.
In particular, we address the RBC implementation on the GPU.

4.1 Detailsregarding the | CP Framework

Regarding the quality and robustness of point cloud aligrtnvee observed a strong
impact of outliers that occur in RGB-D data particularly dosensor noise, quanti-
zation, occlusion, and changes in viewpoint direction.seenoise and quantization
issues are reduced using edge-preserving denoising filtdrs preprocessing stage
of the framework, recall Fig. 2. We typically apply the coptef guided image fil-
tering [18] or median filtering that both can be parallelizieén efficient manner
on the GPU [29, 37].

The remaining set of outliers arise from a change in viewfinection or occlu-
sion and cannot be eliminated by denoising. To take themaatount, we option-
ally reject low-grade correspondences in the transfoonatistimation stage. The
termlow-gradeis quantified by comparing the distance of a correspondiiggba
landmarks (Eqg. (4)) w.r.t. an empirically set threshdldrhe set of low-grade cor-
respondences is re-computed for each ICP iteration andrdied in the subsequent
transformation estimation step.
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As initialization for the ICP alignment, we incorporate trstimated global trans-
formation(R?,t°) from the previously aligned frame, see Fig. 2, assuming a#mo
trajectory of the hand-guided acquisition device. In pgcagtthis speeds up conver-
gence and reconstruction, respectively.

In our implementation, the ICP transformation is estimdigdninimizing the
point-to-point distance metric (Eq. (6)). The estimatidrite transformation ma-
trix according to Horn [21] is performed on the GPU. Both tleenputation of the
centroids of.%# and.# and the summation of the intermediate M-matrix are im-
plemented using the established parallel reduction tecten[17]. For details on
Horn's scheme we refer to [21]. Note that low-grade corresiemces may have
been removed fron?# and.# at this stage. The resulting eigenvalue problem is
solved using the iterative Jacobi scheme on the GPU. Thistsated by practical
experience: on the one hand, using a CPU-based implenmntdtiacobi’'s scheme
would result in notable host-device and device-host terghes, depending on the
number of ICP iterations. On the other hand, solving thereigkeie problem on the
GPU using Ferrari’s closed form solution [26] as proposetidyp and Blinn [27]
would imply a non-negligible number of branches and roatwaalttions that are also
performed iteratively in hardware [34].

As ICP convergence criterion we analyze the variation oet$tenated transfor-
mation over the iterations. In particular, we evaluate th@nge in translation mag-
nitude and rotation angle w.r.t. heuristically set thrddb@f 0.01 mm and 0.007,
respectively.

4.2 RBC Construction and Queries on the GPU

Originally designed for offline and high-dimensional datexes, utilizing the RBC
for real-time low-dimensional RGB-D mapping requires agrtadaptations. We
found that the originally proposed RBC construction roatifoes not satisfy run-
time constraints imposed by the framerate of modern RGB-&ying devices. We
therefore employ a different RBC construction routine d@somfuced in Sect. 3.3.
As a consequence, this implies a query approach that sfigtiters from the origi-
nal proposal. Below, we describe the details and hardw#atereconsiderations of
our RBC implementation. An illustration of the workflow foB® construction and
guery, as well as data interaction, is depicted in Fig. 4.

RBC Construction

As afirst step in the RBC construction, we extract the setmagentatives? = {r }
from the given fixed landmark% . For each landmarke .#, we then compute the
nearest representativdy a brute-force search strategy. This can be done effigientl
in parallel over the landmarks using block decompositiaitéques known from
matrix-matrix multiplication on the GPU. These landmaokrépresentative (LR)
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Fig. 4 Flowchart describing the GPU workflow and data interactionRBC construction (left)
and queries (right). Note the high degree of parallelismbioth construction and queries. For
details on the landmark-to-representative (LR) mappirgrsg. 5

mappings are subsequently used to (i) set up the R informatiorand (ii) to
generate a compact and cache frierqmlymuted data basa the original landmarks
7 for RBC queries. An illustration is given in Fig. 5. For metdidrmation genera-
tion, let us note that the number of managed landmarks fdr eg@resentative can
be derived in the LR mapping computation directly by usingcyonized counters
employing atomic operations. We found this approach morfopaant compared
to a separate approach. Next, we compute an offset tablerbyrméng a parallel
scan [17] on the number of managed entries. This offset tdbtiteately defines the
unique position for each representative’s first managed émthe permuted data
base. To re-arrange the original data into a cache friergigut for RBC queries,
we perform a key-and-value sort [20] on the LR mappings. Hetandmark ID de-
notes the value and the associated representative ID défimksy. By using such a
data base layout, a representative’s managed entriescatedin contiguous mem-
ory regions, improving cache hit ratio for RBC queries. Wéertbat our approach
still requires sorting, however, sorting breaks down.£g elements in contrast to
|.Z |- |%| entries as originally described [8].

RBC Nearest Neighbor Queries

As described in Sect. 3.3, RBC queries rely on a two-tier apghm — each em-
ploying a brute-force search — to prune the search spacefirBhéer consists of
finding the nearest representativéor each query element by a BF search. This
is basically the same procedure as for deriving the LR maspiuring RBC con-
struction and can be performed efficiently in parallel over uery elements by
using a block-decomposition scheme. The second tier dsrdifinding the nearest
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Fixed Landmarks Data Base

LandmarkID(value) | 0 | 1|2 |3 |4 |5|6|7

Rep.ID(key) (33|00 1]2]0]2

RBC Meta Information

Rep.D |0 1|23 213/6|4|5|7]0

Landmark ID

Number of Entries 311122 0(0|0|1]2|2|3]|3]| Rep.ID

Permuted Data Base Offset | 0 | 3 | 4 | 6

Fig. 5 Data structures for RBC construction and queries. Note fffierehtiation between meta
information (left) and the permuted data base (right) torimap cache hit ratio for queries

entry managed by the representatividentified in the first tier. Again, this is done
by utilizing a BF search, however, an efficient block-decosifion scheme is not a
performant option here. In the first tier this scheme is effitiand possible due to
the prior knowledge that all query elements have to visitydhe same represen-
tatives. However, in the second tier, each query element exasnine (i) different
entries and/or (ii) a different number of entries. Both axeig by the entry’s near-
est representative which in general is not consistent adlifferent query elements.
Though sophisticated techniques to implement a block-tposition-like scheme
can be used, in most cases they are counterproductive. Wiel that due to the
computational overhead a potential performance gain ts liostead, we employ a
simple BF search over a representative’s contiguous meregign in thepermuted
data basewhich allows to increase the cache hit ratio and resultsvirefauntimes.

5 Experiments and Results

We have evaluated the proposed framework for on-the-fly @d@mstruction and
modeling of real data (640480 px, 30 Hz) from a hand-held Microsoft Kinect sen-
sor. Below, first, we present qualitative results for bottioiar scene mapping and
object reconstruction scenarios, and investigate thednfla of the parameter set-
tings (Sect. 5.1). Second, being a major focus of this systeendemonstrate its
real-time capability in a comprehensive performance st{8bct. 5.2). Third, we
compare our approximate RBC variant to an exact nearestibeigearch in terms
of accuracy (Sect. 5.3). For all experiments, the numbeepfasentatives was set
to |#Z| = /|-#| according to Cayton’s rule of thumb [8], if not stated othisev
The ICP transformation was estimated by minimizing the ptorpoint distance
metric, see Eq. (6). The performance study was conducted oiff-dhe-shelf con-
sumer desktop computer equipped with an NVIDIA GeForce GB8 GPU and a
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Fig. 6 On-the-fly 3-D scene reconstruction for different typesamms. First row: bedroom (295
frames). Second row: lounge (526 frames). Third row: famigm (380 frames). For each se-
guence, the left column depicts a bird-eye view of the redecoom layout. The remaining
columns provide a zoom-in for selected regions. All recartions were performed using our
default parameter settings as stated in Sect. 5.1. Notddhatsualization of the reconstructed
scenes, we rendered a subset of the global model point cloud

2.8 GHz Intel Core 2 Quad Q9550 CPU. The GPU framework is impleted using
CUDA.

5.1 Qualitative Results

Qualitative results for a scene reconstruction scenariadnor environments are
depicted in Fig. 6. The three point cloud sequences werei@chiiom a static ob-
server location by rotating the hand-held sensor arounaliserver’s body axis.
RGB-D data were aligned on-the-fly. The different rooms wemmnstructed using
identical preprocessing pipeline and ICP/RBC parametéings (default configu-
ration): Edge-preserving denoising (geometric medianpgric and photometric
guided image filter)|.% | = |.#| = 16,384 ICP landmarks, 10% edge clipping, pho-
togeometric weightr = 0.8, no elimination of low-grade correspondenc@s+ ).
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@ (b) ©

Fig. 7 3-D reconstruction of a female torso model, where the haxd-hcquisition device was
moved around the model in a 36€ashion in order to cover the entire object. RGB-D data from
different perspectives (525 frames) were merged into aajlotodel on-the-fly. For visualization
of the reconstructed model, we rendered a subset of thelgtuime! point cloud

(@) (b)

Fig. 8 Influence of parameter settings, again for the reconstruatif the female torso model,
c.f. Fig. 7). Subfigure §) depicts the reconstruction result when edge-presenémgiding was
disabled. In subfigured(c), we increased the low-grade correspondence threshdd=th0 mm
(b) and 6 — = (c), leading to decreasing reconstruction quality. For ims¢a please note the
labeled issues regarding loop closure

In order to demonstrate the effectiveness of our systemdoonstruction of
scenes with non-salient 3-D geometry, we refer to Fig. lirfgaa colored poster
sticked to a plane wall, the reconstruction could benefitificantly from incorpo-
rating the photometric domain as a complementary souragafration.

In addition to scene reconstruction, the proposed framlewan also be em-
ployed for 3-D model digitalization scenarios. Here, thadvield acquisition de-
vice is moved around an object to acquire RGB-D data fronerkffit perspectives
while continuously merging the data into a global model gs$ive proposed frame-
work. As stated in Sect. 3.1, for the case of 3-D object reton8on, we select
the set of landmarks from a defined foreground region onlgkBeound data points
that are located beyond a certain depth level are ignorddmiie ICP alignment
procedure. For object reconstruction, our default sedteng: Edge-preserving de-
noising (geometric guided image filtef}# | = |.#| = 16,384 ICP landmarksy =0
(invariance to illumination issues),= 3 mm.
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Runtime Comparison: Brute Force vs. Exact RBC vs. Approximate RBC

—— Brute Force

—+— Exact RBC

- + - Exact RBC [30]
—o— Approximate RBC

— = — Approximate RBC [30]

Runtime [ms]

0 | |
1,024 2,048 4,096 8,192 16,384
# Landmarks

Fig. 9 Comparison of the average runtime for a single ICP iteradbased on a GPU brute force
primitive, the exact RBC and our optimized approximate RB@ant as described in Sect. 3.3, for
increasing number of landmarks. The number of represeatats chosen according to Cayton’s
rule of thumb,|Z| = \/|.%|. Note that our modified approximate RBC approach outper$aime

exact RBC up to a factor of 3. The BF primitive scales quadaditi w.r.t. the number of landmarks

Qualitative results for model reconstruction are depidtedrig. 7. Note that
by setting a rather rigorous threshold for discarding loweg correspondences
(6 =3 mm), our framework is able to achieve a sufficient degrelap closure
although it relies on a frame-to-frame alignment.

The influence of different parameter settings is investigan Fig. 8. As a base-
line, we refer to the reconstruction results in Fig. 7(b)nhgsour default settings
(guided image filter denoising = 3 mm). Disabling edge-preserving denoising
increases issues regarding loop closure, see Fig. 8(axiRglthe low-grade cor-
respondence thresho8ilresults in similar effects (Fig. 8(b® = 10 mm) and can
eventually lead to model reconstruction failures (Fig) 8§c— ).

5.2 Performance Study

The corpus of the proposed framework including both preggsing and RGB-D
mapping is executed on the GPU, recall Fig. 2. This secti@sguts quantitative
results for individual modules of the framework.
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Preprocessing Pipeline

Edge-preserving image filtering is parallelized in an edfitimanner on the GPU
[29, 37]. The computation of 3-D world coordinates from theasured depth val-
ues requires less than 1 ms for Microsoft Kinect data of VGgohation, including
CPU-GPU memory transfer of the RGB-D data. The subseque egping and
landmark extraction for# and.Z in scene reconstruction scenarios depends on
|.#| = ||, denoting the number of landmarks (LMs), with typical romis of
less than 0.3 ms. Let us conclude that runtimes for data pcepsing assume a mi-
nor role. As we target scene reconstruction in the first plEseimark extraction
for object reconstruction scenarios including foregrosegmentation and random
landmark selection was implemented on the CPU with a runtifrebout 5 ms, as
proof-of-concept.

ICP using RBC

Being the cornerstone of our framework, we have investiyte performance of
our GPU-based ICP/RBC implementation in detail. A singlP i@ration consists
of three steps: (i) nearest neighbor search using RBCrdiisformation estimation
and (iii) application of the transformation. With an incseay number of landmarks,
the nearest neighbor search dominates the runtime coabigidB0]. Hence, we
have put emphasis on optimizing the RBC construction anaygperformance.
Note that for all subsequent performance evaluationsimastwhere averaged over
several successive runs.

A comparison of absolute runtimes for a single ICP iteraimmpresented in
Fig. 9. Our modified approximate RBC outperforms both a BFceand our refer-

Table 1 Runtimes [ms] for the construction of the RBC data struciitgc c) and ICP execu-
tion for reconstructing a typical indoor scene, for varymgmber of landmarks. In the first rows,
average runtimes for our default settig| = \/|.7 | are given. In the second rows, we state perfor-
mance numbers fd&Z| being optimized in terms of runtime. Note that optimizingtime comes
with a loss in accuracy, c.f. Fig. 10. We state both the ruatfar a single ICP iteratiortép) and
typical total ICP runtimesy (including RBC construction) for 10 and 20 iterations, extvely

# Landmarks | 2| trec,c[ms]  ticp[MS]  tior (10 its) [MmS]  tior (20 its) [ms]
1,024 VI7=32 0.58 0.25 3.13 5.68
1,024 128 0.59 0.12 1.79 3.00
2,048 V]F| =45 0.60 0.27 331 6.03
2,048 128 0.60 0.14 2.02 3.44
4,096 V7| =64 0.63 0.32 3.80 6.97
4,096 128 0.67 0.21 2.76 4.86
8,192 VIZ=91 0.76 0.50 5.80 10.82
8,192 256 1.22 0.40 5.22 9.22
16,384 V]Z| =128 0.90 0.91 9.96 19.07

16,384 256 1.49 0.78 9.25 17.04
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Mapping Error vs. Number of Representatives
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Fig. 10 Evaluation of the influence dfZ| on mapping accuracy, compared to an exact BF search,
for varying number of landmarks. Given is the mean Euclidéiatance [mm] between the mapped
pointsMgpc andMgg. Increasing the number of landmarks decreases the errergiph shows
both discretized measurements and a trendline for eadhgsdtiote the semi-log scale

ence implementation of Cayton’s exact RBC. Note that thed#fch scales quadrat-
ically with the number of landmarks. Our approximate RBQastroutperforms the
exact RBC implementation up to a factor of 3. Compared toiptesswork by the
authors [30], significant runtime speedups were achievadyube permuted data
base and its cache friendly layout as detailed in Sect. 4.2.

Typical scene reconstruction runtimes of the method arergiw Table 1. From
our experiments in indoor scene mapping, we observed thed@8nverge after
10-20 iterations using the stopping criterion describe®datt. 4.1. Hence, as an
overall performance indicator, let us refer to the runtiniel®.1 ms for 16384
landmarks|Z| = \/|-#|, for 20 iterations.

5.3 Approximate RBC

As motivated in Sect. 3.3, our approximate RBC construcdioe nearest neighbor
search trades exactness for runtime speedup. We quaiyativestigated the error
that results from our approximate nearest neighbor seantipared to an exact BF
scheme, considering the aligned point cloud&sc and.#gF, see Fig. 10. The
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Mapping Error vs. Number of Landmarks
4.5

_”_%m,
—+— 1VLMs
—— 2VLMs ||
—#— 5VLMs

Mean Error [mm]

0.5

O 1
1,024 2,048 4,096 8,192 16,384
# Landmarks

Fig. 11 Investigation of the mean mapping error vs. number of lanémdor varying|Z|. Here,
the analysis is restricted {&7| < |.7#|. Note that decreasingz| with a fixed number of landmarks
reduces the error

error measures the mean pointwise Euclidean distance [netalden the points
Mgrec and Mpg, being transformed w.r.t. different estimations f&,{). With an
increasing number of representatiygd, the mapping error rises increasingly until
dropping sharply when approachipg| = |.#|. In general, increasing the number of
landmarks decreases the error. Please note that bothaitsiaf|%2| = 1 and|.Z| =
|.#| correspond to a BF search, hence yielding an identicalfsamsition/mapping
estimate and a mean error of zero.

In order to further illustrate the impact of the relationweén the number of
landmarks and representatives on reconstruction accuwacsefer to Fig. 11. For
|Z| < |.7 |, decreasingZ| with a fixed number of landmarks reduces the error. This
results from our approximate RBC construction scheme, avtier probability of er-
roneous nearest neighbor assignments increases withithigenof representatives.
Again, increasing the number of landmarks decreases the e remark that by
using our default configuration (1884 LMs, |Z| = \/|-Z ), the mapping error is
less than 0.25 mm. This is an acceptable scale for the afiphsaconsidered in this
work.

Furthermore, we have related the runtime per ICP iteratide, see Fig. 12.
Apart from the runtime minimum that is located arouysd = 2,/|.%|, the com-
putational load rises when increasing or decreasing thebeuwf representatives.
Simultaneously, the error decreases, recall Fig. 10. Hehneapplication-related re-
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Runtime of a single ICP lteration vs. Number of Representatives
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Fig. 12 Runtimes of a single ICP iteration, for varying number ofdararks and representatives.
The runtime minimum is located arounh#| = 2,/|.#|. Note the logarithmic scale

quirements in terms of runtime and accuracy motivates to&etof|%|. Together,
Fig. 10-12 illustrate the trade-off between error and meti

6 Discussion and Conclusions

In this chapter, we have proposed a GPU framework for rea-tmapping and
modeling of textured point cloud streams enabling on-te3fD reconstruction
with modern RGB-D imaging devices. Our quantitative RBCeaxkpents demon-
strate that using a data structure which is specificallyghesd to exploit the parallel
computing power of GPUs is beneficial even for low-dimenald6-D) data. Using
our optimized approximate RBC for the photogeometric netameighbor search,
our system achieves reconstruction runtimes of less than26n an off-the-shelf
consumer GPU in a frame-to-frame scenario.

The proposed framework was evaluated using a point-totpeétric for estimat-
ing the transformation within ICP. In general, minimizingaint-to-plane distance
metric holds advantages over the point-to-point approadh alows the surfaces
described by# and.# to slide over each other [9], avoiding snap-to-grid effects
However, solving the corresponding optimization problesndanoted in Eq. (7)
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would require an iterative scheme. We did not observe a ivegabpact on the
reconstruction results using the point-to-point apprdaadaur experiments.

Compared to a conventional ICP that relies on the pure 3-Dngéy [4, 9],
incorporating photometric appearance as a complementange of information
is advantageous in cases of non-salient surface topoleggllFig. 1 and the ex-
perimental results in related work [24]. Approaches thaihbime dense geometric
point associations with a sparse set of correspondenceeddrom local photo-
metric features are limited to interactive frameratesgasure extraction is compu-
tationally expensive even if performed on the GPU [19]. Intcast, our approach
evaluates both geometric and photometric information inrectiand dense man-
ner, c.f. [11, 24, 25]. We found that incorporating photoricesappearance in such
an elementary manner gives the best compromise betweensteaction robust-
ness and runtime performance. Nonetheless, the propokethecusing the RBC
for efficient nearest neighbor queries on the GPU can be paligrextended to
higher-dimensional point signatures.

Ongoing work includes the implementation of a multi-resiolo ICP alignment
scheme in order to improve the convergence behavior, artcethgtion from frame-
to-frame to frame-to-model registration using an implgtitface model [10]. Fur-
thermore, an automatic scene-dependent weighting of themgaometric weighdr
by low-level analysis of the depth image as part of the preggsing stage will be
subject of our upcoming research.
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